1
|
Abstract
Even with an effective vaccine, an estimated 240 million people are chronically infected with hepatitis B virus (HBV) worldwide. Current antiviral therapies, including interferon and nucleot(s)ide analogues, rarely cure chronic hepatitis B. Animal models are very crucial for understanding the pathogenesis of chronic hepatitis B and developing new therapeutic drugs or strategies. HBV can only infect humans and chimpanzees, with the use of chimpanzees in HBV research strongly restricted. Thus, most advances in HBV research have been gained using mouse models with HBV replication or infection or models with HBV-related hepadnaviral infection. This review summarizes the animal models currently available for the study of HBV infection.
Collapse
Affiliation(s)
- Wei-Na Guo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei 430022, China
| | - Bin Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei 430022, China
| | - Ling Ai
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei 430022, China
| | - Dong-Liang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei 430022, China
| | - Bao-Ju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei 430022, China.
| |
Collapse
|
2
|
Liu Y, Wang B, Wang L, Vikash V, Wang Q, Roggendorf M, Lu M, Yang D, Liu J. Transcriptome Analysis and Comparison of Marmota monax and Marmota himalayana. PLoS One 2016; 11:e0165875. [PMID: 27806133 PMCID: PMC5091844 DOI: 10.1371/journal.pone.0165875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022] Open
Abstract
The Eastern woodchuck (Marmota monax) is a classical animal model for studying hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC) in humans. Recently, we found that Marmota himalayana, an Asian animal species closely related to Marmota monax, is susceptible to woodchuck hepatitis virus (WHV) infection and can be used as a new mammalian model for HBV infection. However, the lack of genomic sequence information of both Marmota models strongly limited their application breadth and depth. To address this major obstacle of the Marmota models, we utilized Illumina RNA-Seq technology to sequence the cDNA libraries of liver and spleen samples of two Marmota monax and four Marmota himalayana. In total, over 13 billion nucleotide bases were sequenced and approximately 1.5 billion clean reads were obtained. Following assembly, 106,496 consensus sequences of Marmota monax and 78,483 consensus sequences of Marmota himalayana were detected. For functional annotation, in total 73,603 Unigenes of Marmota monax and 78,483 Unigenes of Marmota himalayana were identified using different databases (NR, NT, Swiss-Prot, KEGG, COG, GO). The Unigenes were aligned by blastx to protein databases to decide the coding DNA sequences (CDS) and in total 41,247 CDS of Marmota monax and 34,033 CDS of Marmota himalayana were predicted. The single nucleotide polymorphisms (SNPs) and the simple sequence repeats (SSRs) were also analyzed for all Unigenes obtained. Moreover, a large-scale transcriptome comparison was performed and revealed a high similarity in transcriptome sequences between the two marmota species. Our study provides an extensive amount of novel sequence information for Marmota monax and Marmota himalayana. This information may serve as a valuable genomics resource for further molecular, developmental and comparative evolutionary studies, as well as for the identification and characterization of functional genes that are involved in WHV infection and HCC development in the woodchuck model.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baoju Wang
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Wang
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Vikash Vikash
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Wang
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Michael Roggendorf
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (DY); (JL)
| | - Jia Liu
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (DY); (JL)
| |
Collapse
|
3
|
Molecular characterization of woodchuck IFI16 and AIM2 and their expression in woodchucks infected with woodchuck hepatitis virus (WHV). Sci Rep 2016; 6:28776. [PMID: 27354260 PMCID: PMC4926060 DOI: 10.1038/srep28776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/08/2016] [Indexed: 12/25/2022] Open
Abstract
IFI16 and AIM2 are important DNA sensors in antiviral immunity. To characterize these two molecules in a woodchuck model, which is widely used to study hepatitis B virus (HBV) infection, we cloned and analyzed the complete coding sequences (CDSs) of woodchuck IFI16 and AIM2, and found that AIM2 was highly conserved in mammals, whereas the degree of sequence identity between woodchuck IFI16 and its mammalian orthologues was low. IFI16 and IFN-β were upregulated following VACV ds 70 mer transfection, while AIM2 and IL-1β were upregulated following poly (dA:dT) transfection, both in vitro and in vivo; IFI16-targeted siRNA decreased the transcription of IFI16 and IFN-β stimulated by VACV ds 70 mer, and AIM2 siRNA interference downregulated AIM2 and IL-1β transcripts stimulated by poly (dA:dT), in vitro, suggesting that woodchuck IFI16 and AIM2 may play pivotal roles in the DNA-mediated induction of IFN-β and IL-1β, respectively. IFI16 and AIM2 transcripts were upregulated in the liver and spleen following acute WHV infection, while IFI16 was downregulated in the liver following chronic infection, implying that IFI16 and AIM2 may be involved in WHV infection. These data provide the basis for the study of IFI16- and AIM2-mediated innate immunity using the woodchuck model.
Collapse
|
4
|
Chen Y, Zeng L, Xiong W, Song M, Du H, Wang Y, Ming K, Wu Y, Wang D, Hu Y, Liu J. Anti-duck virus hepatitis mechanisms of Bush Sophora Root polysaccharide and its sulfate verified by intervention experiments. Virus Res 2015; 204:58-67. [PMID: 25901935 DOI: 10.1016/j.virusres.2015.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 01/01/2023]
Abstract
In our previous study, Bush Sophora Root polysaccharide (BSRPS) and its sulfate (sBSRPS) exhibited anti-duck virus hepatitis (DVH) abilities as well as anti-oxidative and immuno-enhancement effects. The aim of this paper was to ulteriorly investigate the exact anti-DVH mechanisms of BSRPS and sBSRPS by intervention experiments. Hinokitiol and FK506 were used as the pro-oxidant and immunosuppressant, respectively. The dynamic deaths, oxidative and immune evaluation indexes and hepatic pathological change scores were detected. When was intervened by hinokitiol, sBSRPS still possessed therapeutic effect while BSPRS was useless. Under the condition of immunosuppression, BSRPS lost a part role in treating DVH; however such a role of sBSRPS completely exhausted. These results suggested both anti-oxidative and immuno-enhancement effects of BSRPS played roles in healing DVH, and the former was more crucial; unlike BSRPS, only immuno-enhancement ability of sBSRPS was imperative for its curative effect on DVH.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ling Zeng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wen Xiong
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Meiyun Song
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hongxu Du
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yixuan Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
5
|
Wang B, Zhu Z, Zhu B, Wang J, Song Z, Huang S, Fan W, Tao Y, Wang Z, Wang H, Lu M, Yang D. Nucleoside analogues alone or combined with vaccination prevent hepadnavirus viremia and induce protective immunity: alternative strategy for hepatitis B virus post-exposure prophylaxis. Antiviral Res 2014; 105:118-25. [PMID: 24583157 DOI: 10.1016/j.antiviral.2014.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The current strategies for hepatitis B virus (HBV) post-exposure prophylaxis (PEP) are not generally available in remote and rural areas of developing countries and/or carry potential risks for infection with blood-borne transmitted pathogens. Nucleotide analogues (NAs) are successfully used for human immunodeficiency virus PEP, and maybe effective for HBV PEP. In this study, we tested the NA-based strategies for HBV PEP using the Chinese woodchuck model. METHODS Chinese woodchucks were inoculated intravenously with different doses of woodchuck hepatitis virus (WHV). A deoxyguanosine analogue entacavir (ETV), a DNA vaccine pWHcIm, or ETV plus pWHcIm were applied to the infected animals 24h later. Twenty weeks later, the animals were re-challenged with WHV to test for the presence of immunity against WHV. RESULTS Inoculation with different WHV doses had a strong influence on the course of WHV infection; NA alone or in combination with a DNA vaccine completely prevented viremia after a high dose of WHV inoculation in Chinese woodchucks and induced partial or complete protective immunity, respectively. CONCLUSIONS NA-based PEP strategies (NA alone or in combination with vaccine) may be an alternative of HBV PEP, especially in those living in the remote and rural areas of the developing countries and the non-responders to the current vaccine, and may be valuable in the PEP of HBV and HIV co-infection after occupational and non-occupational exposure. Further clinical studies are warranted to confirm the valuable of NA-based strategies in HBV PEP.
Collapse
Affiliation(s)
- Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenni Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bin Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junzhong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhitao Song
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shunmei Huang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Fan
- Qinghai Institute for Endemic Disease Prevention and Control, Xining 811602, China
| | - Yuanqing Tao
- Qinghai Institute for Endemic Disease Prevention and Control, Xining 811602, China
| | - Zhongdong Wang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining 811602, China
| | - Hu Wang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining 811602, China
| | - Mengji Lu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institut für Virologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen 45122, Germany.
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
6
|
Molecular characterization of the type I IFN receptor in two woodchuck species and detection of its expression in liver samples from woodchucks infected with woodchuck hepatitis virus (WHV). Cytokine 2012; 60:179-85. [PMID: 22705153 DOI: 10.1016/j.cyto.2012.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 02/06/2023]
Abstract
Type I interferons (IFN-α/β) serve as the first line of defense against viral infection and share the same type I IFN receptor (IFNAR) complex, which is composed of IFNAR1 and -2. The Eastern woodchuck (Marmota monax) and Chinese woodchuck (Marmota himalayana) are suitable for studying hepatitis B virus (HBV) infection. Here, the complete or partial sequences of the IFNARs of both species were obtained and analyzed. Small interference RNAs targeting wIFNAR1 and -2 specifically down-regulated the expression of wIFNAR1 and -2 and the IFN-stimulated gene MxA in a woodchuck cell line, respectively. IFNAR2 was significantly up-regulated in primary woodchuck hepatocytes stimulated with IFN-α or -γ. The expression of woodchuck IFNAR1 and -2 was decreased in woodchucks chronically infected with woodchuck hepatitis virus (WHV). These results are essential for studying type I IFN-related innate immunity and therapy in hepadnaviral infection in the woodchuck model.
Collapse
|
7
|
Wang BJ, Tian YJ, Meng ZJ, Jiang M, Wei BQ, Tao YQ, Fan W, Li AY, Bao JJ, Li XY, Zhang ZM, Wang ZD, Wang H, Roggendorf M, Lu MJ, Yang DL. Establishing a new animal model for hepadnaviral infection: susceptibility of Chinese Marmota-species to woodchuck hepatitis virus infection. J Gen Virol 2010; 92:681-91. [PMID: 21084496 DOI: 10.1099/vir.0.025023-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus infection (HBV) is a major medical problem in China. The lack of a suitable infection model in China is recognized as an obstacle for research on HBV in China. Chinese Marmota-species is phylogenetically closely related to Marmota monax, thus, it might be suitable to serve as an animal model for HBV infection. Therefore, we attempted to prove the claim about the existence of woodchuck hepatitis virus (WHV)-like viruses in Chinese Marmota-species and to determine the susceptibility of these species to experimental WHV infection. In the present study, 653 sera from three Chinese Marmota-species, Marmota himalayana, Marmota baibacina and Marmota bobak, were screened for WHV-like viruses by serological and molecular assays. The susceptibility to WHV of three species was investigated by experimental infection and monitored by testing of anti-WHc and WHsAg by ELISA, detection of WHV DNA by PCR, and detection of WHV replication intermediates and antigens in liver samples. No evidence for the existence of a genetically closely related virus to WHV in three Chinese Marmota-species was found by serological assays and PCR. M. himalayana was susceptible to WHV infection as inoculated animals became positive for anti-WHc, WHsAg and WHV DNA. Further, WHV replication intermediates and proteins were detected in liver samples. In contrast, M. baibacina remained negative for tested virological parameters. M. bobak species showed a limited susceptibility to WHV. Our data do not support early reports about WHV-like viruses in China. M. himalayana is suitable for the establishment of a model for hepadnaviral infection.
Collapse
Affiliation(s)
- Bao-Ju Wang
- Division of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|