1
|
Cao S, Chang J, Li J, Liu X. Beta-Defensin1 from Ctenopharyngodon idella exerts immunomodulatory effects through CiHsp70-mediated antigen processing and presentation pathway activation. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110367. [PMID: 40286949 DOI: 10.1016/j.fsi.2025.110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Beta-Defensin1 from Ctenopharyngodon idella (CiBD1) is an important antimicrobial peptide in the defensin family, which possesses a high antibacterial activity. But its immunomodulatory effects and mechanisms are still poorly understood. Here, transcription levels of the immune-related genes in the immune-related tissues, and phagocytosis and respiratory burst activities of C. idella head kidney macrophages after CiBD1 overexpression were firstly detected. The results showed that CiBD1 overexpression could significantly up-regulate transcription levels of all the tested genes in the immune-related tissues, and enhance phagocytosis and respiratory burst activity of head kidney macrophages, implying CiBD1 has immunomodulatory effects on C. idella. Subsequently, the comparative transcriptome of C. idella spleen tissues before and after CiBD1 overexpression were investigated by RNA-seq. And a total of 379 differentially expressed genes (DEGs), including 218 up-regulated and 161 down-regulated genes, were obtained between PBS-vs-overexpession group. KEGG pathway enrichment analysis showed that 105 out of 151 immune-related DEGs significantly enriched 13 immune-related pathways. Notably, the up-regulated CiHsp70 gene significantly enriched in Antigen Processing and Presentation (APP) pathway. Further, the head kidney macrophages of C. idella were used as APCs to investigate deeply whether CiHsp70 participated in the APP pathway activation by overexpression and RNAi techniques. It was found that Cihsp70 overexpression could significantly promote transcription and expression of the genes for key signaling molecules involved in APP pathway and down-stream immune effector factors, whereas Cihsp70 RNAi demonstrated opposite effects. Collectively, these findings provide a new insight into the mechanism by which CiBD1 exerts immunomodulatory effects by Hsp70-mediated APP pathway activation.
Collapse
Affiliation(s)
- Shoulin Cao
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, PR China
| | - Jiaojiao Chang
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, PR China
| | - Jinnian Li
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, PR China.
| | - Xuelan Liu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, PR China.
| |
Collapse
|
2
|
Hao W, Xu A, Kong N, Zhou K, Qiao X, Wang L, Song L. Chitooligosaccharide enhances immune response and resistance of oyster Crassostrea gigas against Vibrio splendidus. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110347. [PMID: 40252744 DOI: 10.1016/j.fsi.2025.110347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Chitooligosaccharide (COS), an eco-friendly and non-toxic functional oligosaccharide, exhibits immune-enhancing effects on a variety of aquatic species. In the present study, the expression levels of cytokines, phagocytic activity of haemocytes, the gill histopathology and the bacterial copy number in haemolymph were examined to evaluate the immune-enhancing activity of COS in oyster Crassostrea gigas. After the oysters received COS treatment (1 mg), the mRNA expression levels of CgIL17-1, CgIL17-3, CgIL17-5, CgTNF1, CgTNF3 and CgTNF4 in the haemocytes increased and peaked at 6, 3, 6, 24, 12 and 24 h post-treatment respectively, and gradually returned to the initial level after 48 h. When challenged by Vibrio splendidus (2 × 106 CFU), the mRNA expression levels of CgIL17-3, CgIL17-5, CgTNF1, CgTNF3 and CgTNF4 in the haemocytes from COS-pretreated oysters significantly increased (p < 0.05), which was 1.7, 1.67, 2.15, 2.82 and 2.49-fold higher than that of the control group, respectively. Furthermore, the phagocytosis rates of haemocytes in COS-pretreated oysters showed significant elevation at 1 h (1.4-fold) and 3 h (1.39-fold) post-treatment compared to the control group (p < 0.05). Histopathological analysis revealed that COS pretreatment alleviated V. splendidus-induced pathological manifestations, including gill filament swelling and cytoplasmic laxity. And the bacterial copy number in haemolymph decreased significantly (p < 0.05) in COS pretreated group at 6, 12 and 24 h post V. splendidus stimulation. These results demonstrated the immune-enhancing activity of COS and the potential for the development of immunopotentiators derived from COS in oyster aquaculture.
Collapse
Affiliation(s)
- Wentong Hao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Ao Xu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Keli Zhou
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
3
|
Ghafarifarsani H, Ahani S, Aftabgard M, Ahani S, Yousefi M. Efficacy of Lactobacillus acidophilus and yeast cell wall-derived supplements on immunity responses, growth performance, and disease resistance in Cyprinus carpio juveniles. Vet Res Commun 2024; 49:23. [PMID: 39570486 DOI: 10.1007/s11259-024-10567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
This study investigated the effects of probiotic Lactobacillus acidophilus (PTCC 1643) (LA) and a commercial yeast cell wall prebiotic (Immunogen®) (IM) on immunoantioxidant, growth, and digestive status, and resistance to Aeromonas hydrophila in Cyprinus carpio juveniles. The fish were fed in five treatments including control (T1), LA1.5 (T2): 1.5 (× 10^8 CFU/g of LA)/kg diet, LA3 (T3): 3 (× 10^8 CFU/g of LA)/kg diet, IM1 (T4): 1 g of IM/kg diet, and IM2 (T5): 2 g of IM/ kg diet. After 60 days, the function of growth and intestinal protease and amylase showed a significant increase in IM treatments. Serum levels of total protein and superoxide dismutase in LA3 treatment, as well as albumin, catalase, and glutathione peroxidase in LA3 and IM2 treatments were significantly increased. Serum level of malondialdehyde in LA and IM treatments, as well as alkaline phosphatase (ALP) in LA treatments, alanine aminotransferase in LA and IM2 treatments, and lactate dehydrogenase in LA3 treatment was significantly decreased. Serum levels of all the immune parameters in LA3 treatment, as well as alternative complement pathway hemolytic and nitroblue tetrazolium in IM2 treatment were significantly improved. Mucosal level of protease in LA3 and IM2 treatments, total immunoglobulin, and lysozyme in LA and IM2 treatments, as well as ALP and peroxidase in LA3 treatment was significantly increased. Cumulative mortality rate in LA and IM treatments was significantly decreased compared to control after the 14-day challenge with A. hydrophila. It is recommended to include IM2 in the diet of C. carpio juveniles with regard to its beneficial effects on growth and immunity status.
Collapse
Affiliation(s)
- Hamed Ghafarifarsani
- Department of Animal Science, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, AREEO, Shahrekord, Iran.
| | - Saman Ahani
- School of Veterinary Medicine, Islamic Azad University Karaj Branch, Karaj, Iran
| | - Maryam Aftabgard
- Young Researchers and Elite Club, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
| | - Sara Ahani
- Department of Fisheries, College of Agricultural and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Morteza Yousefi
- Department of Veterinary Medicine, RUDN University, 6 Miklukho-Maklaya St., Moscow, 117198, Russia.
| |
Collapse
|
4
|
Basawa R, Kabra S, Khile DA, Faruk Abbu RU, Parekkadan SJ, Thomas NA, Kim SK, Raval R. Repurposing chitin-rich seafood waste for warm-water fish farming. Heliyon 2023; 9:e18197. [PMID: 37519647 PMCID: PMC10372652 DOI: 10.1016/j.heliyon.2023.e18197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
The pisciculture industry has grown multi-fold over the past few decades. However, a surge in development and nutrient demand has led to the establishment of numerous challenges. Being a potential solution, chitosan has gained attention as a bio nanocomposite for its well-acclaimed properties including biodegradability, non-toxicity, immunomodulatory effects, antimicrobial activity, and biocompatibility. This biopolymer and its derivatives can be transformed into various structures, like micro and nanoparticles, for various purposes. Consequently, with regards to these properties chitin and its derivatives extend their application into drug delivery, food supplementation, vaccination, and preservation. This review focuses on the clinical advancements made in fish biotechnology via chitosan and its derivatives and highlights its prospective expansion into the pisciculture industry-in particular, warm-water species.
Collapse
Affiliation(s)
- Renuka Basawa
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Suhani Kabra
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Dnyanada Anil Khile
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Rahil Ummar Faruk Abbu
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Serin Joby Parekkadan
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Naomi Ann Thomas
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Se Kwon Kim
- Department of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Erica 55 Hanyangdae-ro, Sangnol-gu, Ansan-si 11558, Gyeonggi-do, Republic of Korea
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| |
Collapse
|
5
|
Ouyang A, Zhang M, Yuan G, Liu X, Su J. Chitooligosaccharide boosts the immunity of immunosuppressed blunt snout bream against bacterial infections. Int J Biol Macromol 2023; 242:124696. [PMID: 37224898 DOI: 10.1016/j.ijbiomac.2023.124696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/02/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023]
Abstract
The immunosuppression hazard of fish brought by intensive aquaculture needs to be addressed urgently, while chitooligosaccharide (COS) shows the potential application in the prevention the immunosuppression of fish due to its superior biological properties. In this study, COS reversed the cortisol-induced immunosuppression of macrophages and improved the immune activity of macrophages in vitro, promoting the expression of inflammatory genes (TNF-α, IL-1β, iNOS) and NO production, and increasing the phagocytic activity of macrophages. In vivo, the oral COS was absorbed directly through the intestine, significantly ameliorating the innate immunity of cortisol-induced immunosuppression of blunt snout bream (Megalobrama amblycephala). Such as facilitated the gene expression of inflammatory cytokines (TNF-α, IL-1β, IL-6) and pattern recognition receptors (TLR4, MR) and potentiated bacterial clearance, resulting in an effective improvement in survival and tissue damage. Altogether, this study demonstrates that COS offers potential strategies in the application of immunosuppression prevention and control in fish.
Collapse
Affiliation(s)
- Aotian Ouyang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengwei Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| |
Collapse
|
6
|
Characterization of effects of chitooligosaccharide monomer addition on immunomodulatory activity in macrophages. Food Res Int 2023; 163:112268. [PMID: 36596179 DOI: 10.1016/j.foodres.2022.112268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
The present study aimed to investigate the effects of five chitooligosaccharide monomers of different molecular weights on immunomodulatory activity in macrophage-like RAW264.7 cells. The incubation of various chitooligosaccharide monomers enhanced phagocytosis and pinocytosis activity toward Staphylococcus aureus and Escherichia coli in RAW264.7 cells. The incorporation of chitooligosaccharide monomers significantly boosted the generation of reactive oxygen species and reactive nitrogen species, as well as the release of inflammatory cytokines. To further explore the mechanism of inflammation regulated by chitooligosaccharide, the activation inhibitors of NF-кB (CAPE) and TLR-4 (TAK-242) were utilized, the determination data demonstrated that chitobiose suppressed the expression of inflammatory cytokines and NF-кB p65. In addition, the investigation results revealed that the presence of the mannose receptor inhibitor (mannan) suppressed chitohexaose-induced phagocytic activity and inflammatory cytokines. These results suggested that the five distinct chitooligosaccharide monomers had inconsistent effects, the chitobiose and chitohexaose exhibiting the best biological activity in activating RAW264.7 cells, promoting cell proliferation, and increasing non-specific immunity.
Collapse
|
7
|
Zhou X, Forrester SP, Fan J, Liu B, Zhou Q, Miao L, Shao P, Li X. Effects of M. oleifera leaf extract on the growth, physiological response and related immune gene expression of crucian carp fingerlings under Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:358-367. [PMID: 36183982 DOI: 10.1016/j.fsi.2022.09.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
We evaluated the effect of dietary supplementation with Moringa oleifera leaf extract on the resistance to Aeromonas hydrophila infection in crucian carp. The fish were randomly divided into five groups: the basal diet, the basal diet supplied with 0.25% (0.25 M), 0.5% (0.5 M), 0.75% (0.75 M) and 1.0% M. oleifera leaf extract (1.0 M) for 8 weeks. The growth, antioxidant capabilities, related immune genes as well as resistance to A. hydrophila infection were determined. The results showed that compared with the control group, the weight gain, specific growth rate in the group of 0.5% M. oleifera leaf extract, serum superoxide dismutase (SOD), albumin (ALB) and glutathione peroxidase (GSH-Px), the gene expression of hepatopancreas BTB and CNC homolog 1 (Bach1), NF-E2-related factor 2 (Nrf2), peroxidases (PRX) and NADPH oxidase (NOX) in the group of 0.5%-1.0% M. oleifera leaf extract increased, while feed conversion ratio, serum cortisol, red blood cell (RBC), alanine aminotransferase (ALT), malonaldehyde (MDA) decreased in the group of 0.5%-1.0% M. oleifera leaf extract before the stress. After the infection, the group of 0.5% or 0.75% M. oleifera leaf extract also could improve the serum ALB, hepatopancreas Kelch-like-ECH-associated protein 1 (Keap1), Bach1, Nrf2, TOR, PRX and NOX and reduce cortisol compared with the control group. In summary, this study suggested that 0.5% M. oleifera leaf extract inclusion increased the growth performance, even had positive effects on physiological and immune function, and enhanced resistance against pathogenic infections in crucian carp. The optimum level of M. oleifera leaf extract for crucian carp was estimated to be 0.35%-0.48% based on polynomial comparison with FCR and SGR.
Collapse
Affiliation(s)
- Xixun Zhou
- Yueyang Yumeikang Biotechnology Co., Ltd., Yueyang, 414100, China.
| | | | - Junde Fan
- Yueyang Yumeikang Biotechnology Co., Ltd., Yueyang, 414100, China
| | - Bo Liu
- Wuxi Fishery College, Nanjing Agriculture University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Qunlan Zhou
- Wuxi Fishery College, Nanjing Agriculture University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Linghong Miao
- Wuxi Fishery College, Nanjing Agriculture University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Peng Shao
- Yancheng Academy of Fishery Science, Yancheng, 224051, China
| | - Xiaoxiang Li
- Yancheng Zhongsui Technology Co. LTD, Yancheng, 224000, China
| |
Collapse
|
8
|
Zhao Z, Jiang FY, Zhou GQ, Duan HX, Xia JY, Zhu B. Protective immunity against spring viremia of carp virus by mannose modified chitosan loaded DNA vaccine. Virus Res 2022; 320:198896. [PMID: 35977626 DOI: 10.1016/j.virusres.2022.198896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 11/25/2022]
Abstract
Spring viremia of carp virus (SVCV) usually be considered as one of the serious in viral diseases of aquaculture, and DNA vaccine with novel delivery mechanism or adjuvant has proven to be a promising and effective strategy to control aquatic animal diseases. In this study, the mannose-modified chitosan, a carrier system for vaccine delivery, were used to developed a chitosan-encapsulated DNA vaccine (CS-M-G) against SVCV, then investigated immune response induced by the vaccine. Our results showed that CS-M-G was confirmed the spherical or elliptical with even distribution and ranging from approximately 50 to 150 nm in size, the expression of the antigen gene could still be detected after 21 d post vaccination. The CS-M-G induces the highest antibody levels in the 20 μg dose group which is about 3 times than naked plasmid group at 21 d post vaccination, and still hold a higher level than control group at 28 d post vaccination. On the side, strongest protection with relative percent survival of 62.1% in the 20 μg CS-M-G group, which could produce significantly higher enzyme activities and up-regulated expression of immune-associated genes than control group. Thus, our results indicate that DNA vaccine loaded with mannose-modified chitosan induces strong immune response and provided an effective protection against SVCV infection, may be helpful and extended for developing more aquatic animal vaccines in the future.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Fu-Yi Jiang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Guo-Qing Zhou
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Hui-Xin Duan
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Jun-Yao Xia
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Wang H, Zheng F, Ouyang A, Yuan G, Su J, Liu X. Blunt snout bream (Megalobrama amblycephala) MaCSF-1 contributes to proliferation, phagocytosis and immunoregulation of macrophages via MaCSF-1R. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1113-1126. [PMID: 35803511 DOI: 10.1016/j.fsi.2022.06.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
CSF-1 and CSF-1R have been well demonstrated in humans, regulating the differentiation, proliferation and survival of the mononuclear phagocyte system. However, the functional study on MaCSF-1 and MaCSF-1R from blunt snout bream (Megalobrama amblycephala) is still unknown. In the present study, we cloned and functionally characterized MaCSF-1 and MaCSF-1R. Multiple sequence alignment and phylogenetic tree analysis showed that both MaCSF-1 and MaCSF-1R were mostly close to the grass carp counterparts. Tissue distribution analysis showed that both MaCSF-1 and MaCSF-1R were widely distributed in all examined tissues, dominantly distributed in spleen, blood and head kidney tissues. Furthermore, confocal microscopy assay and flow cytometry assay showed that MaCSF-1R was the marker on the surface of macrophages. Recombinant MaCSF-1 promoted macrophage proliferation, phagocytosis and the production of IL-10. Through the pull-down experiments and indirect immunofluorescence experiments, the interaction between MaCSF-1 and MaCSF-1R was confirmed. To explore the relationship between MaCSF-1 and its receptor, MaCSF-1R and MaCSF-1R antibody was prepared. Then the MaCSF-1R blockage assay indicated that the role of MaCSF-1 on the macrophages proliferation and phagocytosis was weakened, leading the reduction of IL-10 expression level. In conclusion, MaCSF-1R is the marker on the surface of macrophage membrane; and MaCSF-1 promotes macrophage proliferation, phagocytosis, and significantly increased the expression levels of IL-10 depended on the interacting with MaCSF-1R. This study provides basal data for the biological function of MaCSF-1 and MaCSF-1R, and is valuable for the exploration of MaCSF-1 and MaCSF-1R molecular interactions.
Collapse
Affiliation(s)
- Huabing Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feifei Zheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Aotian Ouyang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China.
| |
Collapse
|
10
|
Yang Y, Chen J, Lu L, Xu Z, Li F, Yang M, Li J, Lin L, Qin Z. The Antibacterial Activity of Erythrocytes From Goose (Anser domesticus) Can Be Associated With Phagocytosis and Respiratory Burst Generation. Front Immunol 2022; 12:766970. [PMID: 35095842 PMCID: PMC8792903 DOI: 10.3389/fimmu.2021.766970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
In the lumen of blood vessels, there are large numbers of erythrocytes, which are approximately 95% of the total blood cells. Although the function of erythrocytes is to transport oxygen in the organism, recent studies have shown that mammalian and teleost erythrocytes are involved in the immune response against bacterial infections. However, the immune mechanisms used by avian erythrocytes are not yet clear. Here, we demonstrated that erythrocytes from goose have the ability to phagocytose as well as conduct antimicrobial activity. Firstly, we revealed the phagocytosis or adhesion activity of goose erythrocytes for latex beads 0.1-1.0 μm in diameter by fluorescence microscopy, and scanning and transmission electron microscopy. The low cytometry results also proved that goose erythrocytes had a wide range of phagocytic or adhesion activity for different bacteria. Followed, the low cytometry analysis data further explored that the goose erythrocytes contain the ability to produce reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) in response to bacterial stimulation, and also up-regulated the expression of NOX family includes NOX1 and NOX5. Finally, we also found that goose erythrocytes showed a powerful antibacterial activity against all the three bacteria, meanwhile the stimulation of three kinds of bacteria up-regulated the expression of inflammatory factors, and increased the production of antioxidant enzymes to protect the cells from oxidative damage. Herein, our results demonstrate that goose Erythrocytes possess a certain phagocytic capacity and antioxidant system, and that the antimicrobial activity of erythrocytes can occurred through the production of unique respiratory burst against foreign pathogenic bacteria, which provides new clues to the interaction between bacteria and avian erythrocytes.
Collapse
Affiliation(s)
- Youcheng Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jiajun Chen
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Linqing Lu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zizheng Xu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Feng Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Minxuan Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jun Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, MI, United States
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
11
|
Chitosan Oligosaccharides Alleviate Colitis by Regulating Intestinal Microbiota and PPARγ/SIRT1-Mediated NF-κB Pathway. Mar Drugs 2022; 20:md20020096. [PMID: 35200626 PMCID: PMC8880253 DOI: 10.3390/md20020096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Chitosan oligosaccharides (COS) have been shown to have potential protective effects against colitis, but the mechanism underlying this effect has not been fully elucidated. In this study, COS were found to significantly attenuate dextran sodium sulfate-induced colitis in mice by decreasing disease activity index scores, downregulating pro-inflammatory cytokines, and upregulating Mucin-2 levels. COS also significantly inhibited the levels of nitric oxide (NO) and IL-6 in lipopolysaccharide-stimulated RAW 264.7 cells. Importantly, COS inhibited the activation of the NF-κB signaling pathway via activating PPARγ and SIRT1, thus reducing the production of NO and IL-6. The antagonist of PPARγ could abolish the anti-inflammatory effects of COS in LPS-treated cells. COS also activated SIRT1 to reduce the acetylation of p65 protein at lysine 310, which was reversed by silencing SIRT1 by siRNA. Moreover, COS treatment increased the diversity of intestinal microbiota and partly restored the Firmicutes/Bacteroidetes ratio. COS administration could optimize intestinal microbiota composition by increasing the abundance of norank_f_Muribaculaceae, Lactobacillus and Alistipes, while decreasing the abundance of Turicibacte. Furthermore, COS could also increase the levels of propionate and butyrate. Overall, COS can improve colitis by regulating intestinal microbiota and the PPARγ/SIRT1-mediated NF-κB pathway.
Collapse
|
12
|
Ouyang A, Wang H, Su J, Liu X. Mannose Receptor Mediates the Activation of Chitooligosaccharides on Blunt Snout Bream ( Megalobrama amblycephala) Macrophages. Front Immunol 2021; 12:686846. [PMID: 34408745 PMCID: PMC8365301 DOI: 10.3389/fimmu.2021.686846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
Chitooligosaccharide (COS) is an important immune enhancer and has been proven to have a variety of biological activities. Our previous research has established an M1 polarization mode by COS in blunt snout bream (Megalobrama amblycephala) macrophages, but the mechanism of COS activation of blunt snout bream macrophages remains unclear. In this study, we further explored the internalization mechanism and signal transduction pathway of chitooligosaccharide hexamer (COS6) in blunt snout bream macrophages. The results showed that mannose receptor C-type lectin-like domain 4-8 of M. amblycephala (MaMR CTLD4-8) could recognize and bind to COS6 and mediate COS6 into macrophages by both clathrin-dependent and caveolin-dependent pathways. In the inflammatory response of macrophages activated by COS6, the gene expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and nitric oxide synthase 2 (NOS2) was significantly inhibited after MaMR CTLD4-8-specific antibody blockade. However, even if it was blocked, the expression of these inflammation-related genes was still relatively upregulated, which suggested that there are other receptors involved in immune regulation. Further studies indicated that MaMR CTLD4-8 and Toll-like receptor 4 (TLR4) cooperated to regulate the pro-inflammatory response of macrophages caused by COS6. Taken together, these results revealed that mannose receptor (MR) CTLD4-8 is indispensable in the process of recognition, binding, internalization, and immunoregulation of COS in macrophages of blunt snout bream.
Collapse
Affiliation(s)
- Aotian Ouyang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Huabing Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, China
| |
Collapse
|
13
|
Shi F, Qiu X, Nie L, Hu L, Babu V S, Lin Q, Zhang Y, Chen L, Li J, Lin L, Qin Z. Effects of oligochitosan on the growth, immune responses and gut microbes of tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2020; 106:563-573. [PMID: 32738515 DOI: 10.1016/j.fsi.2020.07.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The immunomodulatory effects of oligochitosan have been demonstrated in several fish. However, the underlying mechanisms are not well characterized. The profound interplay between gut microbes and aquaculture has received much scientific attention but understanding the alternations of microbes populating in gut of tilapia (Oreochromis niloticus) fed with oligochitosan remains enigmatic. In this study, the effects of oligochitosan on the growth, immune responses and gut microbes of tilapia were investigated. The feeding trial was conducted in triplicates with the control diet supplemented with oligochitosan at different concentrations (0, 100, 200, 400 or 800 mg/kg). Following a six-week feeding trial, body weights of the fish supplemented with 200 mg/kg and 400 mg/kg oligochitosan were significantly higher than that of the control group. To address the immune responses stimulated by oligochitosan, by the quantitative real time PCR (qRT-PCR), the mRNA expression levels of CSF, IL-1β, IgM, TLR2 and TLR3 genes from head kidney were all significantly up-regulated in the 400 mg/kg group compared to the control. To characterize the gut microbes, bacterial samples were collected from the foregut, midgut, and hindgut, respectively and were subjected to high-throughput sequencing of 16S rDNA. The results showed that significantly lower abundance of Fusobacterium was detected in the hindgut of 400 mg/kg group compared to the control. Additionally, beta-diversity revealed that both gut habitat and oligochitosan had effects on the gut bacterial assembly. To further elucidate the mechanism underlying the effects of oligochitosan on bacterial assembly, the results showed that difference dosages of dietary oligochitosan could alter the specific metabolic pathways and functions of the discriminatory bacterial taxa, resulting in the different bacterial assemblies. To test the antibacterial ability of tilapia fed with oligochitosan, when the tilapias were challenged with Aeromonas hydrophila, the mortality of groups fed with dietary oligochitosan was significantly lower than that of the control. Taken together, appropriate dietary oligochitosan could improve growth, immune responses and alter the bacterial flora in the intestine of tilapia, so as to play a role in fighting against the bacterial infection.
Collapse
Affiliation(s)
- Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Xiaolong Qiu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Lingju Nie
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Luoying Hu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Sarath Babu V
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Qiang Lin
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, Guangdong, 510380, China
| | - Yulei Zhang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Liehuan Chen
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jun Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, Guangdong, 510380, China.
| |
Collapse
|
14
|
Deng JJ, Li ZQ, Mo ZQ, Xu S, Mao HH, Shi D, Li ZW, Dan XM, Luo XC. Immunomodulatory Effects of N-Acetyl Chitooligosaccharides on RAW264.7 Macrophages. Mar Drugs 2020; 18:md18080421. [PMID: 32806493 PMCID: PMC7460392 DOI: 10.3390/md18080421] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The ongoing development of new production methods may lead to the commercialization of N-acetyl chitooligosaccharides (NACOS), such as chitosan oligosaccharides (COS). The bioactivity of NACOS, although not well detailed, differs from that of COS, as they have more acetyl groups than COS. We used two enzymatically produced NACOS with different molecular compositions and six NACOS (NACOS1–6) with a single degree of polymerization to verify their immunomodulatory effects on the RAW264.7 macrophage cell line. We aimed to identify any differences between COS and various NACOS with a single degree of polymerization. The results showed that NACOS had similar immune enhancement effects on RAW264.7 cells as COS, including the generation of reactive oxygen species (ROS), phagocytotic activity, and the production of pro-inflammation cytokines (IL-1β, IL-6, and TNF-α). However, unlike COS and lipopolysaccharide (LPS), NACOS1 and NACOS6 significantly inhibited nitric oxide (NO) production. Besides their immune enhancement effects, NACOS also significantly inhibited the LPS-induced RAW264.7 inflammatory response with some differences between various polymerization degrees. We confirmed that the NF-κB pathway is associated with the immunomodulatory effects of NACOS on RAW264.7 cells. This study could inform the application of NACOS with varying different degrees of polymerization in human health.
Collapse
Affiliation(s)
- Jun-Jin Deng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
- Institute of Animal Sciences, Guangdong Academy of Agricultural Sciences, No. 1 Dafeng Street, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Zong-Qiu Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
| | - Ze-Quan Mo
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.-Q.M.); (X.-M.D.)
| | - Shun Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
| | - He-Hua Mao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
| | - Dan Shi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
| | - Zhi-Wei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
| | - Xue-Ming Dan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.-Q.M.); (X.-M.D.)
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
- Correspondence: ; Tel./Fax: +86-(0)20-3938-0609
| |
Collapse
|
15
|
Ayiku S, Shen J, Tan BP, Dong XH, Liu HY. Effects of reducing dietary fishmeal with yeast supplementations on Litopenaeus vannamei growth, immune response and disease resistance against Vibrio harveyi. Microbiol Res 2020; 239:126554. [PMID: 32683217 DOI: 10.1016/j.micres.2020.126554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 11/27/2022]
Abstract
The aim of this experiment was to investigate the effects of reducing dietary fishmeal (FM) with yeast culture (SYC) supplementation on growth, immune response, intestinal microbiota, intestinal morphology, and disease resistance of Litopenaeus vannamei. A total of 480 shrimps with an average initial body weight of 0.35 ± 0.002 g were randomly distributed into twelve tanks. Three isonitrogenous (40.00 crude protein) and isolipidic (8.00 crude lipids) diets with yeast culture supplementing fishmeal were formulated. The groups were divided into two (2) namely control group and experimental groups. The formulations of the groups were control (0 %, without yeast culture) and the experiment groups (SYC) [(1 % of yeast culture), and (2 % of yeast culture)]. Each diet was delivered in four replicate per treatment group. The results indicate significant improvement on the growth indices (specific growth rate, weight gain rate, survival rate and lower feed conversion ratio) with yeast culture treatment group after 56 days feeding trials (P < 0.05). Total hemolymph protein, superoxide dismutase, catalase, alkaline phosphatase, acid phosphatase, lysozyme and phenoxidase were enhanced but low aspartate aminotransferase, alanine aminotransferase, and glucose were observed in shrimp fed yeast culture diets (P < 0.05). The SYC groups showed insignificant differences in hemolymph cholesterol and triglyceride. Proteobacteria, Bacteroidetes, and Actinobacteria were the dominant bacteria found in all the SYC groups. At the genus level, Vibrio was significantly decreased (P < 0.05) in 2 % yeast culture diets supplemented group whereas the beneficial bacteria Pseudoalteromonas was significantly enhanced. Moreover, intestinal villus length and width in shrimps fed yeast culture diets were improved (P < 0.05). Dietary yeast culture supplementation can improve growth, intestinal health, immune response, and resistance against Vibrio harveyi infections in L. vannamei.
Collapse
Affiliation(s)
- Stephen Ayiku
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, China
| | - Jianfei Shen
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, China
| | - Bei-Ping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, China
| | - Xiao-Hui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, China
| | - Hong-Yu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, China.
| |
Collapse
|
16
|
Wu Y, Rashidpour A, Almajano MP, Metón I. Chitosan-Based Drug Delivery System: Applications in Fish Biotechnology. Polymers (Basel) 2020; 12:E1177. [PMID: 32455572 PMCID: PMC7285272 DOI: 10.3390/polym12051177] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Chitosan is increasingly used for safe nucleic acid delivery in gene therapy studies, due to well-known properties such as bioadhesion, low toxicity, biodegradability and biocompatibility. Furthermore, chitosan derivatization can be easily performed to improve the solubility and stability of chitosan-nucleic acid polyplexes, and enhance efficient target cell drug delivery, cell uptake, intracellular endosomal escape, unpacking and nuclear import of expression plasmids. As in other fields, chitosan is a promising drug delivery vector with great potential for the fish farming industry. This review highlights state-of-the-art assays using chitosan-based methodologies for delivering nucleic acids into cells, and focuses attention on recent advances in chitosan-mediated gene delivery for fish biotechnology applications. The efficiency of chitosan for gene therapy studies in fish biotechnology is discussed in fields such as fish vaccination against bacterial and viral infection, control of gonadal development and gene overexpression and silencing for overcoming metabolic limitations, such as dependence on protein-rich diets and the low glucose tolerance of farmed fish. Finally, challenges and perspectives on the future developments of chitosan-based gene delivery in fish are also discussed.
Collapse
Affiliation(s)
- Yuanbing Wu
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Joan XXIII 27–31, 08028 Barcelona, Spain; (Y.W.); (A.R.)
| | - Ania Rashidpour
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Joan XXIII 27–31, 08028 Barcelona, Spain; (Y.W.); (A.R.)
| | - María Pilar Almajano
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain;
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Joan XXIII 27–31, 08028 Barcelona, Spain; (Y.W.); (A.R.)
| |
Collapse
|
17
|
Chen T, Hu Y, Zhou J, Hu S, Xiao X, Liu X, Su J, Yuan G. Chitosan reduces the protective effects of IFN-γ2 on grass carp (Ctenopharyngodon idella) against Flavobacterium columnare infection due to excessive inflammation. FISH & SHELLFISH IMMUNOLOGY 2019; 95:305-313. [PMID: 31654768 DOI: 10.1016/j.fsi.2019.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/27/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
IFN-γ is an immunomodulatory factor that has been extensively studied in phenotypes of mammalian macrophages and multifarious inflammatory responses. Usually these studies relied on the classical synergistic activation of IFN-γ with LPS (LipoPolySaccharides). However, non-mammalian vertebrates, and in particular fish, are not very susceptible to LPS, and easily acquire tolerance upon repeated exposure. Therefore, for studies in fish, it is necessary to replace the classical IFN-γ+LPS immune system activation method, and find other pathogen-associated molecular patterns (PAMPs) capable of stimulating the fish immune system. Here we used an important farmed fish species, Ctenopharyngodon idella, to study the effects of CiIFN-γ2 (C. idella IFN-γ2) and chitosan (CS) on its immune responses in vivo and vitro. Our results showed that the combination of CS and CiIFN-γ2 significantly enhanced the activation of macrophages, with an activation intensity even stronger than in CiIFN-γ2 and CiIFN-γ2+LPS groups. In vivo, injection of CiIFN-γ2 could improve the survival rate of C. idella infected with Flavobacterium columnare, while a combined injection of CiIFN-γ2+CS only improved protection in the early stages after the challenge. Notably, both injections reduced the bacterial load of viscera and improved the levels of several plasma parameters (TP, T-SOD, LA, and NO). However, a dramatic up-regulation of inflammatory factors, severe inflammatory damage in the intestines and hepatopancreas, and increased mortality in late stages of infection were observed in the CiIFN-γ2+CS group. Our findings provide new insights into the macrophage activation phenotypes and inflammatory responses in fish. They also demonstrate that CiIFN-γ2 could be used as a potential immunopotentiator, but not in combination with CS. This suggests that selection of immunological adjuvants should be carefully tested experimentally.
Collapse
Affiliation(s)
- Tong Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yazhen Hu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Jiancheng Zhou
- Wuhan DBN Aquaculture Technology Co. LTD, Wuhan, Hubei, 430090, China
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xun Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
18
|
Qin Z, Vijayaraman SB, Lin H, Dai Y, Zhao L, Xie J, Lin W, Wu Z, Li J, Lin L. Antibacterial activity of erythrocyte from grass carp (Ctenopharyngodon idella) is associated with phagocytosis and reactive oxygen species generation. FISH & SHELLFISH IMMUNOLOGY 2019; 92:331-340. [PMID: 31176765 DOI: 10.1016/j.fsi.2019.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Red blood cells (RBCs) are widely accepted as their primary function in respiration. Recent studies in mammals have revealed a vital role in immune responses of RBCs; however, little is known about immune function of teleost erythrocytes. Here we demonstrated that RBCs from grass carp (Ctenopharyngodon idella) were capable of binding and aggregating the bacteria with apparent morphological alterations. The phagocytosis by teleost RBCs (erythrophagocytosis) was visualized by confocal, scanning and transmission electron microscopy. Hb-FeII of hemoglobin (Hb) could quickly be auto-oxidated to Hb-FeIII (methemoglobin/metHb) in the presence of oxygen (O2), and release superoxide radical (O2-.) which could be spontaneously dismutated into H2O2 that could further oxidize Hb-FeIII to transient HbFeIV-OH (ferryl-Hb). Furthermore, bacterial extracellular proteases and pathogen-associated molecular patterns (PAMPs) binding to Hb could synergistically activate pseudoperoxidase, subsequently facilitated the generation of reactive oxygen species (ROS) which were toxic to the bacteria. Our results indicated that erythrocyte pertains anti-bacterial activity using unique ROS generation pathway via oxidation of hemoglobin and associated with its phagocytosis.
Collapse
Affiliation(s)
- Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China
| | - Sarath Babu Vijayaraman
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Hanzuo Lin
- Faculty of Science, University of British Columbia, Vancouver, British Columbia, V6T1W9, Canada
| | - Yunjia Dai
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China
| | - Lijuan Zhao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jungang Xie
- Fisheries Research Institute of Zhao Qing, Zhaoqing, Guangdong, 526072, China
| | - Weiqiang Lin
- Fisheries Research Institute of Zhao Qing, Zhaoqing, Guangdong, 526072, China
| | - Zaohe Wu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jun Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA.
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China.
| |
Collapse
|
19
|
Wu C, Dai Y, Yuan G, Su J, Liu X. Immunomodulatory Effects and Induction of Apoptosis by Different Molecular Weight Chitosan Oligosaccharides in Head Kidney Macrophages From Blunt Snout Bream ( Megalobrama amblycephala). Front Immunol 2019; 10:869. [PMID: 31156612 PMCID: PMC6530513 DOI: 10.3389/fimmu.2019.00869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/04/2019] [Indexed: 01/14/2023] Open
Abstract
Prophylactic administration of immunopotentiators has been tested and practiced as one of the most promising disease prevention methods in aquaculture. Chitosan oligosaccharide (COS), as an ideal immunopotentiator, is mainly used as feed additives in aquaculture, and the antimicrobial and immune enhancement effects are highly correlated with molecular weight (MW), but little is known about the mechanisms in teleost. Here, we isolated and purified macrophages in head kidney from blunt snout bream (Megalobrama amblycephala), stimulated them with three different MW (~500 Da, ~1000 Da and 2000~3000 Da) COSs, performed RNA-sequencing, global transcriptional analyses, and verification by quantitative real-time PCR (qRT-PCR) and immunofluorescent staining methods. Differential expression gene (DEG) analysis indicated that gene expression patterns are different and the proportion of unique genes are relatively high in different treatment groups. Biological process and gene set enrichment analysis (GSEA) demonstrated that all three COSs activate resting macrophages, but the degrees are different. Weighted gene co-expression network analysis (WGCNA) reflected gene modules correlated to MW, the module hub genes and top GO terms showed the activation of macrophage was positively correlated with the MW, and larger MW COS activated cell death associated GO terms. Further use of the screening and enrichment functions of STRING and Pfam databases discovered that apoptosis-related pathways and protein families were activated, such as the P53 pathway and caspase protein family. qRT-PCR results showed that as the stimulation time extends, the innate immune-related and P53 pathways are gradually activated, and the degree of activation is positively correlated with the stimulation time. In addition, apoptosis was detected by immunofluorescent staining in three groups. Therefore, the use of COS has two sides—it can activate the immune system against pathogen invasion, but with the increase in stimulation time and MW, macrophage apoptosis is induced, which may be caused by abnormal replication of DNA and excessive inflammation. This study provides a theoretical basis for the rational use of COS as an immunopotentiator in aquaculture.
Collapse
Affiliation(s)
- Changsong Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yishan Dai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, China
| |
Collapse
|
20
|
Hu Y, Wei X, Liao Z, Gao Y, Liu X, Su J, Yuan G. Transcriptome Analysis Provides Insights into the Markers of Resting and LPS-Activated Macrophages in Grass Carp ( Ctenopharyngodon idella). Int J Mol Sci 2018; 19:ijms19113562. [PMID: 30424518 PMCID: PMC6274997 DOI: 10.3390/ijms19113562] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022] Open
Abstract
Macrophages are very versatile immune cells, with the characteristics of a proinflammatory phenotype in response to pathogen-associated molecular patterns. However, the specific activation marker genes of macrophages have not been systematically investigated in teleosts. In this work, leukocytes (WBC) were isolated using the Percoll gradient method. Macrophages were enriched by the adherent culture of WBC, then stimulated with lipopolysaccharide (LPS). Macrophages were identified by morphological features, functional activity and authorized cytokine expression. Subsequently, we collected samples, constructed and sequenced transcriptomic libraries including WBC, resting macrophage (Mø) and activated macrophage (M(LPS)) groups. We gained a total of 20.36 Gb of clean data including 149.24 million reads with an average length of 146 bp. Transcriptome analysis showed 708 differential genes between WBC and Mø, 83 differentially expressed genes between Mø and M(LPS). Combined with RT-qPCR, we proposed that four novel cell surface marker genes (CD22-like, CD63, CD48 and CD276) and two chemokines (CXCL-like and CCL39.3) would be emerging potential marker genes of macrophage in grass carp. Furthermore, CD69, CD180, CD27, XCL32a.2 and CXCL8a genes can be used as marker genes to confirm whether macrophages are activated. Transcriptome profiling reveals novel molecules associated with macrophages in C. Idella, which may represent a potential target for macrophages activation.
Collapse
Affiliation(s)
- Yazhen Hu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| | - Xiaolei Wei
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| | - Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| | - Yu Gao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| |
Collapse
|
21
|
Liang S, Sun Y, Dai X. A Review of the Preparation, Analysis and Biological Functions of Chitooligosaccharide. Int J Mol Sci 2018; 19:ijms19082197. [PMID: 30060500 PMCID: PMC6121578 DOI: 10.3390/ijms19082197] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Chitooligosaccharide (COS), which is acknowledged for possessing multiple functions, is a kind of low-molecular-weight polymer prepared by degrading chitosan via enzymatic, chemical methods, etc. COS has comprehensive applications in various fields including food, agriculture, pharmacy, clinical therapy, and environmental industries. Besides having excellent properties such as biodegradability, biocompatibility, adsorptive abilities and non-toxicity like chitin and chitosan, COS has better solubility. In addition, COS has strong biological functions including anti-inflammatory, antitumor, immunomodulatory, neuroprotective effects, etc. The present paper has summarized the preparation methods, analytical techniques and biological functions to provide an overall understanding of the application of COS.
Collapse
Affiliation(s)
- Shuang Liang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| | - Yaxuan Sun
- Department of Food Sciences, College of Biochemical Engineering, Beijing Union University, Beijing 100023, China.
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| |
Collapse
|
22
|
Qin Z, Babu VS, Li N, Fu T, Li J, Yi L, Zhao L, Li J, Zhou Y, Lin L. Protective effects of chicken egg yolk immunoglobulins (IgY) against experimental Aeromonas hydrophila infection in blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2018; 78:26-34. [PMID: 29621635 DOI: 10.1016/j.fsi.2018.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/01/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
The emergence of multi antibiotic resistance by the pathogens and toxic impacts on host metabolism has opened new perspectives to rational novel vaccine techniques. Outbreaks of Aeromonas hydrophila in aquaculture caused high mortality throughout the world and resulted in the extensive economic loss in the aquaculture industry. In this study, we report the efficacy of anti-A. hydrophila IgY antibodies by passive vaccination and its prophylactic or therapeutic effects against A. hydrophila in blunt snout bream. Inactivated A. hydrophila immunized hens produced effective IgY antibodies that were stable at temperatures less than 60 °C or the pH value was >4. The specific IgY can be bound directly to A. hydrophila that efficiently agglutinated and inhibited the bacterial growth in a dose-dependent manner. The specific IgY had significantly enhanced the phagocytosis activity of macrophages and resulted in rapid bacterial clearance. Anti-A. hydrophila IgY antibodies significantly increased macrophage mediated respiratory burst, including nitric oxide and superoxide anion production and subsequently killed the pathogen. Histopathological studies of intestine and spleen from vaccinated blunt-snout bream challenged with A. hydrophila showed the structural integrity of the organs was maintained intact from the bacterial injury. In addition, the prophylactic and therapeutic immunization, protected the blunt snout bream and the survival is approximately about 60% and 50%, respectively. These data suggest that specific IgY has the potential for protecting blunt snout bream against A. hydrophila infection and show promise for the future development of harmless vaccines.
Collapse
Affiliation(s)
- Zhendong Qin
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - V Sarath Babu
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Ningqiu Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology Guangdong Province, Guangzhou, Guangdong, 510380, China
| | - Tairan Fu
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jinquan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lizhu Yi
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lijuan Zhao
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jun Li
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI 49783, USA
| | - Yang Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Li Lin
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
23
|
Tu D, Liao H, Deng Q, Liu X, Shang R, Zhang X. Renewable biomass derived porous BCN nanosheets and their adsorption and photocatalytic activities for the decontamination of organic pollutants. RSC Adv 2018; 8:21905-21914. [PMID: 35541731 PMCID: PMC9081089 DOI: 10.1039/c8ra03689f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 05/26/2018] [Indexed: 11/22/2022] Open
Abstract
In this work, the preparation, characterization and removal capabilities of a novel biomass derived BC and its BCN nanocomposites are described. Possessing hierarchically porous structures, extremely large surface areas and special chemical bonds, porous BCN nanosheets have demonstrated advantages in terms of their adsorption and photocatalytic activities. The adsorption and photocatalytic activities of the as-prepared catalysts were evaluated by the degradation of RhB. The best results exhibited 97% and 95% decomposition of RhB which were obtained by using porous BCN-40 nanosheets within 120 min at 25 °C under UV light and visible light (>420 nm) irradiation respectively. The rate constant of the porous BCN-40 nanosheets for the degradation of RhB was more 16 times than that of pure h-BN. Besides, the porous BCN nanosheets showed remarkable cycling stability, maintaining a high photocatalytic activity up to 94% after 5 cycles. Furthermore, the degradation mechanisms of RhB and the photocatalytic mechanism have been explained in this paper.
Collapse
Affiliation(s)
- Dan Tu
- School of Materials Science and Engineering, Southwest University of Science and Technology Mianyang 621010 China
| | - Huiwei Liao
- School of Materials Science and Engineering, Southwest University of Science and Technology Mianyang 621010 China
| | - Qiulin Deng
- School of Materials Science and Engineering, Southwest University of Science and Technology Mianyang 621010 China
- Jiangsu Provincial Key Laboratory of Palygorskite, Science and Applied Technology, Huaiyin Institute of Technology Huaian 223003 China
| | - Xiang Liu
- School of Materials Science and Engineering, Southwest University of Science and Technology Mianyang 621010 China
| | - Ronggang Shang
- School of Materials Science and Engineering, Southwest University of Science and Technology Mianyang 621010 China
| | - Xiaoyong Zhang
- School of Materials Science and Engineering, Southwest University of Science and Technology Mianyang 621010 China
| |
Collapse
|
24
|
Jiang H, Hu Y, Wei X, Xiao X, Jakovlić I, Liu X, Su J, Yuan G. Chemotactic effect of β-defensin 1 on macrophages in Megalobrama amblycephala. FISH & SHELLFISH IMMUNOLOGY 2018; 74:35-42. [PMID: 29246811 DOI: 10.1016/j.fsi.2017.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Besides their function as a physical barrier against pathogens, β-defensins possess the ability to induce direct or indirect chemotaxis in leukocytes of mammals. However little is known about the ability of defensins to guide the migration of macrophages in fish. The objective of our study was to investigate whether β-defensin 1 (maBD1) can recruit leukocytes (specifically macrophages) in vivo and in vitro in a farmed cyprinid fish Megalobrama amblycephala. The M. amblycephala β-defensin 1 (maBD1) gene was amplified from the head-kidney transcriptome. Synthetic maBD1 polypeptide (as well as its N-terminus half, but not the C-terminus half) was capable of inducing the migration of leukocytes (specifically macrophages) at concentrations from 26.0 μg/mL to 52.0 μg/mL in head kidney tissue in vitro. When injected intraperitoneally in vivo, the number of leukocytes in the peritoneal cavity was in positive correlation with the maBD1 concentration. maBD1 also induced the expression of two proinflammatory cytokines (IL-1beta and TNF-alpha) in spleen, head and body kidney, and hepatopancreas. These results strongly indicate that BD1 has a chemoattractant capacity for macrophages, as well as the ability to modulate the expression of proinflammatory cytokines in fish.
Collapse
Affiliation(s)
- He Jiang
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, China
| | - Yazhen Hu
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, China
| | - Xiaolei Wei
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, China
| | - Xun Xiao
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, China
| | - Jianguo Su
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, China.
| |
Collapse
|
25
|
Yu Y, Wang C, Wang A, Yang W, Lv F, Liu F, Liu B, Sun C. Effects of various feeding patterns of Bacillus coagulans on growth performance, antioxidant response and Nrf2-Keap1 signaling pathway in juvenile gibel carp (Carassius auratus gibelio). FISH & SHELLFISH IMMUNOLOGY 2018; 73:75-83. [PMID: 29196031 DOI: 10.1016/j.fsi.2017.11.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
The present study was conducted to evaluate the effects of various Bacillus coagulans feeding patterns on growth, antioxidant parameter and Nrf2 pathway in juvenile gibel carp. The similar size of gibel carp (initial weight: 14.33 ± 0.15 g) were subjected to three levels of B. coagulans supplementation (0, 500, and 1000 mg/kg) and two feeding modes (supplementing B. coagulans continuously or for two days of B. coagulans after 5 days of a basal diet) according to a 3 × 2 factorial design. The fish that were continuously fed 500 mg/kg B. coagulans (P2) and those fed the first basal diet for 5 days followed by 500 mg/kg or 1000 mg/kg B.coagulans for 2 days (P4 or P5) showed higher weight gain rate and specific growth rate than the other groups. Blood respiratory burst (RB), myeloperoxidase (MPO), and anti-superoxide anion free radical (AFASER) activities in the P4 group were higher than those of the control. White blood cell count (WBC), RB activity, MPO activity, and glutathione (GSH) content in the P5 group were also higher than those of the control. A similar higher trend was observed in the gene expressions of NADPH oxidase 2 (NOX2), NFE2-related factor (Nrf2), Kelch-like-ECH-associated protein(Keap1) in the P4 and NOX2, NRF2, CNC homolog 1 (Bach1), peroxiredoxin 2 (Prx2) in the P5 group compared with the control. Additionally, we observed a significantly lower level of plasma aspartate aminotransferase (AST), lower activity of alanine aminotransferase (ALT), a higher level of MPO, higher GPX activity, and increased NRF2 and Prx2 expression were all observed in the P2 treatment group compared with the control. Furthermore, the malondialdehyde (MDA) content in the P2, P3, and P4 groups was lower than that of the control. These results indicate that a diet supplemented with appropriate levels of B.coagulans could improve the growth, immune response, and antioxidant capability of gibel carp. We concluded that the pattern of two days of 500 or 1000 mg/kg B. coagulans after 5 days of a basal diet was recommended for gibel carp.
Collapse
Affiliation(s)
- Yebing Yu
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Yancheng Institute of Technology, Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, College of Marine and Bioengineering, Yancheng 224051, China.
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Aimin Wang
- Yancheng Institute of Technology, Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, College of Marine and Bioengineering, Yancheng 224051, China
| | - Wenping Yang
- Yancheng Institute of Technology, Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, College of Marine and Bioengineering, Yancheng 224051, China
| | - Fu Lv
- Yancheng Institute of Technology, Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, College of Marine and Bioengineering, Yancheng 224051, China
| | - Fei Liu
- Yancheng Institute of Technology, Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, College of Marine and Bioengineering, Yancheng 224051, China
| | - Bo Liu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Cunxin Sun
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
26
|
Olicón-Hernández DR, Uribe-Alvarez C, Uribe-Carvajal S, Pardo JP, Guerra-Sánchez G. Response of Ustilago maydis against the Stress Caused by Three Polycationic Chitin Derivatives. Molecules 2017; 22:molecules22121745. [PMID: 29215563 PMCID: PMC6149792 DOI: 10.3390/molecules22121745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 12/25/2022] Open
Abstract
Chitosan is a stressing molecule that affects the cells walls and plasma membrane of fungi. For chitosan derivatives, the action mode is not clear. In this work, we used the yeast Ustilago maydis to study the effects of these molecules on the plasma membrane, focusing on physiologic and stress responses to chitosan (CH), oligochitosan (OCH), and glycol-chitosan (GCH). Yeasts were cultured with each of these molecules at 1 mg·mL−1 in minimal medium. To compare plasma membrane damage, cells were cultivated in isosmolar medium. Membrane potential (Δψ) as well as oxidative stress were measured. Changes in the total plasma membrane phospholipid and protein profiles were analyzed using standard methods, and fluorescence-stained mitochondria were observed. High osmolarity did not protect against CH inhibition and neither affected membrane potential. The OCH did produce higher oxidative stress. The effects of these molecules were evidenced by modifications in the plasma membrane protein profile. Also, mitochondrial damage was evident for CH and OCH, while GCH resulted in thicker cells with fewer mitochondria and higher glycogen accumulation.
Collapse
Affiliation(s)
- Dario Rafael Olicón-Hernández
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala S/N, Col. Sto. Tomas, Del, Miguel Hidalgo, CP 11340 Ciudad de México, Mexico.
| | - Cristina Uribe-Alvarez
- Universidad Nacional Autónoma de México, Instituto de Fisiología Celular, Circuito exterior S/N, Ciudad Universitaria, CP 04510 Ciudad de México, Mexico.
| | - Salvador Uribe-Carvajal
- Universidad Nacional Autónoma de México, Instituto de Fisiología Celular, Circuito exterior S/N, Ciudad Universitaria, CP 04510 Ciudad de México, Mexico.
| | - Juan Pablo Pardo
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica, Circuito exterior S/N, Ciudad Universitaria, CP 04510 Ciudad de México, Mexico.
| | - Guadalupe Guerra-Sánchez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala S/N, Col. Sto. Tomas, Del, Miguel Hidalgo, CP 11340 Ciudad de México, Mexico.
| |
Collapse
|
27
|
Alamillo E, Reyes-Becerril M, Cuesta A, Angulo C. Marine yeast Yarrowia lipolytica improves the immune responses in Pacific red snapper (Lutjanus peru) leukocytes. FISH & SHELLFISH IMMUNOLOGY 2017; 70:48-56. [PMID: 28863888 DOI: 10.1016/j.fsi.2017.08.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/19/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
The climatic conditions in saltern saline environments allows the growth of microorganisms adapted to these peculiar ambient and could represent a promising source of new bioactive compounds that could have applications on as animal food supplements, including aquaculture. In this study, we evaluated the role of Yarrowia lipolytica N-6 isolate, from a hypersaline natural environment (Guerrero Negro, Baja California Sur, Mexico), as immunostimulant of the non-specific immune response of head-kidney and spleen Pacific red snapper (Lutjanus peru) leukocytes after challenge with Vibrio parahaemolyticus. In this study, the presence of Y. lipolytica reduced considerably the V. parahaemolyticus load in spleen leukocytes. In vitro assays using head-kidney and spleen leukocytes showed that the response to V. parahaemolyticus infection reveled that leukocyte pre-incubated with Y. lipolytica N-6 significantly increased the non-specific immune response such as respiratory burst, phagocytic activity, NO and MPO activities follow by an increase in SOD and CAT activities, and at the same time inhibited leukocyte apoptosis caused by V. parahaemolyticus. Moreover, Y. lipolytica N-6 incubation also regulated the transcription of genes related to immunity (IL-1β) or oxidative stress (MnSOD, icCu/ZnSOD or CAT) in leukocytes. These results strongly support the idea that the extreme yeast Y. lipolytica N-6 isolate can stimulate the non-specific immune parameters and the antioxidant immune mechanism in head-kidney and spleen Pacific red snapper leukocytes and could be used as potential immunostimulant.
Collapse
Affiliation(s)
- Erika Alamillo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, BCS 23096, Mexico
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, BCS 23096, Mexico
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology & Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Spain
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, BCS 23096, Mexico.
| |
Collapse
|
28
|
Angulo C, Maldonado M, Delgado K, Reyes-Becerril M. Debaryomyces hansenii up regulates superoxide dismutase gene expression and enhances the immune response and survival in Pacific red snapper (Lutjanus peru) leukocytes after Vibrio parahaemolyticus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 71:18-27. [PMID: 28126556 DOI: 10.1016/j.dci.2017.01.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/22/2017] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
Application of yeast is increasing to improve welfare and promotes growth in aquaculture. The halotolerant yeast Debaryomyces hansenii is normally a non-pathogenic yeast with probiotic properties and potential source of antioxidant enzymes as superoxide dismutase. Here, first, we characterized the sequence features of MnSOD and icCu/ZnSOD from Pacific red snapper, and second, we evaluated the potential antioxidant immune responses of the marine yeast Debaryomyces hansenii strain CBS004 in leukocytes which were then subjected to Vibrio parahaemolyticus infection. In silico analysis revealed that LpMnSOD consisted of 1186 bp, with an ORF of 678 bp encoding a 225 amino acid protein and LpicCu/ZnSOD consisted of 1090 bp in length with an ORF of 465 bp encoding a 154 amino acid protein. Multiple alignment analyzes revealed many conserved regions and active sites among its orthologs. In vitro assays using head-kidney and spleen leukocytes immunostimulated with D. hansenii and zymosan in response to V. parahaemolyticus infection reveled that D. hansenii strain CBS004 significantly increased transcriptions of MnSOD and icCu/ZnSOD genes. Flow cytometry assay showed that D. hansenii was able to inhibit apoptosis caused by V. parahaemolyticus in the Pacific red snapper leukocytes and enhanced the phagocytic capacity in head-kidney leukocytes. Immunological assays reveled an increased in superoxide dismutase and peroxidase activities, as well as, in nitric oxide production and reactive oxygen species production (respiratory burst) in fish stimulated with D. hansenii. Finally, our results. These results strongly support the idea that marine yeast Debaryomyces hansenii strain CBS004 can stimulate the antioxidant immune mechanism in head-kidney and spleen leukocytes.
Collapse
Affiliation(s)
- Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23090, Mexico
| | - Minerva Maldonado
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23090, Mexico
| | - Karen Delgado
- Instituto Tecnológico de La Paz, Boulevard Forjadores 4720, Col. 8 de Octubre Segunda Sección, La Paz, B.C.S., 23080, Mexico
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23090, Mexico.
| |
Collapse
|
29
|
Zhao Z, Xie J, Liu B, Ge X, Song C, Ren M, Zhou Q, Miao L, Zhang H, Shan F, Yang Z. The effects of emodin on cell viability, respiratory burst and gene expression of Nrf2-Keap1 signaling molecules in the peripheral blood leukocytes of blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2017; 62:75-85. [PMID: 28065629 DOI: 10.1016/j.fsi.2017.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
We determined the effects of emodin on the cell viability, respiratory burst activity, mRNA levels of antioxidative enzymes (Cu-Zn SOD, CAT and NOX2), and gene expressions of the Nrf2-Keap1 signaling molecules in the peripheral blood leukocytes of blunt snout bream. Triplicate groups of cultured cells were treated with different concentrations of emodin (0.04-25 μg/ml) for 24 h. Results showed that the emodin caused a dramatic loss in cell viability, and occurred in a dose-dependent manner. Emodin exposure (1-25 μg/ml) were significantly induced the ROS generation compared to the control. The respiratory burst and NADPH oxidase activities were significantly induced at a concentration of 0.20 μg/ml, and inhibited at 25 μg/ml. Besides, mRNA levels of antioxidant enzyme genes were dramatically regulated by emodin exposure for 24 h. During low concentrations of exposure, mRNA levels of Cu-Zn SOD in the cells treated with 0.04, 0.20 μg/ml, CAT, NOX2 and Nrf2 in the cells treated with 1 μg/ml were sharply increased, respectively. Whereas, high concentrations were dramatically down-regulated the gene expressions of CAT in the cells treated with 5, 25 μg/ml and NOX2 in the cells treated with 25 μg/ml. Furthermore, sharp increase in Keap1and Bach1 expression levels were observed a dose-dependent manner. In conclusion, this study demonstrated that emodin could induce antioxidant defenses which were involved in cytotoxic activities, respiratory burst and the transcriptional regulation levels of antioxidant enzymes and Nrf2-Keap1 signaling molecules.
Collapse
Affiliation(s)
- Zhenxin Zhao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Changyou Song
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Mingchun Ren
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Linghong Miao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Huimin Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Fan Shan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Zhenfei Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
30
|
Wan J, Yang K, Xu Q, Chen D, Yu B, Luo Y, He J. Dietary chitosan oligosaccharide supplementation improves foetal survival and reproductive performance in multiparous sows. RSC Adv 2016. [DOI: 10.1039/c6ra13294d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chitosan oligosaccharide (COS), a partially hydrolysed product of chitosan, has various important biological activities.
Collapse
Affiliation(s)
- Jin Wan
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- P. R. China
| | - Kaiyun Yang
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- P. R. China
| | - Qingsong Xu
- College of Fisheries and Life Science
- Dalian Ocean University
- Dalian 116023
- P. R. China
| | - Daiwen Chen
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- P. R. China
| | - Bing Yu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- P. R. China
| | - Yuheng Luo
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- P. R. China
| | - Jun He
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- P. R. China
| |
Collapse
|
31
|
Ji Y, Li J, Qin Z, Li A, Gu Z, Liu X, Lin L, Zhou Y. Contribution of nuclease to the pathogenesis of Aeromonas hydrophila. Virulence 2015; 6:515-22. [PMID: 26039879 DOI: 10.1080/21505594.2015.1049806] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aeromonas hydrophila is a gram-negative bacterium that is widely distributed in aquatic environments and can cause septicemia in both fish and humans. However, the underlying mechanisms leading to severe infection are not well understood. In this study, an A. hydrophila nuclease (ahn) deletion mutant was constructed to investigate its contribution to pathogenesis. This mutant did not differ from the wild-type strain in terms of its growth or hemolytic phenotype. However, the ahn-deficient mutant was more susceptible to being killed by fish macrophages and mouse blood in vitro. Furthermore, evidence obtained using both fish and murine infection models strongly indicated that the inactivation of Ahn impaired the ability of A. hydrophila to evade innate immune clearance in vivo. More importantly, the virulence of the mutant was attenuated in both fish and mice, with reductions in dissemination capacities and mortality rates. These findings implicate Ahn in A. hydrophila virulence, with important functions in evading innate immune defenses.
Collapse
Affiliation(s)
- Yachan Ji
- a Department of Aquatic Animal Medicine; College of Fisheries; Huazhong Agricultural University ; Wuhan , China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zheng F, Asim M, Lan J, Zhao L, Wei S, Chen N, Liu X, Zhou Y, Lin L. Molecular Cloning and Functional Characterization of Mannose Receptor in Zebra Fish (Danio rerio) during Infection with Aeromonas sobria. Int J Mol Sci 2015; 16:10997-1012. [PMID: 25988382 PMCID: PMC4463687 DOI: 10.3390/ijms160510997] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 04/27/2015] [Accepted: 05/08/2015] [Indexed: 01/23/2023] Open
Abstract
Mannose receptor (MR) is a member of pattern-recognition receptors (PRRs), which plays a significant role in immunity responses. Much work on MR has been done in mammals and birds while little in fish. In this report, a MR gene (designated as zfMR) was cloned from zebra fish (Danio rerio), which is an attractive model for the studies of animal diseases. The full-length cDNA of zfMR contains 6248 bp encoding a putative protein of 1428 amino acids. The predicted amino acid sequences showed that zfMR contained a cysteine-rich domain, a single fibronectin type II (FN II) domain, eight C-type lectin-like domains (CTLDs), a transmembrane domain and a short C-terminal cytoplasmic domain, sharing highly conserved structures with MRs from the other species. The MR mRNA could be detected in all examined tissues with highest level in kidney. The temporal expression patterns of MR, IL-1β and TNF-α mRNAs were analyzed in the liver, spleen, kidney and intestine post of infection with Aeromonas sobria. By immunohistochemistry assay, slight enhancement of MR protein was also observed in the spleen and intestine of the infected zebra fish. The established zebra fish-A. sobria infection model will be valuable for elucidating the role of MR in fish immune responses to infection.
Collapse
Affiliation(s)
- Feifei Zheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Muhammad Asim
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Jiangfeng Lan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Lijuan Zhao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shun Wei
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Nan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Yang Zhou
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China.
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
33
|
Zhao X, Liu L, Hegazy AM, Wang H, Li J, Zheng F, Zhou Y, Wang W, Li J, Liu X, Lin L. Mannose receptor mediated phagocytosis of bacteria in macrophages of blunt snout bream (Megalobrama amblycephala) in a Ca(2+)-dependent manner. FISH & SHELLFISH IMMUNOLOGY 2015; 43:357-363. [PMID: 25583544 DOI: 10.1016/j.fsi.2015.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 06/04/2023]
Abstract
Mannose receptor (MR) is an important pattern-recognition receptor in macrophages and plays a critical role in immune responses. It is has been reported that mammalian macrophages are able to engulf a wide range of microorganisms mediated by Ca(2+)-dependent MR binding to terminal mannose residues which are frequently found on the pathogen surfaces. However, little is known about the MR-mediated phagocytosis in macrophages of fish. In this report, the distributions of MR in the macrophage and head kidney tissue from blunt snout bream were examined using MaMR specific antibody generated in our lab. Mannan and MaMR specific antibody inhibition experiments results collectively showed that MR was involved in the GFP-expressed E. coli engulfed in the macrophages, resulting in respiratory burst, nitric oxide production as well as inflammatory cytokines secretion, and the MaMR-mediated phagocytosis was Ca(2+)-dependent. These results will shed a new light on the immune functions of teleost MRs.
Collapse
Affiliation(s)
- Xiaoheng Zhao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, China
| | - Lichun Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Abeer M Hegazy
- Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), 13621, Egypt
| | - Hong Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jie Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Feifei Zheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Zhou
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, China
| | - Weimin Wang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, Hubei 430070, China
| | - Jun Li
- School of Biological Sciences, Lake Superior State University, Sault Ste. Marie 49783, MI, USA
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, China.
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, Hubei 430070, China.
| |
Collapse
|
34
|
Zhou W, Zhang Y, Wen Y, Ji W, Zhou Y, Ji Y, Liu X, Wang W, Asim M, Liang X, Ai T, Lin L. Analysis of the transcriptomic profilings of Mandarin fish (Siniperca chuatsi) infected with Flavobacterium columnare with an emphasis on immune responses. FISH & SHELLFISH IMMUNOLOGY 2015; 43:111-119. [PMID: 25533996 DOI: 10.1016/j.fsi.2014.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 11/20/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
Flavobacterium columnare (FC) is the causative pathogen of columnaris which has caused great economic loss in fish culture worldwide, including in Mandarin fish (Siniperca chuatsi) culture. In the present study, the transcriptomic profiles of the head kidneys from FC-infected and non-infected Mandarin fish were obtained using HiSeq™ 2000 (Illumina). Totally 31,168 unigenes with high quality were obtained. Genes involved in protein folding, metabolism and energy, immune responses, oxidoreductase activity, cell growth and death were identified as enriched classes. 1019 differently expressed genes between the two groups were identified, including 603 up-regulated and 416 down-regulated genes. 27 differently expressed immune related genes were scrutinized, including 17 up-regulated and 10 down-regulated genes. Six of the differently expressed genes were further validated by qRT-PCR. The roles of the immune related genes were discussed. Identification of the host genes in response to FC infection will shed a new light on the prevention of columnaris.
Collapse
Affiliation(s)
- Weidong Zhou
- Wuhan Fishery Research Institute, 430207 Wuhan, Hubei, China
| | - Yulei Zhang
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, 430070 Wuhan, Hubei, China; Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Yi Wen
- Division of Science and Technology, Beijing Normal University - Hong Kong Baptist University United International College, 519085 Zhuhai, Guangdong, China
| | - Wei Ji
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, 430070 Wuhan, Hubei, China; Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Yang Zhou
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Yachan Ji
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Weimin Wang
- China Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, 430070 Wuhan, Hubei, China
| | - Muhammad Asim
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, 430070 Wuhan, Hubei, China; Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Xufang Liang
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, 430070 Wuhan, Hubei, China; China Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, 430070 Wuhan, Hubei, China.
| | - Taoshan Ai
- Wuhan Fishery Research Institute, 430207 Wuhan, Hubei, China
| | - Li Lin
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, 430070 Wuhan, Hubei, China; Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, Hubei, China; China Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, 430070 Wuhan, Hubei, China.
| |
Collapse
|