1
|
Xu B, Tang C, Han R, Zhu C, Yang Y, Li H, Wu N, He D. Targeting the chemokine-microglia nexus: A novel strategy for modulating neuroinflammation in Alzheimer's disease. J Alzheimers Dis Rep 2025; 9:25424823251326044. [PMID: 40321241 PMCID: PMC12049630 DOI: 10.1177/25424823251326044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/07/2025] [Indexed: 05/08/2025] Open
Abstract
An increasing body of evidence suggests neuroinflammation has a prominent role in the pathogenesis of Alzheimer's disease (AD). The amyloid-β-tau-neurodegeneration (ATN) classification system is now being expanded toward an amyloid-β-tau neurodegeneration-neuroinflammation (ATN(I)) system. Activated microglia and reactive astrocytes are the key hubs for neuroinflammation in AD, and chemokines are recognized as pivotal modulators of microglial innate immune functions. In this review, based on the chemokine-microglia regulatory axis, we elucidate the mechanisms through which chemokines influence microglial function, potentially modulating neurotoxicity or neuroprotection in AD. The key chemokines that significantly affect microglial polarization, such as CCL2, CCL3, and CXCL1, are summarized, and their role in disease progression are elaborated. Additionally, we explore prospective therapeutic interventions centered on the chemokine-microglia regulatory axis, offering valuable perspectives on pathobiology of AD and avenues for pharmacological advancements.
Collapse
Affiliation(s)
- Bingyang Xu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chao Tang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Rongshou Han
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chaomin Zhu
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuxuan Yang
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Heyi Li
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ning Wu
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dian He
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Zhou F, Sun Y, Xie X, Zhao Y. Blood and CSF chemokines in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis. Alzheimers Res Ther 2023; 15:107. [PMID: 37291639 PMCID: PMC10249313 DOI: 10.1186/s13195-023-01254-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Chemokines, which are chemotactic inflammatory mediators involved in controlling the migration and residence of all immune cells, are closely associated with brain inflammation, recognized as one of the potential processes/mechanisms associated with cognitive impairment. We aim to determine the chemokines which are significantly altered in Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as the respective effect sizes, by performing a meta-analysis of chemokines in cerebrospinal fluid (CSF) and blood (plasma or serum). METHODS We searched three databases (Pubmed, EMBASE and Cochrane library) for studies regarding chemokines. The three pairwise comparisons were as follows: AD vs HC, MCI vs healthy controls (HC), and AD vs MCI. The fold-change was calculated using the ratio of mean (RoM) chemokine concentration for every study. Subgroup analyses were performed for exploring the source of heterogeneity. RESULTS Of 2338 records identified from the databases, 61 articles comprising a total of 3937 patients with AD, 1459 with MCI, and 4434 healthy controls were included. The following chemokines were strongly associated with AD compared with HC: blood CXCL10 (RoM, 1.92, p = 0.039), blood CXCL9 (RoM, 1.78, p < 0.001), blood CCL27 (RoM, 1.34, p < 0.001), blood CCL15 (RoM, 1.29, p = 0.003), as well as CSF CCL2 (RoM, 1.19, p < 0.001). In the comparison of AD with MCI, there was significance for blood CXCL9 (RoM, 2.29, p < 0.001), blood CX3CL1 (RoM, 0.77, p = 0.017), and blood CCL1 (RoM, 1.37, p < 0.001). Of the chemokines tested, blood CX3CL1 (RoM, 2.02, p < 0.001) and CSF CCL2 (RoM, 1.16, p = 0.004) were significant for the comparison of MCI with healthy controls. CONCLUSIONS Chemokines CCL1, CCL2, CCL15, CCL27, CXCL9, CXCL10, and CX3CL1 might be most promising to serve as key molecular markers of cognitive impairment, although more cohort studies with larger populations are needed.
Collapse
Affiliation(s)
- Futao Zhou
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China.
| | - Yangyan Sun
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| | - Xinhua Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yushi Zhao
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| |
Collapse
|
3
|
An Update on Peripheral Blood Extracellular Vesicles as Biomarkers for Parkinson's Disease Diagnosis. Neuroscience 2023; 511:131-146. [PMID: 36435476 DOI: 10.1016/j.neuroscience.2022.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) is the world's second primary neurodegenerative disease, and the diagnosis and treatment of PD have become mainstream research. Over the past decades, several studies have identified potential biomarkers for diagnosing PD. Among them, extracellular vesicles (EVs) can carry specific biomarkers reflecting the physiological and pathological state of the body. Due to the blood-brain barrier (BBB) limitation, peripheral blood is limited in diagnosing neurodegenerative diseases. With the increasing research on EVs, their ability to pass through BBB indicated that peripheral blood could depict disease status like cerebrospinal fluid (CSF). Peripheral blood is a clinically available sample and has recently been widely used by researchers in various studies. In this review, we summarized previous studies on PD diagnosis biomarkers in peripheral blood EVs and evaluated their diagnostic value. Some EV surface markers were also described, which can extract EVs from specific cell origins. In addition, the combination of several biomarkers demonstrated good diagnostic performance in PD diagnosis compared with a single biomarker, suggesting the focus of future research.
Collapse
|
4
|
Fu X, He Y, Xie Y, Lu Z. A conjoint analysis of bulk RNA-seq and single-nucleus RNA-seq for revealing the role of ferroptosis and iron metabolism in ALS. Front Neurosci 2023; 17:1113216. [PMID: 36937665 PMCID: PMC10017473 DOI: 10.3389/fnins.2023.1113216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive and selective degeneration of motor neurons in the motor cortex of brain and spinal cord. Ferroptosis is a newly discovered form of cell death and reported to mediate selective motor neuron death in the mouse model of ALS. The growing awareness of ferroptosis and iron metabolism dysfunction in ALS prompted us to investigate the expression pattern of ferroptosis and iron metabolism-related genes (FIRGs) in ALS. Here, we performed a conjoint analysis of bulk-RNA sequence and single-nucleus RNA sequence data using the datasets from Gene Expression Omnibus (GEO) to reveal the role of FIRGs in ALS, especially in selective motor neuron death of ALS. We first investigated the differentially expressed genes (DEGs) between ALS and non-neurological controls. Weighted gene co-expression network analysis constructed the gene co-expression network and identified three modules closely associated with ALS. Fifteen FIRGs was identified as target genes based on least absolute shrinkage and selection operator regression analysis as follows: ACSL4, ANO6, ATP6V0E1, B2M, CD44, CHMP5, CYBB, CYBRD1, HIF1A, MOSPD1, NCF2, SDCBP, STEAP2, TMEM14C, ULK1. These genes could differentiate ALS patients from non-neurological controls (p < 2.2e-16) and had a valid value in predicting and diagnosing ALS (AUC = 0.881 in primary dataset and AUC = 0.768 in validation dataset). Then we performed the functional enrichment analysis of DEGs between ALS cases, the most significantly influenced by target genes, and non-neurological controls. The result indicated that the most significantly influenced functions in ALS pathogenesis by these identified FIRGs are synapse pathways, calcium signaling pathway, cAMP signaling pathway, and phagosome and several immune pathways. At last, the analysis of single- nuclear seq found that CHMP5, one of the 15 FIRGs identified by bulk single-nucleus RNA-seq data, was expressed significantly higher in ALS than pathologically normal (PN), specifically in excitatory neuron populations with layer 2 and layer 3 markers (Ex L2_L3), layer 3 and layer 5 markers (Ex L3_L5). Taken together, our study indicates the positive correlation between FIRGs and ALS, presents potential markers for ALS diagnosis and provides new research directions of CHMP5 function in selective motor neuron death in ALS.
Collapse
Affiliation(s)
- Xiujuan Fu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yizi He
- Department of Lymphoma and Hematology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongzhi Xie
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yongzhi Xie,
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Zuneng Lu,
| |
Collapse
|
5
|
Dhiman K, Villemagne VL, Fowler C, Bourgeat P, Li QX, Collins S, Rowe CC, Masters CL, Ames D, Blennow K, Zetterberg H, Martins RN, Gupta V. Cerebrospinal fluid levels of fatty acid-binding protein 3 are associated with likelihood of amyloidopathy in cognitively healthy individuals. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12377. [PMID: 36479019 PMCID: PMC9719998 DOI: 10.1002/dad2.12377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 12/12/2022]
Abstract
Introduction Fatty acid-binding protein 3 (FABP3) is a biomarker of neuronal membrane disruption, associated with lipid dyshomeostasis-a notable Alzheimer's disease (AD) pathophysiological change. We assessed the association of cerebrospinal fluid (CSF) FABP3 levels with brain amyloidosis and the likelihood/risk of developing amyloidopathy in cognitively healthy individuals. Methods FABP3 levels were measured in CSF samples of cognitively healthy participants, > 60 years of age (n = 142), from the Australian Imaging, Biomarkers & Lifestyle Flagship Study of Ageing (AIBL). Results FABP3 levels were positively associated with baseline brain amyloid beta (Aβ) load as measured by standardized uptake value ratio (SUVR, standardized β = 0.22, P = .009) and predicted the change in brain Aβ load (standardized β = 0.32, P = .004). Higher levels of CSF FABP3 (above median) were associated with a likelihood of amyloidopathy (odds ratio [OR] 2.28, 95% confidence interval [CI] 1.12 to 4.65, P = .023). Discussion These results support inclusion of CSF FABP3 as a biomarker in risk-prediction models of AD.
Collapse
Affiliation(s)
- Kunal Dhiman
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation School of Medicine Deakin University Geelong Victoria Australia
- Western Health Partnership School of Nursing and Midwifery (Centre for Quality and Patient Safety Research in the Institute of Health Transformation) Faculty of Health Deakin University Melbourne Victoria Australia
- School of Medical and Health Sciences Edith Cowan University Joondalup Western Australia Australia
| | - Victor L Villemagne
- Department of Psychiatry University of Pittsburgh Pittsburgh Pennsylvania USA
- Department of Molecular Imaging & Therapy and Centre for PET Austin Health Heidelberg Victoria Australia
- Department of Medicine The University of Melbourne Melbourne Victoria Australia
| | - Christopher Fowler
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Victoria Australia
| | - Pierrick Bourgeat
- Australian e-Health Research Centre CSIRO Health and Biosecurity Brisbane Queensland Australia
| | - Qiao-Xin Li
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Victoria Australia
| | - Steven Collins
- Department of Medicine The University of Melbourne Melbourne Victoria Australia
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Victoria Australia
| | - Christopher C Rowe
- Department of Molecular Imaging & Therapy and Centre for PET Austin Health Heidelberg Victoria Australia
- Department of Medicine The University of Melbourne Melbourne Victoria Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Victoria Australia
| | - David Ames
- National Ageing Research Institute Parkville Victoria Australia
- Academic Unit for Psychiatry of Old age St. George's Hospital The University of Melbourne Melbourne Victoria Australia
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology the Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Gothenburg Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology the Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Gothenburg Sweden
- Department of Neurodegenerative Disease UCL Queen Square Institute of Neurology London UK
- UK Dementia Research Institute at UCL London UK
- Hong Kong Center for Neurodegenerative Diseases Hong Kong China
| | - Ralph N Martins
- School of Medical and Health Sciences Edith Cowan University Joondalup Western Australia Australia
- Australian Alzheimer's Research Foundation Ralph and Patricia Sarich Neuroscience Research Institute Nedlands Western Australia Australia
- Department of Biomedical Sciences Macquarie University Sydney New South Wales Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia Perth Western Australia Australia
- KaRa Institute of Neurological Diseases Sydney New South Wales Australia
- Co-operative Research Centre for Mental Health Carlton Victoria Australia
| | - Veer Gupta
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation School of Medicine Deakin University Geelong Victoria Australia
- School of Medical and Health Sciences Edith Cowan University Joondalup Western Australia Australia
| |
Collapse
|
6
|
Pedrini S, Doecke JD, Hone E, Wang P, Thota R, Bush AI, Rowe CC, Dore V, Villemagne VL, Ames D, Rainey‐Smith S, Verdile G, Sohrabi HR, Raida MR, Taddei K, Gandy S, Masters CL, Chatterjee P, Martins R, the AIBL Research Group. Plasma high-density lipoprotein cargo is altered in Alzheimer's disease and is associated with regional brain volume. J Neurochem 2022; 163:53-67. [PMID: 36000528 PMCID: PMC9804612 DOI: 10.1111/jnc.15681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 01/05/2023]
Abstract
Cholesterol levels have been repeatedly linked to Alzheimer's Disease (AD), suggesting that high levels could be detrimental, but this effect is likely attributed to Low-Density Lipoprotein (LDL) cholesterol. On the other hand, High-Density Lipoproteins (HDL) cholesterol levels have been associated with reduced brain amyloidosis and improved cognitive function. However, recent findings have suggested that HDL-functionality, which depends upon the HDL-cargo proteins associated with HDL, rather than HDL levels, appears to be the key factor, suggesting a quality over quantity status. In this report, we have assessed the HDL-cargo (Cholesterol, ApoA-I, ApoA-II, ApoC-I, ApoC-III, ApoD, ApoE, ApoH, ApoJ, CRP, and SAA) in stable healthy control (HC), healthy controls who will convert to MCI/AD (HC-Conv) and AD patients (AD). Compared to HC we observed an increased cholesterol/ApoA-I ratio in AD and HC-Conv, as well as an increased ApoD/ApoA-I ratio and a decreased ApoA-II/ApoA-I ratio in AD. Higher cholesterol/ApoA-I ratio was also associated with lower cortical grey matter volume and higher ventricular volume, while higher ApoA-II/ApoA-I and ApoJ/ApoA-I ratios were associated with greater cortical grey matter volume (and for ApoA-II also with greater hippocampal volume) and smaller ventricular volume. Additionally, in a clinical status-independent manner, the ApoE/ApoA-I ratio was significantly lower in APOE ε4 carriers and lowest in APOE ε4 homozygous. Together, these data indicate that in AD patients the composition of HDL is altered, which may affect HDL functionality, and such changes are associated with altered regional brain volumetric data.
Collapse
Affiliation(s)
- Steve Pedrini
- School of Medical SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia,CRC for Mental HealthMelbourneVictoriaAustralia
| | - James D. Doecke
- Australian E‐Health Research CentreCSIROBrisbaneQueenslandAustralia
| | - Eugene Hone
- School of Medical SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia,CRC for Mental HealthMelbourneVictoriaAustralia
| | - Penghao Wang
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Rohith Thota
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Ashley I. Bush
- CRC for Mental HealthMelbourneVictoriaAustralia,The Florey Institute, The University of MelbourneParkvilleVictoriaAustralia
| | - Christopher C. Rowe
- Department of Nuclear Medicine and Centre for PETAustin HealthHeidelbergVictoriaAustralia
| | - Vincent Dore
- Department of Nuclear Medicine and Centre for PETAustin HealthHeidelbergVictoriaAustralia
| | | | - David Ames
- National Ageing Research InstituteParkvilleVictoriaAustralia,University of Melbourne Academic unit for Psychiatry of Old AgeSt George's HospitalKewVictoriaAustralia
| | - Stephanie Rainey‐Smith
- School of Medical SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia,Centre for Healthy Ageing, Health Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Giuseppe Verdile
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia,Curtin Health Innovation Research InstituteCurtin UniversityBentleyWestern AustraliaAustralia
| | - Hamid R. Sohrabi
- Centre for Healthy Ageing, Health Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Manfred R. Raida
- Life Science Institute, Singapore Lipidomics IncubatorNational University of SingaporeSingapore CitySingapore
| | - Kevin Taddei
- School of Medical SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia,CRC for Mental HealthMelbourneVictoriaAustralia
| | - Sam Gandy
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew York CityNew YorkUSA
| | - Colin L. Masters
- The Florey Institute, The University of MelbourneParkvilleVictoriaAustralia
| | - Pratishtha Chatterjee
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Ralph N. Martins
- School of Medical SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia,CRC for Mental HealthMelbourneVictoriaAustralia,Faculty of Medicine, Health and Human Sciences, Department of Biomedical SciencesMacquarie UniversitySydneyNew South WalesAustralia,School of Psychiatry and Clinical NeurosciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | | |
Collapse
|
7
|
Zhang F, Petersen M, Johnson L, Hall J, O’Bryant SE. Combination of Serum and Plasma Biomarkers Could Improve Prediction Performance for Alzheimer's Disease. Genes (Basel) 2022; 13:1738. [PMID: 36292623 PMCID: PMC9601501 DOI: 10.3390/genes13101738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) can be predicted either by serum or plasma biomarkers, and a combination may increase predictive power, but due to the high complexity of machine learning, it may also incur overfitting problems. In this paper, we investigated whether combining serum and plasma biomarkers with feature selection could improve prediction performance for AD. 150 D patients and 150 normal controls (NCs) were enrolled for a serum test, and 100 patients and 100 NCs were enrolled for the plasma test. Among these, 79 ADs and 65 NCs had serum and plasma samples in common. A 10 times repeated 5-fold cross-validation model and a feature selection method were used to overcome the overfitting problem when serum and plasma biomarkers were combined. First, we tested to see if simply adding serum and plasma biomarkers improved prediction performance but also caused overfitting. Then we employed a feature selection algorithm we developed to overcome the overfitting problem. Lastly, we tested the prediction performance in a 10 times repeated 5-fold cross validation model for training and testing sets. We found that the combined biomarkers improved AD prediction but also caused overfitting. A further feature selection based on the combination of serum and plasma biomarkers solved the problem and produced an even higher prediction performance than either serum or plasma biomarkers on their own. The combined feature-selected serum-plasma biomarkers may have critical implications for understanding the pathophysiology of AD and for developing preventative treatments.
Collapse
Affiliation(s)
- Fan Zhang
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Melissa Petersen
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Leigh Johnson
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - James Hall
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Sid E. O’Bryant
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
8
|
Manzine PR, Vatanabe IP, Grigoli MM, Pedroso RV, de Almeida MPOMEP, de Oliveira DDSMS, Crispim Nascimento CM, Peron R, de Souza Orlandi F, Cominetti MR. Potential Protein Blood-Based Biomarkers in Different Types of Dementia: A Therapeutic Overview. Curr Pharm Des 2022; 28:1170-1186. [DOI: 10.2174/1381612828666220408124809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Biomarkers capable of identifying and distinguishing types of dementia such as Alzheimer's disease (AD), Parkinson's disease dementia (PDD), Lewy body dementia (LBD), and frontotemporal dementia (FTD) have been become increasingly relentless. Studies of possible biomarker proteins in the blood that can help formulate new diagnostic proposals and therapeutic visions of different types of dementia are needed. However, due to several limitations of these biomarkers, especially in discerning dementia, their clinical applications are still undetermined. Thus, the updating of biomarker blood proteins that can help in the diagnosis and discrimination of these main dementia conditions is essential to enable new pharmacological and clinical management strategies, with specificities for each type of dementia. To review the literature concerning protein blood-based AD and non-AD biomarkers as new pharmacological targets and/or therapeutic strategies. Recent findings for protein-based AD, PDD, LBD, and FTD biomarkers are focused on in this review. Protein biomarkers were classified according to the pathophysiology of the dementia types. The diagnosis and distinction of dementia through protein biomarkers is still a challenge. The lack of exclusive biomarkers for each type of dementia highlights the need for further studies in this field. Only after this, blood biomarkers may have a valid use in clinical practice as they are promising to help in diagnosis and in the differentiation of diseases.
Collapse
Affiliation(s)
- Patricia Regina Manzine
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Izabela Pereira Vatanabe
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Marina Mantellatto Grigoli
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Renata Valle Pedroso
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | | | | | | | - Rafaela Peron
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Fabiana de Souza Orlandi
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Márcia Regina Cominetti
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| |
Collapse
|
9
|
Altuna-Azkargorta M, Mendioroz-Iriarte M. Blood biomarkers in Alzheimer's disease. NEUROLOGÍA (ENGLISH EDITION) 2021; 36:704-710. [PMID: 34752348 DOI: 10.1016/j.nrleng.2018.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/01/2018] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Early diagnosis of Alzheimer disease (AD) through the use of biomarkers could assist in the implementation and monitoring of early therapeutic interventions, and has the potential to significantly modify the course of the disease. DEVELOPMENT The classic cerebrospinal fluid and approved structural and functional neuroimaging biomarkers are of limited clinical application given their invasive nature and/or high cost. The identification of more accessible and less costly biomarkers, such as blood biomarkers, would increase their use in clinical practice. We review the available published evidence on the main blood biochemical biomarkers potentially useful for diagnosing AD. CONCLUSIONS Blood biomarkers are more cost- and time-effective than CSF biomarkers. However, immediate applicability in clinical practice is relatively unlikely. The main limitations come from the difficulty of measuring and standardising thresholds between different laboratories and the failure to replicate results. Of all the molecules studied, apoptosis and neurodegeneration biomarkers and the biomarker panels obtained through "omics" approaches, such as isolated or combined metabolomics, offer the most promising results.
Collapse
Affiliation(s)
- M Altuna-Azkargorta
- Laboratorio de Neuroepigenética, Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain.
| | - M Mendioroz-Iriarte
- Laboratorio de Neuroepigenética, Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; Servicio de Neurología, Complejo Hospitalario de Navarra, Pamplona, Spain
| |
Collapse
|
10
|
Kumar A, Doan VM, Kunkli B, Csősz É. Construction of Unified Human Antimicrobial and Immunomodulatory Peptide Database and Examination of Antimicrobial and Immunomodulatory Peptides in Alzheimer's Disease Using Network Analysis of Proteomics Datasets. Front Genet 2021; 12:633050. [PMID: 33995478 PMCID: PMC8113759 DOI: 10.3389/fgene.2021.633050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022] Open
Abstract
The reanalysis of genomics and proteomics datasets by bioinformatics approaches is an appealing way to examine large amounts of reliable data. This can be especially true in cases such as Alzheimer's disease, where the access to biological samples, along with well-defined patient information can be challenging. Considering the inflammatory part of Alzheimer's disease, our aim was to examine the presence of antimicrobial and immunomodulatory peptides in human proteomic datasets deposited in the publicly available proteomics database ProteomeXchange (http://www.proteomexchange.org/). First, a unified, comprehensive human antimicrobial and immunomodulatory peptide database, containing all known human antimicrobial and immunomodulatory peptides was constructed and used along with the datasets containing high-quality proteomics data originating from the examination of Alzheimer's disease and control groups. A throughout network analysis was carried out, and the enriched GO functions were examined. Less than 1% of all identified proteins in the brain were antimicrobial and immunomodulatory peptides, but the alterations characteristic of Alzheimer's disease could be recapitulated with their analysis. Our data emphasize the key role of the innate immune system and blood clotting in the development of Alzheimer's disease. The central role of antimicrobial and immunomodulatory peptides suggests their utilization as potential targets for mechanistic studies and future therapies.
Collapse
Affiliation(s)
- Ajneesh Kumar
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vo Minh Doan
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Kunkli
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
11
|
Hadjidemetriou M, Rivers-Auty J, Papafilippou L, Eales J, Kellett KAB, Hooper NM, Lawrence CB, Kostarelos K. Nanoparticle-Enabled Enrichment of Longitudinal Blood Proteomic Fingerprints in Alzheimer's Disease. ACS NANO 2021; 15:7357-7369. [PMID: 33730479 PMCID: PMC8155389 DOI: 10.1021/acsnano.1c00658] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Blood-circulating biomarkers have the potential to detect Alzheimer's disease (AD) pathology before clinical symptoms emerge and to improve the outcomes of clinical trials for disease-modifying therapies. Despite recent advances in understanding concomitant systemic abnormalities, there are currently no validated or clinically used blood-based biomarkers for AD. The extremely low concentration of neurodegeneration-associated proteins in blood necessitates the development of analytical platforms to address the "signal-to-noise" issue and to allow an in-depth analysis of the plasma proteome. Here, we aimed to discover and longitudinally track alterations of the blood proteome in a transgenic mouse model of AD, using a nanoparticle-based proteomics enrichment approach. We employed blood-circulating, lipid-based nanoparticles to extract, analyze and monitor AD-specific protein signatures and to systemically uncover molecular pathways associated with AD progression. Our data revealed the existence of multiple proteomic signals in blood, indicative of the asymptomatic stages of AD. Comprehensive analysis of the nanoparticle-recovered blood proteome by label-free liquid chromatography-tandem mass spectrometry resulted in the discovery of AD-monitoring signatures that could discriminate the asymptomatic phase from amyloidopathy and cognitive deterioration. While the majority of differentially abundant plasma proteins were found to be upregulated at the initial asymptomatic stages, the abundance of these molecules was significantly reduced as a result of amyloidosis, suggesting a disease-stage-dependent fluctuation of the AD-specific blood proteome. The potential use of the proposed nano-omics approach to uncover information in the blood that is directly associated with brain neurodegeneration was further exemplified by the recovery of focal adhesion cascade proteins. We herein propose the integration of nanotechnology with already existing proteomic analytical tools in order to enrich the identification of blood-circulating signals of neurodegeneration, reinvigorating the potential clinical utility of the blood proteome at predicting the onset and kinetics of the AD progression trajectory.
Collapse
Affiliation(s)
- Marilena Hadjidemetriou
- Nanomedicine
Lab, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
- (M.H.)
| | - Jack Rivers-Auty
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, United Kingdom
| | - Lana Papafilippou
- Nanomedicine
Lab, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - James Eales
- Division
of Cardiovascular Sciences, School of Medical Sciences, Faculty of
Biology, Medicine and Health, The University
of Manchester M13 9PT, Manchester, United Kingdom
| | - Katherine A. B. Kellett
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, United Kingdom
| | - Nigel M. Hooper
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, United Kingdom
| | - Catherine B. Lawrence
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine
Lab, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
- (K.K.)
| |
Collapse
|
12
|
Drake JD, Chambers AB, Ott BR, Daiello LA. Peripheral Markers of Vascular Endothelial Dysfunction Show Independent but Additive Relationships with Brain-Based Biomarkers in Association with Functional Impairment in Alzheimer's Disease. J Alzheimers Dis 2021; 80:1553-1565. [PMID: 33720880 PMCID: PMC8150492 DOI: 10.3233/jad-200759] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cerebrovascular dysfunction confers risk for functional decline in Alzheimer's disease (AD), yet the clinical interplay of these two pathogenic processes is not well understood. OBJECTIVE We utilized Alzheimer's Disease Neuroimaging Initiative (ADNI) data to examine associations between peripherally derived soluble cell adhesion molecules (CAMs) and clinical diagnostic indicators of AD. METHODS Using generalized linear regression models, we examined cross-sectional relationships of soluble plasma vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-Selectin to baseline diagnosis and functional impairment (clinical dementia rating sum-of-boxes, CDR-SB) in the ADNI cohort (n = 112 AD, n = 396 mild cognitive impairment (MCI), n = 58 cognitively normal). We further analyzed associations of these biomarkers with brain-based AD biomarkers in a subset with available cerebrospinal fluid (CSF) data (n = 351). p-values derived from main effects and interaction terms from the linear regressions were used to assess the relationship between independent and dependent variables for significance (significance level was set at 0.05 a priori for all analysis). RESULTS Higher mean VCAM-1 (p = 0.0026) and ICAM-1 (p = 0.0189) levels were found in AD versus MCI groups; however, not in MCI versus cognitively normal groups. Only VCAM-1 was linked with CDR-SB scores (p = 0.0157), and APOE ɛ4 genotype modified this effect. We observed independent, additive associations when VCAM-1 and CSF amyloid-β (Aβ42), total tau, phosphorylated tau (P-tau), or P-tau/Aβ42 (all < p = 0.01) were combined in a CDR-SB model; ICAM-1 showed a similar pattern, but to a lesser extent. CONCLUSION Our findings indicate independent associations of plasma-based vascular biomarkers and CSF biomarkers with AD-related clinical impairment.
Collapse
Affiliation(s)
- Jonathan D Drake
- Alzheimer's Disease and Memory Disorders Center, Rhode Island Hospital, Providence, RI, USA.,Department of Neurology, Brown University Warren Alpert Medical School, Providence RI, USA
| | - Alison B Chambers
- Department of Medicine, Brown University Warren Alpert Medical School, Providence RI, USA
| | - Brian R Ott
- Alzheimer's Disease and Memory Disorders Center, Rhode Island Hospital, Providence, RI, USA.,Department of Neurology, Brown University Warren Alpert Medical School, Providence RI, USA
| | - Lori A Daiello
- Alzheimer's Disease and Memory Disorders Center, Rhode Island Hospital, Providence, RI, USA.,Department of Neurology, Brown University Warren Alpert Medical School, Providence RI, USA
| | | |
Collapse
|
13
|
Anirudhan A, Prabu P, Sanyal J, Banerjee TK, Guha G, Murugesan R, Ahmed SSSJ. Interdependence of metals and its binding proteins in Parkinson's disease for diagnosis. NPJ Parkinsons Dis 2021; 7:3. [PMID: 33398051 PMCID: PMC7782529 DOI: 10.1038/s41531-020-00146-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/12/2020] [Indexed: 01/29/2023] Open
Abstract
Metalloproteins utilizes cellular metals which plays a crucial function in brain that linked with neurodegenerative disorders. Parkinson's disease (PD) is a neurodegenerative disorder that affects geriatric population world-wide. Twenty-four metal-binding protein networks were investigated to identify key regulating protein hubs in PD blood and brain. Amongst, aluminum, calcium, copper, iron, and magnesium protein hubs are the key regulators showing the ability to classify PD from control based on thirty-four classification algorithms. Analysis of these five metal proteins hubs showed involvement in environmental information processing, immune, neuronal, endocrine, aging, and signal transduction pathways. Furthermore, gene expression of functional protein in each hub showed significant upregulation of EFEMP2, MMP9, B2M, MEAF2A, and TARDBP in PD. Dysregulating hub proteins imprint the metal availability in a biological system. Hence, metal concentration in serum and cerebrospinal fluid were tested, which were altered and showed significant contribution towards gene expression of metal hub proteins along with the previously reported PD markers. In conclusion, analyzing the levels of serum metals along with the gene expression in PD opens up an ideal and feasible diagnostic intervention for PD. Hence, this will be a cost effective and rapid method for the detection of Parkinson's disease.
Collapse
Affiliation(s)
- Athira Anirudhan
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education CARE, Kelambakkam, 603103 India
| | - Paramasivam Prabu
- grid.266832.b0000 0001 2188 8502School of Medicine, Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, New Mexico, USA
| | - Jaya Sanyal
- grid.8195.50000 0001 2109 4999Department of Anthropology, University of Delhi, Delhi, 110007 India
| | - Tapas Kumar Banerjee
- grid.459884.cDepartment of Neurology, National Neurosciences Centre, Kolkata, India
| | - Gautam Guha
- grid.416241.4Department of Neurology, Nil Ratan Sircar Medical College and Hospital, Kolkata, India
| | - Ram Murugesan
- Drug Discovery & Omics Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, 603103 India
| | - Shiek S. S. J. Ahmed
- Drug Discovery & Omics Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, 603103 India
| |
Collapse
|
14
|
Manzine PR, Vatanabe IP, Peron R, Grigoli MM, Pedroso RV, Nascimento CMC, Cominetti MR. Blood-based Biomarkers of Alzheimer's Disease: The Long and Winding Road. Curr Pharm Des 2020; 26:1300-1315. [PMID: 31942855 DOI: 10.2174/1381612826666200114105515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Blood-based biomarkers can be very useful in formulating new diagnostic and treatment proposals in the field of dementia, especially in Alzheimer's disease (AD). However, due to the influence of several factors on the reproducibility and reliability of these markers, their clinical use is still very uncertain. Thus, up-to-date knowledge about the main blood biomarkers that are currently being studied is extremely important in order to discover clinically useful and applicable tools, which could also be used as novel pharmacological strategies for the AD treatment. METHODS A narrative review was performed based on the current candidates of blood-based biomarkers for AD to show the main results from different studies, focusing on their clinical applicability and association with AD pathogenesis. OBJECTIVE The aim of this paper was to carry out a literature review on the major blood-based biomarkers for AD, connecting them with the pathophysiology of the disease. RESULTS Recent advances in the search of blood-based AD biomarkers were summarized in this review. The biomarkers were classified according to the topics related to the main hallmarks of the disease such as inflammation, amyloid, and tau deposition, synaptic degeneration and oxidative stress. Moreover, molecules involved in the regulation of proteins related to these hallmarks were described, such as non-coding RNAs, neurotrophins, growth factors and metabolites. Cells or cellular components with the potential to be considered as blood-based AD biomarkers were described in a separate topic. CONCLUSION A series of limitations undermine new discoveries on blood-based AD biomarkers. The lack of reproducibility of findings due to the small size and heterogeneity of the study population, different analytical methods and other assay conditions make longitudinal studies necessary in this field to validate these structures, especially when considering a clinical evaluation that includes a broad panel of these potential and promising blood-based biomarkers.
Collapse
Affiliation(s)
- Patricia R Manzine
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Izabela P Vatanabe
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Rafaela Peron
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Marina M Grigoli
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Renata V Pedroso
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Carla M C Nascimento
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| |
Collapse
|
15
|
Pedrini S, Chatterjee P, Hone E, Martins RN. High‐density lipoprotein‐related cholesterol metabolism in Alzheimer’s disease. J Neurochem 2020; 159:343-377. [DOI: 10.1111/jnc.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Steve Pedrini
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Pratishtha Chatterjee
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
| | - Eugene Hone
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Ralph N. Martins
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia Nedlands WA Australia
| |
Collapse
|
16
|
Albani D, Marizzoni M, Ferrari C, Fusco F, Boeri L, Raimondi I, Jovicich J, Babiloni C, Soricelli A, Lizio R, Galluzzi S, Cavaliere L, Didic M, Schönknecht P, Molinuevo JL, Nobili F, Parnetti L, Payoux P, Bocchio L, Salvatore M, Rossini PM, Tsolaki M, Visser PJ, Richardson JC, Wiltfang J, Bordet R, Blin O, Forloni G, Frisoni GB. Plasma Aβ42 as a Biomarker of Prodromal Alzheimer's Disease Progression in Patients with Amnestic Mild Cognitive Impairment: Evidence from the PharmaCog/E-ADNI Study. J Alzheimers Dis 2020; 69:37-48. [PMID: 30149449 DOI: 10.3233/jad-180321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is an open issue whether blood biomarkers serve to diagnose Alzheimer's disease (AD) or monitor its progression over time from prodromal stages. Here, we addressed this question starting from data of the European FP7 IMI-PharmaCog/E-ADNI longitudinal study in amnesic mild cognitive impairment (aMCI) patients including biological, clinical, neuropsychological (e.g., ADAS-Cog13), neuroimaging, and electroencephalographic measures. PharmaCog/E-ADNI patients were classified as "positive" (i.e., "prodromal AD" n = 76) or "negative" (n = 52) based on a diagnostic cut-off of Aβ42/P-tau in cerebrospinal fluid as well as APOE ε 4 genotype. Blood was sampled at baseline and at two follow-ups (12 and 18 months), when plasma amyloid peptide 42 and 40 (Aβ42, Aβ40) and apolipoprotein J (clusterin, CLU) were assessed. Linear Mixed Models found no significant differences in plasma molecules between the "positive" (i.e., prodromal AD) and "negative" groups at baseline. In contrast, plasma Aβ42 showed a greater reduction over time in the prodromal AD than the "negative" aMCI group (p = 0.048), while CLU and Aβ40 increased, but similarly in the two groups. Furthermore, plasma Aβ42 correlated with the ADAS-Cog13 score both in aMCI patients as a whole and the prodromal AD group alone. Finally, CLU correlated with the ADAS-Cog13 only in the whole aMCI group, and no association with ADAS-Cog13 was found for Aβ40. In conclusion, plasma Aβ42 showed disease progression-related features in aMCI patients with prodromal AD.
Collapse
Affiliation(s)
- Diego Albani
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Moira Marizzoni
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Clarissa Ferrari
- Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Federica Fusco
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Lucia Boeri
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Ilaria Raimondi
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Jorge Jovicich
- MR Lab Head, Center for Mind/Brain Sciences, University of Trento, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy.,Department of Neuroscience, IRCCS San Raffaele Pisana of Rome and Cassino, Rome and Cassino, Italy
| | - Andrea Soricelli
- IRCCS SDN Istituto di Ricerca Diagnostica e Nucleare, Napoli, Italy
| | - Roberta Lizio
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Samantha Galluzzi
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Libera Cavaliere
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Mira Didic
- Aix-Marseille Université, INSERM, INS UMR_S 1106, Marseille, France.,APHM, Timone, Service de Neurologie et Neuropsychologie, APHM Hôpital Timone Adultes, Marseille, France
| | - Peter Schönknecht
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany, Germany
| | - José Luis Molinuevo
- Alzheimer's Disease Unit and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalunya, Spain
| | - Flavio Nobili
- Clinical Neurology, Dept. of Neuroscience (DINOGMI), University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Lucilla Parnetti
- Clinica Neurologica, Università di Perugia, Ospedale Santa Maria della Misericordia, Perugia, Italy
| | - Pierre Payoux
- INSERM, Imagerie cérébrale et handicaps neurologiques UMR 825, Toulouse, France
| | - Luisella Bocchio
- Genetic Unit, IRCCS Centro Giovanni di Dio, Fatebenefratelli, Brescia, Italy; Faculty of Psychology, University eCampus, Novedrate (Como), Italy
| | - Marco Salvatore
- IRCCS SDN Istituto di Ricerca Diagnostica e Nucleare, Napoli, Italy
| | - Paolo Maria Rossini
- Department of Gerontology, Neurosciences and Orthopedics, Catholic University, Rome, Italy.,Policlinic A. Gemelli Foundation
| | - Magda Tsolaki
- 3rd Neurologic Clinic, Medical School, G. Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pieter Jelle Visser
- Department of Neurology, Alzheimer Centre, VU Medical Centre, Amsterdam, The Netherlands
| | - Jill C Richardson
- Neurosciences Therapeutic Area, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, United Kingdom
| | - Jens Wiltfang
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Goettingen, Germany.,iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Régis Bordet
- University of Lille, Inserm, CHU Lille, U1171 - Degenerative and vascular cognitive disorders, Lille, France
| | - Olivier Blin
- Aix Marseille University, UMR-CNRS 7289, Service de Pharmacologie Clinique, AP-HM, Marseille, France
| | - Gianluigi Forloni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
17
|
Ha J, Moon MK, Kim H, Park M, Cho SY, Lee J, Lee JY, Kim E. Plasma Clusterin as a Potential Link Between Diabetes and Alzheimer Disease. J Clin Endocrinol Metab 2020; 105:5860166. [PMID: 32561922 DOI: 10.1210/clinem/dgaa378] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/13/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Plasma clusterin, a promising biomarker of Alzheimer disease (AD), has been associated with diabetes mellitus (DM). However, clusterin has not been investigated considering a relationship with both DM and AD. In this study, we aimed to investigate the individual and interactive relationships of plasma clusterin levels with both diseases. DESIGN Cross-sectional observation study. METHODS We classified participants by the severity of cognitive (normal cognition, mild cognitive impairment [MCI], and AD) and metabolic (healthy control, prediabetes, and DM) impairments. We evaluated the cognitive and metabolic functions of the participants with neuropsychological assessments, brain magnetic resonance imaging, and various blood tests, to explore potential relationships with clusterin. RESULTS Plasma clusterin levels were higher in participants with AD and metabolic impairment (prediabetes and DM). A two-way ANCOVA revealed no synergistic, but an additive effect of AD and DM on clusterin. Clusterin was negatively correlated with cognitive scores. It was also associated with metabolic status indicated by glycated hemoglobin A1c (HbA1c), the Homeostatic Model Assessment for Insulin Resistance index, and fasting C-peptide. It showed correlations between medial temporal atrophy and periventricular white matter lesions, indicating neurodegeneration and microvascular insufficiency, respectively. Further mediation analysis to understand the triadic relationship between clusterin, AD, and DM revealed that the association between DM and AD was significant when clusterin is considered as a mediator of their relationship. CONCLUSIONS Clusterin is a promising biomarker of DM as well as of AD. Additionally, our data suggest that clusterin may have a role in linking DM with AD as a potential mediator.
Collapse
Affiliation(s)
- Junghee Ha
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Kyong Moon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunjeong Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minsun Park
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Cho
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jimin Lee
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry and Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
18
|
Regan P, McClean PL, Smyth T, Doherty M. Early Stage Glycosylation Biomarkers in Alzheimer's Disease. MEDICINES 2019; 6:medicines6030092. [PMID: 31484367 PMCID: PMC6789538 DOI: 10.3390/medicines6030092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is of great cause for concern in our ageing population, which currently lacks diagnostic tools to permit accurate and timely diagnosis for affected individuals. The development of such tools could enable therapeutic interventions earlier in the disease course and thus potentially reducing the debilitating effects of AD. Glycosylation is a common, and important, post translational modification of proteins implicated in a host of disease states resulting in a complex array of glycans being incorporated into biomolecules. Recent investigations of glycan profiles, in a wide range of conditions, has been made possible due to technological advances in the field enabling accurate glycoanalyses. Amyloid beta (Aβ) peptides, tau protein, and other important proteins involved in AD pathogenesis, have altered glycosylation profiles. Crucially, these abnormalities present early in the disease state, are present in the peripheral blood, and help to distinguish AD from other dementias. This review describes the aberrant glycome in AD, focusing on proteins implicated in development and progression, and elucidates the potential of glycome aberrations as early stage biomarkers of AD.
Collapse
Affiliation(s)
- Patricia Regan
- Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland.
- Cellular Health and Toxicology Research Group, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland.
| | - Paula L McClean
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Clinical Translational Research and Innovation Centre, Altnagelvin Area Hospital, Glenshane Road, Derry BT47 6SB, UK
| | - Thomas Smyth
- Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
- Cellular Health and Toxicology Research Group, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
| | - Margaret Doherty
- Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
- Cellular Health and Toxicology Research Group, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
| |
Collapse
|
19
|
Altuna-Azkargorta M, Mendioroz-Iriarte M. Blood biomarkers in Alzheimer's disease. Neurologia 2018; 36:S0213-4853(18)30091-4. [PMID: 29752036 DOI: 10.1016/j.nrl.2018.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION The early diagnosis of Alzheimer's disease (AD) via the use of biomarkers could facilitate the implementation and monitoring of early therapeutic interventions with the potential capacity to significantly modify the course of the disease. DEVELOPMENT Classic cerebrospinal fluid biomarkers and approved structural and functional neuroimaging have a limited clinical application given their invasive nature and/or high cost. The identification of more accessible and less costly biomarkers, such as blood biomarkers, would facilitate application in clinical practice. We present a literature review of the main blood biochemical biomarkers with potential use for diagnosing Alzheimer's disease. CONCLUSIONS Blood biomarkers are cost and time effective with regard to cerebrospinal fluid biomarkers. However, the immediate applicability of blood biochemical biomarkers in clinical practice is not very likely. The main limitations come from the difficulties in measuring and standardising thresholds between different laboratories and in failures to replicate results. Among all the molecules studied, apoptosis and neurodegeneration biomarkers and the biomarker panels obtained through omics approaches, such as isolated or combined metabolomics, offer the most promising results.
Collapse
Affiliation(s)
- M Altuna-Azkargorta
- Laboratorio de Neuroepigenética, Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, España.
| | - M Mendioroz-Iriarte
- Laboratorio de Neuroepigenética, Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, España; Servicio de Neurología, Complejo Hospitalario de Navarra, Pamplona, España
| |
Collapse
|
20
|
Fransquet PD, Lacaze P, Saffery R, McNeil J, Woods R, Ryan J. Blood DNA methylation as a potential biomarker of dementia: A systematic review. Alzheimers Dement 2017; 14:81-103. [PMID: 29127806 DOI: 10.1016/j.jalz.2017.10.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/27/2017] [Accepted: 10/07/2017] [Indexed: 01/22/2023]
Abstract
Dementia is a major public health issue with rising prevalence rates, but many individuals remain undiagnosed. Accurate and timely diagnosis is key for the optimal targeting of interventions. A noninvasive, easily measurable peripheral biomarker would have greatest utility in population-wide diagnostic screening. Epigenetics, including DNA methylation, is implicated in dementia; however, it is unclear whether epigenetic changes can be detected in peripheral tissue. This study aimed to systematically review the evidence for an association between dementia and peripheral DNA methylation. Forty-eight studies that measured DNA methylation in peripheral blood were identified, and 67% reported significant associations with dementia. However, most studies were underpowered and limited by their case-control design. We emphasize the need for future longitudinal studies on large well-characterized populations, measuring epigenetic patterns in asymptomatic individuals. A biomarker detectable in the preclinical stages of the disease would have the greatest utility in future intervention and treatment trials.
Collapse
Affiliation(s)
- Peter D Fransquet
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Disease Epigenetics, Murdoch Children's Research Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Lacaze
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Richard Saffery
- Disease Epigenetics, Murdoch Children's Research Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - John McNeil
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Robyn Woods
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Joanne Ryan
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Disease Epigenetics, Murdoch Children's Research Institute, The University of Melbourne, Parkville, Victoria, Australia; INSERM, Neuropsychiatry: Epidemiological and Clinical Research, University of Montpellier, Montpellier, France.
| |
Collapse
|
21
|
Jellinger KA. Potential clinical utility of multiple system atrophy biomarkers. Expert Rev Neurother 2017; 17:1189-1208. [DOI: 10.1080/14737175.2017.1392239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Brown BM, Rainey-Smith SR, Castalanelli N, Gordon N, Markovic S, Sohrabi HR, Weinborn M, Laws SM, Doecke J, Shen K, Martins RN, Peiffer JJ. Study protocol of the Intense Physical Activity and Cognition study: The effect of high-intensity exercise training on cognitive function in older adults. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2017; 3:562-570. [PMID: 29124115 PMCID: PMC5671630 DOI: 10.1016/j.trci.2017.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction Inconsistent results from previous studies of exercise and cognitive function suggest that rigorously designed randomized controlled trials are urgently needed. Here, we describe the design of the Intense Physical Activity and Cognition (IPAC) study, which will assess the impact of a 6-month high-intensity exercise intervention on cognitive function and biomarkers of dementia risk, compared with a 6-month moderate-intensity exercise intervention and control group (no study-related exercise). Methods One-hundred and five cognitively healthy men and women aged between 60 and 80 years are randomized into a high-intensity exercise, moderate-intensity exercise, or control group. Individuals randomized to an exercise intervention undertake 6 months of cycle-based exercise twice a week, at 50 minutes per session. All participants undergo comprehensive neuropsychological testing, blood sampling, brain magnetic resonance imaging, fitness testing, and a body composition scan at baseline, 6 months (immediately after intervention), and 18 months (12 months after intervention). Discussion The IPAC study takes a multidisciplinary approach to investigating the role of exercise in maintaining a healthy brain throughout aging. Rigorous monitoring of exertion and adherence throughout the intervention, combined with repeated measures of fitness, is vital in ensuring an optimum exercise dose is reached. Results from the IPAC study will be used to inform a large-scale multicentre randomized controlled trial, with the ultimate aim of pinpointing the frequency, duration, and intensity of exercise that provides the most benefit to the brain, in terms of enhancing cognitive function and reducing dementia risk in older adults.
Collapse
Affiliation(s)
- Belinda M. Brown
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia, Australia
- Sir James McCusker Alzheimer's Disease Research Unit, Hollywood Private Hospital, Nedlands, Western Australia, Australia
- Corresponding author. Tel.: +618 9360 6193. Fax: +618 6457 0270.
| | - Stephanie R. Rainey-Smith
- Sir James McCusker Alzheimer's Disease Research Unit, Hollywood Private Hospital, Nedlands, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Natalie Castalanelli
- Sir James McCusker Alzheimer's Disease Research Unit, Hollywood Private Hospital, Nedlands, Western Australia, Australia
- School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Nicole Gordon
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia, Australia
| | - Shaun Markovic
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia, Australia
- Sir James McCusker Alzheimer's Disease Research Unit, Hollywood Private Hospital, Nedlands, Western Australia, Australia
| | - Hamid R. Sohrabi
- Sir James McCusker Alzheimer's Disease Research Unit, Hollywood Private Hospital, Nedlands, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Michael Weinborn
- Sir James McCusker Alzheimer's Disease Research Unit, Hollywood Private Hospital, Nedlands, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Simon M. Laws
- Sir James McCusker Alzheimer's Disease Research Unit, Hollywood Private Hospital, Nedlands, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Co-operative Research Centre for Mental Health, Carlton, Victoria, Australia
- Collaborative Genomics Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - James Doecke
- Co-operative Research Centre for Mental Health, Carlton, Victoria, Australia
- Australian eHealth Research Centre, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Queensland, Australia
| | - Kaikai Shen
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Co-operative Research Centre for Mental Health, Carlton, Victoria, Australia
- Australian eHealth Research Centre, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Queensland, Australia
| | - Ralph N. Martins
- Sir James McCusker Alzheimer's Disease Research Unit, Hollywood Private Hospital, Nedlands, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Jeremiah J. Peiffer
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|