1
|
Ferreira DG, Negri M. In vivo and in vitro pathogenicity of Fusarium oxysporum and its biofilm components. Braz J Microbiol 2025; 56:1061-1067. [PMID: 39960612 PMCID: PMC12095825 DOI: 10.1007/s42770-025-01632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/30/2025] [Indexed: 05/22/2025] Open
Abstract
Fusarium oxysporum is a widely distributed phytopathogen that affects agricultural crops and has demonstrated relevance in human and veterinary medicine. The virulence of this fungus involves factors such as mycotoxins, immunomodulatory proteins, and the ability to form biofilm. We assessed the pathogenicity of F. oxysporum in its planktonic form, as well as the influence of the extracellular matrix (ECM) from its biofilm on T. molitor larvae and cell culture. F. oxysporum inoculum was injected into larvae at different concentrations, and the survival curve was observed over 10 days. To evaluate the effects of ECM components, biofilms of 24, 72, 96, and 168 h of maturation were used. After extracting the ECM from these biofilms, it was injected into the larvae to assess the hosts response. For the cytotoxicity test of the ECM, were used on Vero cells. The increase in fungal inoculum concentrations was directly proportional to the larval mortality rate. When larvae were infected with the ECM, there was a 40% mortality rate and signs of weakness in the surviving larvae. Furthermore, biofilm metabolites showed cytotoxic effects, with reductions in cellular activity ranging from 20 to 49%. This alternative host model proved effective in investigating the fungal pathogenicity. Additionally, ECM components negatively affected cell viability, suggesting their importance in the damage caused by the fungus in host tissues. This study provides insights for the first time into F. oxysporum virulence and highlights the importance of considering the biofilm ECM in the context of fungal infections.
Collapse
Affiliation(s)
- Deisiany Gomes Ferreira
- Postgraduate Program in Health Sciences, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Melyssa Negri
- Medical Mycology Division, Department of Clinical Analysis, Universidade Estadual de Maringá, Avenida Colombo, Maringá, Paraná, 5790, CEP: 87020-900, Brazil.
| |
Collapse
|
2
|
Park SM, Suh JW, Ju YK, Kim JY, Kim SB, Sohn JW, Yoon YK. Molecular and virulence characteristics of carbapenem-resistant Acinetobacter baumannii isolates: a prospective cohort study. Sci Rep 2023; 13:19536. [PMID: 37945745 PMCID: PMC10636183 DOI: 10.1038/s41598-023-46985-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
This study aimed to characterize the molecular features and virulence profiles of carbapenem-resistant Acinetobacter baumannii (CRAB) isolates. Clinical CRAB isolates were obtained from blood cultures of adult patients with CRAB bacteremia, collected between July 2015 and July 2021 at a Korean hospital. Real-time polymerase chain reaction was used to detect 13 virulence genes, genotyping was conducted via multilocus sequence typing (MLST), and a Tenebrio molitor infection model was selected for survival analysis. Herein, 170 patients, from whom CRAB isolates were collected, showed the in-hospital mortality rate of 57.6%. All 170 clinical CRAB isolates harbored blaOXA-23 and blaOXA-51. MLST genotyping identified 11 CRAB sequence types (STs), of which ST191 was predominant (25.7%). Virulence genes were distributed as follows: basD, 58.9%; espA, 15.9%; bap, 92.4%; and ompA, 77.1%. In the T. molitor model, ST195 showed a significantly higher mortality rate (73.3% vs. 66.7%, p = 0.015) than the other groups. Our findings provide insights into the microbiological features of CRAB blood isolates associated with high mortality. We suggest a potential framework for using a T. molitor infection model to characterize CRAB virulence. Further research is warranted to elucidate the mechanisms by which virulence improves clinical outcomes.
Collapse
Affiliation(s)
- Seung Min Park
- Institute of Emerging Infectious Diseases, Korea University, Seoul, Republic of Korea
| | - Jin Woong Suh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yong Kuk Ju
- Institute of Emerging Infectious Diseases, Korea University, Seoul, Republic of Korea
| | - Jeong Yeon Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sun Bean Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jang Wook Sohn
- Institute of Emerging Infectious Diseases, Korea University, Seoul, Republic of Korea
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Young Kyung Yoon
- Institute of Emerging Infectious Diseases, Korea University, Seoul, Republic of Korea.
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Andrade-Oliveira AL, Lacerda-Rodrigues G, Pereira MF, Bahia AC, Machado EDA, Rossi CC, Giambiagi-deMarval M. Tenebrio molitor as a model system to study Staphylococcus spp virulence and horizontal gene transfer. Microb Pathog 2023; 183:106304. [PMID: 37567328 DOI: 10.1016/j.micpath.2023.106304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
Invertebrates can provide a valuable alternative to traditional vertebrate animal models for studying bacterial and fungal infections. This study aimed to establish the larvae of the coleoptera Tenebrio molitor (mealworm) as an in vivo model for evaluating virulence and horizontal gene transfer between Staphylococcus spp. After identifying the best conditions for rearing T. molitor, larvae were infected with different Staphylococcus species, resulting in dose-dependent killing curves. All species tested killed the insects at higher doses, with S. nepalensis and S. aureus being the most and least virulent, respectively. However, only S. nepalensis was able to kill more than 50% of larvae 72 h post-infection at a low amount of 105 CFU. Staphylococcus infection also stimulated an increase in the concentration of hemocytes present in the hemolymph, which was proportional to the virulence. To investigate T. molitor's suitability as an in vivo model for plasmid transfer studies, we used S. aureus strains as donor and recipient of a plasmid containing the gentamicin resistance gene aac(6')-aph(2″). By inoculating larvae with non-lethal doses of each, we observed conjugation, and obtained transconjugant colonies with a frequency of 1.6 × 10-5 per donor cell. This study demonstrates the potential of T. molitor larvae as a reliable and cost-effective model for analyzing the virulence of Staphylococcus and, for the first time, an optimal environment for the plasmid transfer between S. aureus carrying antimicrobial resistance genes.
Collapse
Affiliation(s)
- Ana Luisa Andrade-Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Geovana Lacerda-Rodrigues
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Monalessa Fábia Pereira
- Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais, Carangola, MG, Brazil
| | - Ana Cristina Bahia
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciencia e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Ednildo de Alcântara Machado
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciencia e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Ciro César Rossi
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marcia Giambiagi-deMarval
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Petronio Petronio G, Pietrangelo L, Cutuli MA, Magnifico I, Venditti N, Guarnieri A, Abate GA, Yewhalaw D, Davinelli S, Di Marco R. Emerging Evidence on Tenebrio molitor Immunity: A Focus on Gene Expression Involved in Microbial Infection for Host-Pathogen Interaction Studies. Microorganisms 2022; 10:1983. [PMID: 36296259 PMCID: PMC9611967 DOI: 10.3390/microorganisms10101983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 08/13/2023] Open
Abstract
In recent years, the scientific community's interest in T. molitor as an insect model to investigate immunity and host-pathogen interactions has considerably increased. The reasons for this growing interest could be explained by the peculiar features of this beetle, which offers various advantages compared to other invertebrates models commonly used in laboratory studies. Thus, this review aimed at providing a broad view of the T. molitor immune system in light of the new scientific evidence on the developmental/tissue-specific gene expression studies related to microbial infection. In addition to the well-known cellular component and humoral response process, several studies investigating the factors associated with T. molitor immune response or deepening of those already known have been reported. However, various aspects remain still less understood, namely the possible crosstalk between the immune deficiency protein and Toll pathways and the role exerted by T. molitor apolipoprotein III in the expression of the antimicrobial peptides. Therefore, further research is required for T. molitor to be recommended as an alternative insect model for pathogen-host interaction and immunity studies.
Collapse
Affiliation(s)
- Giulio Petronio Petronio
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Laura Pietrangelo
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Marco Alfio Cutuli
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Antonio Guarnieri
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Getnet Atinafu Abate
- Department of Biology, College of Natural Sciences, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma P.O. Box 307, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma P.O. Box 378, Ethiopia
| | - Sergio Davinelli
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| |
Collapse
|
5
|
Hu Z, Cao X, Guo M, Li C. Identification and characterization of a novel short-type peptidoglycan recognition protein in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2020; 99:257-266. [PMID: 32061713 DOI: 10.1016/j.fsi.2020.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are pattern recognition molecules of the innate immune system via specific recognizing peptidoglycan, a unique component of bacterial cell wall. In the present study, a homologous gene encoding PGRP-S was identified and characterized from Apostichopus japonicus and designated as AjPGRP-S. The open reading frame of AjPGRP-S is 756 bp encoding a polypeptide of 251 amino acids (aa) with a signal peptide (1-24 aa) and a typical PGRP domain (37-178 aa). Phylogenetic analysis and sequence alignment revealed that AjPGRP-S is a member of the PGRP-S family. In healthy sea cucumbers, AjPGRP-S was expressed in all examined tissues with the highest distribution in body wall, muscle, and intestine. In Vibrio splendidus-infected sea cucumbers, AjPGRP-S was remarkably induced in coelomocytes. The recombinant AjPGRP-S (rAjPGRP-S) was shown to possess the highly amidase activity in the presence of Zn2+. Moreover, rAjPGRP-S exhibited agglutination abilities and strong bacteriostatic activities against V. splendidus, V. harveyi, V. parahaemolyticus, Staphylococcus aureus, and Micrococcus luteus. Furthermore, the agglutination ability can be enhanced in the presence of Zn2+. In conclusion, our results suggested that AjPGRP-S serves as a pattern recognition molecule involved in the immune response towards various pathogenic infections.
Collapse
Affiliation(s)
- Zhenguo Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Xuebin Cao
- National Algae and Sea Cucumber Project Technology Research Center, Shandong Oriental Ocean Sci-Tech Company Limited, Yantai, 264003, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
6
|
TmDorX2 positively regulates antimicrobial peptides in Tenebrio molitor gut, fat body, and hemocytes in response to bacterial and fungal infection. Sci Rep 2019; 9:16878. [PMID: 31728023 PMCID: PMC6856108 DOI: 10.1038/s41598-019-53497-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022] Open
Abstract
Dorsal, a member of the nuclear factor-kappa B (NF-κB) family of transcription factors, is a critical downstream component of the Toll pathway that regulates the expression of antimicrobial peptides (AMPs) against pathogen invasion. In this study, the full-length ORF of Dorsal was identified from the RNA-seq database of the mealworm beetle Tenebrio molitor (TmDorX2). The ORF of TmDorX2 was 1,482 bp in length, encoding a polypeptide of 493 amino acid residues. TmDorX2 contains a conserved Rel homology domain (RHD) and an immunoglobulin-like, plexins, and transcription factors (IPT) domain. TmDorX2 mRNA was detected in all developmental stages, with the highest levels observed in 3-day-old adults. TmDorX2 transcripts were highly expressed in the adult Malpighian tubules (MT) and the larval fat body and MT tissues. After challenging the larvae with Staphylococcus aureus and Escherichia coli, the TmDorX2 mRNA levels were upregulated 6 and 9 h post infection in the whole body, fat body, and hemocytes. Upon Candida albicans challenge, the TmDorX2 mRNA expression were found highest at 9 h post-infection in the fat body. In addition, TmDorX2-knockdown larvae exposed to E. coli, S. aureus, or C. albicans challenge showed a significantly increased mortality rate. Furthermore, the expression of 11 AMP genes was downregulated in the gut and fat body of dsTmDorX2-injected larvae upon E. coli challenge. After C. albicans and S. aureus challenge of dsTmDorX2-injected larvae, the expression of 11 and 10 AMPs was downregulated in the gut and fat body, respectively. Intriguingly, the expression of antifungal transcripts TmTenecin-3 and TmThaumatin-like protein-1 and -2 was greatly decreased in TmDorX2-silenced larvae in response to C. albicans challenge, suggesting that TmDorX2 regulates antifungal AMPs in the gut in response to C. albicans infection. The AMP expression profiles in the fat body, hemocytes, gut, and MTs suggest that TmDorX2 might have an important role in promoting the survival of T. molitor larvae against all mentioned pathogens.
Collapse
|
7
|
Mistretta N, Brossaud M, Telles F, Sanchez V, Talaga P, Rokbi B. Glycosylation of Staphylococcus aureus cell wall teichoic acid is influenced by environmental conditions. Sci Rep 2019; 9:3212. [PMID: 30824758 PMCID: PMC6397182 DOI: 10.1038/s41598-019-39929-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/31/2019] [Indexed: 01/26/2023] Open
Abstract
Wall teichoic acid (WTA) are major constituents of Staphylococcus aureus (S. aureus) cell envelopes with important roles in the bacteria's physiology, resistance to antimicrobial molecules, host interaction, virulence and biofilm formation. They consist of ribitol phosphate repeat units in which the ribitol residue is substituted with D-alanine (D-Ala) and N-acetyl-D-glucosamine (GlcNAc). The complete S. aureus WTA biosynthesis pathways was recently revealed with the identification of the two glycosyltransferases, TarM and TarS, respectively responsible for the α- and β-GlcNAc anomeric substitutions. We performed structural analyses to characterize WTAs from a panel of 24 S. aureus strains responsible for invasive infections. A majority of the S. aureus strains produced the β-GlcNAc WTA form in accordance with the presence of the tarS gene in all strains assessed. The β-GlcNAc anomer was preferentially expressed at the expense of the α-GlcNAc anomer when grown on stress-inducing culture medium containing high NaCl concentration. Furthermore, WTA glycosylation of the prototype S. aureus Newman strain was characterized in vivo in two different animal models, namely peritonitis and deep wound infection. While the inoculum used to infect animals produced almost exclusively α-GlcNAc WTA, a complete switch to β-glycosylation was observed in infected kidneys, livers and muscles. Overall, our data demonstrate that S. aureus WTA glycosylation is strongly influenced by environmental conditions and suggest that β-GlcNAc WTA may bring competitive advantage in vivo.
Collapse
Affiliation(s)
- Noëlle Mistretta
- Research and Development, Sanofi Pasteur, Marcy l'Etoile, France.
| | - Marina Brossaud
- Research and Development, Sanofi Pasteur, Marcy l'Etoile, France
| | - Fabienne Telles
- Research and Development, Sanofi Pasteur, Marcy l'Etoile, France
| | - Violette Sanchez
- Research and Development, Sanofi Pasteur, Marcy l'Etoile, France
| | - Philippe Talaga
- Research and Development, Sanofi Pasteur, Marcy l'Etoile, France
| | - Bachra Rokbi
- Research and Development, Sanofi Pasteur, Marcy l'Etoile, France
| |
Collapse
|
8
|
Rolff J, Schmid-Hempel P. Perspectives on the evolutionary ecology of arthropod antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0297. [PMID: 27160599 DOI: 10.1098/rstb.2015.0297] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2016] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial peptides (AMPs) are important elements of the innate immune defence in multicellular organisms that target and kill microbes. Here, we reflect on the various points that are raised by the authors of the 11 contributions to a special issue of Philosophical Transactions on the 'evolutionary ecology of arthropod antimicrobial peptides'. We see five interesting topics emerging. (i) AMP genes in insects, and perhaps in arthropods more generally, evolve much slower than most other immune genes. One explanation refers to the constraints set by AMPs being part of a finely tuned defence system. A new view argues that AMPs are under strong stabilizing selection. Regardless, this striking observation still invites many more questions than have been answered so far. (ii) AMPs almost always are expressed in combinations and sometimes show expression patterns that are dependent on the infectious agent. While it is often assumed that this can be explained by synergistic interactions, such interactions have rarely been demonstrated and need to be studied further. Moreover, how to define synergy in the first place remains difficult and needs to be addressed. (iii) AMPs play a very important role in mediating the interaction between a host and its mutualistic or commensal microbes. This has only been studied in a very small number of (insect) species. It has become clear that the very same AMPs play different roles in different situations and hence are under concurrent selection. (iv) Different environments shape the physiology of organisms; especially the host-associated microbial communities should impact on the evolution host AMPs. Studies in social insects and some organisms from extreme environments seem to support this notion, but, overall, the evidence for adaptation of AMPs to a given environment is scant. (v) AMPs are considered or already developed as new drugs in medicine. However, bacteria can evolve resistance to AMPs. Therefore, in the light of our limited understanding of AMP evolution in the natural context, and also the very limited understanding of the evolution of resistance against AMPs in bacteria in particular, caution is recommended. What is clear though is that study of the ecology and evolution of AMPs in natural systems could inform many of these outstanding questions, including those related to medical applications and pathogen control.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Jens Rolff
- Evolutionary Biology, Institute of Biology, Freie Universität Berlin, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Paul Schmid-Hempel
- ETH Zürich, Institute of Integrative Biology (IBZ), ETH-Zentrum CHN, Universitätsstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
9
|
Zanchi C, Johnston PR, Rolff J. Evolution of defence cocktails: Antimicrobial peptide combinations reduce mortality and persistent infection. Mol Ecol 2017; 26:5334-5343. [PMID: 28762573 DOI: 10.1111/mec.14267] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 01/26/2023]
Abstract
The simultaneous expression of costly immune effectors such as multiple antimicrobial peptides is a hallmark of innate immunity of multicellular organisms, yet the adaptive advantage remains unresolved. Here, we test current hypotheses on the evolution of such defence cocktails. We use RNAi gene knock-down to explore, the effects of three highly expressed antimicrobial peptides, displaying different degrees of activity in vitro against Staphylococcus aureus, during an infection in the beetle Tenebrio molitor. We find that a defensin confers no survival benefit but reduces bacterial loads. A coleoptericin contributes to host survival without affecting bacterial loads. An attacin has no individual effect. Simultaneous knock-down of the defensin with the other AMPs results in increased mortality and elevated bacterial loads. Contrary to common expectations, the effects on host survival and bacterial load can be independent. The expression of multiple AMPs increases host survival and contributes to the control of persisting infections and tolerance. This is an emerging property that explains the adaptive benefit of defence cocktails.
Collapse
Affiliation(s)
- Caroline Zanchi
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany.,Westfälische Wilhelms-Universität Münster, Institute of Evolution and Biodiversity, Münster, Germany
| | - Paul R Johnston
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Jens Rolff
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
10
|
de Souza PC, Morey AT, Castanheira GM, Bocate KP, Panagio LA, Ito FA, Furlaneto MC, Yamada-Ogatta SF, Costa IN, Mora-Montes HM, Almeida RS. Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host to study fungal infections. J Microbiol Methods 2015; 118:182-6. [DOI: 10.1016/j.mimet.2015.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 11/16/2022]
|