1
|
Wang D, Ma X, Hu H, Ren J, Liu J, Zhou H. Functional identification of two HMGB1 paralogues provides insights into autophagic machinery in teleost. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109457. [PMID: 38387685 DOI: 10.1016/j.fsi.2024.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
High mobility group box 1 (HMGB1) is a multifunctional regulator that plays different roles in various physiological and pathological processes including cell development, autophagy, inflammation, tumor metastasis, and cell death based on its cellular localization. Unlike mammalian HMGB1, two HMGB1 paralogues (HMGB1a and HMGB1b) have been found in fathead minnow and other fish species and its function as an inflammatory cytokine has been well investigated. However, the role of fish HMGB1 in autophagy regulation has not been well clarified. In the present study, we generated HMGB1 paralogues single (HMGB1a-/- and HMGB1b-/-) and double knockout (DKO) epithelioma papulosum cyprini (EPC) cells from fathead minnow by CRISPR/Cas9 system, and the knockout efficiency of these genes was verified at both gene and protein levels. In this context, the effects of HMGB1 gene knockout on the protein expression of microtubule-associated protein 1 light chain 3 II (LC3-II), an autophagy marker, were determined, showing that single knockout of two HMGB1 paralogues significantly decreased the expression of LC3-II, and these inhibitory effects were further amplified in HMGB1 DKO cells under both basal and rapamycin treatment conditions, indicating the role of two HMGB1 paralogues in fish autophagy. In agreement with this notion, overexpression of HMGB1a or HMGB1b with Flag-tag markedly upregulated LC3-II protein expression. Interestingly, overexpressing two paralogues distributed in both cytoplasm and nucleus. Finally, the role of HMGB1-mediated autophagy was further explored, finding that HMGB1 could interact with Beclin1, a key initiation factor of autophagy. Taken together, these findings highlighted the role of HMGB1 paralogues as the autophagy regulator and increased our understanding of autophagic machinery in teleost.
Collapse
Affiliation(s)
- Dan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyu Ma
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hengyi Hu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingqi Ren
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiaxi Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Martínez D, Nualart D, Loncoman C, Opazo JC, Zabala K, Morera FJ, Mardones GA, Vargas-Chacoff L. Discovery of BbX transcription factor in the patagonian blennie: Exploring expression changes following combined bacterial and thermal stress exposure. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105056. [PMID: 37730191 DOI: 10.1016/j.dci.2023.105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
High-Mobility Group (HMG) proteins are involved in different processes such as transcription, replication, DNA repair, and immune response. The role of HMG proteins in the immune response of fish has been studied mainly for HMGB1, where its expression can be induced by the stimulation of viral/bacterial PAMPs and can act as a proinflammatory mediator and as a global regulator of transcription in response to temperature. However, for BbX this role remains to be discovered. In this work, we identified the BbX of E. maclovinus and evaluated the temporal expression levels after simultaneous challenge with P. salmonis and thermal stress. Phylogenetic analysis does not significantly deviate from the expected organismal relationships suggesting orthologous relationships and that BbX was present in the common ancestor of the group. BbX mRNA expression levels were very high in the intestinal tissue of E. maclovinus (foregut, midgut, and hindgut). Nevertheless, the protein levels analyzed by WB showed the highest levels of BbX protein in the liver (constitutive expression). On the other hand, the mRNA expression levels of BbX in the liver of E. maclovinus injected with P. salmonis and subjected to thermal stress showed an increase at days 16 and 20 in all treatments applied at 12 °C and 18 °C. Meanwhile, the protein levels quantified by WB showed a statistically significant increase in the HMG-Bbx at all experimental times (4, 8, 12, 16, and 20 dpi). However, at 4 dpi the HMG-Bbx protein levels were much higher than the other days evaluated. The results suggest that BbX protein may be implicated in the response mechanism to temperature and bacterial stimulation in the foregut, midgut, hindgut, and liver, according to our findings at the level of mRNA and protein. Furthermore, our WB analysis suggests an effect of P. salmonis on the expression of this protein that can be observed in condition C+ 12 °C compared to C- 12 °C. Then, there is an effect of temperature that can be evidenced in the condition AM 18 °C and SM 18 °C, compared to AB 18 °C and SB 18 °C at 4, 8, and 12 dpi. We found not differences in the levels of this protein if the thermal stress is achieved through acclimatization or shock. More research is necessary to clarify the importance of this type of HMG in the immune response and thermal tolerance in fish.
Collapse
Affiliation(s)
- Danixa Martínez
- Laboratorio Institucional de Investigación, Facultad de Ciencias de La Naturaleza, Universidad San Sebastián, Puerto Montt, Chile.
| | - Daniela Nualart
- Escuela de Graduados, Programa de Doctorado en Ciencias de La Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Carlos Loncoman
- Instituto de Bioquímica y Microbiología, Laboratorio de Bioquímica Farmacológica, Virología y Biotecnología, Universidad Austral de Chile, Valdivia, Chile
| | - Juan C Opazo
- Integrative Biology Group, Valdivia, Chile; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Kattina Zabala
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Francisco J Morera
- Integrative Biology Group, Valdivia, Chile; Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo A Mardones
- Integrative Biology Group, Valdivia, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Casilla 567, Valdivia, Chile; Integrative Biology Group, Valdivia, Chile.
| |
Collapse
|
3
|
Dai M, Zhang Y, Jiao Y, Deng Y, Du X, Yang C. Immunomodulatory effects of one novel microRNA miR-63 in pearl oyster Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2023; 140:109002. [PMID: 37586600 DOI: 10.1016/j.fsi.2023.109002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
Novel microRNA miR-63 (novel-miR-63) from pearl oyster Pinctada fucata martensii (Pm-novel-miR-63) is a species-specific miRNA. Our previous research has shown that the expression of Pm-novel-miR-63 was significantly downregulated at 24 h after nucleus transplantation. In this study, we analyzed the function and regulatory role of Pm-novel-miR-63 in the immune response of pearl oysters. The results showed that Pm-novel-miR-63 expression increased after the stimulation of pathogen associated molecular patterns at 6-12 h, and the activity of immune and antioxidant enzymes in the serum decreased after Pm-novel-miR-63 overexpression. Transcriptome analysis revealed that Pm-novel-miR-63 participated in regulating transplantation immunity through the Notch and mRNA surveillance signaling pathways. Target prediction and dual luciferase analysis revealed that Pm-GDP-FucTP, Pm-CysLTR2, and Pm-RLR were the target genes of Pm-novel-miR-63. These results suggested that Pm-novel-miR-63 participated in regulating the immune response in pearl oysters and can serve as a new interference target to reasonably control excessive immune rejection in pearl culture.
Collapse
Affiliation(s)
- Meiqi Dai
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yuting Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang, 524088, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China
| | - Chuangye Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang, 524088, China
| |
Collapse
|
4
|
Chen D, Lu L, Wang H, Peng S, Liu J, Zhang X, Li Z, Huang X, Ouyang P, Qu L, Geng Y. Expression profiling and inflammatory activation analysis of high-mobility group box 1 in Schizothorax prenanti. JOURNAL OF AQUATIC ANIMAL HEALTH 2022; 34:174-183. [PMID: 36063081 DOI: 10.1002/aah.10172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/19/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE High-mobility group box 1 (HMGB1) is a highly conserved nuclear protein and participates in the immune response to pathogens in bony fish. In this study, the structure and function of HMGB1 in the cyprinid fish Schizothorax prenanti (SpHMGB1) were investigated. METHODS The spatial structure of SpHMGB1 was predicted by CPHmodels. Quantitative reverse transcription PCR was used to detect the mRNA of SpHMGB1 in different tissues and Streptococcus agalactiae infection. The macrophage was treated with synthetic SpHMGB1-B box peptide to analyze the inflammatory activity. RESULT Structurally, SpHMGB1 had the conserved A box, B box, and acid tail compared with Zebrafish Danio rerio and mice Mus musculus. SpHMGB1 was universally expressed in various tissues, with the highest expression in the middle kidney. In vivo, SpHMGB1 was significantly induced in response to Streptococcus agalactiae infection in the blood and spleen. Synthetic SpHMGB1-B box peptide activated respiratory burst and up-regulated the messenger RNA expression of interleukin-1β, tumor necrosis factor α, interleukin-10, interferon regulatory factor 1, interferon regulatory factor 7, C-X-C motif chemokine ligand 11-1, C-X-C motif chemokine ligand 11-2, and toll-like receptor 4 in macrophages. CONCLUSION This study suggested that SpHMGB1 participated in the response to bacterial pathogens and that SpHMGB1-B box peptide played an important role in mediating the immune response of S. prenanti.
Collapse
Affiliation(s)
- Defang Chen
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lu Lu
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hong Wang
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shuang Peng
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiaxi Liu
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xin Zhang
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhiqiong Li
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaoli Huang
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ping Ouyang
- Research Center of Aquatic Animal Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lianshi Qu
- Ya'an Fishery Development Center, Ya'an, China
| | - Yi Geng
- Research Center of Aquatic Animal Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Chen X, Li Y, Bao X, Zhang E, Cui C, Liu X, Luo Q, Yang J, Li Z, Xu X. Transcriptome profiling based on protein-protein networks provides a core set of genes for understanding blood immune response mechanisms against LPS stress in Amphioctopus fangsiao. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104509. [PMID: 35963309 DOI: 10.1016/j.dci.2022.104509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Gram-negative bacteria are significant pathogens in the ocean, posing serious threats to marine organisms. Lipopolysaccharide (LPS) is a characteristic chemical constituent in Gram-negative bacteria that can be recognized by the pattern recognition receptor (PRR) of immune cells. This system is often used to simulate the invasion of bacteria. Blood is a transport channel for immune cells, and its transcriptome information obtained from Amphioctopus fangsiao stimulated by LPS is essential for understanding the antibacterial biological mechanisms of this species. In this study, we analyzed the gene expression profiles of A. fangsiao blood within 24h under LPS stress and found 778 and 561 differentially expressed genes (DEGs) at 6 and 24h, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were performed to search for immune-related DEGs. The relationships among immune genes were examined by constructing a protein-protein interaction (PPI) network. Finally, 16 hub genes were identified based on the PPI network and KEGG enrichment analysis. The expression profiles of these genes were verified using quantitative RT-PCR (qRT-PCR). This research provides valuable resources for the healthy culture of A. fangsiao and helps us understand the molecular mechanisms of innate immunity.
Collapse
Affiliation(s)
- Xipan Chen
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Enshuo Zhang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Cuiju Cui
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Qihao Luo
- School of Agriculture, Ludong University, Yantai, 264025, China; Yantai Haiyu Marine Science and Technology Co. Ltd., Yantai, 264004, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
6
|
Lu L, Dai S, Liu L, Liu J, Zhang X, Huang X, Ouyang P, Geng Y, Li Z, Chen D. Identification and characterization of high mobility group box 1 and high mobility group box 2 in Siberian sturgeon (Acipenser baerii). Gene 2022; 850:146932. [PMID: 36191827 DOI: 10.1016/j.gene.2022.146932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
High mobility group box 1 (HMGB1) and high mobility group box 2 (HMGB2) were highly conserved nonhistone chromosomal proteins involved in DNA damage repair, innate immune and inflammatory response. In this study, Acipenser baerii HMGB1 (AbHMGB1) and HMGB 2 (HMGB2) were identified. The open reading frame (ORF) of AbHMGB1 was 621 bp which encoded 206 amino acids, and the ORF of AbHMGB2 was 630 bp encoded 209 amino acids. AbHMGB1 and AbHMGB2 were conserved compared with bony fish by phylogenetic analyzing. qRT-PCR showed that AbHMGB1 and AbHMGB2 were expressed in all examined tissues, AbHMGB1 was expressed abundantly in muscle, followed by head kidney and brain, and AbHMGB2 was highest expressed in gill, followed by brain and muscle. After Streptococcus iniae infection and PAMPs treatment, AbHMGB1 and AbHMGB2 were induced significantly. This study indicated that AbHMGB1 and AbHMGB2 are involved in the process of pathogenic infection and provided a basis for exploring the mechanism of Acipenser baerii enteritis induced by Streptococcus iniae.
Collapse
Affiliation(s)
- Lu Lu
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaotong Dai
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lulu Liu
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxi Liu
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zhang
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoli Huang
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Ouyang
- Research Center of Aquatic Animal Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Geng
- Research Center of Aquatic Animal Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiqiong Li
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Defang Chen
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
7
|
Chen Y, Yu C, Jiang S, Sun L. Japanese Flounder HMGB1: A DAMP Molecule That Promotes Antimicrobial Immunity by Interacting with Immune Cells and Bacterial Pathogen. Genes (Basel) 2022; 13:genes13091509. [PMID: 36140677 PMCID: PMC9498587 DOI: 10.3390/genes13091509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
High mobility group box (HMGB) proteins are DNA-associated proteins that bind and modulate chromosome structures. In mammals, HMGB proteins can be released from the cell nucleus and serve as a damage-associated molecular pattern (DAMP) under stress conditions. In fish, the DAMP function of HMGB proteins in association with bacterial infection remains to be investigated. In this study, we examined the immunological functions of two HMGB members, HMGB1 and HMG20A, of Japanese flounder. HMGB1 and HMG20A were expressed in multiple tissues of the flounder. HMGB1 was released from peripheral blood leukocytes (PBLs) upon bacterial challenge in a temporal manner similar to that of lactate dehydrogenase release. Recombinant HMGB1 bound to PBLs and induced ROS production and the expression of inflammatory genes. HMGB1 as well as HMG20A also bound to various bacterial pathogens and caused bacterial agglutination. The bacteria-binding patterns of HMGB1 and HMG20A were similar, and the binding of HMGB1 competed with the binding of HMG20A but not vice versa. During bacterial infection, HMGB1 enhanced the immune response of PBLs and repressed bacterial invasion. Collectively, our results indicate that flounder HMGB1 plays an important role in antimicrobial immunity by acting both as a modulator of immune cells and as a pathogen-interacting DAMP.
Collapse
Affiliation(s)
- Yuan Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
8
|
Luo ZH, Li Y, Wang YL, Zhang ZP, Zou PF. Molecular cloning and functional characterization of HMGB1 and HMGB2 in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2022; 127:855-865. [PMID: 35850457 DOI: 10.1016/j.fsi.2022.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/25/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
High mobility group box 1 (HMGB1) and HMGB2 have been demonstrated to be key regulators not only in DNA recombination, replication, gene transcription, but also in host inflammation and immune responses. In the present study, orthologs of HMGB1 and HMGB2 named Lc-HMGB1 and Lc-HMGB2 were characterized in large yellow croaker (Larimichthys crocea). The ORFs of Lc-HMGB1 and Lc-HMGB2 are 621 bp and 648 bp, encoding proteins of 206 aa and 215 aa, with the putative Lc-HMGB1 and Lc-HMGB2 proteins both contain two HMG domains, respectively. The genome organizations of Lc-HMGB1 and Lc-HMGB2 are both composed of four exons and three introns, which are conserved in vertebrates. Lc-HMGB1 and Lc-HMGB2 were identified as cell nucleus localized proteins, and were ubiquitously distributed in the examined organs/tissues. Additionally, Lc-HMGB1 was significantly up-regulated under LPS and PGN stimulation, whereas the stimulation of poly I:C, LPS, PGN, and Pseudomonas plecoglossicida infection could significantly induce Lc-HMGB2 expression in vivo. Notably, both Lc-HMGB1 and Lc-HMGB2 overexpression could significantly up-regulated the expression of diverse immune-related genes, including IFN1, IRF3, ISG15, ISG56, RSAD2, g-type lysozyme, and TNF-α. Moreover, overexpression of Lc-HMGB1 could also induce the expression of IRF7 and Mx. These results collectively indicate that Lc-HMGB1 and Lc-HMGB2 play important roles in host immune responses against pathogen infection.
Collapse
Affiliation(s)
- Zi Hao Luo
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Ornamental Aquarium Engineering Research Centre in University of Fujian Province, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Ying Li
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Tan Kah Kee College, Xiamen University, Zhangzhou, Fujian Province, 363105, China.
| | - Yi Lei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Ornamental Aquarium Engineering Research Centre in University of Fujian Province, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, Fujian Province, 352103, China
| | - Zi Ping Zhang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, Fujian Province, 352103, China; College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China
| | - Peng Fei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Ornamental Aquarium Engineering Research Centre in University of Fujian Province, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China.
| |
Collapse
|
9
|
CgHMGB1 functions as a broad-spectrum recognition molecule to induce the expressions of CgIL17-5 and Cgdefh2 via MAPK or NF-κB signaling pathway in Crassostrea gigas. Int J Biol Macromol 2022; 211:289-300. [PMID: 35525493 DOI: 10.1016/j.ijbiomac.2022.04.166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 01/03/2023]
Abstract
High-mobility group box 1 (HMGB1), a highly conserved nucleoprotein, functions in immune recognition, inflammation and antibacterial immunization in vertebrates. In the present study, the mediation mechanism of CgHMGB1 in activating MAPK and NF-κB/Rel signaling pathways to induce the expressions of immune effectors was investigated. CgHMGB1 mRNA was detected in all tested developmental stages from fertilized egg to D-larvae, with the higher expressions in 4-cell and 8-cell stages. CgHMGB1 proteins were mainly distributed in haemocyte granulocytes. The expressions of CgHMGB1 mRNA in haemocytes increased significantly after Vibrio splendidus stimulation, and CgHMGB1 protein translocated into the haemocyte cytoplasm and release into cell-free haemolymph. The phosphorylation of CgERK and CgP38 were induced, the nuclear translocation of CgRel were promoted, and the mRNA expressions of CgIL17-5 and Cgdefh2 increased significantly after rCgHMGB1 treatment. Obvious branchial swelling and cilium shedding were observed after rCgHMGB1 treatment. rCgHMGB1 exhibited binding activity to different polysaccharides, bacteria, and fungi. rCgHMGB1 also displayed obvious antibacterial activity to V. splendidus and E. coli. These results indicated that CgHMGB1 functioned as an immune recognition molecule to recognize various PAMPs and bacteria to induce the mRNA expressions of CgIL17-5 and Cgdefh2 via the activation of MAPK and NF-κB signaling pathways in oysters.
Collapse
|
10
|
Wang Y, Xiao X, Wang F, Yang Z, Yue J, Shi J, Ke F, Xie Z, Fan Y. An identified PfHMGB1 promotes microcystin-LR-induced liver injury of yellow catfish (Pelteobagrus fulvidraco). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111266. [PMID: 32919194 DOI: 10.1016/j.ecoenv.2020.111266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin that can cause liver inflammation and injury. However, the mode of action of related inflammatory factors is not fully understood. PfHMGB1 is an inflammatory factor induced at the mRNA level in the liver of juvenile yellow catfish (Pelteobagrus fulvidraco) that were intraperitoneally injected with 50 μg/kg MC-LR. The PfHMGB1 mRNA level was highest in the liver and muscle among 11 tissues examined. The full-length cDNA sequence of PfHMGB1 was cloned and overexpressed in E. coli, and the purified protein rPfHMGB1 demonstrated DNA binding affinity. Endotoxin-free rPfHMGB1 (6-150 μg/mL) also showed dose-dependent hepatotoxicity and induced inflammatory gene expression of primary hepatocytes. PfHMGB1 antibody (anti-PfHMGB1) in vitro reduced MC-LR (30 and 50 μmol/L)-induced hepatotoxicity, suggesting PfHMGB1 is important in the toxic effects of MC-LR. In vivo study showed that MC-LR upregulated PfHMGB1 protein in the liver. The anti-PfHMGB1 blocked its counterpart and reduced ALT/AST activities after MC-LR exposure. Anti-PfHMGB1 partly neutralized MC-LR-induced hepatocyte disorganization, nucleus shrinkage, mitochondria, and rough endoplasmic reticula destruction. These findings suggest that PfHMGB1 promotes MC-LR-induced liver damage in the yellow catfish. HMGB1 may help protect catfish against widespread microcystin pollution.
Collapse
Affiliation(s)
- Yun Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Hubei Province, Wuhan, 430056, China; Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Xiaoxue Xiao
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Feijie Wang
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Zupeng Yang
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Jingkai Yue
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Jiale Shi
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhaohui Xie
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Yanru Fan
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| |
Collapse
|
11
|
Wu M, Li H, Chen X, Jiang Y, Jiang W. Studies on the clinical symptoms, virus distribution, and mRNA expression of several antiviral immunity-related genes in grass carp after infection with genotype II grass carp reovirus. Arch Virol 2020; 165:1599-1609. [PMID: 32399788 DOI: 10.1007/s00705-020-04654-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/09/2020] [Indexed: 01/05/2023]
Abstract
The viral hemorrhage disease caused by grass carp reovirus (GCRV) is a serious contagious disease of grass carp that mainly infects fingerlings and yearlings. Epidemiological studies have shown that GCRV genotype II is currently the prominent genotype. However, little is known about the histopathological characteristics, virus distribution, and expression of immunity-related genes in grass carp infected by GCRV genotype II. In this study, we found that grass carp infected by GCRV genotype II lost appetite, swam alone, and rolled, and their fins, eyes, operculum, oral cavity, abdomen, intestine, and muscles showed pronounced punctate hemorrhage. Congestion, swelling, deformation, thinning of membranes, dilatation and darkened color of nucleoli, cathepsis, erythrocyte infiltration, and vacuole formation were observed in some infected tissues. A qRT-PCR test showed that the 11 genome segments of GCRV had similar expression patterns in different tissues. The S8 segment, with unknown function and no homologous sequences, had the highest expression level, while the most conserved segment, L2, had the lowest expression level. GCRV particles were distributed in different tissues, especially in the intestine. In the infected intestine, the expression of various receptors and adaptor molecules was modulated at different levels. Pro-inflammatory cytokine interleukin-1β (IL-1β) expression was 2160.9 times higher than that in the control group. The upregulation of immunity-related genes activated the antiviral immunity pathways. Therefore, the intestine might play a dual role in mediating GCRV infection and the antiviral immune response. This study provides detailed information about the pathogenicity of GCRV and expression of immunity-related genes, laying the foundation for further research on virus control and treatment.
Collapse
Affiliation(s)
- Minglin Wu
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No. 40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China.
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, No. 40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China.
| | - Haiyang Li
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No. 40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, No. 40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
| | - Xiaowu Chen
- Shanghai Ocean University, No.999 Huchenghuan Road, Nanhui New City, 201306, Shanghai, China
| | - Yangyang Jiang
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No. 40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, No. 40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
| | - Wei Jiang
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No. 40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, No. 40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
| |
Collapse
|
12
|
Qiao X, Li P, He J, Yu Z, Chen J, He L, Yu X, Lin H, Lu D, Zhang Y. Type F scavenger receptor expressed by endothelial cells (SREC)-II from Epinephelus coioides is a potential pathogen recognition receptor in the immune response to Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2020; 98:262-270. [PMID: 31899357 DOI: 10.1016/j.fsi.2019.12.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/24/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Scavenger receptors play a central role in defending against infectious diseases in mammals. However, the function of SRECII remains unknown in teleost fish. In this study, type F scavenger receptor expressed by endothelial cells-II (SRECII) cDNA sequence was first identified from Epinephelus coioides, named EcSRECII, which contained an N-terminal signal peptide, eight EGF/EGF-like cysteine-rich motifs and a C-terminal low-complexity region. The gene location maps revealed that EcSRECII has the conservation of synteny among selected species. Subcellular localization showed that EcSRECII was mainly located in the cytoplasm in HEK293T cells and GS cells. In healthy E. coioides, EcSRECII mRNA was highly expressed in spleen, skin, gill, thymus and head kidney. The relative EcSRECII mRNA expression after Vibrio parahaemolyticus infection was significantly up-regulated at 12 h in spleen, head kidney and thymus, but downregulated at 1 d in skin and reduced at 3 d and 1 w in spleen. Furthermore, overexpression of EcSRECII activated NF-κB and IFN-β signaling pathway in vitro. Taken together, these results indicated that EcSRECII could be as the potential pathogen recognition receptor for involving in bacterial infection by regulating innate immunity responses in E. coioides.
Collapse
Affiliation(s)
- Xifeng Qiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Pingchao Li
- Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, PR China
| | - Jianan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Zeshu Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jiaxing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Liangge He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Xue Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China; College of Ocean, Hainan University, Haikou, 570228, PR China
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China; Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| |
Collapse
|
13
|
Hou X, Liu G, Zhang H, Hu X, Zhang X, Han F, Cui H, Luo J, Guo R, Li R, Li N, Wei L. High-mobility group box 1 protein (HMGB1) from Cherry Valley duck mediates signaling pathways and antiviral activity. Vet Res 2020; 51:12. [PMID: 32070432 PMCID: PMC7027276 DOI: 10.1186/s13567-020-00742-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/18/2020] [Indexed: 01/02/2023] Open
Abstract
High-mobility group box 1 protein (HMGB1) shows endogenous damage-associated molecular patterns (DAMPs) and is also an early warning protein that activates the body's innate immune system. Here, the full-length coding sequence of HMGB1 was cloned from the spleen of Cherry Valley duck and analyzed. We find that duck HMGB1(duHMGB1) is mostly located in the nucleus of duck embryo fibroblast (DEF) cells under normal conditions but released into the cytoplasm after lipopolysaccharide (LPS) stimulation. Knocking-down or overexpressing duHMGB1 had no effect on the baseline apoptosis rate of DEF cells. However, overexpression increased weakly apoptosis after LPS activation. In addition, overexpression strongly activated the IFN-I/IRF7 signaling pathway in DEF cells and significantly increased the transcriptional level of numerous pattern recognition receptors (PRRs), pro-inflammatory cytokines (IL-6, TNF-α), IFNs and antiviral molecules (OAS, PKR, Mx) starting from 48 h post-transfection. Overexpression of duHMGB1 strongly impacted duck virus replication, either by inhibiting it from the first stage of infection for novel duck reovirus (NDRV) and at late stage for duck Tembusu virus (DTMUV) or duck plague virus (DPV), or promoting replication at early stage for DTMUV and DPV infection. Importantly, data from duHMGB1 overexpression and knockdown experiments, time-dependent DEF cells transcriptional immune responses suggest that duHMGB1 and RIG-I receptor might cooperate to promote the expression of antiviral proteins after NDRV infection, as a potential mechanism of duHMGB1-mediated antiviral activity.
Collapse
Affiliation(s)
- Xiaolan Hou
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Gen Liu
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Huihui Zhang
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Xiaofang Hu
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Xinyue Zhang
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Fei Han
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Huizhen Cui
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Jinjian Luo
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Ru Guo
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Rong Li
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Ning Li
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Liangmeng Wei
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China. .,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Tai'an, 271000, Shandong, China.
| |
Collapse
|
14
|
Wang Y, Yang Y, Chen Q, Zhai H, Xie Z, Ke F. PfHMGB2 protects yellow catfish (Pelteobagrus fulvidraco) from bacterial infection by promoting phagocytosis and proliferation of PBL. FISH & SHELLFISH IMMUNOLOGY 2019; 93:567-574. [PMID: 31394161 DOI: 10.1016/j.fsi.2019.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
HMGB2, a member of the high mobility group box family, plays an important role in host immune responses. However, the mechanism of action of HMGB2 is not well understood. Herein, a homologue from yellow catfish (Pelteobagrus fulvidraco) was cloned and named PfHMGB2. The deduced amino acid sequence of PfHMGB2 possessed a typical tripartite structure (two DNA binding boxes and an acid tail) and shared 90% identity with the predicted HMGB2 from I. punctatus. The mRNA of PfHMGB2 was widely distributed in all 11 tested tissues in healthy fish bodies and was significantly induced in the liver and head kidney when yellow catfish were injected with inactivated Aeromonas hydrophila. Consistently, PfHMGB2 mRNA could also be induced in yellow catfish peripheral blood leucocytes (PBL) by lipopolysaccharide. The recombinant PfHMGB2 protein was purified from E. coli BL21 (DE3):pET-28a/PfHMGB2 and showed DNA-binding affinity. Moreover, rPfHMGB2 improved the phagocytosis and proliferation activity and upregulated the mRNA expression of the pro-inflammatory cytokine TNFα in yellow catfish PBL. These results indicated that PfHMGB2 could protect yellow catfish from pathogen infection by activating PBL.
Collapse
Affiliation(s)
- Yun Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Hubei Province, Wuhan, 430056, China; Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China.
| | - Yanyan Yang
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China
| | - Qianying Chen
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China
| | - Hanfei Zhai
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China
| | - Zhaohui Xie
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China
| | - Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
15
|
Su H, Su J. Cyprinid viral diseases and vaccine development. FISH & SHELLFISH IMMUNOLOGY 2018; 83:84-95. [PMID: 30195914 PMCID: PMC7118463 DOI: 10.1016/j.fsi.2018.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 05/15/2023]
Abstract
In the past decades, global freshwater fish production has been rapidly growing, while cyprinid takes the largest portion. Along with the rapid rise of novel forms of intensive aquaculture, increased global aquatic animal movement and various anthropogenic stress to aquatic ecosystems during the past century, freshwater fish farming industry encounter the emergence and breakout of many diseases, especially viral diseases. Because of the ability to safely and effectively prevent aquaculture diseases, vaccines have become the mainstream technology for prevention and control of aquatic diseases in the world. In this review, authors summarized six major cyprinid viral diseases, including koi herpesvirus disease (KHVD), spring viraemia of carp (SVC), grass carp hemorrhagic disease (GCHD), koi sleepy disease (KSD), carp pox disease (CPD) and herpesviral haematopoietic necrosis (HPHN). The present review described the characteristics of these diseases from epidemiology, pathology, etiology and diagnostics. Furthermore, the development of specific vaccines respective to these diseases is stated according to preparation methods and immunization approaches. It is hoped that the review could contribute to aquaculture in prevention and controlling of cyprinid viral diseases, and serve the healthy and sustainable development of aquaculture industry.
Collapse
Affiliation(s)
- Hang Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
16
|
Rao Y, Wan Q, Su H, Xiao X, Liao Z, Ji J, Yang C, Lin L, Su J. ROS-induced HSP70 promotes cytoplasmic translocation of high-mobility group box 1b and stimulates antiviral autophagy in grass carp kidney cells. J Biol Chem 2018; 293:17387-17401. [PMID: 30237170 DOI: 10.1074/jbc.ra118.003840] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Autophagy plays many physiological and pathophysiological roles. However, the roles and the regulatory mechanisms of autophagy in response to viral infections are poorly defined in teleost fish, such as grass carp (Ctenopharyngodon idella), which is one of the most important aquaculture species in China. In this study, we found that both grass carp reovirus (GCRV) infection and hydrogen peroxide (H2O2) treatment induced the accumulation of reactive oxygen species (ROS) in C. idella kidney cells and stimulate autophagy. Suppressing ROS accumulation with N-acetyl-l-cysteine significantly inhibited GCRV-induced autophagy activation and enhanced GCRV replication. Although ROS-induced autophagy, in turn, restricted GCRV replication, further investigation revealed that the multifunctional cellular protein high-mobility group box 1b (HMGB1b) serves as a heat shock protein 70 (HSP70)-dependent, pro-autophagic protein in grass carp. Upon H2O2 treatment, cytoplasmic HSP70 translocated to the nucleus, where it interacted with HMGB1b and promoted cytoplasmic translocation of HMGB1b. Overexpression and siRNA-mediated knockdown assays indicated that HSP70 and HMGB1b synergistically enhance ROS-induced autophagic activation in the cytoplasm. Moreover, HSP70 reinforced an association of HMGB1b with the C. idella ortholog of Beclin 1 (a mammalian ortholog of the autophagy-associated yeast protein ATG6) by directly interacting with C. idella Beclin 1. In summary, this study highlights the antiviral function of ROS-induced autophagy in response to GCRV infection and reveals the positive role of HSP70 in HMGB1b-mediated autophagy initiation in teleost fish.
Collapse
Affiliation(s)
- Youliang Rao
- From the College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.,the Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Quanyuan Wan
- From the College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.,the College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China, and
| | - Hang Su
- From the College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Xiao
- From the College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiwei Liao
- From the College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianfei Ji
- From the College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunrong Yang
- the College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Lin
- the College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China, and
| | - Jianguo Su
- From the College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China, .,the Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
17
|
Lenka SS, Paichha M, Basu M, Samanta M. LrHMGB1 Shares Structural Similarities with Human HMGB1, and Its Expression Is Induced in Bacterial Infection, Antiviral Vaccination, and Pathogen-Associated Molecular Patterns Stimulation. DNA Cell Biol 2018; 37:708-723. [DOI: 10.1089/dna.2018.4221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
| | - Mahismita Paichha
- Immunology Laboratory, Fish Health Management Division, Indian Council of Agricultural Research-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Madhubanti Basu
- Immunology Laboratory, Fish Health Management Division, Indian Council of Agricultural Research-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Mrinal Samanta
- Immunology Laboratory, Fish Health Management Division, Indian Council of Agricultural Research-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| |
Collapse
|
18
|
Wu D, Liang H, Wang H, Duan C, Yazdani H, Zhou J, Pan Y, Shan B, Su Z, Wei J, Cui T, Tai S. Hepatitis B virus-X protein regulates high mobility group box 1 to promote the formation of hepatocellular carcinoma. Oncol Lett 2018; 16:4418-4426. [PMID: 30214576 PMCID: PMC6126216 DOI: 10.3892/ol.2018.9178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a risk factor for hepatocellular carcinoma (HCC). HBV X protein (HBx) is an important carcinogen for HBV-induced HCC. When the HBx gene is integrated into the host cell genome, it is difficult to eradicate. The identification of an effective target to inhibit the oncogenic function of HBx is therefore critically important. The present study demonstrated that HBx, particularly truncated HBx, was expressed in several HBV-derived cell lines (e.g., Hep3B and SNU423). By analyzing data from The Cancer Genome Atlas, it was revealed that high expression of high mobility group box 1 (HMGB1) was associated with the process and prognosis of HCC. In vitro experiments confirmed that HBx could regulate the expression of HMGB1 and knockdown of HMGB1 could decrease the ability of HBx to promote cellular proliferation. HBx could also upregulate six transcription factors (GATA binding protein 3, Erb-B2 receptor tyrosine kinase 3, heat shock transcription factor 1, nuclear factor κB subunit 1, TATA-box binding protein and Kruppel-like factor 4), which could directly regulate HMGB1. By analyzing genes that are co-expressed with HMGB1, several signaling pathways associated with the development of HCC were identified. HBx and HMGB1 were revealed to be involved in these pathways, which may be the mechanism by which HBx promotes HCC by regulating HMGB1. These findings suggested that HMGB1 may be an effective target for inhibiting HBV-induced HCC.
Collapse
Affiliation(s)
- Dehai Wu
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hao Liang
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hao Wang
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Changhu Duan
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hamza Yazdani
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jinan Zhou
- Biochemistry Department, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yujia Pan
- Biochemistry Department, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Baga Shan
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhilei Su
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jinping Wei
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Tiangang Cui
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Sheng Tai
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
19
|
Cai X, Gao C, Su B, Tan F, Yang N, Wang G. Expression profiling and microbial ligand binding analysis of high-mobility group box-1 (HMGB1) in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2018; 78:100-108. [PMID: 29679761 DOI: 10.1016/j.fsi.2018.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
High-mobility group box 1 (HMGB1), a highly conserved DNA-binding protein, was involved in nucleosome formation and transcriptional regulation, and could also act as an extracellular cytokine to trigger inflammation and immune responses. In this study, we identified a HMGB1 gene in turbot (Scophthalmus maximus L.). The full-length SaHMGB1 cDNA includes an open reading frame of 615 bp which encoded a 204 amino acid polypeptide with an estimated molecular mass of 23.19 kDa. SaHMGB1 was closely related to several fish HMGB1 and shared 74.4% overall identity with human. In addition, phylogenetic analyses revealed SaHMGB1 showed the closest relationship to Larimichthys crocea. Furthermore, QPCR analysis showed that SaHMGB1 was expressed in all examined tissues with abundant expression levels in brain, gill, intestine, and head kidney, and showed different expression patterns following different bacterial challenge. The significant quick regulation of SaHMGB1 in mucosal surfaces against infection suggest that HMGB1 might play critical roles in mucosal immunity against bacterial challenge. Finally, the in vitro binding assay showed that SaHMGB1 had strong binding ability to LPS, LTA, and PGN. Functional studies should further characterize HMGB1 function to understand the importance of the integrity of the mucosal barriers against infection, and to facilitate selection of the disease resistant family/strain in turbot.
Collapse
Affiliation(s)
- Xin Cai
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Baofeng Su
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, People's Republic of China
| | - Fenghua Tan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| | - Guodong Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| |
Collapse
|
20
|
Shi YZ, Chen JC, Chen YY, Kuo YH, Li HF. Endogenous molecules released by haemocytes receiving Sargassum oligocystum extract lead to downstream activation and synergize innate immunity in white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2018; 76:1-12. [PMID: 29471059 DOI: 10.1016/j.fsi.2018.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
White shrimp Litopenaeus vannamei haemocytes receiving immunostimulating Sargassum oligocystum extract (SE) caused necrosis in haemocyte cells, which released endogenous EM-SE molecules. This study examined the immune response of white shrimp L. vannamei receiving SE and EM-SE in vitro and in vivo. Shrimp haemocytes receiving SE exhibited degranulation, changes in cell size and cell viability, necrosis and a release of EM-SE. Shrimp haemocytes receiving SE, EM-SE, and the SE + EM-SE mixture (SE + EM-SE) increased their phenoloxidase (PO) activity which was significantly higher in shrimp haemocytes receiving the SE + EM-SE mixture. Furthermore, shrimp haemocytes receiving EM-SE showed degranulation and changes in cell size and cell viability. Shrimp receiving SE, EM-SE, and SE + EM-SE all increased their immune parameters, phagocytic activity, clearance efficiency and resistance to Vibrio alginolyticus, being significantly higher in shrimp receiving SE + EM-SE. Meanwhile, the recombinant lipopolysaccharide- and β-1,3-glucan binding protein of L. vannamei (rLvLGBP) was bound to SE, EM-SE, and SE + EM-SE. We conclude that in shrimp haemocytes receiving a non-self molecule, SE in dying cells released EM-SE which led to downstream activation and synergization of the immune response. This study demonstrated that the innate immunity of shrimp was elicited and enhanced by a mixture of endogenous molecules and exogenous substances (or immunostimulants).
Collapse
Affiliation(s)
- Yin-Ze Shi
- Department of Aquaculture, College of Life Sciences, Center of the Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Jiann-Chu Chen
- Department of Aquaculture, College of Life Sciences, Center of the Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC.
| | - Yu-Yuan Chen
- Department of Aquaculture, College of Life Sciences, Center of the Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Yi-Hsuan Kuo
- Department of Aquaculture, College of Life Sciences, Center of the Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Hui-Fang Li
- Department of Aquaculture, College of Life Sciences, Center of the Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| |
Collapse
|
21
|
Wei J, Zhang X, Zang S, Qin Q. Expression and functional characterization of TRIF in orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2017; 71:295-304. [PMID: 28964858 DOI: 10.1016/j.fsi.2017.09.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/15/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Antiviral immune responses are triggered by the innate immune recognition of viral infection. Toll/interleukin-1 receptor (TIR) domain containing adapter inducing interferon-β (TRIF) is an adapter in responding to activation of Toll-like receptors, which provides early clearance of viral pathogens. Our study focuses on the functional characterization of grouper TRIF (EcTRIF) based on the comparison of its sequence and functional evolution from grouper fish to mammals. The results show that the open reading frame of EcTRIF encoded a protein of 580 amino acids. Real-time PCR analysis indicates that EcTRIF was constitutively expressed in all the analyzed tissues in healthy grouper. EcTRIF was significantly induced in spleen post-LPS and poly (I:C) stimulation. Fluorescence microscopy shows that EcTRIF is colocalized with a Golgi apparatus marker, implying its unique subcellular localization in the Golgi apparatus. Luciferase reporter assays confirmed that EcTRIF was able to activate the IFN and NF-κB promoter. Overexpression of EcTRIF in grouper brain cells inhibited the replication of red-spotted grouper nervous necrosis virus (RGNNV). These results indicate that EcTRIF plays an important role in modulating antiviral innate immune responses. Our results have applications in functional studies on TRIF in teleost fish and immune evolution.
Collapse
Affiliation(s)
- Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xin Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shaoqing Zang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China.
| |
Collapse
|
22
|
Xin-Peng Z, Yong-Hua H, Yong L, Jing-Jing W, Guang-Hua W, Ren-Jie W, Min Z. A high-mobility group box 1 that binds to DNA, enhances pro-inflammatory activity, and acts as an anti-infection molecule in black rockfish, Sebastes schlegelii. FISH & SHELLFISH IMMUNOLOGY 2016; 56:402-409. [PMID: 27492120 DOI: 10.1016/j.fsi.2016.07.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/19/2016] [Accepted: 07/31/2016] [Indexed: 06/06/2023]
Abstract
High-mobility group box (HMGB) 1 is a chromosomal protein that plays critical roles in DNA transcription, replication and repair. In addition, HMGB1 functions as a pro-inflammatory molecule in many vertebrates and invertebrates. In teleosts, very limited studies of HMGB1 have been reported. In this study, we identified a HMGB1 homologue (SsHMGB1) from black rockfish (Sebastes schlegelii) and analyzed its structure, expression and biological function. The open reading frame of SsHMGB1 is 621 bp, with a 5'-untranslated region (UTR) of 62 bp and a 3'-UTR of 645 bp. SsHMGB1 contains two typical HMG boxes and an acidic C-terminal tail. The deduced amino acid sequence of SsHMGB1 shares the highest overall identity (89.4%) with the HMGB1 of Anoplopoma fimbria. The expression of SsHMGB1 occurred in multiple tissues and was highest in the brain. Moreover, the mRNA level of SsHMGB1 in head kidney (HK) macrophages could be induced by Listonella anguillarum in a time-dependent manner. Recombinant SsHMGB1 purified from Escherichia coli (i) bound DNA fragments in a dose-dependent manner; and (ii) induced the expression of cytokines in HK macrophages, including a significant increase in TNF-α activity and enhanced mRNA level of TNF13B and IL-1 β, which are known to be involved in antibacterial defense; moreover, (iii) significantly improved the macrophage bactericidal activity together with reduced pathogen dissemination and replication of bacteria in fish kidney. These results indicated that SsHMGB1 is a novel HMGB1 that possesses apparent immunoregulatory properties and is likely to be involved in fighting bacterial infection.
Collapse
Affiliation(s)
- Zhao Xin-Peng
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hu Yong-Hua
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Liu Yong
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wang Jing-Jing
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wang Guang-Hua
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wang Ren-Jie
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhang Min
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
23
|
DNA methylation of CiRIG-I gene notably relates to the resistance against GCRV and negatively-regulates mRNA expression in grass carp, Ctenopharyngodon idella. Immunobiology 2016; 221:23-30. [DOI: 10.1016/j.imbio.2015.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/29/2015] [Accepted: 08/11/2015] [Indexed: 11/19/2022]
|
24
|
Feng X, Zhang Y, Yang C, Liao L, Wang Y, Su J. Functional characterizations of IPS-1 in CIK cells: Potential roles in regulating IFN-I response dependent on IRF7 but not IRF3. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:23-32. [PMID: 26111995 DOI: 10.1016/j.dci.2015.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/27/2015] [Accepted: 06/06/2015] [Indexed: 06/04/2023]
Abstract
IPS-1, as the sole adaptor of RIG-I and MDA5, plays a central role in innate antiviral immunity. In this study, we investigated potential roles of IPS-1 in innate immunity and the domain-requirement of IPS-1 for its signaling in grass carp (Ctenopharyngodon idella). Overexpression experiment showed that CiIPS-1 mediated IFN-I signal possibly dependent on CiIRF7 but not CiIRF3. Post GCRV challenge, CiIPS-1 could enhance antiviral immune responses. CARD and TM domains were crucial for antiviral function of CiIPS-1, and TRAF motif played an assistant role. PRO domain seemed as a negative regulator but was pivotal for the initiation of CiIFN-I and CiMx1. Post viral/bacterial PAMPs stimulation, CiIPS-1-mediated signaling was tightly controlled. CARD domain of CiIPS-1 could significantly elicit poly I:C/LPS/PGN-mediated signaling. PRO domain negatively regulated CiIRF7 and CiIFN-I but was indispensable for inductions of CiMx1 and CiIL-1β. TRAF motif and TM domain regulated the signaling presumably in a cooperative fashion. Post poly I:C stimulation, TRAF motif negatively regulated CiIRF7, CiIFN-I and CiIL-1β at a relative early time while TM domain functioned at a relative late time. TRAF motif was indispensable for the production of CiMx1, while TM domain slightly negatively regulated the expression. Post LPS and PGN stimulation, TRAF motif excited an assistant and persistent negative role on CiIFN-I, CiIRF7 and CiIL-1β induction, but was crucial for induction of CiMx1. TM domain slightly negatively regulated LPS- and PGN-triggered signaling. Taken together, CiIPS-1 not only exerted important functions in antiviral immune response but also participated in viral/bacterial PAMPs-triggered immune response which was tightly controlled to prevent harmful effects resulting from excessive activation. This study provided novel insights into the pivotal role of IPS-1 in innate immunity.
Collapse
Affiliation(s)
- Xiaoli Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yixuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianguo Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
25
|
Chen X, Yang C, Su J, Rao Y, Gu T. LGP2 plays extensive roles in modulating innate immune responses in Ctenopharyngodon idella kidney (CIK) cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:138-148. [PMID: 25450904 DOI: 10.1016/j.dci.2014.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/25/2014] [Accepted: 10/25/2014] [Indexed: 06/04/2023]
Abstract
LGP2 (laboratory of genetics and physiology 2), RIG-I (retinoic acid inducible gene-I) and MDA5 (melanoma differentiation associated gene 5) constitute the RLR (RIG-I-like receptor) family. LGP2 plays a pivotal role in modulating signaling of RIG-I and MDA5 in innate immune responses. In this study, three representative overexpression vectors were constructed and transfected into C. idella kidney (CIK) cell line to research functional characterizations of CiLGP2 (C. idella LGP2). CiLGP2 overexpression led to the induction of CiRIG-I transcripts. After GCRV challenge, CiLGP2 enhanced CiMDA5 and CiIPS-1 to reinforce the immune response, however, impaired the expression of CiRIG-I. Meanwhile, antiviral activity assays showed that overexpression of CiLGP2 or its domains could inhibit GCRV replication and protect cells from death. Besides, CiLGP2 lingeringly induced CiRIG-I mRNA expression and inhibited CiMDA5 transcripts post poly(I:C) simulation. As a result, CiLGP2 suppressed the RLR-mediated signaling pathway against poly(I:C). Furthermore, CiLGP2 played active roles in RLR signaling response to bacterial PAMPs (LPS and PGN) stimulation. CiLGP2 altered the expression pattern of CiIPS-1 after LPS treatment, while it significantly enhanced the RLR signaling pathway against PGN stimulation. These results collectively suggested that CiLGP2 played a strikingly broad regulation in RLR mediated innate immune responses in C. idella, responding to not only the dsRNA virus or synthetic dsRNA but also bacterial PAMPs, which contribute to the understanding of C. idella LGP2 and RLR signaling pathways. In addition, these results lay a foundation for the further functional mechanism research of LGP2 in fishes.
Collapse
Affiliation(s)
- Xiaohui Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chunrong Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jianguo Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Youliang Rao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Tianle Gu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
26
|
Insights into the antiviral immunity against grass carp (Ctenopharyngodon idella) reovirus (GCRV) in grass carp. J Immunol Res 2015; 2015:670437. [PMID: 25759845 PMCID: PMC4337036 DOI: 10.1155/2015/670437] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022] Open
Abstract
Global fish production from aquaculture has rapidly grown over the past decades, and grass carp shares the largest portion. However, hemorrhagic disease caused by grass carp reovirus (GCRV) results in tremendous loss of grass carp (Ctenopharyngodon idella) industry. During the past years, development of molecular biology and cellular biology technologies has promoted significant advances in the understanding of the pathogen and the immune system. Immunoprophylaxis based on stimulation of the immune system of fish has also got some achievements. In this review, authors summarize the recent progresses in basic researches on GCRV; viral nucleic acid sensors, high-mobility group box proteins (HMGBs); pattern recognition receptors (PRRs), Toll-like receptors (TLRs) and retinoic acid inducible gene I- (RIG-I-) like receptors (RLRs); antiviral immune responses induced by PRRs-mediated signaling cascades of type I interferon (IFN-I) and IFN-stimulated genes (ISGs) activation. The present review also notices the potential applications of molecule genetic markers. Additionally, authors discuss the current preventive and therapeutic strategies (vaccines, RNAi, and prevention medicine) and highlight the importance of innate immunity in long term control for grass carp hemorrhagic disease.
Collapse
|
27
|
Shang X, Su J, Wan Q, Su J. CpA/CpG methylation of CiMDA5 possesses tight association with the resistance against GCRV and negatively regulates mRNA expression in grass carp, Ctenopharyngodon idella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:86-94. [PMID: 25260715 DOI: 10.1016/j.dci.2014.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 06/03/2023]
Abstract
Melanoma differentiation-associated gene 5 (MDA5) plays a crucial role in recognizing intracellular viral infection, activating the interferon regulatory factor pathways as well as inducing antiviral response. While the antiviral regulatory mechanism of MDA5 remains unclear. In the present study, CiMDA5 (Ctenopharyngodon idella MDA5) against grass carp reovirus (GCRV) would be initially revealed from the perspective of DNA methylation, a pivotal epigenetic modification. Two CpG islands (CGIs) were predicted located in the first exon of CiMDA5, of which the first CpG island was 427 bp in length possessed 29 candidate CpG loci and 34 CpA loci, and the second one was 130 bp in length involving 7 CpG loci as well as 10 CpA loci. By bisulfite sequencing PCR (BSP), the methylation statuses were detected in spleen of 70 individuals divided into resistant/susceptible groups post challenge experiment, and the resistance-association analysis was performed with Chi-square test. Quantitative real-time RT-PCR (qRT-PCR) was carried out to explore the relationship between DNA methylation and gene expression in CiMDA5. Results indicated that the methylation levels of CpA/CpG sites at +200, +202, +204, +207 nt, which consisted of a putative densely methylated element (DME), were significantly higher in the susceptible group than those in the resistant group. Meanwhile, the average transcription of CiMDA5 was down-regulated in the susceptible individuals compared with the resistant individuals. Evidently, the DNA methylation may be the negative modulator of CiMDA5 antiviral expression. Collectively, the methylation levels of CiMDA5 demonstrated the tight association with the resistance against GCRV and the negative-regulated roles in mRNA expression. This study first discovered the resistance-associated gene modulated by DNA methylation in teleost, preliminary revealed the underlying regulatory mechanism of CiMDA5 transcription against GCRV as well as laid a theoretical foundation on molecular nosogenesis of hemorrhagic diseases in C. idella.
Collapse
Affiliation(s)
- Xueying Shang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jianguo Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Quanyuan Wan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Juanjuan Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
28
|
Yan N, Su J, Yang C, Rao Y, Feng X, Wan Q, Lei C. Grass carp SARM1 and its two splice variants negatively regulate IFN-I response and promote cell death upon GCRV infection at different subcellular locations. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:102-115. [PMID: 25280626 DOI: 10.1016/j.dci.2014.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/21/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
Sterile alpha and Toll/IL-1R motif containing 1 (SARM1) negatively regulates TRIF-dependent TLR signaling in mammals. However, its immune function remains unclear in teleost. Here, a grass carp Ctenopharyngodon idella SARM1 (CiSARM1) gene and its two novel splice variants (CiSARM1s1 and CiSARM1s2) were identified. CiSARM1s1 and CiSARM1s2 are generated by intron retention mechanism, and they only retain N-terminal HEAT/armadillo motifs. In C. idella kidney (CIK) cells, CiSARM1 and CiSARM1s1 are located in mitochondria, whereas CiSARM1s2 distributes in the whole cell. All the three transcripts are ubiquitously expressed in 15 investigated tissues. They were responsive to GCRV in vivo and in vitro and to viral/bacterial PAMPs in vitro, implying they participate in both antiviral and antibacterial immune responses. By overexpression experiment, CiSARM1 and its two isoforms affected each other's expression in CIK cells. CiSARM1 inhibited GCRV-triggered IFN-I response by affecting the expressions of CiTRIF, CiMyD88, CiIPS-1, CiTRAF6, CiTBK1, CiIRF3 and CiIRF7 in TRIF-, MyD88- and IPS-1-dependent pathways; CiSARM1s1 and CiSARM1s2 inhibited GCRV-triggered IFN-I production through suppressing the expressions of CiMyD88, CiIPS-1, CiTRAF6, CiTBK1, CiIRF3 and CiIRF7 in MyD88- and IPS-1-dependent pathways. Moreover, antiviral activity assays indicated that all the three genes promote GCRV-induced cell death. These results were further verified by RNAi experiments. Thus, CiSARM1 and its two splice variants jointly prevent excessive activation of the host immune response. These findings uncover the regulatory mechanisms of SARM1 in teleost and lay a foundation for further functional and evolutionary researches on SARM1.
Collapse
Affiliation(s)
- Nana Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jianguo Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Chunrong Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Youliang Rao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoli Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Quanyuan Wan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
29
|
Chen YY, Chen JC, Lin YC, Kitikiew S, Li HF, Bai JC, Tseng KC, Lin BW, Liu PC, Shi YZ, Kuo YH, Chang YH. Endogenous molecules induced by a pathogen-associated molecular pattern (PAMP) elicit innate immunity in shrimp. PLoS One 2014; 9:e115232. [PMID: 25517999 PMCID: PMC4269435 DOI: 10.1371/journal.pone.0115232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/20/2014] [Indexed: 12/31/2022] Open
Abstract
Invertebrates rely on an innate immune system to combat invading pathogens. The system is initiated in the presence of cell wall components from microbes like lipopolysaccharide (LPS), β-1,3-glucan (βG) and peptidoglycan (PG), altogether known as pathogen-associated molecular patterns (PAMPs), via a recognition of pattern recognition protein (PRP) or receptor (PRR) through complicated reactions. We show herein that shrimp hemocytes incubated with LPS, βG, and PG caused necrosis and released endogenous molecules (EMs), namely EM-L, EM-β, and EM-P, and found that shrimp hemocytes incubated with EM-L, EM-β, and EM-P caused changes in cell viability, degranulation and necrosis of hemocytes, and increased phenoloxidase (PO) activity and respiratory burst (RB) indicating activation of immunity in vitro. We found that shrimp receiving EM-L, EM-β, and EM-P had increases in hemocyte count and other immune parameters as well as higher phagocytic activity toward a Vibrio pathogen, and found that shrimp receiving EM-L had increases in proliferation cell ratio and mitotic index of hematopoietic tissues (HPTs). We identified proteins of EMs deduced from SDS-PAGE and LC-ESI-MS/MS analyses. EM-L and EM-P contained damage-associated molecular patterns (DAMPs) including HMGBa, HMGBb, histone 2A (H2A), H2B, and H4, and other proteins including proPO, Rab 7 GPTase, and Rab 11 GPTase, which were not observed in controls (EM-C, hemocytes incubated in shrimp salt solution). We concluded that EMs induced by PAMPs contain DAMPs and other immune molecules, and they could elicit innate immunity in shrimp. Further research is needed to identify which individual molecule or combined molecules of EMs cause the results, and determine the mechanism of action in innate immunity.
Collapse
Affiliation(s)
- Yu-Yuan Chen
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Jiann-Chu Chen
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
- * E-mail:
| | - Yong-Chin Lin
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Suwaree Kitikiew
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Hui-Fang Li
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Jia-Chin Bai
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Kuei-Chi Tseng
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Bo-Wei Lin
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Po-Chun Liu
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Yin-Ze Shi
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Yi-Hsuan Kuo
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Yu-Hsuan Chang
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| |
Collapse
|
30
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 731] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
31
|
Cai J, Xia H, Huang Y, Lu Y, Wu Z, Jian J. Molecular cloning and characterization of high mobility group box1 (Ls-HMGB1) from humphead snapper, Lutjanus sanguineus. FISH & SHELLFISH IMMUNOLOGY 2014; 40:539-544. [PMID: 25120217 DOI: 10.1016/j.fsi.2014.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/20/2014] [Accepted: 08/03/2014] [Indexed: 06/03/2023]
Abstract
High mobility group box1 (HMGB1) is a kind of chromatin-associated nonhistone protein important for nucleosome formation, transcriptional regulation and inflammation. However, the reports about HMGB1 of marine fish were still limited. Here, we cloned and characterized a HMGB1 gene from humphead snapper, Lutjanus sanguineus (Ls-HMGB1). The Ls-HMGB1 cDNA composed of 1199 bp with a 70 bp of 5'-UTR, 630 bp open reading frame (ORF) and 499 bp 3'-UTR, encoded a polypeptide of 210 amino acids (GenBank Accession No: KJ783442). Sequence alignment of Ls-HMGB1 showed the highest similarity of 91% with Sciaenops ocellatus HMGB1 protein. Quantitative real-time PCR (qRT-PCR) analysis revealed that Ls-HMGB1 had relatively high expression level in skin, kidney and heart. After Vibrio harveyi and poly I:C stimulation, transcripts of Ls-HMGB1 were significantly increased and reached to peak at 18 h p.i. The L. sanguineus interleukin-6 (Ls-IL6) transcription in HK leukocytes was significantly induced by recombinant LsHMGB1 (rLsHMGB1). These results indicated that Ls-HMGB1 may play an important role in immune response of L. sanguineus during pathogen challenge.
Collapse
Affiliation(s)
- Jia Cai
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China
| | - Hongli Xia
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China
| | - Yucong Huang
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China
| | - Zaohe Wu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China; Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China.
| |
Collapse
|
32
|
Shang X, Su J, Wan Q, Su J, Feng X. CpG methylation in the 5'-flanking region of LGP2 gene lacks association with resistance/susceptibility to GCRV but contributes to the differential expression between muscle and spleen tissues in grass carp, Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2014; 40:154-163. [PMID: 24998981 DOI: 10.1016/j.fsi.2014.06.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/23/2014] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
As an intracellular pattern recognition receptor (PRR), laboratory of genetics and physiology 2 (LGP2) plays a pivotal role in detecting nucleic acids of invading pathogens and simultaneously modulating signaling by retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) in type I interferon (IFN-I) pathway. Nevertheless, the underlying antiviral transcription mechanism of LGP2 remains obscure. The present study attempted to reveal the methylation levels of CiLGP2 (Ctenopharyngodon idella LGP2) in muscle and spleen of grass carp and their association with the resistance against grass carp reovirus (GCRV). By prediction, the CpG island was 133 bp in length in 5'-flanking region, containing six candidate CpG loci, whose methylation statuses were investigated by virtue of the bisulfite sequencing PCR (BSP) among muscle and spleen tissues in 120 individuals that were divided into resistant/susceptible groups after a challenge experiment, and the association analysis was performed with Chi-square test. Quantitative real-time RT-PCR (qRT-PCR) was employed to ascertain the interrelation between methylation status and transcription of CiLGP2. The CpG sites at -1394, -1366, -1331 and -1314 nt were identified as hypermethylated, inversely unmethylated at -1350 CpG site. The -1411 CpG site presented six methylation patterns as well as one mentionable type of mutation triggered by spontaneous deamination. Although there was no statistically significant difference on DNA methylation with resistance against GCRV at -1411 CpG site, the methylation levels were significantly lower in spleen than those in muscle, accompanied by higher mRNA expression of CiLGP2 in spleen. Notably, DNA methylation may be conceivably serve as an essential regulatory factor for CiLGP2 antiviral transcription in spleen. This research first demonstrated the relationship between DNA methylation and LGP2 gene expression, preliminary revealed the underlying transcription mechanism of CiLGP2 against GCRV as well as provided potential references and laid a theoretical foundation for viral recognition and regulation research of LGP2 in vertebrates.
Collapse
Affiliation(s)
- Xueying Shang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jianguo Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Quanyuan Wan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Juanjuan Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoli Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
33
|
Feng X, Su J, Yang C, Yan N, Rao Y, Chen X. Molecular characterizations of grass carp (Ctenopharyngodon idella) TBK1 gene and its roles in regulating IFN-I pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:278-290. [PMID: 24704212 DOI: 10.1016/j.dci.2014.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
TANK-binding kinase 1 (TBK1), a kinase at the crossroads of multiple IFN-inducing signaling pathways, plays essential roles in both antiviral and antibacterial innate immunity in mammals. Here, TBK1 gene (10339bp) was identified and characterized from grass carp Ctenopharyngodon idella (CiTBK1). The genomic sequence is shorter than other orthologs in vertebrate, and a promoter region is found in intron 1. mRNA expression of CiTBK1 was widespread in fifteen tissues investigated, and was up-regulated post GCRV challenge in vivo and in vitro, as well as after stimulation of viral/bacterial PAMPs in vitro. CiTBK1 mediates IFN-I signal pathway through over-expression experiment. Post GCRV challenge, CiTBK1 over-expression inhibits viral infection by induction of CiIFN-I and CiMx1 mainly via CiIRF7. In CiTBK1 over-expression cells, mRNA expressions of CiIRF3, CiIRF7 and CiIFN-I were inhibited, whereas CiMx1 was facilitated after poly I:C stimulation, comparing to those in control group. The result indicated that CiMx1 expression mediated by CiTBK1 is in IFN-I independent way after poly I:C stimulation. However, over-expression of CiTBK1 diminishes LPS-induced expressions of CiIRF3 and CiIRF7 but promotes the induction of CiIFN-I and CiMx1 in comparison with the control, which suggests that CiTBK1-triggered IFN-I activation is in IRF3/IRF7-independent manner after LPS stimulation. Notably, over-expression of CiTBK1 negatively regulated PGN-induced IRF3, IRF7, IFN-I and Mx1 immune response. Taken together, CiTBK1 participates in broad antiviral and antibacterial immune responses in different manners, and keeps regulatory balance that prevents harmful effects from excessive activation.
Collapse
Affiliation(s)
- Xiaoli Feng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, China
| | - Jianguo Su
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, China.
| | - Chunrong Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, China
| | - Nana Yan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, China
| | - Youliang Rao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, China
| | - Xiaohui Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, China
| |
Collapse
|
34
|
Rao Y, Su J, Yang C, Yan N, Chen X, Feng X. Dynamic localization and the associated translocation mechanism of HMGBs in response to GCRV challenge in CIK cells. Cell Mol Immunol 2014; 12:342-53. [PMID: 25042634 DOI: 10.1038/cmi.2014.55] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/23/2014] [Accepted: 06/08/2014] [Indexed: 01/04/2023] Open
Abstract
High-mobility group box (HMGB) proteins, a family of chromatin-associated nuclear proteins, play amazingly multifaceted roles in the immune system of mammals. Thus far, little is known about the nucleocytoplasmic distribution of HMGBs in teleosts. The present study systematically investigated the dynamic localization of all six HMGB proteins in Ctenopharyngodon idella kidney (CIK) cells. Under basal conditions, all HMGBs exclusively localized to the nucleus. Grass carp reovirus (GCRV), polyinosinic-polycytidylic (poly(I∶C)) potassium salt and lipopolysaccharide (LPS) challenge evoked the nuclear export of HMGBs to various degrees: GCRV challenge induced the highest nuclear export of CiHMGB2b, and poly(I∶C) and LPS evoked the highest nucleocytoplasmic shuttling of CiHMGB1b. Overall, the nucleocytoplasmic shuttling of CiHMGB2a and CiHMGB3b was rarely induced by these challenges. Dynamic imaging uncovered that the nucleocytoplasmic GCRV-induced relocation of CiHMGB2b occurred in cells undergoing karyotheca rupture, apoptosis or proliferation. Western blot analyses were used to examine HMGB-EGFP fusion proteins in whole cell lysates, cytosol, nuclear fractions and culture medium. Further investigation demonstrated the nuclear retention of N-terminal HMG-boxes and the nucleocytoplasmic distribution of the C-terminal acidic tails. Comparative analyses of the dynamic relocation of full-length, truncated or chimeric HMGBs confirmed that the intramolecular interaction between HMG-boxes and C-tail domains mediated the nucleocytoplasmic translocation of HMGBs. These results not only provide an overall understanding of the subcellular localization of HMGBs, but also reveal the induction mechanism of the nucleocytoplasmic translocation of HMGBs by GCRV challenge, which lays a foundation for further studies on the interactions among pathogens, HMGBs and pattern recognition receptors in the innate immunity of teleosts.
Collapse
|
35
|
Feng X, Yang C, Zhang Y, Peng L, Chen X, Rao Y, Gu T, Su J. Identification, characterization and immunological response analysis of stimulator of interferon gene (STING) from grass carp Ctenopharyngodon idella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:163-176. [PMID: 24631580 DOI: 10.1016/j.dci.2014.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/01/2014] [Accepted: 03/02/2014] [Indexed: 06/03/2023]
Abstract
Stimulator of interferon gene (STING), an important adapter responsible for RLR pathway, plays a pivotal role in both viral RNA- and DNA-triggered induction of IFNs in mammals. To understand the roles of STING in piscine immune system, STING gene (CiSTING) was identified from grass carp (Ctenopharyngodon idella). The genomic sequence of CiSTING was of 8548 base pairs (bp), including 899 bp 5' flank region, 7 exons and 6 introns. Promoter region was predicted and promoter activity was verified. The CiSTING cDNA was of 1358 bp with an open reading frame of 1185 bp, encoding a polypeptide of 394 amino acids with a signal peptide and three transmembrane motifs in the N-terminal region. mRNA expression of CiSTING was widespread in fifteen tissues investigated, and was up-regulated by GCRV in vivo and in vitro. Meanwhile, the transcription of CiSTING was inhibited at early stage, and then up-regulated at late phase upon poly(I:C) or PGN stimulation in vitro. Interestingly, CiSTING had little impact on LPS in vitro. In CiSTING over-expression cells, CiTBK1, CiIRF3 and CiIRF7 were significantly up-regulated post GCRV or viral/bacterial PAMPs stimulation. In addition, post GCRV or PGN stimulation, the transcription of CiIFN-I was remarkably inhibited while CiMx1 was up-regulated; as for poly(I:C) stimulation, mRNA expressions of CiIFN-I and CiMx1 were inhibited at early stage while enhanced at late phrase; after LPS stimulation, both CiIFN-I and CiMx1 were inhibited. Furthermore, antiviral activity of CiSTING was manifested by the inhibition of GCRV yield. Taken together, these results demonstrated that CiSTING may be involved in board innate immune responses via the TBK1-IRF3/IRF7 cascade, responding to not only dsRNA analogue in an IFN-dependent pathway, but also virus and bacterial PAMPs in an IFN-independent pathway. This study provided novel insights into the essential role of STING in innate immunity.
Collapse
Affiliation(s)
- Xiaoli Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chunrong Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yixuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Limin Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaohui Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Youliang Rao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Tianle Gu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jianguo Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
36
|
Xie J, Hodgkinson JW, Li C, Kovacevic N, Belosevic M. Identification and functional characterization of the goldfish (Carassius auratus L.) high mobility group box 1 (HMGB1) chromatin-binding protein. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:245-253. [PMID: 24406304 DOI: 10.1016/j.dci.2013.12.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 06/03/2023]
Abstract
We report on the identification and functional characterization of HMGB1 of the goldfish. Quantitative analysis indicated the highest expression of goldfish HMGB1 in the brain, with lower mRNA levels in spleen, intestine, kidney, gill and heart. HMGB1 was also differentially expressed in goldfish immune cell populations with highest mRNA levels present in splenocytes and neutrophils. We generated and functionally characterized the recombinant HMGB1 (rgHMGB1). The rgHMGB1 primed the respiratory burst response in monocytes and induced nitric oxide production of primary goldfish macrophages. Treatment of goldfish macrophages with heat-killed Mycobacterium marinum and Aeromonas salmonicida elevated the expression of HMGB1 and resulted in higher HMGB1 protein levels. The rgHMGB1 induced a dose-dependent production of TNFα-2 and IL-1β1 of goldfish macrophages. Furthermore, the dual luciferase reporter assay revealed that goldfish HMGB1 induced the activation of the NF-κB signaling pathway. Our results indicate that goldfish HMGB1 is a critical regulatory cytokine of inflammatory and antimicrobial response of the goldfish.
Collapse
Affiliation(s)
- Jiasong Xie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chao Li
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Nikolina Kovacevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
37
|
Long H, Chen C, Zhang J, Sun L. Antibacterial and antiviral properties of tongue sole (Cynoglossus semilaevis) high mobility group B2 protein are largely independent on the acidic C-terminal domain. FISH & SHELLFISH IMMUNOLOGY 2014; 37:66-74. [PMID: 24468324 DOI: 10.1016/j.fsi.2014.01.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/06/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
High mobility group box (HMGB) proteins are known to be involved in diverse functions in mammalian cells. In teleost, very limited studies on HMGB proteins have been documented. In this study, we reported identification of a HMGB homologue (named CsHMGB2) from tongue sole (Cynoglossus semilaevis) and examined its biological property. CsHMGB2 is 245 residues in length and contains two basic HMG boxes and an acidic C-terminal tail composed of 23 Asp/Glu residues. Quantitative real time RT-PCR (qRT-PCR) analysis showed that CsHMGB2 expression occurred in multiple tissues and was upregulated by bacterial and viral infection in a time-dependent manner. In vitro studies showed that when tongue sole peripheral blood leukocytes were treated with recombinant CsHMGB2 (rCsHMGB2) and the mutant rCsHMGB2M, which bears a deletion of the C-terminal acidic region, significant and comparable increases in cellular resistance against bacterial infection were observed. qRT-PCR detected enhanced expression of proinflammatory cytokines and chemokines in rCsHMGB2-treated cells. In vivo studies showed that when tongues sole were administered with rCsHMGB2 or rCsHMGB2M before being subjected to bacterial and viral infection, the pathogen loads in the spleen and kidney of the fish were significantly reduced. Taken together, these results suggest that CsHMGB2 possesses immunoregulatory properties that promote resistance against bacterial and viral infection in a manner that is largely independent on the highly conserved C-terminal acidic domain.
Collapse
Affiliation(s)
- Hao Long
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Chen
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Li Sun
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
38
|
Yang C, Chen L, Su J, Feng X, Rao Y. Two novel homologs of high mobility group box 3 gene in grass carp (Ctenopharyngodon idella): potential roles in innate immune responses. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1501-1510. [PMID: 23994280 DOI: 10.1016/j.fsi.2013.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/20/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
High mobility group box 3 (HMGB3) protein is a universal sentinel in the activation of innate antiviral immune responses in mammalian cells of limited tissues. However, the underlying immune functions of HMGB3 responding to viruses and viral/bacterial pathogen-associated molecular patterns (PAMPs) are still unknown in teleosts. In the present study, two novel homologs of grass carp (Ctenopharyngodon idella) HMGB3 (designated as CiHMGB3a and CiHMGB3b) were identified and characterized. Quantitative RT-PCR analysis showed that CiHMGB3a and CiHMGB3b were widely expressed in tissues. The mRNA expressions of CiHMGB3a and CiHMGB3b were induced by grass carp reovirus (GCRV) challenges both in tissues and in cells, and CiHMGB3a played a more active role in antiviral immune responses. Viral PAMP stimulation evidenced that CiHMGB3a and CiHMGB3b mediated immune responses in CIK (C. idella kidney) cells. Interestingly, CiHMGB3a had little impact on bacterial PAMPs (LPS and PGN), whereas CiHMGB3b was critical responding to bacterial PAMPs stimulation. In overexpressions of CiHMGB3a and CiHMGB3b cells, the transcriptional levels of CiHMGB3a, CiHMGB3b, CiTRIF, CiIPS-1, CiIFN-I and CiMx1 were remarkably induced. In addition, CiMyD88 had vital impact on antiviral signaling channels in overexpression of CiHMGB3b cells. Furthermore, 96-well plate staining assay, virus titer test and GCRV quantitative analysis collectively indicated CiHMGB3a and CiHMGB3b exhibited substantial antiviral activity. These results suggest that CiHMGB3a and CiHMGB3b exert important functions in antiviral immune responses by TLRs and RLRs signaling pathways. Taken together, current study provides the first evidence that HMGB3 participates in broad antiviral and antibacterial immune responses in teleosts.
Collapse
Affiliation(s)
- Chunrong Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | | | | | | | | |
Collapse
|
39
|
Yang C, Li Q, Su J, Chen X, Wang Y, Peng L. Identification and functional characterizations of a novel TRIF gene from grass carp (Ctenopharyngodon idella). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:222-229. [PMID: 23732407 DOI: 10.1016/j.dci.2013.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 06/02/2023]
Abstract
Toll/interleukin-1 receptor (TIR) domain containing adapter inducing interferon-β (TRIF) is an adapter in responding to activation of some toll-like receptors (TLRs), which provides early clearance of viral and bacterial pathogens. Here we identified and characterized a full-length genomic sequence of TRIF gene from grass carp Ctenopharyngodon idella (designated as CiTRIF). CiTRIF genomic sequence consists of 3534 base pairs (bp), containing 5' flank sequence (496 bp) and unique intron (815 bp). The full-length cDNA sequence is 2241 bp, including 5' untranslated region (UTR) of 352 bp, 3' UTR of 209 bp, and an open reading frame of 1680 bp encoding a polypeptide of 559 amino acids with an estimated molecular weight of 62.643 kDa and a predicted isoelectric point of 5.71. The deduced amino acid sequence just contains TIR domain, and is most similar to the zebrafish (Danio rerio) TRIF sequence with an identity of 64%. CiTRIF exhibits sequence divergence from its orthologs. Promoter region was predicted and promoter activity was verified. mRNA expression of CiTRIF gene is widespread in 15 tissues investigated, highly in foregut and skin physiological immune barrier. The transcripts of CiTRIF were significantly and rapidly induced in spleen and head kidney tissues at early stage post grass carp reovirus (GCRV) challenge. The modulations are significant but mild in CIK (C. idella kidney) cells post GCRV infection or poly(I:C) stimulation. The over-expression vector was constructed and transfected into CIK cell line to get stably expressing recombinant proteins. In CiTRIF transfected cells, mRNA expressions of CiTRIF, CiRIG-I, CiIRF7 and CiIFN-I were up-regulated. After GCRV infection, the transcripts of CiTRIF, CiRIG-I, CiIRF7 and CiIFN-I fell a little bit after a rapidly and strongly rise. In CiTRIF over-expression cells, virus load and titer were significantly lower than those in controls post GCRV challenge, and virus replication was inhibited obviously. The results indicate that the novel TRIF gene from grass carp plays important roles in modulating antiviral innate immune responses, and serve the further functional studies on TRIF gene in teleosts and immune evolution.
Collapse
Affiliation(s)
- Chunrong Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | | | | | | | | | | |
Collapse
|
40
|
Rao Y, Su J, Yang C, Peng L, Feng X, Li Q. Characterizations of two grass carp Ctenopharyngodon idella HMGB2 genes and potential roles in innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:164-177. [PMID: 23756189 DOI: 10.1016/j.dci.2013.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/02/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
High-mobility group box 2 (HMGB2) protein is a chromatin-associated nonhistone protein, involved in transcriptional regulation and nucleic-acid-mediated innate immune responses in mammalian. However, the function of piscine HMGB2 in innate immune responses is still unknown. In the present study, two HMGB2 homologue genes (CiHMGB2a, CiHMGB2b) were identified and characterized in grass carp (Ctenopharyngodon idella). Both CiHMGB2a and CiHMGB2b genes encode proteins with 213 amino acids, sharing 71.4% identities and containing two basic HMG boxes and an acidic tail. The deduced protein sequences showed the most identities to HMGB2a (93%) and HMGB2b (86.4%) of zebrafish (Danio rerio), respectively. Quantitative real-time RT-PCR (qRT-PCR) analysis showed that CiHMGB2a and CiHMGB2b were constitutively expressed in all the 15 tested tissues. Post grass carp reovirus (GCRV) infection, mRNA levels of CiHMGB2a and CiHMGB2b were strongly up-regulated in spleen and head kidney and mildly modulated in C. idella kidney (CIK) cells. Meanwhile, mRNA expressions of CiHMGB2a and CiHMGB2b were significantly regulated by viral pathogen associated molecular patterns (PAMPs) polyinosinic-polycytidylic potassium salt (poly(I:C)) and bacterial PAMPs lipopolysaccharide (LPS), peptidoglycan (PGN) challenge in CIK cells. In CiHMGB2a and CiHMGB2b over-expression cells, expressions of CiHMGB2a and CiHMGB2b facilitated each other; transcription levels of CiTRIF, CiMyD88, CiIPS-1 and CiMx1 were remarkably enhanced, whereas CiIFN-I was inhibited, compared with those in cells transfected with pCMV (control plasmid); after GCRV challenge, all those tested genes were up-regulated with divergent expression profiles. Antiviral activities of CiHMGB2a and CiHMGB2b were manifested by the delayed appearance of cytopathic effect (CPE) and inhibition of GCRV yield. All those results demonstrate that CiHMGB2a and CiHMGB2b not only mediate antiviral immune responses but also involve in responding to viral/bacterial PAMPs challenge, which provides novel insights into the essential role of HMGB2 in innate immunity.
Collapse
Affiliation(s)
- Youliang Rao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, China
| | | | | | | | | | | |
Collapse
|
41
|
Chen X, Wang Q, Yang C, Rao Y, Li Q, Wan Q, Peng L, Wu S, Su J. Identification, expression profiling of a grass carp TLR8 and its inhibition leading to the resistance to reovirus in CIK cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:82-93. [PMID: 23632252 DOI: 10.1016/j.dci.2013.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
TLR8 (toll-like receptor 8), a homolog of TLR3, TLR7 and TLR9 as prototypical intracellular members of TLR family, is generally associated with sensing single stranded RNA and plays a pivotal role in antiviral immune response. In this study, a TLR8 gene from grass carp Ctenopharyngodon idella (designated as CiTLR8) was obtained and characterized. The full-length cDNA of CiTLR8 was of 3766 bp. The open reading frame was of 3072 bp and encoded a polypeptide of 1023 amino acids, including seventeen LRR (leucine-rich repeat) motifs, one transmembrane domain and one TIR (toll/interleukin-1 receptor) domain. A single intron with the size of 839 bp was found on the neck of start codon (ATG). CiTLR8 mRNA was ubiquitously expressed in the 15 tested tissues and the expression level in gas bladder, spleen, brain, hindgut and trunk kidney tissues was high. Besides, the CiTLR8 expression in spleen and head kidney was significantly up-regulated and reached peak at 24 h post-injection of grass carp reovirus (GCRV). CiTLR8 transcription reached peak at 8 h and then declined below the normal level post-GCRV infection in the C. idella kidney (CIK) cell line; and it was rapidly and significantly down-regulated by the stimulation of the synthetic double-stranded RNA polyriboinosinic-polyribocytidylic acid sodium salt (poly I:C) in CIK cells in a dose and time-dependent manner. The inhibitor expression vectors were constructed and transfected into CIK cell line to obtain stably expressing shRNA targeting TLR8. In CiTLR8-knockdown cells, CiTLR7 transcript weakly increased, CiIFN-I mRNA was significantly down-regulated, and the expression of CiMyD88, CiIRF7 and CiMx1 scarcely changed. Post poly I:C stimulation, CiTLR8, CiTLR7 and CiMyD88 transcripts significantly increased, CiIRF7 was down-regulated after an initial phase of increase, and CiIFN-I and CiMx1 transcripts were up-regulated. After GCRV infection, the transcripts of CiTLR8, CiTLR7, CiMyD88 and CiIRF7 were up-regulated, but CiIFN-I and CiMx1 transcripts were inhibited. Nevertheless, cells transfected with pshTLR8 vectors had strong resistance against GCRV injection, suggesting CiTLR8 might play a negative role in antiviral immune response. These results collectively suggested that CiTLR8 was a novel member of TLR gene family, engaging in antiviral innate immune defense in C. idella, which laid a foundation for the further mechanism research of TLR8 in fishes.
Collapse
Affiliation(s)
- Xiaohui Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|