1
|
De Tomaso AW, Rodriguez-Valbuena H. Histocompatibility in Botryllus schlosseri and the origins of adaptive immunity. Immunogenetics 2025; 77:22. [PMID: 40347240 PMCID: PMC12065747 DOI: 10.1007/s00251-025-01379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 05/03/2025] [Indexed: 05/12/2025]
Abstract
The basal chordate, Botryllus schlosseri, undergoes a natural transplantation reaction that is controlled by a single, highly polymorphic locus called the fuhc. The fuhc is one of the most polymorphic loci ever described, with most populations having hundreds of alleles, and up to a thousand found worldwide. Two individuals are compatible if they share one or both alleles, while those with no shared alleles are incompatible; thus, Botryllus uses a missing-self recognition strategy to discriminate between up to a thousand histocompatibility ligands. Remarkably, this discriminatory capability, which rivals that of vertebrate adaptive immunity, is carried out by germline-encoded receptors; thus, the mechanisms that establish and maintain this remarkable specificity are not understood. Multiple complete haplotypes of the fuhc locus have recently been sequenced, and at least seven genes with characteristics that suggest a role in allorecognition have been identified, including ligands, receptors, and intracellular proteins that likely organize and tune signal transduction complexes. This includes a new receptor family called the fester co-receptors (FcoRs) that encode ITIM and hemITAM domains, linking allorecognition in Botryllus to canonical immune transduction pathways. This review will summarize our current understanding and working hypotheses on the cellular and molecular mechanisms that control this innate, highly polymorphic allorecognition response, and how those may have been co-opted during the evolution of adaptive immunity.
Collapse
Affiliation(s)
- Anthony W De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Henry Rodriguez-Valbuena
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
2
|
Rodriguez-Valbuena H, Salcedo J, De Their O, Flot JF, Tiozzo S, De Tomaso AW. Genetic and functional diversity of allorecognition receptors in the urochordate, Botryllus schlosseri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618699. [PMID: 39463968 PMCID: PMC11507803 DOI: 10.1101/2024.10.16.618699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Allorecognition in Botryllus schlosseri is controlled by a highly polymorphic locus (the fuhc), and functionally similar to missing-self recognition utilized by Natural Killer cells-compatibility is determined by sharing a self-allele, and integration of activating and inhibitory signals determines outcome. We had found these signals were generated by two fuhc-encoded receptors, called fester and uncle fester. Here we show that fester genes are members of an extended family consisting of >37 loci, and co-expressed with an even more diverse gene family-the fester co-receptors (FcoR). The FcoRs are membrane proteins related to fester, but include conserved tyrosine motifs, including ITIMs and hemITAMs. Both genes are encoded in highly polymorphic haplotypes on multiple chromosomes, revealing an unparalleled level of diversity of innate receptors. Our results also suggest that ITAM/ITIM signal integration is a deeply conserved mechanism that has allowed convergent evolution of innate and adaptive cell-based recognition systems.
Collapse
Affiliation(s)
| | - Jorge Salcedo
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Olivier De Their
- Evolutionary Biology & Ecology, C.P. 160/12, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium
| | - Jean Francois Flot
- Evolutionary Biology & Ecology, C.P. 160/12, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium
| | - Stefano Tiozzo
- Evolutionary Biology & Ecology, C.P. 160/12, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium
| | - Anthony W De Tomaso
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
3
|
Rodriguez-Valbuena H, Gonzalez-Muñoz A, Cadavid LF. Multiple Alr genes exhibit allorecognition-associated variation in the colonial cnidarian Hydractinia. Immunogenetics 2022; 74:559-581. [PMID: 35761101 DOI: 10.1007/s00251-022-01268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/19/2022] [Indexed: 11/25/2022]
Abstract
The genetics of allorecognition has been studied extensively in inbred lines of Hydractinia symbiolongicarpus, in which genetic control is attributed mainly to the highly polymorphic loci allorecognition 1 (Alr1) and allorecognition 2 (Alr2), located within the Allorecognition Complex (ARC). While allelic variation at Alr1 and Alr2 can predict the phenotypes in inbred lines, these two loci do not entirely predict the allorecognition phenotypes in wild-type colonies and their progeny, suggesting the presence of additional uncharacterized genes that are involved in the regulation of allorecognition in this species. Comparative genomics analyses were used to identify coding sequence differences from assembled chromosomal intervals of the ARC and from genomic scaffold sequences between two incompatible H. symbiolongicarpus siblings from a backcross population. New immunoglobulin superfamily (Igsf) genes are reported for the ARC, where five of these genes are closely related to the Alr1 and Alr2 genes, suggesting the presence of multiple Alr-like genes within this complex. Complementary DNA sequence evidence revealed that the allelic polymorphism of eight Igsf genes is associated with allorecognition phenotypes in a backcross population of H. symbiolongicarpus, yet that association was not found between parental colonies and their offspring. Alternative splicing was found as a mechanism that contributes to the variability of these genes by changing putative activating receptors to inhibitory receptors or generating secreted isoforms of allorecognition proteins. Our findings demonstrate that allorecognition in H. symbiolongicarpus is a multigenic phenomenon controlled by genetic variation in at least eight genes in the ARC complex.
Collapse
Affiliation(s)
- Henry Rodriguez-Valbuena
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia.
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Andrea Gonzalez-Muñoz
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Luis F Cadavid
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
4
|
Rodriguez D, Nourizadeh S, De Tomaso AW. The biology of the extracorporeal vasculature of Botryllus schlosseri. Dev Biol 2019; 448:309-319. [PMID: 30760410 DOI: 10.1016/j.ydbio.2018.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/29/2018] [Accepted: 10/17/2018] [Indexed: 02/08/2023]
Abstract
The extracorporeal vasculature of the colonial ascidian Botryllus schlosseri plays a key role in several biological processes: transporting blood, angiogenesis, regeneration, self-nonself recognition, and parabiosis. The vasculature also interconnects all individuals in a colony and is composed of a single layer of ectodermally-derived cells. These cells form a tube with the basal lamina facing the lumen, and the apical side facing an extracellular matrix that consists of cellulose and other proteins, known as the tunic. Vascular tissue is transparent and can cover several square centimeters, which is much larger than any single individual within the colony. It forms a network that ramifies and expands to the perimeter of each colony and terminates into oval-shaped protrusions known as ampullae. Botryllus individuals replace themselves through a weekly budding cycle, and vasculature is added to ensure the interconnection of each new individual, thus there is continuous angiogenesis occurring naturally. The vascular tissue itself is highly regenerative; surgical removal of the ampullae and peripheral vasculature triggers regrowth within 24-48 h, which includes forming new ampullae. When two individuals, whether in the wild or in the lab, come into close contact and their ampullae touch, they can either undergo parabiosis through anastomosing vessels, or reject vascular fusion. The vasculature is easily manipulated by direct means such as microinjections, microsurgeries, and pharmacological reagents. Its transparent nature allows for in vivo analysis by bright field and fluorescence microscopy. Here we review the techniques and approaches developed to study the different biological processes that involve the extracorporeal vasculature.
Collapse
Affiliation(s)
- Delany Rodriguez
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Shane Nourizadeh
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Anthony W De Tomaso
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
5
|
Grice LF, Gauthier ME, Roper KE, Fernàndez-Busquets X, Degnan SM, Degnan BM. Origin and Evolution of the Sponge Aggregation Factor Gene Family. Mol Biol Evol 2017; 34:1083-1099. [PMID: 28104746 PMCID: PMC5400394 DOI: 10.1093/molbev/msx058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although discriminating self from nonself is a cardinal animal trait, metazoan allorecognition genes do not appear to be homologous. Here, we characterize the Aggregation Factor (AF) gene family, which encodes putative allorecognition factors in the demosponge Amphimedon queenslandica, and trace its evolution across 24 sponge (Porifera) species. The AF locus in Amphimedon is comprised of a cluster of five similar genes that encode Calx-beta and Von Willebrand domains and a newly defined Wreath domain, and are highly polymorphic. Further AF variance appears to be generated through individualistic patterns of RNA editing. The AF gene family varies between poriferans, with protein sequences and domains diagnostic of the AF family being present in Amphimedon and other demosponges, but absent from other sponge classes. Within the demosponges, AFs vary widely with no two species having the same AF repertoire or domain organization. The evolution of AFs suggests that their diversification occurs via high allelism, and the continual and rapid gain, loss and shuffling of domains over evolutionary time. Given the marked differences in metazoan allorecognition genes, we propose the rapid evolution of AFs in sponges provides a model for understanding the extensive diversification of self-nonself recognition systems in the animal kingdom.
Collapse
Affiliation(s)
- Laura F. Grice
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Marie E.A. Gauthier
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Kathrein E. Roper
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Barcelona Institute for Global Health, ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| | - Sandie M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Bernard M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Taketa DA, De Tomaso AW. Botryllus schlosseri allorecognition: tackling the enigma. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:254-65. [PMID: 24709050 PMCID: PMC4185259 DOI: 10.1016/j.dci.2014.03.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/24/2014] [Accepted: 03/21/2014] [Indexed: 05/15/2023]
Abstract
Allorecognition has been well-studied in the context of vertebrate adaptive immunity and recognition of the Major Histocompatibility Complex (MHC), which is the central event of vertebrate immune responses. Although allorecognition systems have been identified throughout the metazoa, recent results have shown that there is no apparent conservation or orthologous relationship between the mechanisms underlying this phenomenon in different organisms. Thus the origin of the vertebrate adaptive immune system as well as these other complex recognition systems is a complete mystery. This review will focus on allorecognition in Botryllus schlosseri, a basal chordate which undergoes a natural transplantation reaction following contact between two individuals, and, analogous to vertebrates, is controlled by a single locus. We will summarize each of the known candidate genes within this locus and their potential roles in allorecognition, and speculate on how these findings may in fact be revealing potential functional relationships between disparate allorecognition systems.
Collapse
Affiliation(s)
- Daryl A Taketa
- Department of Molecular, Cellular and Development Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Anthony W De Tomaso
- Department of Molecular, Cellular and Development Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
7
|
Buchmann K. Evolution of Innate Immunity: Clues from Invertebrates via Fish to Mammals. Front Immunol 2014; 5:459. [PMID: 25295041 PMCID: PMC4172062 DOI: 10.3389/fimmu.2014.00459] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/08/2014] [Indexed: 11/13/2022] Open
Abstract
Host responses against invading pathogens are basic physiological reactions of all living organisms. Since the appearance of the first eukaryotic cells, a series of defense mechanisms have evolved in order to secure cellular integrity, homeostasis, and survival of the host. Invertebrates, ranging from protozoans to metazoans, possess cellular receptors, which bind to foreign elements and differentiate self from non-self. This ability is in multicellular animals associated with presence of phagocytes, bearing different names (amebocytes, hemocytes, coelomocytes) in various groups including animal sponges, worms, cnidarians, mollusks, crustaceans, chelicerates, insects, and echinoderms (sea stars and urchins). Basically, these cells have a macrophage-like appearance and function and the repair and/or fight functions associated with these cells are prominent even at the earliest evolutionary stage. The cells possess pathogen recognition receptors recognizing pathogen-associated molecular patterns, which are well-conserved molecular structures expressed by various pathogens (virus, bacteria, fungi, protozoans, helminths). Scavenger receptors, Toll-like receptors, and Nod-like receptors (NLRs) are prominent representatives within this group of host receptors. Following receptor-ligand binding, signal transduction initiates a complex cascade of cellular reactions, which lead to production of one or more of a wide array of effector molecules. Cytokines take part in this orchestration of responses even in lower invertebrates, which eventually may result in elimination or inactivation of the intruder. Important innate effector molecules are oxygen and nitrogen species, antimicrobial peptides, lectins, fibrinogen-related peptides, leucine rich repeats (LRRs), pentraxins, and complement-related proteins. Echinoderms represent the most developed invertebrates and the bridge leading to the primitive chordates, cephalochordates, and urochordates, in which many autologous genes and functions from their ancestors can be found. They exhibit numerous variants of innate recognition and effector molecules, which allow fast and innate responses toward diverse pathogens despite lack of adaptive responses. The primitive vertebrates (agnathans also termed jawless fish) were the first to supplement innate responses with adaptive elements. Thus hagfish and lampreys use LRRs as variable lymphocyte receptors, whereas higher vertebrates [cartilaginous and bony fishes (jawed fish), amphibians, reptiles, birds, and mammals] developed the major histocompatibility complex, T-cell receptors, and B-cell receptors (immunoglobulins) as additional adaptive weaponry to assist innate responses. Extensive cytokine networks are recognized in fish, but related signal molecules can be traced among invertebrates. The high specificity, antibody maturation, immunological memory, and secondary responses of adaptive immunity were so successful that it allowed higher vertebrates to reduce the number of variants of the innate molecules originating from both invertebrates and lower vertebrates. Nonetheless, vertebrates combine the two arms in an intricate inter-dependent network. Organisms at all developmental stages have, in order to survive, applied available genes and functions of which some may have been lost or may have changed function through evolution. The molecular mechanisms involved in evolution of immune molecules, might apart from simple base substitutions be as diverse as gene duplication, deletions, alternative splicing, gene recombination, domain shuffling, retrotransposition, and gene conversion. Further, variable regulation of gene expression may have played a role.
Collapse
Affiliation(s)
- Kurt Buchmann
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
8
|
Braden BP, Taketa DA, Pierce JD, Kassmer S, Lewis DD, De Tomaso AW. Vascular regeneration in a basal chordate is due to the presence of immobile, bi-functional cells. PLoS One 2014; 9:e95460. [PMID: 24736432 PMCID: PMC3988187 DOI: 10.1371/journal.pone.0095460] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/27/2014] [Indexed: 11/18/2022] Open
Abstract
The source of tissue turnover during homeostasis or following injury is usually due to proliferation of a small number of resident, lineage-restricted stem cells that have the ability to amplify and differentiate into mature cell types. We are studying vascular regeneration in a chordate model organism, Botryllus schlosseri, and have previously found that following surgical ablation of the extracorporeal vasculature, new tissue will regenerate in a VEGF-dependent process within 48 hrs. Here we use a novel vascular cell lineage tracing methodology to assess regeneration in parabiosed individuals and demonstrate that the source of regenerated vasculature is due to the proliferation of pre-existing vascular resident cells and not a mobile progenitor. We also show that these cells are bi-potential, and can reversibly adopt two fates, that of the newly forming vessels or the differentiated vascular tissue at the terminus of the vasculature, known as ampullae. In addition, we show that pre-existing vascular resident cells differentially express progenitor and differentiated cell markers including the Botryllus homologs of CD133, VEGFR-2, and Cadherin during the regenerative process.
Collapse
Affiliation(s)
- Brian P. Braden
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Daryl A. Taketa
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - James D. Pierce
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Susannah Kassmer
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Daniel D. Lewis
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Anthony W. De Tomaso
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
9
|
Nydam ML, Netuschil N, Sanders E, Langenbacher A, Lewis DD, Taketa DA, Marimuthu A, Gracey AY, De Tomaso AW. The candidate histocompatibility locus of a Basal chordate encodes two highly polymorphic proteins. PLoS One 2013; 8:e65980. [PMID: 23826085 PMCID: PMC3691228 DOI: 10.1371/journal.pone.0065980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/29/2013] [Indexed: 01/11/2023] Open
Abstract
The basal chordate Botryllus schlosseri undergoes a natural transplantation reaction governed by a single, highly polymorphic locus called the fuhc. Our initial characterization of this locus suggested it encoded a single gene alternatively spliced into two transcripts: a 555 amino acid–secreted form containing the first half of the gene, and a full-length, 1008 amino acid transmembrane form, with polymorphisms throughout the ectodomain determining outcome. We have now found that the locus encodes two highly polymorphic genes which are separated by a 227 bp intergenic region: first, the secreted form as previously described, and a second gene encoding a 531 amino acid membrane-bound gene containing three extracellular immunoglobulin domains. While northern blotting revealed only these two mRNAs, both PCR and mRNA-seq detect a single capped and polyadenylated transcript that encodes processed forms of both genes linked by the intergenic region, as well as other transcripts in which exons of the two genes are spliced together. These results might suggest that the two genes are expressed as an operon, during which both genes are co-transcribed and then trans-spliced into two separate messages. This type of transcriptional regulation has been described in tunicates previously; however, the membrane-bound gene does not encode a typical Splice Leader (SL) sequence at the 5′ terminus that usually accompanies trans-splicing. Thus, the presence of stable transcripts encoding both genes may suggest a novel mechanism of regulation, or conversely may be rare but stable transcripts in which the two mRNAs are linked due to a small amount of read-through by RNA polymerase. Both genes are highly polymorphic and co-expressed on tissues involved in histocompatibility. In addition, polymorphisms on both genes correlate with outcome, although we have found a case in which it appears that the secreted form may be major allorecognition determinant.
Collapse
Affiliation(s)
- Marie L. Nydam
- Department of MCD Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Nikolai Netuschil
- Department of MCD Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Erin Sanders
- Department of MCD Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Adam Langenbacher
- Department of MCD Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Daniel D. Lewis
- Department of MCD Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Daryl A. Taketa
- Department of MCD Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Arumugapradeep Marimuthu
- Department of MCD Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Andrew Y. Gracey
- Department of Marine Environmental Biology, University of Southern California, Los Angeles, California, United States of America
| | - Anthony W. De Tomaso
- Department of MCD Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| |
Collapse
|