1
|
Yu H, Li L, Yu L, Yao Y, Zhang L. Estimation of dietary copper requirements of Coho salmon Oncorhynchus kisutch (Walbaum, 1792), and effects on the growth performance, tissue Cu content, antioxidant capacity and hematological parameters. Sci Rep 2025; 15:16295. [PMID: 40348796 PMCID: PMC12065889 DOI: 10.1038/s41598-025-00630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025] Open
Abstract
Copper (Cu) is an essential trace mineral for the growth of most farmed fish species. Since natural water typically contains low Cu levels, exogenous Cu supplementation may be required in intensive aquaculture systems to meet the nutritional requirements of certain fish species. A 10-week feeding experiment was conducted to evaluate the Cu requirement on growth performance, tissue Cu content, hematological parameters and anti-oxidant responses in coho salmon Oncorhynchus kisutch (Walbaum, 1792). In this experiment, six experimental diets supplemented with graded Cu (CuSO4 used as Cu source) contents (0.20, 2.10, 3.70, 5.80, 7.75, and 9.85 mg/kg) to feed the fish (180.22 ± 0.41 g). Total 180 fish were randomly distributed across 18 individuals tank (10 fish/cage, water volume 1,000-L) fed three times a day. The result showed that the mortality and morphological indices were completely unaffected by the increasing Cu supplementation in the diet (P > 0.05). Whereas, the non-supplemented diet (0.20 mg Cu/kg) had a poor growth performance of the fish (P < 0.05), including the lowest final body weight and specific growth rate, the highest feed conversion ratio. No significant differences (P > 0.05) were observed in the proximate composition of muscle across graded dietary copper levels. However, increasing dietary Cu level induced Cu accumulation (P < 0.05), but higher Cu level in the diet (> 5.8 mg/kg) did not further increase of muscle and liver in coho salmon. Compared with the 0.20 Cu mg/kg in diet, the supplemented diet enhanced the antioxidant capacity in liver and serum, and decrease the content of malondialdehyde in liver (P < 0.05). Diet with 0.20-5.80 mg/kg supplemental Cu significantly increased the serum alkaline phosphatase and lysozyme activities, decrease the serum alanine aminotransferase and aspartate aminotransferase activities (P < 0.05), while higher dietary Cu level (> 5.8 mg/kg) showed the opposite trend. The broken-line analysis based on specific growth rate, liver Cu accumulation, copper-zinc superoxide dismutase in liver and serum, the appropriate dietary Cu level for coho salmon were estimated to be 5.29-5.92 mg/kg.
Collapse
Affiliation(s)
- Hairui Yu
- Key Laboratory of Biochemistry and Molecular Biology, Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, College of Biology and Oceanography, Universities of Shandong (Weifang University), Weifang, 261061, China.
| | - Lingyao Li
- Key Laboratory of Biochemistry and Molecular Biology, Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, College of Biology and Oceanography, Universities of Shandong (Weifang University), Weifang, 261061, China
- Weifang Key Laboratory of Salmon and Trout Health Culture, Conqueren Leading Fresh Science & Technology Inc., Ltd., Weifang, 261205, China
| | - Leyong Yu
- Key Laboratory of Biochemistry and Molecular Biology, Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, College of Biology and Oceanography, Universities of Shandong (Weifang University), Weifang, 261061, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yujing Yao
- Shandong Collaborative Innovation Center of Coho Salmon Health Culture Engineering Technology, Shandong Conqueren Marine Technology Co., Ltd, Weifang, 261108, China
| | - Ling Zhang
- Key Laboratory of Biochemistry and Molecular Biology, Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, College of Biology and Oceanography, Universities of Shandong (Weifang University), Weifang, 261061, China.
- Shenzhen Institute of Quality and Safety Inspection and Research, Shenzhen, 518101, China.
| |
Collapse
|
2
|
Pereira AE, Suarez L, Roman T, Guzmán F, Sierra L, Rincón-Orozco B, Hidalgo W. Achatina fulica haemocyanin-derived peptides as novel antimicrobial agents. Biochimie 2025; 231:84-97. [PMID: 39681185 DOI: 10.1016/j.biochi.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/28/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Haemocyanin-derived peptides were previously found in semi-purified fractions of mucus secretion from the snail Achatina fulica, which exhibited an inhibitory effect on Staphylococcus aureus strains. Here, an in silico rational design strategy was employed to generate new antimicrobial peptides (AMPs) from A. fulica haemocyanin-derived peptides (AfH). The designed peptides were chemically synthetized using the Fmoc strategy, and their antimicrobial activity against Escherichia coli and S. aureus strains was evaluated using the broth microdilution method. In addition, the cytotoxic activity on Vero, HaCat, and human erythrocyte cells was also determined. The results demonstrated that 15-residue alpha-helical and cationic synthetic peptides exhibited the highest biological activity against Gram-positive strains, with minimum inhibitory concentrations (MIC) in the range from 7.5 to 30 μM. The positive selectivity index suggests a higher selectivity, primarily on the microorganisms evaluated, but not on eukaryotic cells. In this study, A. fulica hemocyanin was identified as an appropriate protein model for the rational design of AMPs against bacteria of public health significance. Further studies are required to evaluate the activity of the peptides on Gram-negative bacteria other than E. coli.
Collapse
Affiliation(s)
- Andrés Esteban Pereira
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Edificio EDIC 403, Bucaramanga, Colombia.
| | - Libardo Suarez
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Edificio EDIC 403, Bucaramanga, Colombia
| | - Tanya Roman
- Laboratorio de Péptidos, Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Fanny Guzmán
- Laboratorio de Péptidos, Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Leidy Sierra
- Grupo CODEIM, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Colombia
| | - Bladimiro Rincón-Orozco
- Grupo CODEIM, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Colombia
| | - William Hidalgo
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Edificio EDIC 403, Bucaramanga, Colombia; Grupo CODEIM, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Colombia.
| |
Collapse
|
3
|
Wang Q, Zhao X, Liu Y, Zheng J, Cui H, Wang H, Ding H, Liu H, Ding Z. Characterization and Expression Analysis of Genes from Megalobrama amblycephala Encoding Hemoglobins with Extracellular Microbicidal Activity. Genes (Basel) 2023; 14:1972. [PMID: 37895322 PMCID: PMC10606352 DOI: 10.3390/genes14101972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Hemoglobin (Hb) usually comprises two α and two β subunits, forming a tetramer responsible for oxygen transportation and storage. Few studies have elucidated fish hemoglobin immune functions. Megalobrama amblycephala is a freshwater-cultured fish prevalent in China. We identified two M. amblycephala hemoglobin subunits and analyzed their expression patterns and antibacterial activities. The respective full-length cDNA sequences of the M. amblycephala Hb α (MaHbα) and β (MaHbβ) subunits were 588 and 603 bp, encoding 143 and 148 amino acids. MaHbα and MaHbβ were highly homologous to hemoglobins from other fish, displaying typical globin-like domains, most heme-binding sites, and tetramer interface regions highly conserved in teleosts. In phylogenetic analyses, the hemoglobin genes from M. amblycephala and other cypriniformes clustered into one branch, and those from other fishes and mammals clustered into other branches, revealing fish hemoglobin conservation. These M. amblycephala Hb subunits exhibit different expression patterns in various tissues and during development. MaHbα is mainly expressed in the blood and brain, while MaHbβ gene expression is highest in the muscle. MaHbα expression was detectable and abundant post-fertilization, with levels fluctuating during the developmental stages. MaHbβ expression began at 3 dph and gradually increased. Expression of both M. amblycephala Hb subunits was down-regulated in most examined tissues and time points post-Aeromonas hydrophila infection, which might be due to red blood cell (RBC) and hematopoietic organ damage. Synthetic MaHbα and MaHbβ peptides showed excellent antimicrobial activities, which could inhibit survival and growth in five aquatic pathogens. Two M. amblycephala hemoglobin subunits were identified, and their expression patterns and antibacterial activities were analyzed, thereby providing a basis for the understanding of evolution and functions of fish hemoglobins.
Collapse
Affiliation(s)
- Qijun Wang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China;
| | - Xiaoheng Zhao
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.Z.); (Y.L.); (H.C.); (H.W.); (H.D.)
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yunlong Liu
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.Z.); (Y.L.); (H.C.); (H.W.); (H.D.)
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Juan Zheng
- Shaanxi Environmental Survey and Evaluation Center, Xi’an 710054, China;
| | - Hujun Cui
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.Z.); (Y.L.); (H.C.); (H.W.); (H.D.)
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haotong Wang
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.Z.); (Y.L.); (H.C.); (H.W.); (H.D.)
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Houxu Ding
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.Z.); (Y.L.); (H.C.); (H.W.); (H.D.)
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hong Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Zhujin Ding
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.Z.); (Y.L.); (H.C.); (H.W.); (H.D.)
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
4
|
Liang Y, Pan JM, Zhu KC, Xian L, Guo HY, Liu BS, Zhang N, Yang JW, Zhang DC. Genome-Wide Identification of Trachinotus ovatus Antimicrobial Peptides and Their Immune Response against Two Pathogen Challenges. Mar Drugs 2023; 21:505. [PMID: 37888440 PMCID: PMC10608450 DOI: 10.3390/md21100505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/28/2023] Open
Abstract
Golden pompano, Trachinotus ovatus, as a highly nutritious commercially valuable marine fish, has become one of the preferred species for many fish farmers due to its rapid growth, wide adaptability, and ease of feeding and management. However, with the expansion of aquaculture scale, bacterial and parasitic diseases have also become major threats to the golden pompano industry. This study, based on comparative genomics, shows the possibility of preferential evolution of freshwater fish over marine fish by analyzing the phylogenetic relationships and divergence times of 14 marine fish and freshwater fish. Furthermore, we identified antimicrobial peptide genes from 14 species at the genomic level and found that the number of putative antimicrobial peptides may be related to species evolution. Subsequently, we classified the 341 identified AMPs from golden pompano into 38 categories based on the classification provided by the APD3. Among them, TCP represented the highest proportion, accounting for 23.2% of the total, followed by scolopendin, lectin, chemokine, BPTI, and histone-derived peptides. At the same time, the distribution of AMPs in chromosomes varied with type, and covariance analysis showed the frequency of its repeat events. Enrichment analysis and PPI indicated that AMP was mainly concentrated in pathways associated with disease immunity. In addition, our transcriptomic data measured the expression of putative AMPs of golden pompano in 12 normal tissues, as well as in the liver, spleen, and kidney infected with Streptococcus agalactiae and skin infected with Cryptocaryon irritans. As the infection with S. agalactiae and C. irritans progressed, we observed tissue specificity in the number and types of responsive AMPs. Positive selection of AMP genes may participate in the immune response through the MAPK signaling pathway. The genome-wide identification of antimicrobial peptides in the golden pompano provided a complete database of potential AMPs that can contribute to further understanding the immune mechanisms in pathogens. AMPs were expected to replace traditional antibiotics and be developed into targeted drugs against specific bacterial and parasitic pathogens for more precise and effective treatment to improve aquaculture production.
Collapse
Affiliation(s)
- Yu Liang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Jin-Min Pan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Lin Xian
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Jing-Wen Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| |
Collapse
|
5
|
Naiel MA, Ghazanfar S, Negm SS, Shukry M, Abdel-Latif HM. Applications of antimicrobial peptides (AMPs) as an alternative to antibiotic use in aquaculture – A mini-review. ANNALS OF ANIMAL SCIENCE 2023; 23:691-701. [DOI: 10.2478/aoas-2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
The use of antibiotics for the control of infections has not only been banned by FDA for use in food-producing animals, but also several countries have prohibited their use in aquaculture because of several reasons such as the occurrence of antibiotic-tolerant microorganisms, accumulation of antibiotic residues in fish and shrimp flesh, and aquatic environmental effluence concerns. These issues have led researchers and aquaculture scientists to conduct several studies to find antibiotic alternatives. Numerous substitutes have been evaluated, such as probiotics, synbiotics, prebiotics, postbiotics, phytogenics, essential oils, and several others. Results show that these supplements demonstrate proven efficacy in enhancing immune responses, reducing mortalities resulting from experimental infections, and reducing antibiotic usage in medicated aquafeed. Nonetheless, using antimicrobial peptides (AMPs) to control fish diseases and as antibiotic alternatives is a promising and interesting research topic. AMPs are a vital class of small peptides that could stimulate the innate immune system against challenging pathogens and also possess significant potent defensive responses against a variety of infectious and noninfectious pathogenic agents, including bacteria, parasites, fungi, and viruses. Regarding their source origin, AMPs can be classified into six main types: mammalian-, amphibian-, insect-, aquatic-, plant-, and microorganism-derived AMPs. On account of their unique structure, they can display an essential function in therapeutic strategies against infectious diseases affecting fish and shrimp. Reports showed several kinds of AMPs had a wide spectrum of antimicrobial properties. These effects are besides their prominent immunostimulatory functions. Thus, they may be considered a functional alternative to antibiotics in aquaculture. This article provides information on the current knowledge about the modes of action, sources, classification, functions, and potential applications for the development of aquatic animal health. The information included in this context will be valuable to enhance the sustainability of aquaculture.
Collapse
Affiliation(s)
- Mohammed A.E. Naiel
- Department of Animal Production, Faculty of Agriculture , Zagazig University , Zagazig , Egypt
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre , Park Road, Islamabad 45500 , Pakistan
| | - Samar S. Negm
- Fish Biology and Ecology Department , Central Lab for Aquaculture Research (CLAR), Abassa, Agriculture Research Center , Giza , Egypt
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine , Kafrelsheikh University , Egypt
| | - Hany M.R. Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine , Alexandria University , Alexandria , Egypt
| |
Collapse
|
6
|
Revealing Natural Intracellular Peptides in Gills of Seahorse Hippocampus reidi. Biomolecules 2023; 13:biom13030433. [PMID: 36979368 PMCID: PMC10046794 DOI: 10.3390/biom13030433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
The seahorse is a marine teleost fish member of the Syngnathidae family that displays a complex variety of morphological and reproductive behavior innovations and has been recognized for its medicinal importance. In the Brazilian ichthyofauna, the seahorse Hippocampus reidi is among the three fish species most used by the population in traditional medicine. In this study, a protocol was performed based on fast heat inactivation of proteases plus liquid chromatography coupled to mass spectrometry to identify native peptides in gills of seahorse H. reidi. The MS/MS spectra obtained from gills allowed the identification of 1080 peptides, of which 1013 peptides were present in all samples and 67 peptide sequences were identified in an additional LC-MS/MS run from an alkylated and reduced pool of samples. The majority of peptides were fragments of the internal region of the amino acid sequence of the precursor proteins (67%), and N- and C-terminal represented 18% and 15%, respectively. Many peptide sequences presented ribosomal proteins, histones and hemoglobin as precursor proteins. In addition, peptide fragments from moronecidin-like protein, described with antimicrobial activity, were found in all gill samples of H. reidi. The identified sequences may reveal new bioactive peptides.
Collapse
|
7
|
Mori M, Shibasaki Y, Namba A, Yabu T, Wada N, Shiba H, Anzai H, Mano N. Alteration of hemoglobin ß gene expression in mucosal tissues of Japanese flounder, Paralichthys olivaceus, in response to heat stress, Edwardsiella piscicida infection, and immunostimulants administration. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100049. [PMID: 36419596 PMCID: PMC9680101 DOI: 10.1016/j.fsirep.2021.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/03/2022] Open
Abstract
Hbβ gene expression in the gills is decreased upon heat stress. Epidermal Hbß gene expression was increased upon AsA and LF feeding or infection. Mucosal Hbβ expression may be a useful indicator for monitoring fish health status.
Hemoglobin beta (Hbß) is a heme-binding protein capable of oxygen delivery. The oligopeptides derived from Hbβ in fish mucus are active against a variety of gram-negative bacteria and protozoa. To gain information on the physiological and immunological roles of Hbβ in the mucosal tissues of fish, we analyzed changes in Hbß gene expression levels in the epidermis, gills, and intestine of Japanese flounder, Paralichthys olivaceus, in response to heat stress, Edwardsiella piscicida infection, and trial feeding of immunostimulants, high-concentration ascorbic acid (AsA) or lactoferrin (LF). The results of quantitative real-time PCR showed that expression of the Hbß gene in the gills decreased markedly when exposed to heat stress, whereas that in the epidermis exhibited an increase 3h after infection with E. piscicida. Seven days after starting to feed either immunostimulant, epidermal Hbß gene expression in all AsA or LF dose groups was significantly higher than in the control group. The results of in situ hybridization showed that the abundance and intensity of the stained cells in the epidermis and in the gills were consistent with the expression levels of Hbß gene obtained from the infection and immunosuppressant experiments and the heat stress experiment, respectively. Our results suggest that mucosal Hbβ gene expression is closely related to physiological and immunological status and could be a useful indicator for monitoring condition of fish health.
Collapse
|
8
|
Di G, Li H, Zhao Y, Lin Y, Lan D, Kong X, Chen X. Comprehensive transcriptomic analysis reveals insights into the gill response to hypoxia and Poly I:C in Qihe crucian carp Carassius auratus. AQUACULTURE REPORTS 2022; 24:101154. [DOI: 10.1016/j.aqrep.2022.101154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Antibacterial, Antibiofilm and Anti-Virulence Activity of Biactive Fractions from Mucus Secretion of Giant African Snail Achatina fulica against Staphylococcus aureus Strains. Antibiotics (Basel) 2021; 10:antibiotics10121548. [PMID: 34943760 PMCID: PMC8698528 DOI: 10.3390/antibiotics10121548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is an important etiological agent that causes skin infections, and has the propensity to form biofilms, leading to significant mortality and morbidity in patients with wounds. Mucus secretion from the Giant African snail Achatina fulica is a potential source of biologically active substances that might be an important source for new drugs to treat resistant and biofilm-forming bacteria such as S. aureus. This study evaluated the effect of semi-purified fractions from the mucus secretion of A. fulica on the growth, biofilm formation and virulence factors of S. aureus. Two fractions: FMA30 (Mw >30 kDa) and FME30 (Mw 30−10 kDa) exhibited antimicrobial activity against S. aureus with a MIC50 of 25 and 125 µg/mL, respectively. An inhibition of biofilm formation higher than 80% was observed at 9 µg/mL with FMA30 and 120 µg/mL with FME30. Furthermore, inhibition of hemolytic and protease activity was determined using a concentration of MIC20, and FME30 showed a strong inhibitory effect in the formation of clots. We report for the first time the effect of semi-purified fractions of mucus secretion of A. fulica on biofilm formation and activity of virulence factors such as α-hemolysin, coagulase and proteases produced by S. aureus strains.
Collapse
|
10
|
Mori M, Ito T, Washio R, Shibasaki Y, Namba A, Yabu T, Iwazaki D, Wada N, Anzai H, Shiba H, Nakanishi T, Mano N. Enhancement of immune proteins expression in skin mucus of Japanese flounder Paralicthys olivaceus upon feeding a diet supplemented with high concentration of ascorbic acid. FISH & SHELLFISH IMMUNOLOGY 2021; 114:20-27. [PMID: 33857621 DOI: 10.1016/j.fsi.2021.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
To search immune defense proteins in skin mucus of Japanese flounder fed with a diet containing high concentration of ascorbic acid, we carried out 2D-PAGE and compared the resolved pattern of proteins between control group that fed commercial diet and ascorbic acid supplemented group (AsA group) fed a diet supplemented with high concentration of ascorbic acid (2,000 mg/kg) for 7 days. The results revealed that there were many proteins exhibited distinct increase in AsA group. Among them, 6 regions that showed a dramatic elevation were chosen for protein identification using LC-MS/MS analysis and Mascot database search. Six proteins were identified, i.e. serotransferrin (Sero), transferrin (Trans), warm temperature acclimation-related 65 kDa protein (Wap65), complement component c3 (C3), hemoglobin beta-A chain (Hbß) and apolipoprotein A-1 (Apo). Quantitative RT-PCR analysis showed that the mRNA level of Hbß in epidermis of AsA group gave much higher increase (11.6 folds) than control group; the levels of Sero/Trans, Wap65, C3 and Apo showed no apparent difference between the two groups. The mRNA levels of wap65 and c3 in the liver and Apo in the kidney of AsA group exhibited significant increase in comparison to control group. In the case of secreted immunoglobulin M (IgM) and lysozyme (lyz), no difference of the mRNA levels of IgM in epidermis, gill, kidney, spleen and intestine, and lyz in epidermis, gill, spleen and intestine, was observed. The results of in situ hybridization confirmed the elevation of Hbß mRNA level in the epidermis tissue of AsA group. Our present study provided additional evidence showing the effectiveness of AsA in activating innate immune defense system in skin mucosal tissue of fish.
Collapse
Affiliation(s)
- Misato Mori
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tasuku Ito
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryota Washio
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yasuhiro Shibasaki
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Aki Namba
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takeshi Yabu
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Dai Iwazaki
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Noriko Wada
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hirosi Anzai
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hajime Shiba
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Teruyuki Nakanishi
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Nobuhiro Mano
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
11
|
Eslamloo K, Caballero-Solares A, Inkpen SM, Emam M, Kumar S, Bouniot C, Avendaño-Herrera R, Jakob E, Rise ML. Transcriptomic Profiling of the Adaptive and Innate Immune Responses of Atlantic Salmon to Renibacterium salmoninarum Infection. Front Immunol 2020; 11:567838. [PMID: 33193341 PMCID: PMC7656060 DOI: 10.3389/fimmu.2020.567838] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
Bacterial Kidney Disease (BKD), which is caused by a Gram-positive, intracellular bacterial pathogen (Renibacterium salmoninarum), affects salmonids including Atlantic salmon (Salmo salar). However, the transcriptome response of Atlantic salmon to BKD remained unknown before the current study. We used a 44K salmonid microarray platform to characterise the global gene expression response of Atlantic salmon to BKD. Fish (~54 g) were injected with a dose of R. salmoninarum (H-2 strain, 2 × 108 CFU per fish) or sterile medium (control), and then head kidney samples were collected at 13 days post-infection/injection (dpi). Firstly, infection levels of individuals were determined through quantifying the R. salmoninarum level by RNA-based TaqMan qPCR assays. Thereafter, based on the qPCR results for infection level, fish (n = 5) that showed no (control), higher (H-BKD), or lower (L-BKD) infection level at 13 dpi were subjected to microarray analyses. We identified 6,766 and 7,729 differentially expressed probes in the H-BKD and L-BKD groups, respectively. There were 357 probes responsive to the infection level (H-BKD vs. L-BKD). Several adaptive and innate immune processes were dysregulated in R. salmoninarum-infected Atlantic salmon. Adaptive immune pathways associated with lymphocyte differentiation and activation (e.g., lymphocyte chemotaxis, T-cell activation, and immunoglobulin secretion), as well as antigen-presenting cell functions, were shown to be differentially regulated in response to BKD. The infection level-responsive transcripts were related to several mechanisms such as the JAK-STAT signalling pathway, B-cell differentiation and interleukin-1 responses. Sixty-five microarray-identified transcripts were subjected to qPCR validation, and they showed the same fold-change direction as microarray results. The qPCR-validated transcripts studied herein play putative roles in various immune processes including pathogen recognition (e.g., tlr5), antibacterial activity (e.g., hamp and camp), regulation of immune responses (e.g., tnfrsf11b and socs1), T-/B-cell differentiation (e.g., ccl4, irf1 and ccr5), T-cell functions (e.g., rnf144a, il13ra1b and tnfrsf6b), and antigen-presenting cell functions (e.g., fcgr1). The present study revealed diverse immune mechanisms dysregulated by R. salmoninarum in Atlantic salmon, and enhanced the current understanding of Atlantic salmon response to BKD. The identified biomarker genes can be used for future studies on improving the resistance of Atlantic salmon to BKD.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Ruben Avendaño-Herrera
- Facultad Ciencias de la Vida, Viña del Mar, and FONDAP Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Santiago, Chile
| | - Eva Jakob
- Cargill Innovation Center-Colaco, Calbuco, Chile
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
12
|
Oh HY, Go HJ, Park NG. Identification and characterization of SaRpAMP, a 60S ribosomal protein L27-derived antimicrobial peptide from amur catfish, Silurus asotus. FISH & SHELLFISH IMMUNOLOGY 2020; 106:480-490. [PMID: 32711152 DOI: 10.1016/j.fsi.2020.06.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Aquatic freshwater fish like catfish, Silurus asotus, lives in microbe-rich environments, which enable this fish to develop necessary defense mechanisms. Antimicrobial peptides, along with other innate immune factors, are regarded as an important group in this defense. An antimicrobial peptide, which was isolated from the skin of S. asotus, was identified as a C-terminal fragment of 60S ribosomal protein L27 from S. asotus. The peptide was, then, designated Silurus asotus 60S ribosomal protein L27-derived antimicrobial peptide, SaRpAMP. Primary structure analyses and cDNA cloning revealed that SaRpAMP was 4185.36 Da and composed of 33 amino acids (AAs). Its precursor had a total of 136 AAs containing a pro-sequence of 103 AAs encoded by the nucleotide sequence of 512 bp that comprises a 5' untranslated region (UTR) of 32 bp, an open reading frame (ORF) of 411 bp, and a 3' UTR of 69 bp. Secondary structure analyses showed that SaRpAMP had two α-helices with turns and coils and an amphiphilic structure, a finding consistent with the 3D model of the peptide. SaRpAMP exhibited potent antibacterial activity comparable to piscidin 1, a powerful positive control. Its antimicrobial activity against fungus C. albicans was relatively weak. The antimicrobial activity of SaRpAMP was not diminished by heat treatment and changes in pH but was abolished by proteolytic enzyme digestion. Membrane permeability assays suggested that SaRpAMP interacts with both the outer and inner bacterial membranes. This was consistent with the results of lipid titration and quenching of Trp fluorescence that demonstrated SaRpAMP's interaction with acidic liposomes. Collectively, these findings suggest that the identified peptide, SaRpAMP, was the first antimicrobial peptide reported to be derived from the C-terminal region of 60S ribosomal protein L27. The findings also suggest that the action mechanism of SaRpAMP involved the interaction of the peptide with the bacterial membranes.
Collapse
Affiliation(s)
- Hye Young Oh
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea
| | - Hye-Jin Go
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea
| | - Nam Gyu Park
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea.
| |
Collapse
|
13
|
Dolashki A, Velkova L, Daskalova E, Zheleva N, Topalova Y, Atanasov V, Voelter W, Dolashka P. Antimicrobial Activities of Different Fractions from Mucus of the Garden Snail Cornu aspersum. Biomedicines 2020; 8:E315. [PMID: 32872361 PMCID: PMC7554965 DOI: 10.3390/biomedicines8090315] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Natural products have long played a major role in medicine and science. The garden snail Cornu aspersum is a rich source of biologically active natural substances that might be an important source for new drugs to treat human disease. Based on our previous studies, nine fractions containing compounds with Mw <3 kDa; <10 kDa; <20 kDa; >20 kDa; >30 kDa>50 kDa and between 3 and 5 kDa; 5 and 10 kDa; and 10 and 30 kDa were purified from the mucus of C. aspersum and analyzed by tandem mass spectrometry (MALDI-TOF/TOF). Seventeen novel peptides with potential antibacterial activity were identified by de novo MS/MS sequencing using tandem mass spectrometry. The different fractions were tested for antibacterial activity against Gram─ (Pseudomonas aureofaciens and Escherichia coli) and Gram+ (Brevibacillus laterosporus) bacterial strains as well the anaerobic bacterium Clostridium perfringens. These results revealed that the peptide fractions exhibit a predominant antibacterial activity against B. laterosporus; the fraction with Mw 10-30 kDa against E. coli; another peptide fraction <20 kDa against P. aureofaciens; and the protein fraction >20 kDa against the bacterial strain C. perfringens. The discovery of new antimicrobial peptides (AMPs) from natural sources is of great importance for public health due to the AMPs' effective antimicrobial activities and low resistance rates.
Collapse
Affiliation(s)
- Aleksandar Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl.9, 1113 Sofia, Bulgaria; (A.D.); (V.A.)
| | - Lyudmila Velkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl.9, 1113 Sofia, Bulgaria; (A.D.); (V.A.)
| | - Elmira Daskalova
- Sofia University, St. Kliment Ohridski, Faculty of Biology, Department of General and Applied Hydrobiology, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (E.D.); (N.Z.); (Y.T.)
| | - N. Zheleva
- Sofia University, St. Kliment Ohridski, Faculty of Biology, Department of General and Applied Hydrobiology, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (E.D.); (N.Z.); (Y.T.)
| | - Yana Topalova
- Sofia University, St. Kliment Ohridski, Faculty of Biology, Department of General and Applied Hydrobiology, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (E.D.); (N.Z.); (Y.T.)
| | - Ventseslav Atanasov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl.9, 1113 Sofia, Bulgaria; (A.D.); (V.A.)
| | - Wolfgang Voelter
- Interfacultary Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Straße 4, D-72076 Tübingen, Germany;
| | - Pavlina Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl.9, 1113 Sofia, Bulgaria; (A.D.); (V.A.)
| |
Collapse
|
14
|
Reverter M, Sasal P, Suzuki MT, Raviglione D, Inguimbert N, Pare A, Banaigs B, Voisin SN, Bulet P, Tapissier-Bontemps N. Insights into the Natural Defenses of a Coral Reef Fish Against Gill Ectoparasites: Integrated Metabolome and Microbiome Approach. Metabolites 2020; 10:E227. [PMID: 32486312 PMCID: PMC7345202 DOI: 10.3390/metabo10060227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding natural defense mechanisms against parasites can be a valuable tool for the development of innovative therapies. We have previously identified a butterflyfish species (Chaetodon lunulatus) that avoids gill monogenean parasites while living amongst closely related parasitized species. The metabolome and microbiome of several sympatric butterflyfish species from the island of Moorea (French Polynesia) were previously described. In this study, we used the previously generated datasets in an attempt to identify metabolites and bacteria potentially involved in parasite defense mechanisms. We investigated the interplay between the gill mucus metabolome and microbiome of the non-susceptible C. lunulatus versus sympatric butterflyfish species that were always found parasitized in the Central and Eastern Indo-Pacific. After observing significant differences between the metabolome and bacteria of susceptible versus non-susceptible fish, we obtained the discriminant metabolites and operational taxonomic units (OTUs) using a supervised analysis. Some of the most important discriminant metabolites were identified as peptides, and three new peptides derived from β-subunit hemoglobin from C. lunulatus (CLHbβ-1, CLHbβ-2, and CLHbβ-3) were purified, characterized and synthesized to confirm their structures. We also identified specific bacterial families and OTUs typical from low-oxygen habitats in C. lunulatus gill mucus. By using a correlation network between the two datasets, we found a Fusobacteriaceae strain exclusively present in C. lunulatus and highly correlated to the peptides. Finally, we discuss the possible involvement of these peptides and Fusobacteriaceae in monogenean avoidance by this fish species.
Collapse
Affiliation(s)
- Miriam Reverter
- Institut für Chemie und Biologie des Meeres, Carl von Ossietzky Universität Oldenburg, 26382 Wilhelmshaven, Germany
- CRIOBE, USR3278-EPHE/CNRS/UPVD/PSL, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France; (P.S.); (D.R.); (N.I.); (A.P.); (B.B.)
- Laboratoire d’Excellence ‘CORAIL’, Moorea 98729, French Polynesia
| | - Pierre Sasal
- CRIOBE, USR3278-EPHE/CNRS/UPVD/PSL, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France; (P.S.); (D.R.); (N.I.); (A.P.); (B.B.)
- Laboratoire d’Excellence ‘CORAIL’, Moorea 98729, French Polynesia
| | - Marcelino T. Suzuki
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, Sorbonne Université, CNRS, USR3579, Observatoire Océanologique, 66650 Banyuls-sur-mer, France;
| | - Delphine Raviglione
- CRIOBE, USR3278-EPHE/CNRS/UPVD/PSL, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France; (P.S.); (D.R.); (N.I.); (A.P.); (B.B.)
| | - Nicolas Inguimbert
- CRIOBE, USR3278-EPHE/CNRS/UPVD/PSL, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France; (P.S.); (D.R.); (N.I.); (A.P.); (B.B.)
- Laboratoire d’Excellence ‘CORAIL’, Moorea 98729, French Polynesia
| | - Alan Pare
- CRIOBE, USR3278-EPHE/CNRS/UPVD/PSL, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France; (P.S.); (D.R.); (N.I.); (A.P.); (B.B.)
| | - Bernard Banaigs
- CRIOBE, USR3278-EPHE/CNRS/UPVD/PSL, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France; (P.S.); (D.R.); (N.I.); (A.P.); (B.B.)
- Laboratoire d’Excellence ‘CORAIL’, Moorea 98729, French Polynesia
| | - Sébastien N. Voisin
- Plateforme BioPark d’Archamps, ArchParc, 74160 Archamps, France; (S.N.V.); (P.B.)
| | - Philippe Bulet
- Plateforme BioPark d’Archamps, ArchParc, 74160 Archamps, France; (S.N.V.); (P.B.)
- CR UGA, IAB, InsermU1209, CNRS UMR 5309, 38700 La Tronche, France
| | - Nathalie Tapissier-Bontemps
- CRIOBE, USR3278-EPHE/CNRS/UPVD/PSL, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France; (P.S.); (D.R.); (N.I.); (A.P.); (B.B.)
- Laboratoire d’Excellence ‘CORAIL’, Moorea 98729, French Polynesia
| |
Collapse
|
15
|
Xiong Y, Dan C, Ren F, Su Z, Zhang Y, Mei J. Proteomic profiling of yellow catfish (Pelteobagrus fulvidraco) skin mucus identifies differentially-expressed proteins in response to Edwardsiella ictaluri infection. FISH & SHELLFISH IMMUNOLOGY 2020; 100:98-108. [PMID: 32142873 DOI: 10.1016/j.fsi.2020.02.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/14/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Fish mucus acts as a physiological and immunological barrier for maintaining normal fish physiology and conferring defense against pathogens infection. Here we report proteomic profiling of skin mucus of yellow catfish before and after E. ictaluri infection by Label-free LC-MS/MS approach. A total of 918 non-redundant proteins were identified from 54443 spectra referring to yellow catfish genome database. Further annotation via GO and KEGG database revealed complex protein composition of yellow catfish mucus. Besides structural proteins in mucus, a lot of immune-related proteins were retrieved, such as lectins, complement components, antibacterial peptides and immunoglobins. 133 differentially-expressed proteins (DEPs), including 76 up-regulated and 57 down-regulated proteins, were identified, most of which were enriched into 17 pathways centering on "immune system" category with 33 proteins involved. Consistently, significant proliferation of mucus-secreting goblet cells and CYPA-expressing cells were observed along outside of yellow catfish skin after E. ictaluri infection, indicating an enhanced immune response to E. ictaluri infection in yellow catfish skin mucus. The proteomic data provide systematic protein information to comprehensively understand the biological function of yellow catfish skin mucus in response to bacterial infection.
Collapse
Affiliation(s)
- Yang Xiong
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Cheng Dan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control of Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Fan Ren
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - ZiHao Su
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yibing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control of Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Robledo D, Hamilton A, Gutiérrez AP, Bron JE, Houston RD. Characterising the mechanisms underlying genetic resistance to amoebic gill disease in Atlantic salmon using RNA sequencing. BMC Genomics 2020; 21:271. [PMID: 32228433 PMCID: PMC7106639 DOI: 10.1186/s12864-020-6694-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/24/2020] [Indexed: 12/16/2022] Open
Abstract
Background Gill health is one of the main concerns for Atlantic salmon aquaculture, and Amoebic Gill Disease (AGD), attributable to infection by the amoeba Neoparamoeba perurans, is a frequent cause of morbidity. In the absence of preventive measures, increasing genetic resistance of salmon to AGD via selective breeding can reduce the incidence of the disease and mitigate gill damage. Understanding the mechanisms leading to AGD resistance and the underlying causative genomic features can aid in this effort, while also providing critical information for the development of other control strategies. AGD resistance is considered to be moderately heritable, and several putative QTL have been identified. The aim of the current study was to improve understanding of the mechanisms underlying AGD resistance, and to identify putative causative genomic factors underlying the QTL. To achieve this, RNA was extracted from the gill and head kidney of AGD resistant and susceptible animals following a challenge with N. perurans, and sequenced. Results Comparison between resistant and susceptible animals primarily highlighted differences mainly in the local immune response in the gill, involving red blood cell genes and genes related to immune function and cell adhesion. Differentially expressed immune genes pointed to a contrast in Th2 and Th17 responses, which is consistent with the increased heritability observed after successive challenges with the amoeba. Five QTL-region candidate genes showed differential expression, including a gene connected to interferon responses (GVINP1), a gene involved in systemic inflammation (MAP4K4), and a positive regulator of apoptosis (TRIM39). Analyses of allele-specific expression highlighted a gene in the QTL region on chromosome 17, cellular repressor of E1A-stimulated genes 1 (CREG1), showing allelic differential expression suggestive of a cis-acting regulatory variant. Conclusions In summary, this study provides new insights into the mechanisms of resistance to AGD in Atlantic salmon, and highlights candidate genes for further functional studies that can further elucidate the genomic mechanisms leading to resistance and contribute to enhancing salmon health via improved genomic selection.
Collapse
Affiliation(s)
- Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK.
| | - Alastair Hamilton
- Landcatch Natural Selection Ltd., Roslin Innovation Centre, University of Edinburgh, Midlothian, EH25 9RG, UK.,Hendrix Genetics Aquaculture BV/ Netherlands, Villa 'de Körver', Spoorstraat 69, 5831 CK, Boxmeer, Netherlands
| | - Alejandro P Gutiérrez
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - James E Bron
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK.
| |
Collapse
|
17
|
Coelho GR, Neto PP, Barbosa FC, Dos Santos RS, Brigatte P, Spencer PJ, Sampaio SC, D'Amélio F, Pimenta DC, Sciani JM. Biochemical and biological characterization of the Hypanus americanus mucus: A perspective on stingray immunity and toxins. FISH & SHELLFISH IMMUNOLOGY 2019; 93:832-840. [PMID: 31425832 DOI: 10.1016/j.fsi.2019.08.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Stingrays skin secretions are largely studied due to the human envenoming medical relevance of the sting puncture that evolves to inflammatory events, including necrosis. Such toxic effects can be correlated to the biochemical composition of the sting mucus, according to the literature. Fish skin plays important biological roles, such as the control of the osmotic pressure gradient, protection against mechanical forces and microorganism infections. The mucus, on the other hand, is a rich and complex fluid, acting on swimming, nutrition and the innate immune system. The elasmobranch's epidermis is a tissue composed mainly by mucus secretory cells, and marine stingrays have already been described to present secretory glands spread throughout the body. Little is known about the biochemical composition of the stingray mucus, but recent studies have corroborated the importance of mucus in the envenomation process. Aiming to assess the mucus composition, a new non-invasive mucus collection method was developed that focused on peptides and proteins, and biological assays were performed to analyze the toxic and immune activities of the Hypanus americanus mucus. Pathophysiological characterization showed the presence of peptidases on the mucus, as well as the induction of edema and leukocyte recruitment in mice. The fractionated mucus improved phagocytosis on macrophages and showed antimicrobial activity against T. rubrumç. neoformans and C. albicans in vitro. The proteomic analyses showed the presence of immune-related proteins like actin, histones, hemoglobin, and ribosomal proteins. This protein pattern is similar to those reported for other fish mucus and stingray venoms. This is the first report depicting the Hypanus stingray mucus composition, highlighting its biochemical composition and importance for the stingray immune system and the possible role on the envenomation process.
Collapse
Affiliation(s)
| | | | | | | | - Patrícia Brigatte
- Faculdade de Medicina, Universidade Cidade de São Paulo-UNICID, Brazil
| | | | | | | | | | - Juliana Mozer Sciani
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, Brazil; Laboratório Multidisciplinar de Pesquisa, Universidade São Francisco, Brazil.
| |
Collapse
|
18
|
Starodubtseva NL, Brzhozovskiy AG, Bugrova AE, Kononikhin AS, Indeykina MI, Gusakov KI, Chagovets VV, Nazarova NM, Frankevich VE, Sukhikh GT, Nikolaev EN. Label-free cervicovaginal fluid proteome profiling reflects the cervix neoplastic transformation. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:693-703. [PMID: 31116903 DOI: 10.1002/jms.4374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
Cervicovaginal fluid (CVF) is a valuable source of clinical information about the female reproductive tract in both nonpregnant and pregnant women. The aim of this study is to specify the CVF proteome at different stages of cervix neoplastic transformation by label-free quantitation approach based on liquid chromatography tandem mass spectrometry (LC-MS/MS) method. The proteome composition of CVF from 40 women of reproductive age with human papillomavirus (HPV)-associated cervix neoplastic transformation (low-grade squamous intraepithelial lesion [LSIL], high-grade squamous intraepithelial lesion [HSIL], and CANCER) was investigated. Hierarchical clustering and principal component analysis (PCA) of the proteomic data obtained by a label-free quantitation approach show the distribution of the sample set between four major clusters (no intraepithelial lesion or malignancy [NILM], LSIL, HSIL and CANCER) depending on the form of cervical lesion. Multisample ANOVA with subsequent Welch's t test resulted in 117 that changed significantly across the four clinical stages, including 27 proteins significantly changed in cervical cancer. Some of them were indicated as promising biomarkers previously (ACTN4, VTN, ANXA1, CAP1, ANXA2, and MUC5B). CVF proteomic data from the discovery stage were analyzed by the partial least squares-discriminant analysis (PLS-DA) method to build a statistical model, allowing to differentiate severe dysplasia (HSIL and CANCER) from the mild/normal stage (NILM and LSIL), and receiver operating characteristic (ROC) area under the curve (AUC) were obtained on an independent set of 33 samples. The sensitivity of the model was 77%, and the specificity was 94%; AUC was equal to 0.87. CVF proteome proved to be reflect the stage of cervical epithelium neoplastic process.
Collapse
Affiliation(s)
- Natalia L Starodubtseva
- System Biology Department, V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Alexander G Brzhozovskiy
- System Biology Department, V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Anna E Bugrova
- System Biology Department, V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alexey S Kononikhin
- Laboratory of Ion and Molecular Physics, V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Mass Specrometry, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Maria I Indeykina
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Moscow, Russia
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Kiril I Gusakov
- System Biology Department, V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Vitaliy V Chagovets
- System Biology Department, V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Niso M Nazarova
- System Biology Department, V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Vladimir E Frankevich
- System Biology Department, V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Gennady T Sukhikh
- System Biology Department, V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Eugene N Nikolaev
- Laboratory of Ion and Molecular Physics, V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Mass Specrometry, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
19
|
Abstract
Fish mucus layers are the main surface of exchange between fish and the environment, and they possess important biological and ecological functions. Fish mucus research is increasing rapidly, along with the development of high-throughput techniques, which allow the simultaneous study of numerous genes and molecules, enabling a deeper understanding of the fish mucus composition and its functions. Fish mucus plays a major role against fish infections, and research has mostly focused on the study of fish mucus bioactive molecules (e.g., antimicrobial peptides and immune-related molecules) and associated microbiota due to their potential in aquaculture and human medicine. However, external fish mucus surfaces also play important roles in social relationships between conspecifics (fish shoaling, spawning synchronisation, suitable habitat finding, or alarm signals) and in interspecific interactions such as prey-predator relationships, parasite–host interactions, and symbiosis. This article reviews the biological and ecological roles of external (gills and skin) fish mucus, discussing its importance in fish protection against pathogens and in intra and interspecific interactions. We also discuss the advances that “omics” sciences are bringing into the fish mucus research and their importance in studying the fish mucus composition and functions.
Collapse
|
20
|
Zheng LB, Mao Y, Wang J, Chen RN, Su YQ, Hong YQ, Hong YJ, Hong YC. Excavating differentially expressed antimicrobial peptides from transcriptome of Larimichthys crocea liver in response to Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2018; 75:109-114. [PMID: 29408708 DOI: 10.1016/j.fsi.2018.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Larimichthys crocea, the special marine economy fish, owns the largest annual yield for a single species in China. One of the most significant factors affecting large yellow croaker culture is the diseases, especially the threat of marine white spot disease which caused by a protozoan Cryptocaryon irritans. Antimicrobial peptides (AMPs) have been demonstrated to be active against bacterium, fungi and parasites, showing their potential usefulness in aquaculture as substitutes for antibiotics. Many researches have been carried out about the AMPs concentrating on the activity resist on C. irritans, and piscidin-like of L. crocea owning widely antibacterial spectrum and strong activity against C. irritans was screened in our team. In the paper, taking advantage of the large yellow croaker hepatic comparison transcriptome in response to C. irritans at 3d post infection, seven kinds of AMPs have been excavated from the differently expressed genes, including LEAP2 like, LEAP-2A, hepcidin, hepcidin-like, piscidin-5-like, piscidin-5-like type 4 and bactericidal permeability increasing protein (BPI). Hepcidin, hepcidin-like, piscidin-5-like, piscidin-5-like type4 and BPI were up-regulated to protect large yellow croaker from being damaged by C. irritans infection; while LEAP2 like and LEAP-2A were down-regulated, they might be as a negative-feedback regulation factor or some other regulatory mechanisms to adjust the immune response in the process of C. irritans infection. The differential expression changes were verified with quantitative real-time PCR (qRT-PCR) to illustrate the reliability of the sequenced data. Hearteningly, piscidin-5-like type 4 was a novel type which was high similar to other piscidin-5-like types. Interestingly, the infection may well cause alternative splicing of LEAP-2A mRNA, which was a surprised phenomenon and finding after C. irritans infection, but more further study was needed to be conducted. Therefore, the data showed that these AMPs were involved in the immune response to the C. irritans infection. In all, these results implied that the immune response of AMPs to C. irritans infection was a complex and sophisticated regulatory process.
Collapse
Affiliation(s)
- Li-Bing Zheng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China; Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China; Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| | - Ruan-Ni Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Yong-Quan Su
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China; Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China.
| | - Yue-Qun Hong
- Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| | - Yu-Jian Hong
- Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| | - Yu-Cong Hong
- Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| |
Collapse
|
21
|
High-Throughput Identification of Antimicrobial Peptides from Amphibious Mudskippers. Mar Drugs 2017; 15:md15110364. [PMID: 29165344 PMCID: PMC5706053 DOI: 10.3390/md15110364] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/12/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
Widespread existence of antimicrobial peptides (AMPs) has been reported in various animals with comprehensive biological activities, which is consistent with the important roles of AMPs as the first line of host defense system. However, no big-data-based analysis on AMPs from any fish species is available. In this study, we identified 507 AMP transcripts on the basis of our previously reported genomes and transcriptomes of two representative amphibious mudskippers, Boleophthalmus pectinirostris (BP) and Periophthalmus magnuspinnatus (PM). The former is predominantly aquatic with less time out of water, while the latter is primarily terrestrial with extended periods of time on land. Within these identified AMPs, 449 sequences are novel; 15 were reported in BP previously; 48 are identically overlapped between BP and PM; 94 were validated by mass spectrometry. Moreover, most AMPs presented differential tissue transcription patterns in the two mudskippers. Interestingly, we discovered two AMPs, hemoglobin β1 and amylin, with high inhibitions on Micrococcus luteus. In conclusion, our high-throughput screening strategy based on genomic and transcriptomic data opens an efficient pathway to discover new antimicrobial peptides for ongoing development of marine drugs.
Collapse
|
22
|
Baalsrud HT, Voje KL, Tørresen OK, Solbakken MH, Matschiner M, Malmstrøm M, Hanel R, Salzburger W, Jakobsen KS, Jentoft S. Evolution of Hemoglobin Genes in Codfishes Influenced by Ocean Depth. Sci Rep 2017; 7:7956. [PMID: 28801564 PMCID: PMC5554263 DOI: 10.1038/s41598-017-08286-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/11/2017] [Indexed: 11/09/2022] Open
Abstract
Understanding the genetic basis of adaptation is one of the main enigmas of evolutionary biology. Among vertebrates, hemoglobin has been well documented as a key trait for adaptation to different environments. Here, we investigate the role of hemoglobins in adaptation to ocean depth in the diverse teleost order Gadiformes, with species distributed at a wide range of depths varying in temperature, hydrostatic pressure and oxygen levels. Using genomic data we characterized the full hemoglobin (Hb) gene repertoire for subset of species within this lineage. We discovered a correlation between expanded numbers of Hb genes and ocean depth, with the highest numbers in species occupying shallower, epipelagic regions. Moreover, we demonstrate that the Hb genes have functionally diverged through diversifying selection. Our results suggest that the more variable environment in shallower water has led to selection for a larger Hb gene repertoire and that Hbs have a key role in adaptive processes in marine environments.
Collapse
Affiliation(s)
- Helle Tessand Baalsrud
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Kjetil Lysne Voje
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Ole Kristian Tørresen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Monica Hongrø Solbakken
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Michael Matschiner
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway.,Institute of Fisheries Ecology, Johann Heinrich von Thünen-Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries, Hamburg, Germany
| | - Martin Malmstrøm
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Reinhold Hanel
- Zoological Institute, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway.,Institute of Fisheries Ecology, Johann Heinrich von Thünen-Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries, Hamburg, Germany
| | - Kjetill S Jakobsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway. .,Department of Natural Sciences, Centre for Coastal Research, University of Agder, Kristiansand, Norway.
| |
Collapse
|
23
|
Antibacterial Activity of AI-Hemocidin 2, a Novel N-Terminal Peptide of Hemoglobin Purified from Arca inflata. Mar Drugs 2017; 15:md15070205. [PMID: 28661457 PMCID: PMC5532647 DOI: 10.3390/md15070205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 01/01/2023] Open
Abstract
The continued emergence of antibiotic resistant bacteria in recent years is of great concern. The search for new classes of antibacterial agents has expanded to non-traditional sources such as shellfish. An antibacterial subunit of hemoglobin (Hb-I) was purified from the mantle of Arca inflata by phosphate extraction and ion exchange chromatography. A novel antibacterial peptide, AI-hemocidin 2, derived from Hb-I, was discovered using bioinformatics analysis. It displayed antibacterial activity across a broad spectrum of microorganisms, including several Gram-positive and Gram-negative bacteria, with minimal inhibitory concentration (MIC) values ranging from 37.5 to 300 μg/mL, and it exhibited minimal hemolytic or cytotoxic activities. The antibacterial activity of AI-hemocidin 2 was thermostable (25–100 °C) and pH resistant (pH 3–10). The cellular integrity was determined by flow cytometry. AI-hemocidin 2 was capable of permeating the cellular membrane. Changes in the cell morphology were observed with a scanning electron microscope. Circular dichroism spectra suggested that AI-hemocidin 2 formed an α-helix structure in the membrane mimetic environment. The results indicated that the anti-bacterial mechanism for AI-hemocidin 2 occurred through disrupting the cell membrane. AI-hemocidin 2 might be a potential candidate for tackling antibiotic resistant bacteria.
Collapse
|
24
|
Cadiz L, Desmarais E, Servili A, Quazuguel P, Madec L, Huelvan C, Andersen O, Zambonino-Infante J, Mazurais D. Genomic organization and spatio-temporal expression of the hemoglobin genes in European sea bass (Dicentrarchus labrax). MARINE BIOLOGY 2017; 164:95. [DOI: 10.1007/s00227-017-3128-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
25
|
Zahran E, Manning B, Seo JK, Noga EJ. The effect of Ochratoxin A on antimicrobial polypeptide expression and resistance to water mold infection in channel catfish (Ictalurus punctatus). FISH & SHELLFISH IMMUNOLOGY 2016; 57:60-67. [PMID: 27539704 DOI: 10.1016/j.fsi.2016.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/08/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
Mycotoxin contamination of agricultural commodities poses a serious risk to animal health, including aquaculture species. Ochratoxin A (OA) is the most immunotoxic ochratoxin, yet little is known about its effect on immune function in fish. Antimicrobial polypeptides (AMPPs) are one of the most potent, innate, host defense factors, yet very little is known about what types of chronic stressors affect their expression. Among the most prevalent and potent AMPPs in fish are histone-like proteins (HLPs). In this study, fish were fed 2, 4, or 8 mg OA/kg diet. Skin antibacterial activity and HLP-1 levels were measured on Days 0, 28 and 56. Feeding 2, 4 or 8 mg OA/kg diet resulted in significant growth depression, but higher levels (4 or 8 mg OA/kg diet) resulted in lowering feed intake (FI) and impaired feed conversion ratio. In addition, feeding 8 mg OA/kg diet increased susceptibility to experimental water mold (Saprolegnia) challenge, suggesting that OA toxicity might contribute to some saprolegnosis outbreaks. However, there were no changes in AMPP expression in any treatment group. Our data suggests that the increased disease susceptibility of channel catfish due to OA is probably due to mechanisms other than a direct effect on antimicrobial polypeptide expression.
Collapse
Affiliation(s)
- Eman Zahran
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA, 27606.
| | - Bruce Manning
- National Warmwater Aquaculture Center, Mississippi State University, Stoneville, MS, 38776, USA
| | - Jung-Kil Seo
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA, 27606
| | - Edward J Noga
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA, 27606
| |
Collapse
|
26
|
Valero Y, Arizcun M, Esteban MÁ, Cuesta A, Chaves-Pozo E. Transcription of histones H1 and H2B is regulated by several immune stimuli in gilthead seabream and European sea bass. FISH & SHELLFISH IMMUNOLOGY 2016; 57:107-115. [PMID: 27523279 DOI: 10.1016/j.fsi.2016.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
Histones (H1 to H4) are the primary proteins which mediate the folding of DNA into chromatin; however, and in addition to this function, histones have been also related to antimicrobial peptides (AMPs) activity in vertebrates, in fact, mammalian H1 is mobilized as part as the anti-viral immune response. In fish, histones with AMP activity have been isolated and characterized mainly from skin and gonads. One of most threatening pathogens for wild and cultured fish species nowadays is nodavirus (NNV), which target tissues are the brain and retina, but it is also able to colonize the gonad and display vertical transmission. Taking all this into account we have identified the h1 and h2b coding sequences in European sea bass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata) fish species and studied their pattern of expression under naïve conditions and NNV in vivo infection. The data obtained prompted us to study their role on the immune response of gonad and head-kidney leucocytes upon viral (NNV), bacteria (Vibrio anguillarum or Photobacterium damselae), pathogen-associated molecular patterns (PAMPs) or mitogens stimulation. The h1 and h2b genes are expressed in a wide range of tissues and their expression is modify by infection or other immune stimuli, but further studies will be needed to determine the significance of these changes. These results suggest that h1 expression is related to the immune response against NNV in the brain, while h2b transcription seems to be more important in the head-kidney. Moreover, the potential role of histones as anti-viral agents is suggested and further characterization is in progress.
Collapse
Affiliation(s)
- Yulema Valero
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía, Puerto de Mazarrón, 30860, Spain
| | - Marta Arizcun
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía, Puerto de Mazarrón, 30860, Spain
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía, Puerto de Mazarrón, 30860, Spain.
| |
Collapse
|
27
|
Gill monogenean communities (Platyhelminthes, Monogenea, Dactylogyridae) of butterflyfishes from tropical Indo-West Pacific Islands. Parasitology 2016; 143:1580-91. [DOI: 10.1017/s0031182016001463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYWe studied the monogenean communities of 34 species of butterflyfish from the tropical Indo-West Pacific, identifying 13 dactylogyrid species (including two species that are presently undescribed). Monogenean assemblages differed significantly between host species in terms of taxonomic structure, intensity and prevalence. Parasite richness ranged from 0 (Chaetodon lunulatus) to 11 (C. auriga, C. citrinellus and C. lunula). Host specificity varied between the dactylogyrids species, being found on 2–29 of the 34 chaetodontid species examined. Sympatric butterflyfish species were typically parasitized by different combinations of dactylogyrid species, suggesting the existence of complex host–parasite interactions. We identified six clusters of butterflyfish species based on the similarities of their dactylogyrid communities. Dactylogyrid richness and diversity were not related to host size, diet specialization, depth range or phylogeny of butterflyfish species. However, there was a weak positive correlation between monogenean richness and diversity and host geographical range. Most communities of dactylogyrids were dominated by Haliotrema aurigae and H. angelopterum, indicating the importance of the genus Haliotrema in shaping monogenean communities of butterflyfishes. This study casts light on the structure of the monogenean communities of butterflyfishes, suggesting that the diversity and complexity of community structures arises from a combination of host species-specific parameters.
Collapse
|
28
|
Salger SA, Cassady KR, Reading BJ, Noga EJ. A Diverse Family of Host-Defense Peptides (Piscidins) Exhibit Specialized Anti-Bacterial and Anti-Protozoal Activities in Fishes. PLoS One 2016; 11:e0159423. [PMID: 27552222 PMCID: PMC4995043 DOI: 10.1371/journal.pone.0159423] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/01/2016] [Indexed: 11/23/2022] Open
Abstract
Conventional antibiotics and other chemical-based drugs are currently one of the most common methods used to control disease-related mortality in animal agriculture. Use of the innate immune system to decrease disease related mortalities is a novel alternative to conventional drugs. One component of the innate immune system is the host-defense peptides, also known as antimicrobial peptides. Host-defense peptides are typically small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and/or protozoal pathogens. Piscidins are host-defense peptides first discovered in the hybrid striped bass (white bass, Morone chrysops, x striped bass, M. saxatilis). In this paper we identify four new piscidin isoforms in the hybrid striped bass and describe their tissue distributions. We also determine the progenitor species of origin of each piscidin (orthology) and propose a revised nomenclature for this newly described piscidin family based on a three class system. The Class I piscidins (22 amino acids in length; striped bass and white bass piscidin 1 and piscidin 3) show broad-spectrum activity against bacteria and ciliated protozoans, while the Class III piscidins (55 amino acids in length; striped bass and white bass piscidin 6 and striped bass piscidin 7) primarily show anti-protozoal activity. The Class II piscidins (44-46 amino acids in length; striped bass and white bass piscidin 4 and white bass piscidin 5) have a level of activity against bacteria and protozoans intermediate to Classes I and III. Knowledge of piscidin function and activity may help in the future development of disease-resistant lines of striped bass and white bass that could be used to produce superior hybrids for aquaculture.
Collapse
Affiliation(s)
- Scott A. Salger
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Katherine R. Cassady
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Benjamin J. Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Edward J. Noga
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| |
Collapse
|
29
|
Immunological properties of oxygen-transport proteins: hemoglobin, hemocyanin and hemerythrin. Cell Mol Life Sci 2016; 74:293-317. [PMID: 27518203 PMCID: PMC5219038 DOI: 10.1007/s00018-016-2326-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/17/2016] [Accepted: 08/03/2016] [Indexed: 01/22/2023]
Abstract
It is now well documented that peptides with enhanced or alternative functionality (termed cryptides) can be liberated from larger, and sometimes inactive, proteins. A primary example of this phenomenon is the oxygen-transport protein hemoglobin. Aside from respiration, hemoglobin and hemoglobin-derived peptides have been associated with immune modulation, hematopoiesis, signal transduction and microbicidal activities in metazoans. Likewise, the functional equivalents to hemoglobin in invertebrates, namely hemocyanin and hemerythrin, act as potent immune effectors under certain physiological conditions. The purpose of this review is to evaluate the true extent of oxygen-transport protein dynamics in innate immunity, and to impress upon the reader the multi-functionality of these ancient proteins on the basis of their structures. In this context, erythrocyte-pathogen antibiosis and the immune competences of various erythroid cells are compared across diverse taxa.
Collapse
|
30
|
Djauhari R, . W, . S, Suprayudi MA, Zairin Jr. M. Characterization of Bacillus sp. NP5 and its Application as Probiotic for Common Carp (Cyprinus carpio). ACTA ACUST UNITED AC 2016. [DOI: 10.3923/jm.2016.101.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Bao Y, Wang J, Li C, Li P, Wang S, Lin Z. A preliminary study on the antibacterial mechanism of Tegillarca granosa hemoglobin by derived peptides and peroxidase activity. FISH & SHELLFISH IMMUNOLOGY 2016; 51:9-16. [PMID: 26876330 DOI: 10.1016/j.fsi.2016.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/30/2016] [Accepted: 02/05/2016] [Indexed: 05/16/2023]
Abstract
The blood clam, Tegillarca granosa, is one of the few bivalve molluscs containing hemoglobin (Hb). In the present study, we purified two types of T. granosa hemoglobin, Tg-HbI and Tg-HbII, using size exclusion chromatography and measured their antibacterial and peroxidase activities. We also tested antibacterial activities of peptides prepared by trypsin digestion of purified Tg-Hb and reversed-phase high-performance liquid chromatography purification. Purified Tg-HbI and Tg-HbII showed antibacterial activity against Escherichia coli, Pseudomonas putida, Bacillus subtilis, and Bacillus firmus, with differences in minimal inhibitory concentrations (MICs), but lacked antibacterial activity against Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio harveyi and Staphylococcus aureus. In contrast, 7 Tg-Hb derived peptides exhibited varying degrees of antibacterial activity against V. alginolyticus (MICs: 12-200 μg/ml), V. parahaemolyticus (11-100 μg/ml) and V. harveyi (1-200 μg/ml). The antibacterial activity of Hb derived peptides was confirmed by fluorescence microscopy. In addition, peroxidase activity was detected in Tg-HbI and Tg-HbII. The results indicated that in addition to functioning as a respiratory protein T. granosa hemoglobins likely play a role in host antibacterial defense probably via a peroxidase activity of native molecules and some internal peptides released from the proteins.
Collapse
Affiliation(s)
- Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Zhejiang 315100, PR China
| | - Juanjuan Wang
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Zhejiang 315100, PR China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Peifen Li
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Zhejiang 315100, PR China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Sufang Wang
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Zhejiang 315100, PR China.
| | - Zhihua Lin
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Zhejiang 315100, PR China.
| |
Collapse
|
32
|
Sohn HY, Go HJ, Park NG. Purification of Antibacterial Peptide from the Skin of the Catfish Silurus asotus. ACTA ACUST UNITED AC 2016. [DOI: 10.5352/jls.2016.26.3.296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Xu B, Zhao J, Jing Z, Zhang Y, Shi Y, Fan T. Role of hemoglobin from blood clam Scapharca kagoshimensis beyond oxygen transport. FISH & SHELLFISH IMMUNOLOGY 2015; 44:248-256. [PMID: 25700784 DOI: 10.1016/j.fsi.2015.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
The evolutionary race between hosts and pathogens has led to a variety of adaptations. Little is known about the immunological role of hemoglobin (Hb) in antimicrobial immune responses. Results showed that a 31.2 kDa monodimer Hb (skHbI) and a 57.8 kDa heterotetramer Hb (skHbII) from the blood clam, Scapharca kagoshimensis, had phenoloxidase (PO)-like activities and antimicrobial activities. Both were found capable of oxidizing l-DOPA, catechol and hydroquinone. Their PO-like activities were visibly greatly inhibited by oxidase inhibitors, EDTA, and divalent metal ions, and greatly enhanced by isopropanol and Fe(2+), indicating that they have the properties of a metalloenzyme and a catecholase-type PO as well. They also showed obvious anti-bacterial activities against gram-positive bacteria but not against either gram-negative bacteria nor fungi. The anti-bacterial activities levels were a result of the generation of reactive oxygen species (ROS) of superoxide anions. These results indicate that skHbI and skHbII, not only function as iron-containing oxygen carriers, but also exert anti-bacterial activities and catecholase-type oxidizing activities. The fact that skHbII exerts high level of PO-like activity indicates different roles in the innate immunodefense system. These results may improve understanding of the multiple functions of invertebrate Hbs beyond serving as oxygen carriers and may provide insight into how the fundamental and universal mode of the innate immune system has persisted in respiratory proteins throughout the course of evolution.
Collapse
Affiliation(s)
- Bin Xu
- Department of Marine Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Zhao
- Department of Marine Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhao Jing
- Department of Marine Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Department of Histology and Embryology, Medical College, Qingdao University, Qingdao 266021, China
| | - Yanan Zhang
- Department of Marine Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Department of Biology, Medical College, Qingdao University, Qingdao 266021, China
| | - Ying Shi
- Department of Marine Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Tingjun Fan
- Department of Marine Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
34
|
Zhuang J, Coates CJ, Zhu H, Zhu P, Wu Z, Xie L. Identification of candidate antimicrobial peptides derived from abalone hemocyanin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:96-102. [PMID: 25445903 DOI: 10.1016/j.dci.2014.11.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/06/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Hemocyanins present in invertebrate hemolymph are multifunctional proteins, responsible for oxygen transport and contributing to innate immunity through phenoloxidase-like activity. In arthropods, hemocyanin has been identified as a source of broad-spectrum antimicrobial peptides during infection. Conversely, no hemocyanin-derived antimicrobial peptides have been reported for molluscs. The present study describes a putative antimicrobial region, termed haliotisin, located within the linking sequence between the α-helical domain and β-sheet domain of abalone (Haliotis tuberculata) hemocyanin functional unit E. A series of synthetic peptides based on overlapping fragments of the haliotisin region were tested for their bactericidal potential. Incubating Gram-positive and Gram-negative bacteria in the presence of certain haliotisin peptides, notably peptides 3-4-5 (DTFDYKKFGYRYDSLELEGRSISRIDELIQQRQEKDRTFAGFLLKGFGTSAS) led to reductions in microbial growth. Furthermore, transmission electron micrographs of haliotisin-treated bacteria revealed damages to the microbial cell wall. Data discussed here provides the first evidence to suggest that molluscan hemocyanin may act as a source of anti-infective peptides.
Collapse
Affiliation(s)
- Jun Zhuang
- Fujian Provincial key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China
| | - Christopher J Coates
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, Scotland FK9 4LA, United Kingdom.
| | - Hongtao Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Ping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Zujian Wu
- Fujian Provincial key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| | - Lianhui Xie
- Fujian Provincial key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| |
Collapse
|
35
|
Meloni M, Candusso S, Galeotti M, Volpatti D. Preliminary study on expression of antimicrobial peptides in European sea bass (Dicentrarchus labrax) following in vivo infection with Vibrio anguillarum. A time course experiment. FISH & SHELLFISH IMMUNOLOGY 2015; 43:82-90. [PMID: 25542381 DOI: 10.1016/j.fsi.2014.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/05/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Antimicrobial polypeptides (AMPPs) are humoral components of the vertebrates and invertebrates innate immune system. Their potent broad spectrum antimicrobial activities have drawn the attention of the scientific community to their potential use not only as an alternative to antibiotics but also as functional targets for immunostimulants in order to enhance the host immunity. Fish synthesize a great number of these peptides but in European sea bass, an important fish species in the Mediterranean aquaculture, only a few AMPPs have been studied and these surveys have highlighted their functional role as predictive markers of stressful conditions. Many aspects concerning AMPP mode of action in the host during bacterial infections are still unknown. In this work a 72 h time course experiment, performed on juvenile sea bass intraperitoneally (i.p.) injected with a sub-lethal dose of Vibrio anguillarum, was aimed to investigate the mRNA expression of four specific AMPP genes and interleukin-1β (IL-1β) in skin, gills, spleen, and head kidney. AMPP genes were: dicentracin (DIC), histone-like protein 1 (HLP-1), histone-like protein 2 (HLP-2) and hemoglobin-like protein (Hb-LP). The delta-delta C(T) method in real-time RT-PCR allowed to gain more knowledge about temporal dynamics, preferential sites of expression as well as immunological and physiological role of these molecular markers. DIC was significantly up-regulated mainly in head kidney at 1.5-3 h post-infection (p.i.). HLP-1 showed an extended-time overexpression in gills and a significant up-regulation in spleen. HLP-2 was interestingly overexpressed in gills at 24 h p.i., while Hb-LP showed a significant up-regulation in skin for all the 72 h trial as well as lower but always significant values either in gills or in spleen. Different was the response of IL-1β that showed a dramatic up-regulation in spleen and head kidney at 8 h p.i. whilst in gills it displayed a severe inhibition. During this survey the i.p. stimulus surely conditioned the AMPP expression in skin and gills, especially as regards the DIC that as piscidin-related gene has an important defensive role in the mucosal tissues. However, two unconventional AMPP genes such as HLP-2 and Hb-LP, strictly related to the physiological mechanisms of fish, were less affected in terms of expression by the route of infection, being more evident in peripheral loci. These findings might suggest them as potential markers to be analyzed within plans of health survey in fish farms.
Collapse
Affiliation(s)
- Mauro Meloni
- Department of Food Sciences, Section of Veterinary Pathology, University of Udine, via Sondrio 2/A, 33100 Udine, Italy.
| | - Sabrina Candusso
- Department of Food Sciences, Section of Veterinary Pathology, University of Udine, via Sondrio 2/A, 33100 Udine, Italy
| | - Marco Galeotti
- Department of Food Sciences, Section of Veterinary Pathology, University of Udine, via Sondrio 2/A, 33100 Udine, Italy
| | - Donatella Volpatti
- Department of Food Sciences, Section of Veterinary Pathology, University of Udine, via Sondrio 2/A, 33100 Udine, Italy
| |
Collapse
|
36
|
Ali A, Rexroad CE, Thorgaard GH, Yao J, Salem M. Characterization of the rainbow trout spleen transcriptome and identification of immune-related genes. Front Genet 2014; 5:348. [PMID: 25352861 PMCID: PMC4196580 DOI: 10.3389/fgene.2014.00348] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/16/2014] [Indexed: 11/13/2022] Open
Abstract
Resistance against diseases affects profitability of rainbow trout. Limited information is available about functions and mechanisms of teleost immune pathways. Immunogenomics provides powerful tools to determine disease resistance genes/gene pathways and develop genetic markers for genomic selection. RNA-Seq sequencing of the rainbow trout spleen yielded 93,532,200 reads (100 bp). High quality reads were assembled into 43,047 contigs. 26,333 (61.17%) of the contigs had hits to the NR protein database and 7024 (16.32%) had hits to the KEGG database. Gene ontology showed significant percentages of transcripts assigned to binding (51%), signaling (7%), response to stimuli (9%) and receptor activity (4%) suggesting existence of many immune-related genes. KEGG annotation revealed 2825 sequences belonging to "organismal systems" with the highest number of sequences, 842 (29.81%), assigned to immune system. A number of sequences were identified for the first time in rainbow trout belonging to Toll-like receptor signaling (35), B cell receptor signaling pathway (44), T cell receptor signaling pathway (56), chemokine signaling pathway (73), Fc gamma R-mediated phagocytosis (52), leukocyte transendothelial migration (60) and NK cell mediated cytotoxicity (42). In addition, 51 transcripts were identified as spleen-specific genes. The list includes 277 full-length cDNAs. The presence of a large number of immune-related genes and pathways similar to other vertebrates suggests that innate and adaptive immunity in fish are conserved. This study provides deep-sequence data of rainbow trout spleen transcriptome and identifies many new immune-related genes and full-length cDNAs. This data will help identify allelic variations suitable for genomic selection and genetic manipulation in aquaculture.
Collapse
Affiliation(s)
- Ali Ali
- Department of Biology, Middle Tennessee State University Murfreesboro, TN, USA ; Department of Zoology, Faculty of Science, Benha University Benha, Egypt
| | - Caird E Rexroad
- The National Center for Cool and Cold Water Aquaculture, United States Department of Agriculture Agricultural Research Service Leetown, WV USA
| | - Gary H Thorgaard
- School of Biological Sciences, Washington State University Pullman, WA, USA
| | - Jianbo Yao
- Division of Animal and Nutritional Science, West Virginia University Morgantown, WV, USA
| | - Mohamed Salem
- Department of Biology, Middle Tennessee State University Murfreesboro, TN, USA ; Division of Animal and Nutritional Science, West Virginia University Morgantown, WV, USA
| |
Collapse
|
37
|
Evans ML, Praebel K, Peruzzi S, Amundsen PA, Bernatchez L. Phenotype-environment association of the oxygen transport system in trimorphic European whitefish (Coregonus lavaretus) populations. Evolution 2014; 68:2197-210. [PMID: 24766154 DOI: 10.1111/evo.12442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 04/17/2014] [Indexed: 01/20/2023]
Abstract
Replicated adaptive radiation events, typified by phenotypic divergence across resource axes, provide important insight into the eco-evolutionary dynamics that lead to the formation of new species. Here, we show that in trimorphic adaptive radiations of European whitefish (Coregonus lavaretus), divergence of the oxygen transport system has occurred across the pelagic/littoral (shallow)-profundal (deep) resource axis, and at multiple biological scales. Profundal whitefish exhibited significantly larger red blood cells (RBCs), a greater proportion of cathodic hemoglobin protein components, and higher hemoglobin transcript abundance in kidney compared to littoral and pelagic morphs. Hemoglobin transcript abundance in brain and gill, but not kidney, and anodic hemoglobin protein component diversity in blood were also linked to variation at an intronic single nucleotide polymorphism (SNP). As the whitefish morphs differ in population genetic structure at this SNP, hemoglobin transcript and protein divergence between profundal and pelagic/littoral morphs is likely being driven by genetic divergence. Our findings, along with our previous work on lake whitefish, highlight the importance of the oxygen transport system to the postglacial colonization of novel lacustrine environments by whitefish throughout the northern hemisphere.
Collapse
Affiliation(s)
- Melissa L Evans
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Université Laval, Québec, Québec, G1V 0A6 Canada; Present Address: Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University, 2030 SE Marine Science Dr, Newport, Oregon 97365.
| | | | | | | | | |
Collapse
|
38
|
Woo PTK, Ardelli BF. Immunity against selected piscine flagellates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:268-279. [PMID: 23872230 DOI: 10.1016/j.dci.2013.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
This discussion is on immune response to Amyloodinium ocellatum, Cryptobia salmositica, Trypanoplasma borreli and Trypanosoma carassii. Piscidin and histone-like proteins enhance innate resistance to Amyloodinium. Fish that are naturally resistant to Cryptobia and Trypanoplasma can be bred. Cryptobia resistance in charr is controlled by a dominant Mendelian locus and protection is via the Alternative Pathway of Complement Activation. Studies on Cryptobia-tolerant charr may lead to production of transgenic Cryptobia-tolerant salmon. Innate response to T. borreli is associated with NO in macrophages. Transferrin regulates resistance and carp have been bred for transferrin genotypes. Recovered fish are protected from homologous challenge, and complement fixing antibodies are crucial in protection. Studies on antigens in T. carassii may lead to a vaccine. There are two vaccines against cryptobiosis; a single dose of the attenuated vaccine protects salmonids. On challenge fish inoculated with the metalloprotease-DNA vaccine do not have the disease and they recover faster.
Collapse
Affiliation(s)
- Patrick T K Woo
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | |
Collapse
|
39
|
Seo JK, Lee MJ, Jung HG, Go HJ, Kim YJ, Park NG. Antimicrobial function of SHβAP, a novel hemoglobin β chain-related antimicrobial peptide, isolated from the liver of skipjack tuna, Katsuwonus pelamis. FISH & SHELLFISH IMMUNOLOGY 2014; 37:173-183. [PMID: 24495783 DOI: 10.1016/j.fsi.2014.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/24/2014] [Accepted: 01/26/2014] [Indexed: 06/03/2023]
Abstract
A 2.3 kDa of antimicrobial peptide was purified from an acidified liver extract of skipjack tuna, Katsuwonus pelamis, by preparative acid-urea-polyacrylamide gel electrophoresis and C18 reversed-phase HPLC. A comparison of the amino acid sequence of the purified peptide with those of other known polypeptides revealed high homology with the C-terminus of hemoglobin β-chain; thus, this peptide was designated as the Skipjack Hemoglobin β chain-related Antimicrobial Peptide (SHβAP). SHβAP showed potent antimicrobial activity against Gram-positive bacteria, such as Bacillus subtilis, Staphylococcus aureus, and Streptococcus iniae (minimal effective concentrations [MECs], 6.5-57.0 μg/mL), Gram-negative bacteria, such as Escherichia coli D31, Pseudomonas aeruginosa, Salmonella enterica, Shigella sonnei, and two Vibrio parahaemolyticus species (MECs, 2.0-19.0 μg/mL), and against Candida albicans (MEC; 12.0 μg/mL) without significant hemolytic activity. Antimicrobial activity of this peptide was heatstable and pH resistant but is sensitive to proteases and salt. SHβAP did not show membrane permeabilization and killing ability. The secondary structural prediction and the homology modeling expected that this peptide formed an amphipathic α-helical structure. This is the first report the purification of a novel antimicrobial peptide related to the C-terminus of hemoglobin β-chain from marine fish.
Collapse
Affiliation(s)
- Jung-Kil Seo
- Department of Food Science and Biotechnology, Kunsan National University, Kunsan 573-701, Republic of Korea
| | - Min Jeong Lee
- Department of Biotechnology, Pukyong National University, Busan 608-737, Republic of Korea
| | - Hyun-Gyo Jung
- Department of Biotechnology, Pukyong National University, Busan 608-737, Republic of Korea
| | - Hye-Jin Go
- Department of Biotechnology, Pukyong National University, Busan 608-737, Republic of Korea
| | - Young Ja Kim
- Korea Environmental Industry and Technology Institute, Seoul 122-706, Republic of Korea
| | - Nam Gyu Park
- Department of Biotechnology, Pukyong National University, Busan 608-737, Republic of Korea.
| |
Collapse
|
40
|
Seo JK, Lee MJ, Go HJ, Kim YJ, Park NG. Antimicrobial function of the GAPDH-related antimicrobial peptide in the skin of skipjack tuna, Katsuwonus pelamis. FISH & SHELLFISH IMMUNOLOGY 2014; 36:571-581. [PMID: 24412436 DOI: 10.1016/j.fsi.2014.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 11/13/2013] [Accepted: 01/02/2014] [Indexed: 06/03/2023]
Abstract
A 3.4 kDa of antimicrobial peptide was purified from an acidified skin extract of skipjack tuna, Katsuwonus pelamis, by preparative acid-urea-polyacrylamide gel electrophoresis and C18 reversed-phase HPLC. A comparison of the N-terminal amino acid sequence of the purified peptide with that of other known polypeptides revealed high sequence homology with the YFGAP (Yellowfin tuna Glyceraldehyde-3-phosphate dehydrogenase-related Antimicrobial Peptide); thus, this peptide was identified as the skipjack tuna GAPDH-related antimicrobial peptide (SJGAP). SJGAP showed potent antimicrobial activity against Gram-positive bacteria, such as Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, and Streptococcus iniae (minimal effective concentrations [MECs], 1.2-17.0 μg/mL), Gram-negative bacteria, such as Aeromonas hydrophila, Escherichia coli D31, and Vibrio parahaemolyticus (MECs, 3.1-12.0 μg/mL), and against Candida albicans (MEC, 16.0 μg/mL) without significant hemolytic activity. Antimicrobial activity of this peptide is heat-stable but salt-sensitive. According to the secondary structural prediction and the homology modeling, this peptide consists of three secondary structural motifs, including one α-helix and two parallel β-strands, and forms an amphipathic structure. This peptide showed neither membrane permeabilization ability nor killing ability, but did display a small degree of leakage ability. These results suggest that SJGAP acts through a bacteriostatic process rather than bactericidal one. SJGAP is another GAPDH-related antimicrobial peptide isolated from skipjack tuna and likely plays an important role for GAPDH in the innate immune defense of tuna fish.
Collapse
Affiliation(s)
- Jung-Kil Seo
- Department of Food Science and Biotechnology, Kunsan National University, Kunsan 573-701, Republic of Korea
| | - Min Jeong Lee
- Department of Biotechnology, Pukyong National University, Busan 608-737, Republic of Korea
| | - Hye-Jin Go
- Department of Biotechnology, Pukyong National University, Busan 608-737, Republic of Korea
| | - Yeon Jun Kim
- West Vancouver Secondary School, 1750 Mathers Ave., West Vancouver, BC V7V 2G7, Canada
| | - Nam Gyu Park
- Department of Biotechnology, Pukyong National University, Busan 608-737, Republic of Korea.
| |
Collapse
|
41
|
Gomez D, Sunyer JO, Salinas I. The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1729-39. [PMID: 24099804 PMCID: PMC3963484 DOI: 10.1016/j.fsi.2013.09.032] [Citation(s) in RCA: 463] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 09/09/2013] [Accepted: 09/23/2013] [Indexed: 05/04/2023]
Abstract
The field of mucosal immunology research has grown fast over the past few years, and our understanding on how mucosal surfaces respond to complex antigenic cocktails is expanding tremendously. With the advent of new molecular sequencing techniques, it is easier to understand how the immune system of vertebrates is, to a great extent, orchestrated by the complex microbial communities that live in symbiosis with their hosts. The commensal microbiota is now seen as the "extended self" by many scientists. Similarly, fish immunologist are devoting important research efforts to the field of mucosal immunity and commensals. Recent breakthroughs on our understanding of mucosal immune responses in teleost fish open up the potential of teleosts as animal research models for the study of human mucosal diseases. Additionally, this new knowledge places immunologists in a better position to specifically target the fish mucosal immune system while rationally designing mucosal vaccines and other immunotherapies. In this review, an updated view on how teleost skin, gills and gut immune cells and molecules, function in response to pathogens and commensals is provided. Finally, some of the future avenues that the field of fish mucosal immunity may follow in the next years are highlighted.
Collapse
Affiliation(s)
- Daniela Gomez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Irene Salinas
- Center for Theoretical and Evolutionary Immunology (CETI), Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
42
|
Mu X, Pridgeon JW, Klesius PH. Comparative transcriptional analysis reveals distinct expression patterns of channel catfish genes after the first infection and re-infection with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1566-76. [PMID: 24036330 PMCID: PMC7111657 DOI: 10.1016/j.fsi.2013.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/12/2013] [Accepted: 08/30/2013] [Indexed: 05/04/2023]
Abstract
To determine whether transcriptional levels of channel catfish (Ictalurus punctatus) genes are differentially regulated between a first infection with Aeromonas hydrophila and a re-infection, suppression subtractive hybridization (SSH) was performed in this study using anterior kidney cDNA after the re-infection as tester. Of the 96 clones isolated from the SSH library, 28 unique expressed sequence tags (ESTs) were obtained, of which eight were confirmed to be slightly but significantly (P < 0.05) more up-regulated by the re-infection at 6 h post infection (hpi). Expression kinetics studies at 3, 6, 12, 24, and 48 hpi revealed that the eight ESTs were significantly (P = 0.016) more up-regulated by the first infection, with a major peak at 3 hpi. A total of 96 genes reported in literature to be up-regulated by bacterial infections were selected and subjected to expression analysis at 3 hpi. Of the 96 selected genes, 19 were found to be significantly (P < 0.05) induced by A. hydrophila after the first infection and the re-infection. The 19 genes belonged to the following five main categories: 1) toll-like receptor (TLR2, TLR3, TLR5, TLR21); 2) antimicrobial peptide (NK-lysin type 1, NK-lysin type 2, NK-lysin type 3, cathepsin D, transferrin, hepcidin); 3) cytokine or chemokine (interleukin-1β, interleukin-10, tumor necrosis factor α, chemokine CXCL-10); 4) signaling proteins (cadherin EGF LAG seven-pass G-type receptor 1, very large inducible GTPase 1, arginine deiminase type 2, lymphokine-activated killer T-cell originated protein kinase); 5) lysozyme (lysozyme c). Overall, the total 27 genes (8 ESTs plus the 19 selected genes) were significantly (P < 0.001) more induced by the first infection. Peaked expression of lysozyme c and serum lysozyme activity after the first infection were seen at 24 hpi, whereas that after the re-infection were seen at 12 hpi, suggesting that both innate and adaptive immunity were involved in the defense against the re-infection of A. hydrophila.
Collapse
|
43
|
Bocheńska O, Rąpała-Kozik M, Wolak N, Braś G, Kozik A, Dubin A, Aoki W, Ueda M, Mak P. Secreted aspartic peptidases of Candida albicans liberate bactericidal hemocidins from human hemoglobin. Peptides 2013; 48:49-58. [PMID: 23927842 DOI: 10.1016/j.peptides.2013.07.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 10/26/2022]
Abstract
Secreted aspartic peptidases (Saps) are a group of ten acidic hydrolases considered as key virulence factors of Candida albicans. These enzymes supply the fungus with nutrient amino acids as well as are able to degrade the selected host's proteins involved in the immune defense. Our previous studies showed that the human menstrual discharge is exceptionally rich in bactericidal hemoglobin (Hb) fragments - hemocidins. However, to date, the genesis of such peptides is unclear. The presented study demonstrates that the action of C. albicans isozymes Sap1-Sap6, Sap8 and Sap9, but not Sap7 and Sap10, toward human hemoglobin leads to limited proteolysis of this protein and generates a variety of antimicrobial hemocidins. We have identified these peptides and checked their activity against selected microorganisms representative for human vagina. We have also demonstrated that the process of Hb hydrolysis is most effective at pH 4.0, characteristic for vagina, and the liberated peptides showed pronounced killing activity toward Lactobacillus acidophilus, and to a lower degree, Escherichia coli. However, only a very weak activity toward Staphylococcus aureus and C. albicans was noticed. These findings provide interesting new insights into pathophysiology of human vaginal candidiasis and suggest that C. albicans may be able to compete with the other microorganisms of the same physiological niche using the microbicidal peptides generated from the host protein.
Collapse
Affiliation(s)
- Oliwia Bocheńska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang DL, Guan RZ, Huang WS, Xiong J. Isolation and characterization of a novel antibacterial peptide derived from hemoglobin alpha in the liver of Japanese eel, Anguilla japonica. FISH & SHELLFISH IMMUNOLOGY 2013; 35:625-631. [PMID: 22951230 DOI: 10.1016/j.fsi.2012.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/09/2012] [Accepted: 08/17/2012] [Indexed: 06/01/2023]
Abstract
We isolated and characterized a novel antibacterial peptide, AJHbα, derived from hemoglobin alpha in the liver of Japanese eel, Anguilla japonica. It with concentration of 11.30 μM exhibited stronger antibacterial activity against pathogenic bacterium 1 × 10(6) cell ml(-1)Edwardsiella tarda than other two bacteria. The extraction procedure for AJHbα included extraction with acetate acid, ultrafiltration, cation-exchange chromatography on HiTrap™ CM FF, reverse-phase liquid chromatography on Source 5R RPC and C18 RP-HPLC. MALDI-TOF MS suggested that the peptide had an observed molecular weight of 2388.05 Da. Its amino acid sequence determined by Edman degradation was similar to those of hemoglobin alpha chain in other fish by BLAST analysis. A complete N-terminal amino acid sequence of the AJHbα was FAHWPDLGPGSPSVKKHGKVIM corresponding to the cDNA sequence by RACE amplification. Its synthetic peptide had strong antibacterial activities against ten Gram-positive or negative bacteria. To our knowledge, AJHbα was the first identified fragment of hemoglobin alpha chain with strong antibacterial activity in fish.
Collapse
Affiliation(s)
- Dong Ling Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China
| | | | | | | |
Collapse
|
45
|
Niu SF, Jin Y, Xu X, Qiao Y, Wu Y, Mao Y, Su YQ, Wang J. Characterization of a novel piscidin-like antimicrobial peptide from Pseudosciaena crocea and its immune response to Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2013; 35:513-524. [PMID: 23727503 DOI: 10.1016/j.fsi.2013.05.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/22/2013] [Accepted: 05/06/2013] [Indexed: 06/02/2023]
Abstract
Piscidins, important components of the innate (nonspecific) immunity system in fish, have potent, broad-spectrum antimicrobial and antiparasitic activities. In this study, we reported a novel antimicrobial cationic peptide from Pseudosciaena crocea. Although this peptide exhibited a genomic (3 exons and 2 introns) and propeptide (signal peptide, mature peptide and prodomain) organization, conserved signal peptide (22 amino acids) and consensus motif I-X5-H-X4-I-H identical to the reported fish piscidins, Pc-pis showed a relatively low overall conservation with other known piscidins, which was obviously embodied in the amino acid composition of the peptide. Pc-pis is strikingly rich in glycine residues (27.3%), which disrupted the amphipathic structure of the peptide. Relative quantitative real-time PCR revealed that Pc-pis is a typically gill-expressed peptide. The sequence analysis, structural features and tissue distribution suggested that Pc-pis was genetically related to the piscidins family and might be a novel piscidin-like antimicrobial peptide. Quantitative PCR analysis revealed that the expression of Pc-pis in the spleen, head-kidney, liver, intestine, skin and gill could be regulated during Cryptocaryon irritans infection and post C. irritans falling off, implicating a role for Pc-pis in immune defense against C. irritans and secondary bacterial infections. Synthetic Pc-pis exhibited broad-spectrum activity against bacteria, fungi and C. irritans in parasitic stages. These results provided the first evidence of piscidins antiparasitic activity against marine fish ectoparasites C. irritants trophonts and further indicated that Pc-pis might be an important component of the P. crocea innate immune system against C. irritans and secondary bacterial infections. Thus, these data provided new insights into P. crocea innate immunity against external protozoan parasite and microbial infections and facilitate the evaluation of Pc-pis as a therapeutic agent against pathogen invasion.
Collapse
Affiliation(s)
- Su-Fang Niu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Larsen PF, Nielsen EE, Hansen MM, Wang T, Meier K, Pertoldi C, Loeschcke V. Tissue specific haemoglobin gene expression suggests adaptation to local marine conditions in North Sea flounder (Platichthys flesus L.). Genes Genomics 2013. [DOI: 10.1007/s13258-013-0101-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Abstract
Catfish is one of the most important aquaculture species in America (as well as in Asia and Africa). In recent years, the production of catfish has suffered massive financial losses due to pathogen spread and breakouts. Innate immunity plays a crucial role in increasing resistance to pathogenic organisms and has generated increasing interest in the past few years. This review summarizes the current understanding of innate immune-related genes in catfish, including pattern recognition receptors, antimicrobial peptides, complements, lectins, cytokines, transferrin and gene expression profiling using microarrays and next generation sequencing technologies. This review will benefit the understanding of innate immune system in catfish and further efforts in studying the innate immune-related genes in fish.
Collapse
|
48
|
Abstract
The vertebrate immune system is comprised of numerous distinct and interdependent components. Every component has its own inherent protective value, and the final combination of them is likely to be related to an animal’s immunological history and evolutionary development. Vertebrate immune system consists of both systemic and mucosal immune compartments, but it is the mucosal immune system which protects the body from the first encounter of pathogens. According to anatomical location, the mucosa-associated lymphoid tissue, in teleost fish is subdivided into gut-, skin-, and gill-associated lymphoid tissue and most available studies focus on gut. The purpose of this paper is to summarise the current knowledge of the immunological defences present in skin mucosa as a very important part of the fish immune system, serving as an anatomical and physiological barrier against external hazards. Interest in defence mechanism of fish arises from a need to develop health management tools to support a growing finfish aquaculture industry, while at the same time addressing questions concerning origins and evolution of immunity in vertebrates. Increased knowledge of fish mucosal immune system will facilitate the development of novel vaccination strategies in fish.
Collapse
Affiliation(s)
- María Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| |
Collapse
|
49
|
Potamotrygon cf. henlei stingray mucus: Biochemical features of a novel antimicrobial protein. Toxicon 2012; 60:821-9. [DOI: 10.1016/j.toxicon.2012.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/04/2012] [Accepted: 05/24/2012] [Indexed: 11/23/2022]
|
50
|
Seo JK, Lee MJ, Go HJ, Park TH, Park NG. Purification and characterization of YFGAP, a GAPDH-related novel antimicrobial peptide, from the skin of yellowfin tuna, Thunnus albacares. FISH & SHELLFISH IMMUNOLOGY 2012; 33:743-752. [PMID: 22771964 DOI: 10.1016/j.fsi.2012.06.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/18/2012] [Accepted: 06/20/2012] [Indexed: 06/01/2023]
Abstract
A 3.4 kDa of antimicrobial peptide was purified from an acidified skin extract of the yellowfin tuna, Thunnus albacares, by preparative acid-urea-polyacrylamide gel electrophoresis and C(18) reversed-phase HPLC. A comparison of the N-terminal amino acid sequence of the purified peptide with that of other known polypeptides revealed high homology with the N-terminus of glyceraldehyde-3-phosphate dehydrogenase (GAPDH); thus, this peptide was designated as the yellowfin tuna GAPDH-related antimicrobial peptide (YFGAP). YFGAP showed potent antimicrobial activity against Gram-positive bacteria, such as Bacillus subtilis, Micrococcus luteus, and Streptococcus iniae (minimal effective concentrations [MECs], 1.2-17.0 μg/mL), and Gram-negative bacteria, such as Aeromonas hydrophila, Escherichia coli D31, and Vibrio parahaemolyticus (MECs, 3.1-12.0 μg/mL) without significant hemolytic activity. According to the secondary structural prediction and the homology modeling, this peptide forms an amphipathic structure and consists of three secondary structural motifs including one α-helix and two parallel β-strands. This peptide did not show membrane permeabilization ability and its activity was bacteriostatic rather than bactericidal. This is the first report of the isolation of an antimicrobial peptide from a tuna species and the first description of the antimicrobial function of the N-terminus of GAPDH of an animal species.
Collapse
Affiliation(s)
- Jung-Kil Seo
- Department of Biotechnology, Pukyong National University, Daeyeon Campus, Yongso-ro, Nam-Gu, Busan 608-737, Republic of Korea
| | | | | | | | | |
Collapse
|