1
|
Xue X, Woldemariam NT, Caballero-Solares A, Umasuthan N, Fast MD, Taylor RG, Rise ML, Andreassen R. Dietary Immunostimulant CpG Modulates MicroRNA Biomarkers Associated with Immune Responses in Atlantic Salmon ( Salmo salar). Cells 2019; 8:E1592. [PMID: 31817907 PMCID: PMC6952924 DOI: 10.3390/cells8121592] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are key regulators in fish immune responses. However, no study has previously characterized the impact of polyriboinosinic polyribocytidylic acid (pIC) and formalin-killed typical Aeromonas salmonicida (ASAL) on miRNA expression in Atlantic salmon fed a commercial diet with and without immunostimulant CpG. To this end, first, we performed small RNA deep sequencing and qPCR analyses to identify and confirm pIC- and/or ASAL-responsive miRNAs in the head kidney of salmon fed a control diet. DESeq2 analyses identified 12 and 18 miRNAs differentially expressed in pIC and ASAL groups, respectively, compared to the controls. Fifteen of these miRNAs were studied by qPCR; nine remained significant by qPCR. Five miRNAs (miR-27d-1-2-5p, miR-29b-2-5p, miR-146a-5p, miR-146a-1-2-3p, miR-221-5p) were shown by qPCR to be significantly induced by both pIC and ASAL. Second, the effect of CpG-containing functional feed on miRNA expression was investigated by qPCR. In pre-injection samples, 6 of 15 miRNAs (e.g., miR-181a-5-3p, miR-462a-3p, miR-722-3p) had significantly lower expression in fish fed CpG diet than control diet. In contrast, several miRNAs (e.g., miR-146a-1-2-3p, miR-192a-5p, miR-194a-5p) in the PBS- and ASAL-injected groups had significantly higher expression in CpG-fed fish. Multivariate statistical analyses confirmed that the CpG diet had a greater impact on miRNA expression in ASAL-injected compared with pIC-injected fish. This study identified immune-relevant miRNA biomarkers that will be valuable in the development of diets to combat infectious diseases of salmon.
Collapse
Affiliation(s)
- Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (A.C.-S.); (N.U.)
| | - Nardos Tesfaye Woldemariam
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, N-0130 Oslo, Norway; (N.T.W.); (R.A.)
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (A.C.-S.); (N.U.)
| | - Navaneethaiyer Umasuthan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (A.C.-S.); (N.U.)
| | - Mark D. Fast
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Richard G. Taylor
- Cargill Animal Nutrition, 10383 165th Avenue NW, Elk River, MN 55330, USA;
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (A.C.-S.); (N.U.)
| | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, N-0130 Oslo, Norway; (N.T.W.); (R.A.)
| |
Collapse
|
2
|
Svenning S, Gondek-Wyrozemska AT, van der Wal YA, Robertsen B, Jensen I, Jørgensen JB, Edholm ES. Microbial Danger Signals Control Transcriptional Induction of Distinct MHC Class I L Lineage Genes in Atlantic Salmon. Front Immunol 2019; 10:2425. [PMID: 31681311 PMCID: PMC6797598 DOI: 10.3389/fimmu.2019.02425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/27/2019] [Indexed: 11/13/2022] Open
Abstract
Antigen processing and presentation by major histocompatibility complex (MHC) molecules is a cornerstone in vertebrate immunity. Like mammals, teleosts possess both classical MHC class I and multiple families of divergent MHC class I genes. However, while certain mammalian MHC class I-like molecules have proven to be integral in immune regulation against a broad array of pathogens, the biological relevance of the different MHC class I lineages in fish remains elusive. This work focuses on MHC class I L lineage genes and reveals unique regulatory patterns of six genes (Sasa-lia, Sasa-lda, Sasa-lca, Sasa-lga, Sasa-lha, and Sasa-lfa) in antimicrobial immunity of Atlantic salmon (Salmo salar L.). Using two separate in vivo challenge models with different kinetics and immune pathologies combined with in vitro stimulation using viral and bacterial TLR ligands, we show that de novo synthesis of different L lineage genes is distinctly regulated in response to various microbial stimuli. Prior to the onset of classical MHC class I gene expression, lia was rapidly and systemically induced in vivo by the single-stranded (ss) RNA virus salmonid alpha virus 3 (SAV3) but not in response to the intracellular bacterium Piscirickettsia salmonis. In contrast, lga expression was upregulated in response to both viral and bacterial stimuli. A role for distinct MHC class I L-lineage genes in anti-microbial immunity in salmon was further substantiated by a marked upregulation of lia and lga gene expression in response to type I IFNa stimulation in vitro. Comparably, lha showed no transcriptional induction in response to IFNa stimulation but was strongly induced in response to a variety of viral and bacterial TLR ligands. In sharp contrast, lda showed no response to viral or bacterial challenge. Similarly, induction of lca, which is predominantly expressed in primary and secondary lymphoid tissues, was marginal with the exception of a strong and transient upregulation in pancreas following SAV3 challenge Together, these findings suggest that certain Atlantic salmon MHC class I L lineage genes play important and divergent roles in early anti-microbial response and that their regulation, in response to different activation signals, represents a system for selectively promoting the expression of distinct non-classical MHC class I genes in response to different types of immune challenges.
Collapse
Affiliation(s)
- Steingrim Svenning
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Agata T Gondek-Wyrozemska
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Yorick Andreas van der Wal
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway.,Vaxxinova Research & Development, Vaxxinova GmbH, Münster, Germany
| | - Børre Robertsen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Eva-Stina Edholm
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Iliev DB, Lagos L, Thim HL, Jørgensen SM, Krasnov A, Jørgensen JB. CpGs Induce Differentiation of Atlantic Salmon Mononuclear Phagocytes Into Cells With Dendritic Morphology and a Proinflammatory Transcriptional Profile but an Exhausted Allostimulatory Activity. Front Immunol 2019; 10:378. [PMID: 30918507 PMCID: PMC6424866 DOI: 10.3389/fimmu.2019.00378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
Due to their ability to present foreign antigens and prime naïve T cells, macrophages, and dendritic cells (DCs) are referred to as professional antigen-presenting cells (APCs). Although activated macrophages may function as APCs, these cells are particularly effective at directly engaging pathogens through phagocytosis, and production of antimicrobial compounds. On the other hand, DCs possess superb antigen-presenting and costimulatory capacity and they are essential for commencement and regulation of adaptive immune responses. In in vitro models, development of mature mammalian DCs from monocytes requires sequential exposure to growth factors (including GM-CSF and IL-4) and proinflammatory stimuli such as toll-like receptor (TLR) ligands. Currently, except for IL-4/13, neither orthologs nor functional analogs of the growth factors which are essential for the differentiation of mammalian DCs (including GM-CSF and FLT3) have been identified in teleosts and data about differentiation of piscine APCs is scant. In the present study, primary salmon mononuclear phagocytes (MPs) stimulated in vitro for 5-7 days with a B-class CpG oligodeoxynucleotides (ODN 2006PS) underwent morphological differentiation and developed "dendritic" morphology, characterized by long, branching pseudopodia. Transcriptional profiling showed that these cells expressed high levels of proinflammatory mediators characteristic for M1 polarized MPs. However, the cells treated with CpGs for 7 days downregulated their surface MHCII molecules as well as their capacity to endocytose ovalbumin and exhibited attenuated allostimulatory activity. This concurred with transcriptional downregulation of costimulatory CD80/86 and upregulation of inhibitory CD274 (B7-H1) genes. Despite their exhausted allostimulatory activity, these cells were still responsive to re-stimulation with gardiquimod (a TLR7/8 ligand) and further upregulated a wide array of immune genes including proinflammatory mediators such as intereukin-1 beta and tumor necrosis factor. Overall, the presented data highlight the disparate effects TLR ligands may have on the proinflammatory status of APCs, on one side, and their antigen-presenting/costimulatory functions, on the other. These findings also indicate that despite the poor phylogenetic conservation of the growth factors involved in the differentiation of DCs, some of the processes that orchestrate the development and the differentiation of professional APCs are conserved between teleosts in mammals.
Collapse
Affiliation(s)
- Dimitar B Iliev
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Gene Regulation, Institute of Molecular Biology 'Roumen Tsanev', Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Leidy Lagos
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hanna L Thim
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | | | | | - Jorunn B Jørgensen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
Lai CY, Yu GY, Luo Y, Xiang R, Chuang TH. Immunostimulatory Activities of CpG-Oligodeoxynucleotides in Teleosts: Toll-Like Receptors 9 and 21. Front Immunol 2019; 10:179. [PMID: 30800129 PMCID: PMC6375897 DOI: 10.3389/fimmu.2019.00179] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/21/2019] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern-recognition receptors that detect a wide variety of microbial pathogens for the initiation of host defense immunological responses. Thirteen TLRs have been identified in mammals, and teleosts contain 22 mammalian or non-mammalian TLRs. Of these, TLR9 and TLR21 are the cytosine-phosphate-guanosine-oligodeoxynucleotides (CpG-ODNs) recognition TLRs in teleosts. TLR9 is a mammalian TLR expressed in teleost but not in the avian species. TLR21 is a non-mammalian TLR expressed in both teleost and the avian species. Synthetic CpG-ODNs are potent immunostimulants that are being studied for their application against tumors, allergies, and infectious diseases, and as a vaccine adjuvant in humans. The immunostimulatory effects of CpG-ODNs as vaccine adjuvants and their antimicrobial function in domestic animals and teleosts are also being investigated. Most of our current knowledge about the molecular basis for the immunostimulatory activity of CpG-ODNs comes from earlier studies of the interaction between CpG-ODN and TLR9. More recent studies indicate that in addition to TLR9, TLR21 is another receptor for CpG-ODN recognition in teleosts to initiate immune responses. Whether these two receptors have differential functions in mediating the immunostimulatory activity of CpG-ODN in teleost has not been well-studied. Nevertheless, the existence of two recognition TLRs suggests that the molecular basis for the immunostimulatory activity of CpG-ODN in teleosts is different and more complex than in mammals. This article reviews the current knowledge of TLR9 and TLR21 activation by CpG-ODNs. The key points that need to be considered for CpG-ODNs as immunostimulants with maximum effectiveness in activation of immune responses in teleosts are discussed. This includes the structure/activity relationship of CpG-ODN activities for TLR9 and TLR21, the structure/functional relationship of these two TLRs, and differential expression levels and tissue distributions for these two TLRs.
Collapse
Affiliation(s)
- Chao-Yang Lai
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yunping Luo
- Deptartment of Immunology, Chinese Academy of Medical Science, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Science, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Science, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Rong Xiang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.,International Joint Center for Biomedical Research of the Ministry of Education, Tianjin, China
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan.,Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Robertsen B. The role of type I interferons in innate and adaptive immunity against viruses in Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:41-52. [PMID: 28196779 DOI: 10.1016/j.dci.2017.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 05/27/2023]
Abstract
Type I IFNs (IFN-I) are cytokines, which play a crucial role in innate and adaptive immunity against viruses of vertebrates. In essence, IFN-I are induced and secreted upon host cell recognition of viral nucleic acids and protect other cells against infection by inducing antiviral proteins. Atlantic salmon possesses an extraordinary repertoire of IFN-I genes encompassing at least six different classes (IFNa, IFNb, IFNc, IFNd, IFNe and IFNf) most of which are encoded by several genes. This review describes recent research on the functions of salmon IFNa, IFNb, IFNc and IFNd. As in mammals, expression of different salmon IFN-I in response to virus infection is dependent on their promoters, properties of the virus and the cell's expression of nucleic acid receptors and interferon regulatory factors (IRFs). While IFNa mainly display local antiviral activity, IFNb and IFNc show systemic antiviral activity. In addition, salmon appears to possess several IFN-I receptors, which show selectivity in binding different IFN-I. This complexity in IFN-I and receptors allows for a large variation in functions of the salmon IFN-I. Studies with intramuscular injection of IFN expression plasmids have recently provided surprising results, which may be of relevance for application of IFN-I in prophylaxis against virus infection. Firstly, injection of IFNc plasmid protected salmon presmolts against virus infection for at least 10 weeks. Secondly, IFN plasmids showed potent adjuvant activity when injected together with a DNA vaccine against infectious salmon anemia virus (ISAV).
Collapse
Affiliation(s)
- Børre Robertsen
- Norwegian College of Fishery Science, UiT-The Arctic University of Norway, 9037 Tromsø, Norway.
| |
Collapse
|
6
|
Julin K, Johansen LH, Sommer AI, Jørgensen JB. Persistent infections with infectious pancreatic necrosis virus (IPNV) of different virulence in Atlantic salmon, Salmo salar L. JOURNAL OF FISH DISEASES 2015; 38:1005-1019. [PMID: 25557127 DOI: 10.1111/jfd.12317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 06/04/2023]
Abstract
Infectious pancreatic necrosis virus (IPNV) is a prevalent pathogen in fish worldwide. The virus causes substantial mortality in Atlantic salmon juveniles and smolts when transferred to sea water and persistent infection in surviving fish after disease outbreaks. Here, we have investigated the occurrence of the virus as well as the innate immune marker Mx in the head kidney (HK) of Atlantic salmon throughout an experimental challenge covering both a fresh and a seawater phase. The fish were challenged with a high (HV) and low virulence (LV) IPNV. Both isolates caused mortality due to reactivation of the virus after transfer to sea water. In the freshwater phase, higher levels of virus transcripts were detected in the HK of fish infected with LV IPNV compared to HV, suggesting that the HV isolate is able to limit its own replication to a level where the innate immune system is not alerted. Further, ex vivoHK leucocytes derived from fish infected with the two isolates were stimulated with CpG DNA. Significantly, higher IFN levels were found in the LV compared to the HV group in the freshwater phase. This suggests that the viruses attenuate the antiviral host immune response at different levels which may contribute to the observed differences in disease outcome.
Collapse
Affiliation(s)
| | | | | | - J B Jørgensen
- Norwegian College of Fisheries Science, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
7
|
Kang YJ, Choi SH, Kim KH. Preventive and therapeutic effects of auxotrophic Edwardsiella tarda mutant harboring CpG 1668 motif-enriched plasmids against scuticociliatosis in olive flounder (Paralichthys olivaceus). Exp Parasitol 2014; 144:34-8. [DOI: 10.1016/j.exppara.2014.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/03/2014] [Indexed: 01/22/2023]
|
8
|
Skjesol A, Liebe T, Iliev DB, Thomassen EIS, Tollersrud LG, Sobhkhez M, Lindenskov Joensen L, Secombes CJ, Jørgensen JB. Functional conservation of suppressors of cytokine signaling proteins between teleosts and mammals: Atlantic salmon SOCS1 binds to JAK/STAT family members and suppresses type I and II IFN signaling. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:177-189. [PMID: 24582990 DOI: 10.1016/j.dci.2014.02.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 06/03/2023]
Abstract
Suppressor of cytokine signaling (SOCS) proteins are crucially involved in the control of inflammatory responses through their impact on various signaling pathways including the JAK/STAT pathway. Although all SOCS protein family members are identified in teleost fish, their functional properties in non-mammalian vertebrates have not been extensively studied. To gain further insight into SOCS functions in bony fish, we have identified and characterized the Atlantic salmon (Salmo salar) SOCS1, SOCS2 and CISH genes. These genes exhibited sequence conservation with their mammalian counterparts and they were ubiquitously expressed. SOCS1 in mammalian species has been recognized as a key negative regulator of interferon (IFN) signaling and recent data for the two model fish Tetraodon (Tetraodon nigroviridis) and zebrafish (Danio rerio) suggest that these functions are conserved from teleost to mammals. In agreement with this we here demonstrate a strong negative regulatory activity of salmon SOCS1 on type I and type II IFN signaling, while SOCS2a and b and CISH only moderately affected IFN responses. SOCS1 also inhibited IFNγ-induced nuclear localization of STAT1 and a direct interaction between SOCS1 and STAT1 and between SOCS1 and the Tyk2 kinase was found. Using SOCS1 mutants lacking either the KIR domain or the ESS, SH2 and SOCS box domains showed that all domains affected the ability of SOCS1 to inhibit IFN-mediated signaling. These results are the first to demonstrate that SOCS1 is a potent inhibitor of IFN-mediated JAK-STAT signaling in teleost fish.
Collapse
Affiliation(s)
- Astrid Skjesol
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Theresa Liebe
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; Center for Molecular Biomedicine (CMB), Dept. of Biochemistry, University of Jena, D-07745 Jena, Germany
| | - Dimitar B Iliev
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ernst I S Thomassen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Linn Greiner Tollersrud
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Mehrdad Sobhkhez
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | | | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Jorunn B Jørgensen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
9
|
Vaccine Adjuvants in Fish Vaccines Make a Difference: Comparing Three Adjuvants (Montanide ISA763A Oil, CpG/Poly I:C Combo and VHSV Glycoprotein) Alone or in Combination Formulated with an Inactivated Whole Salmonid Alphavirus Antigen. Vaccines (Basel) 2014; 2:228-51. [PMID: 26344619 PMCID: PMC4494258 DOI: 10.3390/vaccines2020228] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/21/2014] [Accepted: 03/13/2014] [Indexed: 01/01/2023] Open
Abstract
Most commercial vaccines offered to the aquaculture industry include inactivated antigens (Ag) formulated in oil adjuvants. Safety concerns are related to the use of oil adjuvants in multivalent vaccines for fish, since adverse side effects (e.g., adhesions) can appear. Therefore, there is a request for vaccine formulations for which protection will be maintained or improved, while the risk of side effects is reduced. Here, by using an inactivated salmonid alphavirus (SAV) as the test Ag, the combined use of two Toll-like receptor (TLR) ligand adjuvants, CpG oligonucleotides (ODNs) and poly I:C, as well as a genetic adjuvant consisting of a DNA plasmid vector expressing the viral haemorrhagic septicaemia virus (VHSV) glycoprotein (G) was explored. VHSV-G DNA vaccine was intramuscularly injected in combination with intraperitoneal injection of either SAV Ag alone or combined with the oil adjuvant, Montanide ISA763, or the CpG/polyI:C combo. Adjuvant formulations were evaluated for their ability to boost immune responses and induce protection against SAV in Atlantic salmon, following cohabitation challenge. It was observed that CpG/polyI:C-based formulations generated the highest neutralizing antibody titres (nAbs) before challenge, which endured post challenge. nAb responses for VHSV G-DNA- and oil-adjuvanted formulations were marginal compared to the CpG/poly I:C treatment. Interestingly, heat-inactivated sera showed reduced nAb titres compared to their non-heated counterparts, which suggests a role of complement-mediated neutralization against SAV. Consistently elevated levels of innate antiviral immune genes in the CpG/polyI:C injected groups suggested a role of IFN-mediated responses. Co-delivery of the VHSV-G DNA construct with either CpG/polyI:C or oil-adjuvanted SAV vaccine generated higher CD4 responses in head kidney at 48 h compared to injection of this vector or SAV Ag alone. The results demonstrate that a combination of pattern recognizing receptor (PRR) ligands, such as CpG/polyI:C, increases both adaptive and innate responses and represents a promising adjuvant strategy for enhancing the protection of future viral vaccines.
Collapse
|
10
|
Sobhkhez M, Hansen T, Iliev DB, Skjesol A, Jørgensen JB. The Atlantic salmon protein tyrosine kinase Tyk2: molecular cloning, modulation of expression and function. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:553-563. [PMID: 23872231 DOI: 10.1016/j.dci.2013.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
Tyk2, a member of the Janus Kinase (JAK) family of protein tyrosine kinases, is required for interferon-α/β binding and signaling in higher vertebrates. Currently, little is known about the role of the different JAKs in signaling responses to interferon (IFN) in lower vertebrates including fish. In this paper we report the identification and characterization of Atlantic salmon (Salmo salar) Tyk2. Four cDNA sequences, two containing an open reading frame encoding full-length Tyk protein and two with an up-stream in frame stop codon, were identified. The deduced amino acid sequences of the salmon full-length Tyk2 proteins showed highest identity with Tyk2 from other species and their transcripts were ubiquitously expressed. Like in mammals the presented data suggests that salmon Tyk2 is auto-phosporylated when ectopically expressed in cells. In our experiments, full-length salmon Tyk2 overexpressed in CHSE-cells phosphorylated itself, while both a kinase-deficient mutant and the truncated Tyk2 (Tyk-short) were inactive. Interestingly, the overexpression of full length Tyk2 was shown to up-regulate the transcript levels of the IFN induced gene Mx, thus indicating the involvement of salmon Tyk2 in the salmon IFN I pathway.
Collapse
Affiliation(s)
- Mehrdad Sobhkhez
- Norwegian College of Fisheries Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|
11
|
Iliev DB, Hansen T, Jørgensen SM, Krasnov A, Jørgensen JB. CpG- and LPS-activated MAPK signaling in in vitro cultured salmon (Salmo salar) mononuclear phagocytes. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1079-1085. [PMID: 23872471 DOI: 10.1016/j.fsi.2013.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/25/2013] [Accepted: 07/09/2013] [Indexed: 06/02/2023]
Abstract
The Mitogen-activated protein kinases (MAPK) are involved in transmitting intracellular signals downstream of diverse cell surface receptors and mediate the response to ligands such as growth factors, hormones and cytokines. In addition, MAPK are critically involved in the innate immune response to pathogen-derived substances, commonly referred to as pathogen-associated molecular patterns (PAMPs), such as bacterial lipopolysaccharide (LPS) and bacterial DNA rich in CpG dinucleotides. Currently, a great deal of knowledge is available about the involvement of MAPK in the innate immune response to PAMPs in mammals; however, little is known about the role of the different MAPK classes in the immune response to PAMPs in lower vertebrates. In the current study, p38 phosphorylation was induced by CpG oligonucleotides (ODNs) and LPS in primary salmon mononuclear phagocytes. Pre-treatment of the cells with a p38 inhibitor (SB203580) blocked the PAMP-induced p38 activity and suppressed the upregulation of most of the CpG- and LPS-induced transcripts highlighting the role of this kinase in the salmon innate immune response to PAMPs. In contrast to p38, the phosphorylation of extracellular signal-regulated kinase (ERK), a MAPK involved primarily in response to mitogens, was high in resting cells and, surprisingly, incubation with both CpG and control ODNs downregulated the phospho-ERK levels independently of p38 activation. The basal phospho-ERK level and the CpG-inducible p38 phosphorylation were greatly influenced by the length of in vitro incubation. The basal phospho-ERK level increased gradually throughout a 5-day culture period and was PI3K-dependent as demonstrated by its sensitivity to Wortmannin suggesting it is influenced by growth factors. Overall these data indicate that both basal and PAMP-induced activity of MAPKs might be greatly influenced by the differentiation status of salmon mononuclear phagocytes.
Collapse
Affiliation(s)
- Dimitar B Iliev
- The Norwegian College of Fishery Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|
12
|
Iliev DB, Skjæveland I, Jørgensen JB. CpG oligonucleotides bind TLR9 and RRM-containing proteins in Atlantic salmon (Salmo salar). BMC Immunol 2013; 14:12. [PMID: 23452377 PMCID: PMC3598971 DOI: 10.1186/1471-2172-14-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/20/2013] [Indexed: 12/03/2022] Open
Abstract
Background Bacterial DNA is well-known for its potent immunostimulatory properties which have been attributed to the abundance of CpG dinucleotides within the genomes of prokaryotes. Research has found that mammalian TLR9 is a receptor which mediates the immune response to CpG DNA; however, its functional properties in non-mammalian vertebrates are still poorly characterized. Leukocytes isolated from lower vertebrates, including teleosts, respond to CpG DNA and TLR9 has been identified in many fish species; however, the ligand-binding properties of fish TLR9 have, so far, not been studied. The fact that some vertebrates, like chicken, lack TLR9 and use an alternative molecule (TLR21) as a receptor for CpGs has questioned the functional conservation of TLR9 within vertebrates. Results In the current study, TLR9 from Atlantic salmon (SsTLR9) has been found to interact with synthetic oligonucleotides via a CpG-independent but a pH-dependent mechanism. The endogenous receptor, expressed by primary mononuclear phagocytes colocalizes with CpG oligonucleotides (ODNs) in vesicles that appear to be endosomes. When overexpressed in salmonid cell lines, SsTLR9 spontaneously activates ISRE-containing promoters of genes involved in the IFN response; however, the transgenic receptor fails to translocate to CpG-containing endosomes. This indicates that only specific immune cell types have the ability to relocate the receptor to the appropriate cellular compartments where it may become activated by its ligand. In addition, through co-precipitation and mass spectrometry, two salmon proteins - hnRNPA0 and NCOA5, which both contain RNA-binding domains (RRM), were found to bind CpG ODNs, suggesting they may be involved in the CpG response in salmon leukocytes. Conclusion The presented data are the first to demonstrate that the DNA-binding properties of TLR9 are conserved between teleosts and mammals. The current study also identifies additional molecules which may function as mediators of the immunostimulatory properties of foreign DNA.
Collapse
Affiliation(s)
- Dimitar B Iliev
- Norwegian College of Fishery Science, University of Tromsø, N-9037, Tromsø, Norway
| | | | | |
Collapse
|
13
|
Lagos LX, Iliev DB, Helland R, Rosemblatt M, Jørgensen JB. CD40L--a costimulatory molecule involved in the maturation of antigen presenting cells in Atlantic salmon (Salmo salar). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:416-430. [PMID: 22889889 DOI: 10.1016/j.dci.2012.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/25/2012] [Accepted: 07/30/2012] [Indexed: 06/01/2023]
Abstract
The CD40L/CD40 signalling pathway is critically involved in the final stage of the maturation of DCs. This paper reports the identification and functional characterization of CD40L and CD40 from Atlantic salmon (Salmo salar). Salmon CD40L is a type II membrane-bound protein with a TNF homology domain in its extracellular C-terminal region, while CD40 is a type I membrane-bound receptor with a sequence pattern of four cysteine-rich domains in its extracellular N-terminal region. The salmon CD40L and CD40 were widely expressed, particularly in immune tissues, and while CD40L expression was induced by in vitro stimulation of HKLs with PHA and ConA, CpG increased CD40 expression. A CD40L construct was overexpressed in the CHSE-214 cell line and co-cultivation of the CD40L-CHSE transfectants with HKL induced a rapid and long-lasting upregulation of important costimulatory molecules like CD40, CD83, B7-H1 and the cytokines IL-12p40, IL-10, IL-1β and IFNs, which all are involved in T-helper cell responses. Furthermore, the CD40L transfected cells increased the percentage of HKLs expressing surface MHCIIβ but unlike other APC maturation stimuli, like CpG, they did not reduce the capacity to internalise antigen. Our results provide the first evidence for the existence of a functional CD40L mediated costimulatory pathway in Atlantic salmon.
Collapse
Affiliation(s)
- Leidy X Lagos
- Norwegian College of Fisheries Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|
14
|
Thim HL, Iliev DB, Christie KE, Villoing S, McLoughlin MF, Strandskog G, Jørgensen JB. Immunoprotective activity of a Salmonid Alphavirus Vaccine: comparison of the immune responses induced by inactivated whole virus antigen formulations based on CpG class B oligonucleotides and poly I:C alone or combined with an oil adjuvant. Vaccine 2012; 30:4828-34. [PMID: 22634299 DOI: 10.1016/j.vaccine.2012.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/13/2012] [Accepted: 05/07/2012] [Indexed: 12/25/2022]
Abstract
CpG oligonucleotides and polyinosinic:polycytidylic acid (poly I:C) are toll-like receptor (TLR) agonists that mimic the immunostimulatory properties of bacterial DNA and double-stranded viral RNA respectively, and which have exhibited potential to serve as vaccine adjuvants in previous experiments. Here, a combination of CpGs and poly I:C together with water- or oil-formulated Salmonid Alphavirus (SAV) antigen preparations has been used for a vaccine in Atlantic salmon and tested for protection in SAV challenge trial. The results demonstrate that vaccination with a high dose of the SAV antigen induced protection against challenge with SAV which correlated with production of neutralizing antibodies (NAbs). As the high antigen dose alone induced full protection, no beneficial effect from the addition of CpG and poly I:C could be observed. Nevertheless, these TLR ligands significantly enhanced the levels of NAbs in serum of vaccinated fish. Interestingly, gene expression analysis demonstrated that while addition of oil suppressed the CpG/poly I:C-induced expression of IFN-γ, the upregulation of IFNa1 was substantially enhanced. A low dose of the SAV antigen combined with oil did not induce any detectable levels of NAbs either with or without TLR ligands present, however the addition of CpG and poly I:C to the low SAV antigen dose formulation significantly enhanced the protection against SAV suggesting that CpG/poly I:C may have enhanced a cytotoxic response - a process which is dependent on the up-regulation of type I IFN. These results highlight the immunostimulatory properties of the tested TLR ligands and will serve as a ground for further, more detailed studies aimed to investigate their capacity to serve as adjuvants in vaccine formulations for Atlantic salmon.
Collapse
Affiliation(s)
- Hanna L Thim
- Norwegian College of Fisheries Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | | | | | |
Collapse
|
15
|
Strandskog G, Villoing S, Iliev DB, Thim HL, Christie KE, Jørgensen JB. Formulations combining CpG containing oliogonucleotides and poly I:C enhance the magnitude of immune responses and protection against pancreas disease in Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1116-1127. [PMID: 21527278 DOI: 10.1016/j.dci.2011.03.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/16/2011] [Indexed: 05/30/2023]
Abstract
Both CpG oligodeoxynucleotides and double-stranded RNA (poly I:C) have documented effects as treatments against several viral diseases in fish. However, as stand-alone treatments their effects have been modest. We have tested here whether CpG and poly I:C, alone or in combination induce protection against Salmonid Alphavirus (SAV), the causative agent of pancreas disease in Atlantic salmon. Our results revealed a significant reduction of viraemia 2 weeks after ip injection of the combined treatment and 1 week after challenge with SAV subtype 3, followed by reduced SAV induced heart pathology 3 weeks later. The SAV titers in blood samples from the combination group were lower as compared to single treatments with either CpG or poly I:C. Surprisingly, reduced SAV levels could also be found in fish as long as 7 weeks after receiving the combination treatment. The expression of IFNγ and to a lesser extent IFNa and Mx was up-regulated in head kidney and spleen 5 days after the fish had been treated with CpG and poly I:C. Furthermore, the complement factor C4 was depleted in serum 8 weeks post treatment, suggesting complement activation leading to C4 consumption. We hypothesize that the CpG/poly I:C-induced protection against SAV3 is mediated by mechanisms involving type I and type II IFN induced antiviral activity and complement mediated protective responses.
Collapse
Affiliation(s)
- Guro Strandskog
- Norwegian College of Fisheries Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
16
|
Iliev DB, Sobhkhez M, Fremmerlid K, Jørgensen JB. MyD88 interacts with interferon regulatory factor (IRF) 3 and IRF7 in Atlantic salmon (Salmo salar): transgenic SsMyD88 modulates the IRF-induced type I interferon response and accumulates in aggresomes. J Biol Chem 2011; 286:42715-42724. [PMID: 21990356 DOI: 10.1074/jbc.m111.293969] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MyD88 is an intracellular adaptor protein that transmits signals downstream of immune receptors such as the IL-1 receptor and the majority of the known mammalian toll-like receptors. Homologs of MyD88 have been identified in many vertebrate species; however, the adaptor has been studied mostly in mammals, and little is known about its function in lower vertebrates. The results presented in the current paper demonstrate, for the first time, that the teleost MyD88, through its Toll/Interleukin-1 receptor domain, interacts with SsIRF3 and two SsIRF7 paralogs: transcription factors that are critically involved in the virus-induced IFN responses. The data further highlight the potential of transgenic SsMyD88 to modulate the IRF-induced type I IFN response as the adaptor synergized with SsIRF3 to activate IRF-E/IFN-stimulated response element-containing reporter gene constructs and endogenous myxovirus resistance homolog expression. Microscopy analyses demonstrated that, similar to mammalian MyD88, both endogenous and transgenic SsMyD88 accumulated in intracellular aggregates. However, unlike the endogenous SsMyD88 clusters, which co-localized with endocytosed CpGs and probably represented myddosomes, overexpressed SsMyD88 accumulated in aggresomes. Although these structures accumulated ubiquitinated proteins, they did not associate with the autophagosome markers p62 and light chain 3-like protein, indicating that they are most likely classical aggresomes rather than aggresome-like induced structures, aggregates of ubiquitinated proteins induced by toll-like receptor/MyD88 signaling in antigen-presenting cells. The significance of the accumulation of transgenic MyD88 in aggresomes is currently unknown; nevertheless it is tempting to speculate that it might represent a defense mechanism against the potentially harmful effects of excessive MyD88 signaling.
Collapse
Affiliation(s)
- Dimitar B Iliev
- Faculty of Biosciences, Fisheries and Economics, University of Tromsø, N-9037 Tromsø, Norway
| | - Mehrdad Sobhkhez
- Faculty of Biosciences, Fisheries and Economics, University of Tromsø, N-9037 Tromsø, Norway
| | - Kjersti Fremmerlid
- Faculty of Biosciences, Fisheries and Economics, University of Tromsø, N-9037 Tromsø, Norway
| | - Jorunn B Jørgensen
- Faculty of Biosciences, Fisheries and Economics, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
17
|
Zhang Z, Chi H, Niu C, Bøgwald J, Dalmo RA. Molecular cloning and characterization of Foxp3 in Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2011; 30:902-909. [PMID: 21276855 DOI: 10.1016/j.fsi.2011.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/17/2011] [Accepted: 01/17/2011] [Indexed: 05/30/2023]
Abstract
Foxp3 is a T cell-specific transcription factor and plays a key role in the development of Treg cells and in the immune regulatory process during inflammation. Here we report cloning and characterization of the full-length cDNA of Atlantic salmon Foxp3, which possesses a Forkhead domain, a zinc finger domain and a leucine-zipper domain as its counterpart in mammals. Foxp3 is highly expressed in thymus. Furthermore, regulated expression was observed in head kidney cells in response to β-glucan and mitogens (LPS and ConA), and in the head kidney, spleen and liver after intraperitoneal injection of live Aeromonas salmonicida. In addition, transfection of CHSE-214 cells with salmon Foxp3 fused with a C-termial RFP tag, resulted in the expression of the transgene in and close to the nuclei upon stimulation. Taken together, these results suggest the presence of a Foxp3 gene in Atlantic salmon that may be an important transcription factor in immune regulation, and further research may reveal the existence of Treg-like T cells in this species.
Collapse
Affiliation(s)
- Zuobing Zhang
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | | | | | | | | |
Collapse
|
18
|
Caipang CMA, Gallage S, Lazado CC, Brinchmann MF, Kiron V. Unmethylated CpG oligodeoxynucleotides activate head kidney leukocytes of Atlantic cod, Gadus morhua. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:1151-1158. [PMID: 20349339 DOI: 10.1007/s10695-010-9393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/15/2010] [Indexed: 05/29/2023]
Abstract
Bacterial DNA and synthetic oligodeoxynucleotides (ODNs) that contain unmethylated CpG motifs are strong inducers of immune response in most mammalian organisms. The use of these synthetic CpG motifs in fish, particularly in salmonids and carp, resulted in the modulation of their immune system. However, much less is known in other species of fish such as gadoids including Atlantic cod, Gadus morhua. Using head kidney (HK) leukocytes of cod in an in vitro study, we determined the effects of some established CpG-ODNs on the cellular responses of the fish immunocytes. Incubation of the HK leukocytes with 2 μM concentration of the CpG-ODNs resulted in enhanced respiratory burst. There were differential effects on the activities of acid phosphatase and cellular myeloperoxidase. Only CpG-ODN 1826 triggered a significant increase in the level of both enzymes. On the other hand, the supernatants derived from the HK leukocytes after incubation with different CpG-ODNs did not possess bactericidal activity against Vibrio anguillarum and Aeromonas salmonicida. This study has shown that CpG-ODNs at low concentrations are able to stimulate respiratory burst in cod but have minimal effects on cellular enzymatic activities and antibacterial action.
Collapse
|
19
|
Hennessy EJ, Parker AE, O'Neill LAJ. Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov 2010; 9:293-307. [PMID: 20380038 DOI: 10.1038/nrd3203] [Citation(s) in RCA: 646] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a growing interest in the targeting of Toll-like receptors (TLRs) for the prevention and treatment of cancer, rheumatoid arthritis, inflammatory bowel disease and systemic lupus erythematosus (SLE). Several new compounds are now undergoing preclinical and clinical evaluation, with a particular focus on TLR7 and TLR9 activators as adjuvants in infection and cancer, and inhibitors of TLR2, TLR4, TLR7 and TLR9 for the treatment of sepsis and inflammatory diseases. Here, we focus on TLRs that hold the most promise for drug discovery research, highlighting agents that are in the discovery phase and in clinical trials,and on the emerging new aspects of TLR-mediated signalling - such as control by ubiquitination and regulation by microRNAs - that might offer further possibilities of therapeutic manipulation.
Collapse
|
20
|
Liu CS, Sun Y, Hu YH, Sun L. Identification and analysis of a CpG motif that protects turbot (Scophthalmus maximus) against bacterial challenge and enhances vaccine-induced specific immunity. Vaccine 2010; 28:4153-61. [PMID: 20416262 DOI: 10.1016/j.vaccine.2010.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/26/2010] [Accepted: 04/05/2010] [Indexed: 11/19/2022]
Abstract
Oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs in certain contexts are known to be immunostimulatory in vertebrate systems. CpG ODNs with immune effects have been identified for many fish species but, to our knowledge, not for turbot. In this study, a turbot-effective CpG ODN, ODN 205, was identified and a plasmid, pCN5, was constructed which contains the CpG motif of ODN 205. When administered into turbot via intraperitoneal (i.p.) injection, both ODN 205 and pCN5 could (i) inhibit bacterial dissemination in blood in dose and time dependent manners, and (ii) protect against lethal bacterial challenge. Immunological analyses showed that in vitro treatment with ODN 205 stimulated peripheral blood leukocyte proliferation, while i.p. injection with ODN 205 enhanced the respiratory burst activity, chemiluminescence response, and acid phosphatase activity of turbot head kidney macrophages. pCN5 treatment-induced immune responses similar to those induced by ODN 205 treatment except that pCN5 could also enhance serum bactericidal activity in a calcium-independent manner. To examine whether ODN 205 and pCN5 had any effect on specific immunity, ODN 205 and pCN5 were co-administered into turbot with a Vibrio harveyi subunit vaccine, DegQ. The results showed that pCN5, but not ODN 205, significantly increased the immunoprotective efficacy of DegQ and enhanced the production of specific serum antibodies in the vaccinated fish. Further analysis indicated that vaccination with DegQ in the presence of pCN5 upregulated the expression of the genes encoding MHC class IIalpha, IgM, Mx, and IL-8 receptor. Taken together, these results demonstrate that ODN 205 and pCN5 can stimulate the immune system of turbot and induce protection against bacterial challenge. In addition, pCN5 also possesses adjuvant property and can potentiate vaccine-induced specific immunity.
Collapse
Affiliation(s)
- Chun-sheng Liu
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | | | | | |
Collapse
|
21
|
|
22
|
Iliev DB, Jørgensen SM, Rode M, Krasnov A, Harneshaug I, Jørgensen JB. CpG-induced secretion of MHCIIbeta and exosomes from salmon (Salmo salar) APCs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:29-41. [PMID: 19665478 DOI: 10.1016/j.dci.2009.07.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 05/28/2023]
Abstract
Major histocompatibility complex class II (MHCII) is encoded by polymorphic genes present in vertebrates and expressed predominately in leukocytes. Upon leukocyte differentiation, intracellular MHCII is dynamically redistributed within the cells and it is expressed at maximal levels on mature antigen presenting cells (APCs). In addition, APCs secrete MHCII within endosome-derived vesicles known as exosomes which possess diverse immunomodulatory properties. Genetic and biochemical data have confirmed that piscine leukocytes express the MHCII components as well as costimulatory molecules that are necessary for the function of APCs. However data concerning the biosynthesis and the distribution of the MHCII complex within leukocytes of lower vertebrates is scarce. The presented data demonstrates for the first time that salmon leukocytes secrete vesicles that contain exosomal markers and the abundance of MHCII indicates that these exosomes are released by APCs. The secretion was specifically induced by CpG stimulation in vitro and it was observed only in head kidney leukocytes but not in splenocyte cultures. Flow cytometry revealed that, unlike splenocytes, the majority of the MHCII-positive head kidney leukocytes were Ig-negative and a population of cells expressing high levels of surface MHCII underwent degranulation upon CpG stimulation suggesting that the MHCII-containing exosomes were derived from maturing salmon APCs. Gene expression analyses have further demonstrated that CpG-B, despite its relatively weak proinflammatory activity compared to LPS, induced expression of a larger group of genes involved in regulation of the adaptive immune response.
Collapse
Affiliation(s)
- Dimitar B Iliev
- The Norwegian College of Fishery Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
23
|
Skjaeveland I, Iliev DB, Strandskog G, Jørgensen JB. Identification and characterization of TLR8 and MyD88 homologs in Atlantic salmon (Salmo salar). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:1011-1017. [PMID: 19422846 DOI: 10.1016/j.dci.2009.04.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 04/28/2009] [Accepted: 04/29/2009] [Indexed: 05/27/2023]
Abstract
Toll-like receptor 8 (TLR 8) belongs to a subgroup of the TLR family that recognizes nucleic acids and that is involved in the protection against viruses. In mammals, TLR7 and 8 have been characterized as receptors for viral and synthetic single-stranded RNA. Here we describe the cloning of a TLR8 homolog in Atlantic salmon (Salmo salar) and its proximal adaptor protein MyD88. The mRNA expression of SsTLR8 was tissue-restricted and its highest level was detected in the spleen while SsMyD88 was expressed in all of the tested organs. SsTLR8 and SsMyD88 mRNAs were up-regulated in TO cells treated with recombinant IFN alpha1 and IFN gamma. In vivo, the expression of SsTLR8 was not significantly affected following challenge with salmon alphavirus subtype 3 (SAV3). By contrast, infection with SAV3 up-regulated SsMyD88 transcripts on day 7 post-challenge and the expression remained elevated at day 28. The SsMyD88 expression in vivo paralleled type I IFN expression. In vitro stimulation of salmon head kidney leukocytes with CpG ODNs and IFN gamma also up-regulated SsMyD88 mRNA. Furthermore, ectopic expression of SsMyD88 in HEK cells was able to activate a NF-kappaB reporter construct indicating that the cloned salmon molecule was a functional MyD88 homologue.
Collapse
Affiliation(s)
- Ingrid Skjaeveland
- The Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | | | | | | |
Collapse
|
24
|
Robertsen B. Expression of interferon and interferon-induced genes in salmonids in response to virus infection, interferon-inducing compounds and vaccination. FISH & SHELLFISH IMMUNOLOGY 2008; 25:351-7. [PMID: 18400516 DOI: 10.1016/j.fsi.2008.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/06/2008] [Accepted: 02/06/2008] [Indexed: 05/20/2023]
Abstract
Interferons (IFNs) involved in innate immunity against viruses have recently been cloned from Atlantic salmon and rainbow trout. Moreover, several IFN-stimulated genes (ISGs) have been cloned from salmonids although only Mx has been shown to possess antiviral properties. Much less in known about how viruses induce IFNs in salmonids, but synthetic ligands for some of the main mammalian viral sensors also induce IFNs and ISGs in salmonids. Analysis of the promoters of the salmon IFN-alpha1 and IFN-alpha2 genes shows that activation is dependent on both NFkappaB and IRFs similar to human IFN-beta. Furthermore, several IFN-stimulated genes (ISGs) have been cloned from salmonids although only Mx has been shown to possess antiviral properties. The synthetic compounds poly I:C, imidazoquinolines and CpG oligonucleotides induce IFNs and ISGs in salmonids, probably through the same pathways as in mammals. Salmonid viruses show potent ability to stimulate expression of IFN and ISGs in vivo. Differences between viruses in the ability to stimulate host gene expression are often more evident in cell culture, but more work is needed to pinpoint how salmonid viruses antagonize the IFN system of their host. Finally, existing data suggest that IFNs play a role in the early non-specific protection observed after vaccination of salmonids with rhabdoviral DNA vaccines and conventional polyvalent vaccines.
Collapse
Affiliation(s)
- Børre Robertsen
- Department of Marine Biotechnology, Norwegian College of Fishery Science, University of Tromsø, 9037 Tromsø, Norway.
| |
Collapse
|
25
|
Strandskog G, Skjaeveland I, Ellingsen T, Jørgensen JB. Double-stranded RNA- and CpG DNA-induced immune responses in Atlantic salmon: comparison and synergies. Vaccine 2008; 26:4704-15. [PMID: 18602433 DOI: 10.1016/j.vaccine.2008.06.054] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 05/30/2008] [Accepted: 06/13/2008] [Indexed: 01/06/2023]
Abstract
Several TLR agonists are shown to activate piscine immunity and are interesting adjuvant candidates in vaccine development. To test the outcome of stimulating Atlantic salmon with CpG DNA and poly I:C, ligands for TLR9 and 3, respectively, we have measured the in vivo expression of different immune molecules in spleen and head kidney. The expression profiles for individual treatments with CpGs or poly I:C not only showed similarities but they also displayed unique profiles. When combining them a synergistic up-regulation of the genes interferon (IFN)-alpha1/alpha2, Mx, CXCL10, IL-1beta, IFN-gamma and CD83 was detected. Interestingly, synergies between two different CpG ODNs classes also resulted in pronounced IFN-alpha1/alpha2 and IFN-gamma transcripts levels. To our knowledge this is the first study showing synergy by combining two different TLR9 ligands. In conclusion, detection of dsRNA and CpG DNA in fish may mimic viral recognition, resulting in an enhanced innate immune response that could be used for vaccination.
Collapse
Affiliation(s)
- Guro Strandskog
- Norwegian College of Fisheries Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | |
Collapse
|
26
|
Jurk M, Vollmer J. Therapeutic applications of synthetic CpG oligodeoxynucleotides as TLR9 agonists for immune modulation. BioDrugs 2008; 21:387-401. [PMID: 18020622 DOI: 10.2165/00063030-200721060-00006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vertebrate toll-like receptors (TLRs) sense invading pathogens by recognizing bacterial and viral structures and, as a result, activate innate and adaptive immune responses. Ten human functional TLRs have been reported so far; three of these (TLR7, 8, and 9) are expressed in intracellular compartments and respond to single-stranded nucleic acids as natural ligands. The pathogen structure selectively recognized by TLR9 in bacterial or viral DNA was identified to be CpG dinucleotides in specific sequence contexts (CpG motifs). Short phosphorothioate-stabilized oligodeoxynucleotides (ODNs) containing such motifs are used as synthetic TLR9 agonists, and different classes of ODN TLR9 agonists have been identified with distinct immune modulatory profiles. The TLR9-mediated activation of the vertebrate immune system suggests using such TLR9 agonists as effective vaccine adjuvants for infectious disease, and for the treatment of cancer and asthma/allergy. Immune activation by CpG ODNs has been demonstrated to be beneficial in animal models as a vaccine adjuvant and for the treatment of a variety of viral, bacterial, and parasitic diseases. Antitumor activity of CpG ODNs has also been established in numerous mouse models. In clinical vaccine trials in healthy human volunteers or in immunocompromised HIV-infected patients, CpG ODNs strongly enhanced vaccination efficiency. Most encouraging results in the treatment of cancers have come from human phase I and II clinical trials using CpG ODNs as a tumor vaccine adjuvant, monotherapy, or in combination with chemotherapy. Therefore, CpG ODNs represent targeted immune modulatory drugs with a broad range of potential applications.
Collapse
Affiliation(s)
- Marion Jurk
- Coley Pharmaceutical GmbH, Dusseldorf, Germany
| | | |
Collapse
|
27
|
Martin-Armas M, Zykova S, Smedsrød B. Effects of CpG-oligonucleotides, poly I:C and LPS on Atlantic cod scavenger endothelial cells (SEC). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:100-7. [PMID: 17560649 DOI: 10.1016/j.dci.2007.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 04/19/2007] [Accepted: 04/22/2007] [Indexed: 05/15/2023]
Abstract
Carrying out a remarkably efficient clearance of colloidal and soluble macromolecular waste substances from the circulation, the scavenger endothelial cells (SECs) represent an important part of the reticuloendothelial system of vertebrates. It has been previously shown that these cells play an important role in the innate immune system by eliminating from the blood a number of molecules known to elicit inflammatory reactions. In the present study we have investigated the uptake of LPS and oligonucleotides in cultured Atlantic cod SECs, and determined if interaction with these pathogen associated molecules affect the scavenger activity and/or production of immune modulating molecules of SECs. Preincubation of cultured SECs with CpG (5 and 20 microg/ml) or Poly I:C (10 or 40 microg/ml) gave selective down-regulation of scavenger receptor-mediated endocytosis, but only marginal effects were noted on endocytosis via the mannose- and collagen alpha chain receptors. Preincubation with LPS or a non-inflammatory ligand for the scavenger receptor did not result in altered endocytosis via any of the receptors tested. Only Poly I:C (40 microg/ml) was observed to increase the production of NO. RT-PCR analyses showed IL-1 production which was not increased above control after pre-treatment with two different CpG-oligonucleotides or Poly I:C. In fact, preincubation with Poly I:C, but not CpGs, resulted in degradation of total intracellular RNA. In conclusion, our study shows that SECs respond differently to the different immunomodulators used and that their important clearance activity as scavenger cells can be regulated by the use of oligonucleotides.
Collapse
Affiliation(s)
- Montserrat Martin-Armas
- Department of Cell Biology and Histology, Institute of Medical Biology, University of Tromsø, N-9037, Tromsø, Norway
| | | | | |
Collapse
|