1
|
Donato A, Ritchie FK, Lu L, Wadia M, Martinez-Marmol R, Kaulich E, Sankorrakul K, Lu H, Coakley S, Coulson EJ, Hilliard MA. OSP-1 protects neurons from autophagic cell death induced by acute oxidative stress. Nat Commun 2025; 16:300. [PMID: 39746999 PMCID: PMC11696186 DOI: 10.1038/s41467-024-55105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/21/2024] [Indexed: 01/04/2025] Open
Abstract
Oxidative stress, caused by the accumulation of reactive oxygen species (ROS), is a pathological factor in several incurable neurodegenerative conditions as well as in stroke. However, our knowledge of the genetic elements that can be manipulated to protect neurons from oxidative stress-induced cell death is still very limited. Here, using Caenorhabditis elegans as a model system, combined with the optogenetic tool KillerRed to spatially and temporally control ROS generation, we identify a previously uncharacterized gene, oxidative stress protective 1 (osp-1), that protects C. elegans neurons from oxidative damage. Using rodent and human cell cultures, we also show that the protective effect of OSP-1 extends to mammalian cells. Moreover, we demonstrate that OSP-1 functions in a strictly cell-autonomous fashion, and that it localizes to the endoplasmic reticulum (ER) where it has an ER-remodeling function. Finally, we present evidence suggesting that OSP-1 may exert its neuroprotective function by influencing autophagy. Our results point to a potential role of OSP-1 in modulating autophagy, and suggest that overactivation of this cellular process could contribute to neuronal death triggered by oxidative damage.
Collapse
Affiliation(s)
- Alessandra Donato
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Fiona K Ritchie
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Lachlan Lu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Mehershad Wadia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ramon Martinez-Marmol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Eva Kaulich
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Kornraviya Sankorrakul
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sean Coakley
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth J Coulson
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Pees B, Peters L, Treitz C, Hamerich IK, Kissoyan KAB, Tholey A, Dierking K. The Caenorhabditis elegans proteome response to two protective Pseudomonas symbionts. mBio 2024; 15:e0346323. [PMID: 38411078 PMCID: PMC11005407 DOI: 10.1128/mbio.03463-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
The Caenorhabditis elegans natural microbiota isolates Pseudomonas lurida MYb11 and Pseudomonas fluorescens MYb115 protect the host against pathogens through distinct mechanisms. While P. lurida produces an antimicrobial compound and directly inhibits pathogen growth, P. fluorescens MYb115 protects the host without affecting pathogen growth. It is unknown how these two protective microbes affect host biological processes. We used a proteomics approach to elucidate the C. elegans response to MYb11 and MYb115. We found that both Pseudomonas isolates increase vitellogenin protein production in young adults, which confirms previous findings on the effect of microbiota on C. elegans reproductive timing. Moreover, the C. elegans responses to MYb11 and MYb115 exhibit common signatures with the response to other vitamin B12-producing bacteria, emphasizing the importance of vitamin B12 in C. elegans-microbe metabolic interactions. We further analyzed signatures in the C. elegans response specific to MYb11 or MYb115. We provide evidence for distinct modifications in lipid metabolism by both symbiotic microbes. We could identify the activation of host-pathogen defense responses as an MYb11-specific proteome signature and provide evidence that the intermediate filament protein IFB-2 is required for MYb115-mediated protection. These results indicate that MYb11 not only produces an antimicrobial compound but also activates host antimicrobial defenses, which together might increase resistance to infection. In contrast, MYb115 affects host processes such as lipid metabolism and cytoskeleton dynamics, which might increase host tolerance to infection. Overall, this study pinpoints proteins of interest that form the basis for additional exploration into the mechanisms underlying C. elegans microbiota-mediated protection from pathogen infection and other microbiota-mediated traits.IMPORTANCESymbiotic bacteria can defend their host against pathogen infection. While some protective symbionts directly interact with pathogenic bacteria, other protective symbionts elicit a response in the host that improves its own pathogen defenses. To better understand how a host responds to protective symbionts, we examined which host proteins are affected by two protective Pseudomonas bacteria in the model nematode Caenorhabditis elegans. We found that the C. elegans response to its protective symbionts is manifold, which was reflected in changes in proteins that are involved in metabolism, the immune system, and cell structure. This study provides a foundation for exploring the contribution of the host response to symbiont-mediated protection from pathogen infection.
Collapse
Affiliation(s)
- Barbara Pees
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| | - Lena Peters
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| | - Christian Treitz
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrecht University, Kiel, Germany
| | - Inga K. Hamerich
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| | - Kohar A. B. Kissoyan
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrecht University, Kiel, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| |
Collapse
|
3
|
How CM, Li YS, Huang WY, Wei CC. Early-life exposure to mycotoxin zearalenone exacerbates aberrant immune response, oxidative stress, and mortality of Caenorhabditis elegans under pathogen Bacillus thuringiensis infection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116085. [PMID: 38342010 DOI: 10.1016/j.ecoenv.2024.116085] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Zearalenone (ZEN) is a prevalent mycotoxin that severely impacts human and animal health. However, the possible interactions between ZEN exposure, pathogen infection, immune system, and reactive oxygen species (ROS) were rarely investigated. We studied the effects of early-life ZEN (50 µM) exposure on the immune response of Caenorhabditis elegans against Bacillus thuringiensis infection and the associated mechanisms. The transcriptomic responses of C. elegans after early-life ZEN exposure were investigated using RNA sequencing and followed by verification using quantitative PCR analysis. We also investigated the immune responses of the worms through B. thuringiensis killing assays and by measuring oxidative stress. The transcriptomics result showed that early-life exposure to ZEN resulted in 44 differentially expressed genes, 7 of which were protein-coding genes with unknown functions. The Gene Ontology analysis suggested that metabolic processes and immune response were among the most significantly enriched biological processes, and the KEGG analysis suggested that lysosomes and metabolic pathways were the most significantly enriched pathways. The ZEN-exposed worms exhibited significantly reduced survival after 24-h B. thuringiensis infection, reaching near 100% mortality compared to 60% of the controls. Using qRT-PCR assay, we found that ZEN further enhanced the expression of immunity genes lys-6, spp-1, and clec-60 after B. thuringiensis infection. A concurrently enhanced ROS accumulation was also observed for ZEN-exposed worms after B. thuringiensis infection, which was 1.2-fold compared with the controls. Moreover, ZEN exposure further enhanced mRNA expression of catalases (ctl-1 and ctl-2) and increased catalase protein activity after B. thuringiensis exposure compared with their non-exposed counterparts, suggesting an elevated oxidative stress. This study suggests that early-life exposure to mycotoxin zearalenone overstimulates immune responses involving spp-17, clec-52, and clec-56, resulting in excessive ROS production, enhanced oxidative stress as indicated by aggravated ctl expression and activity, and a decline in host resistance to pathogenic infection which ultimately leads to increased mortality under B. thuringiensis infection. Our findings provide evidence that could improve our understanding on the potential interactions between mycotoxin zearalenone and pathogens.
Collapse
Affiliation(s)
- Chun Ming How
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Yong-Shan Li
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Wei-Yun Huang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan.
| |
Collapse
|
4
|
Al-Jawabreh R, Lastik D, McKenzie D, Reynolds K, Suleiman M, Mousley A, Atkinson L, Hunt V. Advancing Strongyloides omics data: bridging the gap with Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220437. [PMID: 38008117 PMCID: PMC10676819 DOI: 10.1098/rstb.2022.0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/31/2023] [Indexed: 11/28/2023] Open
Abstract
Among nematodes, the free-living model organism Caenorhabditis elegans boasts the most advanced portfolio of high-quality omics data. The resources available for parasitic nematodes, including Strongyloides spp., however, are lagging behind. While C. elegans remains the most tractable nematode and has significantly advanced our understanding of many facets of nematode biology, C. elegans is not suitable as a surrogate system for the study of parasitism and it is important that we improve the omics resources available for parasitic nematode species. Here, we review the omics data available for Strongyloides spp. and compare the available resources to those for C. elegans and other parasitic nematodes. The advancements in C. elegans omics offer a blueprint for improving omics-led research in Strongyloides. We suggest areas of priority for future research that will pave the way for expansions in omics resources and technologies. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Reem Al-Jawabreh
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Dominika Lastik
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | - Kieran Reynolds
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Mona Suleiman
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | | | - Vicky Hunt
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
5
|
Tseng DY, Wang ST, Ballantyne R, Liu CH. Adenosine 5'-monophosphate-activated protein kinase (AMPK) negatively regulates the immunity and resistance to Vibrio alginolyticus of white shrimp, Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108884. [PMID: 37302677 DOI: 10.1016/j.fsi.2023.108884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Shrimp immunology is vital in establishing prophylactic and therapeutic strategies for controlling pathological problems that threaten shrimp production. Apart from dietary treatments, the adenosine 5'-monophosphate-activated protein kinase (AMPK), an important regulatory enzyme that restores cellular energy balance during metabolic and physiological stress, is known to have therapeutic potential to improve shrimp's defense mechanism. Despite this, studies targeting the AMPK pathway in shrimp exposed to stressful conditions are vastly limited. In this study, AMPK was knocked down to assess the immunological changes and white shrimp, Penaeus vannamei resistance to Vibrio alginolyticus infection. Shrimps were injected individually and simultaneously with dsRNA targeting specific genes such as AMPK, Rheb, and TOR, after which the hepatopancreas was analyzed for the different gene expressions. The gene expressions of AMPK, Rheb, and TOR were effectively suppressed after being treated with dsRNAs. The Western blot analysis further confirmed a reduction in the protein concentration of AMPK and Rheb in the hepatopancreas. The suppression of AMPK gene led to a robust increase in the shrimp's resistance to V. alginolyticus, whereas the activation of AMPK by metformin decreased the shrimp's disease resistance. Among the mTOR downstream targets, the HIF-1α expression in shrimp treated with dsAMPK significantly increased at 48 h but returned to normal levels when shrimp were treated with dsAMPK and either dsRheb or dsTOR. Immune responses such as respiratory burst, lysozyme activity, and phagocytic activity increased, while superoxide dismutase activity decreased following the knockdown of the AMPK gene compared to the control group. However, co-injection with dsAMPK and dsTOR or dsRheb restored immune responses to normal levels. Collectively, these results demonstrate that the inactivation of AMPK may ameliorate shrimp's innate immune response to recognize and defend against pathogens via the AMPK/mTOR1 pathway.
Collapse
Affiliation(s)
- Deng-Yu Tseng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 700, Taiwan
| | - Sz-Tsan Wang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Rolissa Ballantyne
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
6
|
A Caenorhabditis elegans nck-1 and filamentous actin-regulating protein pathway mediates a key cellular defense against bacterial pore-forming proteins. PLoS Pathog 2022; 18:e1010656. [PMID: 36374839 PMCID: PMC9704757 DOI: 10.1371/journal.ppat.1010656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/28/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Pore-forming proteins (PFPs) comprise the largest single class of bacterial protein virulence factors and are expressed by many human and animal bacterial pathogens. Cells that are attacked by these virulence factors activate epithelial intrinsic cellular defenses (or INCEDs) to prevent the attendant cellular damage, cellular dysfunction, osmotic lysis, and organismal death. Several conserved PFP INCEDs have been identified using the nematode Caenorhabditis elegans and the nematicidal PFP Cry5B, including mitogen-activated protein kinase (MAPK) signaling pathways. Here we demonstrate that the gene nck-1, which has homologs from Drosophila to humans and links cell signaling with localized F-actin polymerization, is required for INCED against small-pore PFPs in C. elegans. Reduction/loss of nck-1 function results in C. elegans hypersensitivity to PFP attack, a hallmark of a gene required for INCEDs against PFPs. This requirement for nck-1-mediated INCED functions cell-autonomously in the intestine and is specific to PFPs but not to other tested stresses. Genetic interaction experiments indicate that nck-1-mediated INCED against PFP attack is independent of the major MAPK PFP INCED pathways. Proteomics and cell biological and genetic studies further indicate that nck-1 functions with F-actin cytoskeleton modifying genes like arp2/3, erm-1, and dbn-1 and that nck-1/arp2/3 promote pore repair at the membrane surface and protect against PFP attack independent of p38 MAPK. Consistent with these findings, PFP attack causes significant changes in the amount of actin cytoskeletal proteins and in total amounts of F-actin in the target tissue, the intestine. nck-1 mutant animals appear to have lower F-actin levels than wild-type C. elegans. Studies on nck-1 and other F-actin regulating proteins have uncovered a new and important role of this pathway and the actin cytoskeleton in PFP INCED and protecting an intestinal epithelium in vivo against PFP attack.
Collapse
|
7
|
Ju S, Chen H, Wang S, Lin J, Ma Y, Aroian RV, Peng D, Sun M. C. elegans monitor energy status via the AMPK pathway to trigger innate immune responses against bacterial pathogens. Commun Biol 2022; 5:643. [PMID: 35773333 PMCID: PMC9246835 DOI: 10.1038/s42003-022-03589-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogen recognition and the triggering of host innate immune system are critical to understanding pathogen-host interaction. Cellular surveillance systems have been identified as an important strategy for the identification of microbial infection. In the present study, using Bacillus thuringiensis-Caenorhabditis elegans as a model, we found an approach for surveillance systems to sense pathogens. We report that Bacillus thuringiensis Cry5Ba, a typical pore-forming toxin, caused mitochondrial damage and energy imbalance by triggering potassium ion leakage, instead of directly targeting mitochondria. Interestingly, we find C. elegans can monitor intracellular energy status to trigger innate immune responses via AMP-activated protein kinase (AMPK), secreting multiple effectors to defend against pathogenic attacks. Our study indicates that the imbalance of energy status is a prevalent side effect of pathogen infection. Furthermore, the AMPK-dependent surveillance system may serve as a practicable strategy for the host to recognize and defense against pathogens. Bacillus thuringiensis toxin Cry5Ba triggers potassium ion leakage, causing mitochondrial damage and energy imbalance. C. elegans can monitor this intracellular energy imbalance via AMP-activated protein kinase to trigger innate immune responses.
Collapse
Affiliation(s)
- Shouyong Ju
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanqiao Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoying Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Lin
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanli Ma
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Raffi V Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School Worcester, Worcester, MA, 01605-2377, USA
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Zárate-Potes A, Yang W, Andresen B, Nakad R, Haase D, Rosenstiel P, Dierking K, Schulenburg H. The effects of nested miRNAs and their host genes on immune defense against Bacillus thuringiensis infection in Caenorhabditis elegans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104144. [PMID: 34051205 DOI: 10.1016/j.dci.2021.104144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
microRNAs (miRNAs) are small non-coding RNA-molecules that influence translation by binding to the target gene mRNA. Many miRNAs are found in nested arrangements within larger protein-coding host genes. miRNAs and host genes in a nested arrangement are often transcribed simultaneously, which may indicate that both have similar functions. miRNAs have been implicated in regulating defense responses against pathogen infection in C. elegans and in mammals. Here, we asked if miRNAs in nested arrangements and their host genes are involved in the C. elegans response against infection with Bacillus thuringiensis (Bt). We performed miRNA sequencing and subsequently focused on four nested miRNA-host gene arrangements for a functional genetic analysis. We identified mir-58.1 and mir-2 as negative regulators of C. elegans resistance to Bt infection. However, we did not find any miRNA/host gene pair in which both contribute to defense against Bt.
Collapse
Affiliation(s)
- Alejandra Zárate-Potes
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Wentao Yang
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Bentje Andresen
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Rania Nakad
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Daniela Haase
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology (IKMB), Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany; Max Planck Institute for Evolutionary Biology, 24306, Ploen, Germany.
| |
Collapse
|
9
|
Ortiz A, Vega NM, Ratzke C, Gore J. Interspecies bacterial competition regulates community assembly in the C. elegans intestine. THE ISME JOURNAL 2021; 15:2131-2145. [PMID: 33589765 PMCID: PMC8245486 DOI: 10.1038/s41396-021-00910-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
From insects to mammals, a large variety of animals hold in their intestines complex bacterial communities that play an important role in health and disease. To further our understanding of how intestinal bacterial communities assemble and function, we study the C. elegans microbiota with a bottom-up approach by feeding this nematode with bacterial monocultures as well as mixtures of two to eight bacterial species. We find that bacteria colonizing well in monoculture do not always do well in co-cultures due to interspecies bacterial interactions. Moreover, as community diversity increases, the ability to colonize the worm gut in monoculture becomes less important than interspecies interactions for determining community assembly. To explore the role of host-microbe adaptation, we compare bacteria isolated from C. elegans intestines and non-native isolates, and we find that the success of colonization is determined more by a species' taxonomy than by the isolation source. Lastly, by comparing the assembled microbiotas in two C. elegans mutants, we find that innate immunity via the p38 MAPK pathway decreases bacterial abundances yet has little influence on microbiota composition. These results highlight that bacterial interspecies interactions, more so than host-microbe adaptation or gut environmental filtering, play a dominant role in the assembly of the C. elegans microbiota.
Collapse
Affiliation(s)
- Anthony Ortiz
- grid.116068.80000 0001 2341 2786Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Nicole M. Vega
- grid.116068.80000 0001 2341 2786Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.189967.80000 0001 0941 6502Present Address: Department of Biology, Emory University, Atlanta, GA USA
| | - Christoph Ratzke
- grid.116068.80000 0001 2341 2786Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.10392.390000 0001 2190 1447Present Address: Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence ‘CMFI’, University of Tübingen, Tübingen, Germany
| | - Jeff Gore
- grid.116068.80000 0001 2341 2786Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
10
|
Pees B, Yang W, Kloock A, Petersen C, Peters L, Fan L, Friedrichsen M, Butze S, Zárate-Potes A, Schulenburg H, Dierking K. Effector and regulator: Diverse functions of C. elegans C-type lectin-like domain proteins. PLoS Pathog 2021; 17:e1009454. [PMID: 33793670 PMCID: PMC8051790 DOI: 10.1371/journal.ppat.1009454] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 04/16/2021] [Accepted: 03/05/2021] [Indexed: 11/22/2022] Open
Abstract
In C. elegans, 283 clec genes encode a highly diverse family of C-type lectin-like domain (CTLD) proteins. Since vertebrate CTLD proteins have characterized functions in defense responses against pathogens and since expression of C. elegans clec genes is pathogen-dependent, it is generally assumed that clec genes function in C. elegans immune defenses. However, little is known about the relative contribution and exact function of CLEC proteins in C. elegans immunity. Here, we focused on the C. elegans clec gene clec-4, whose expression is highly upregulated by pathogen infection, and its paralogs clec-41 and clec-42. We found that, while mutation of clec-4 resulted in enhanced resistance to the Gram-positive pathogen Bacillus thuringiensis MYBt18247 (Bt247), inactivation of clec-41 and clec-42 by RNAi enhanced susceptibility to Bt247. Further analyses revealed that enhanced resistance of clec-4 mutants to Bt247 was due to an increase in feeding cessation on the pathogen and consequently a decrease in pathogen load. Moreover, clec-4 mutants exhibited feeding deficits also on non-pathogenic bacteria that were in part reflected in the clec-4 gene expression profile, which overlapped with gene sets affected by starvation or mutation in nutrient sensing pathways. However, loss of CLEC-4 function only mildly affected life-history traits such as fertility, indicating that clec-4 mutants are not subjected to dietary restriction. While CLEC-4 function appears to be associated with the regulation of feeding behavior, we show that CLEC-41 and CLEC-42 proteins likely function as bona fide immune effector proteins that have bacterial binding and antimicrobial capacities. Together, our results exemplify functional diversification within clec gene paralogs. C-type lectin-like domain (CTLD) containing proteins fulfill various and fundamental tasks in the human and mouse immune system. Genes encoding CTLD proteins are present in all animal genomes, in some cases in very large numbers and highly diversified. While the function of several vertebrate CTLD proteins is well characterized, experimental evidence of an immune function of most invertebrate CTLD proteins is missing, although their role in immunity is usually assumed. We here explore the immune function of three related CTLD proteins in the model nematode Caenorhabditis elegans. We find that they play diverse roles in C. elegans immunity, functioning as antimicrobial immune effector proteins that are important for defense against pathogen infection and probably directly interact with bacteria, but also regulators of feeding behavior that more indirectly affect C. elegans pathogen resistance. Such insight into the functional consequence of invertebrate CTLD protein diversification contributes to our understanding of the evolution of innate and invertebrate immune systems.
Collapse
Affiliation(s)
- Barbara Pees
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Department of Comparative Immunobiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Wentao Yang
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Anke Kloock
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Carola Petersen
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Department of Comparative Immunobiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Lena Peters
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Li Fan
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Meike Friedrichsen
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Sabrina Butze
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Alejandra Zárate-Potes
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Max-Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- * E-mail:
| |
Collapse
|
11
|
Rackles E, Witting M, Forné I, Zhang X, Zacherl J, Schrott S, Fischer C, Ewbank JJ, Osman C, Imhof A, Rolland SG. Reduced peroxisomal import triggers peroxisomal retrograde signaling. Cell Rep 2021; 34:108653. [PMID: 33472070 DOI: 10.1016/j.celrep.2020.108653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/06/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Maintaining organelle function in the face of stress is known to involve organelle-specific retrograde signaling. Using Caenorhabditis elegans, we present evidence of the existence of such retrograde signaling for peroxisomes, which we define as the peroxisomal retrograde signaling (PRS). Specifically, we show that peroxisomal import stress caused by knockdown of the peroxisomal matrix import receptor prx-5/PEX5 triggers NHR-49/peroxisome proliferator activated receptor alpha (PPARα)- and MDT-15/MED15-dependent upregulation of the peroxisomal Lon protease lonp-2/LONP2 and the peroxisomal catalase ctl-2/CAT. Using proteomic and transcriptomic analyses, we show that proteins involved in peroxisomal lipid metabolism and immunity are also upregulated upon prx-5(RNAi). While the PRS can be triggered by perturbation of peroxisomal β-oxidation, we also observed hallmarks of PRS activation upon infection with Pseudomonas aeruginosa. We propose that the PRS, in addition to a role in lipid metabolism homeostasis, may act as a surveillance mechanism to protect against pathogens.
Collapse
Affiliation(s)
- Elisabeth Rackles
- Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Ignasi Forné
- Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Großhadernerstr. 9, 82152 Martinsried, Germany
| | - Xing Zhang
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Judith Zacherl
- Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany
| | - Simon Schrott
- Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany
| | - Christian Fischer
- Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany
| | - Jonathan J Ewbank
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Christof Osman
- Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany
| | - Axel Imhof
- Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Großhadernerstr. 9, 82152 Martinsried, Germany
| | - Stéphane G Rolland
- Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany.
| |
Collapse
|
12
|
Poupet C, Chassard C, Nivoliez A, Bornes S. Caenorhabditis elegans, a Host to Investigate the Probiotic Properties of Beneficial Microorganisms. Front Nutr 2020; 7:135. [PMID: 33425969 PMCID: PMC7786404 DOI: 10.3389/fnut.2020.00135] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Caenorhabditis elegans, a non-parasitic nematode emerges as a relevant and powerful candidate as an in vivo model for microorganisms-microorganisms and microorganisms-host interactions studies. Experiments have demonstrated the probiotic potential of bacteria since they can provide to the worm a longer lifespan, an increased resistance to pathogens and to oxidative or heat stresses. Probiotics are used to prevent or treat microbiota dysbiosis and associated pathologies but the molecular mechanisms underlying their capacities are still unknown. Beyond safety and healthy aspects of probiotics, C. elegans represents a powerful way to design large-scale studies to explore transkingdom interactions and to solve questioning about the molecular aspect of these interactions. Future challenges and opportunities would be to validate C. elegans as an in vivo tool for high-throughput screening of microorganisms for their potential probiotic use on human health and to enlarge the panels of microorganisms studied as well as the human diseases investigated.
Collapse
Affiliation(s)
- Cyril Poupet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | | | | | - Stéphanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| |
Collapse
|
13
|
Composition of Caenorhabditis elegans extracellular vesicles suggests roles in metabolism, immunity, and aging. GeroScience 2020; 42:1133-1145. [PMID: 32578074 DOI: 10.1007/s11357-020-00204-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
The nematode Caenorhabditis elegans has been instrumental in the identification of evolutionarily conserved mechanisms of aging. C. elegans also has recently been found to have evolutionarily conserved extracellular vesicle (EV) signaling pathways. We have been developing tools that allow for the detailed study of EV biology in C. elegans. Here we apply our recently published method for high specificity purification of EVs from C. elegans to carry out target-independent proteomic and RNA analysis of nematode EVs. We identify diverse coding and non-coding RNA and protein cargo types commonly found in human EVs. The EV cargo spectrum is distinct from whole worms, suggesting that protein and RNA cargos are actively recruited to EVs. Gene ontology analysis revealed C. elegans EVs are enriched for extracellular-associated and signaling proteins, and network analysis indicates enrichment for metabolic, immune, and basement membrane associated proteins. Tissue enrichment and gene expression analysis suggests the secreted EV proteins are likely to be derived from intestine, muscle, and excretory tissue. An unbiased comparison of the EV proteins with a large database of C. elegans genome-wide microarray data showed significant overlap with gene sets that are associated with aging and immunity. Taken together our data suggest C. elegans could be a promising in vivo model for studying the genetics and physiology of EVs in a variety of contexts including aging, metabolism, and immune response.
Collapse
|
14
|
Radeke LJ, Herman MA. Identification and characterization of differentially expressed genes in Caenorhabditis elegans in response to pathogenic and nonpathogenic Stenotrophomonas maltophilia. BMC Microbiol 2020; 20:170. [PMID: 32560629 PMCID: PMC7304212 DOI: 10.1186/s12866-020-01771-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/29/2020] [Indexed: 12/27/2022] Open
Abstract
Background Stenotrophomonas maltophilia is an emerging nosocomial pathogen that causes infection in immunocompromised patients. S. maltophilia isolates are genetically diverse, contain diverse virulence factors, and are variably pathogenic within several host species. Members of the Stenotrophomonas genus are part of the native microbiome of C. elegans, being found in greater relative abundance within the worm than its environment, suggesting that these bacteria accumulate within C. elegans. Thus, study of the C. elegans-Stenotrophomonas interaction is of both medical and ecological significance. To identify host defense mechanisms, we analyzed the C. elegans transcriptomic response to S. maltophilia strains of varying pathogenicity: K279a, an avirulent clinical isolate, JCMS, a virulent strain isolated in association with soil nematodes near Manhattan, KS, and JV3, an even more virulent environmental isolate. Results Overall, we found 145 genes that are commonly differentially expressed in response to pathogenic S. maltophilia strains, 89% of which are upregulated, with many even further upregulated in response to JV3 as compared to JCMS. There are many more JV3-specific differentially expressed genes (225, 11% upregulated) than JCMS-specific differentially expressed genes (14, 86% upregulated), suggesting JV3 has unique pathogenic mechanisms that could explain its increased virulence. We used connectivity within a gene network model to choose pathogen-specific and strain-specific differentially expressed candidate genes for functional analysis. Mutations in 13 of 22 candidate genes caused significant differences in C. elegans survival in response to at least one S. maltophilia strain, although not always the strain that induced differential expression, suggesting a dynamic response to varying levels of pathogenicity. Conclusions Variation in observed pathogenicity and differences in host transcriptional responses to S. maltophilia strains reveal that strain-specific mechanisms play important roles in S. maltophilia pathogenesis. Furthermore, utilizing bacteria closely related to strains found in C. elegans natural environment provides a more realistic interaction for understanding host-pathogen response.
Collapse
Affiliation(s)
- Leah J Radeke
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Michael A Herman
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
15
|
Yang W, Petersen C, Pees B, Zimmermann J, Waschina S, Dirksen P, Rosenstiel P, Tholey A, Leippe M, Dierking K, Kaleta C, Schulenburg H. The Inducible Response of the Nematode Caenorhabditis elegans to Members of Its Natural Microbiota Across Development and Adult Life. Front Microbiol 2019; 10:1793. [PMID: 31440221 PMCID: PMC6693516 DOI: 10.3389/fmicb.2019.01793] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
The biology of all organisms is influenced by the associated community of microorganisms. In spite of its importance, it is usually not well understood how exactly this microbiota affects host functions and what are the underlying molecular processes. To rectify this knowledge gap, we took advantage of the nematode Caenorhabditis elegans as a tractable, experimental model system and assessed the inducible transcriptome response after colonization with members of its native microbiota. For this study, we focused on two isolates of the genus Ochrobactrum. These bacteria are known to be abundant in the nematode’s microbiota and are capable of colonizing and persisting in the nematode gut, even under stressful conditions. The transcriptome response was assessed across development and three time points of adult life, using general and C. elegans-specific enrichment analyses to identify affected functions. Our assessment revealed an influence of the microbiota members on the nematode’s dietary response, development, fertility, immunity, and energy metabolism. This response is mainly regulated by a GATA transcription factor, most likely ELT-2, as indicated by the enrichment of (i) the GATA motif in the promoter regions of inducible genes and (ii) of ELT-2 targets among the differentially expressed genes. We compared our transcriptome results with a corresponding previously characterized proteome data set, highlighting a significant overlap in the differentially expressed genes, the affected functions, and ELT-2 target genes. Our analysis further identified a core set of 86 genes that consistently responded to the microbiota members across development and adult life, including several C-type lectin-like genes and genes known to be involved in energy metabolism or fertility. We additionally assessed the consequences of induced gene expression with the help of metabolic network model analysis, using a previously established metabolic network for C. elegans. This analysis complemented the enrichment analyses by revealing an influence of the Ochrobactrum isolates on C. elegans energy metabolism and furthermore metabolism of specific amino acids, fatty acids, and also folate biosynthesis. Our findings highlight the multifaceted impact of naturally colonizing microbiota isolates on C. elegans life history and thereby provide a framework for further analysis of microbiota-mediated host functions.
Collapse
Affiliation(s)
- Wentao Yang
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Carola Petersen
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Research Group Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Barbara Pees
- Research Group Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Johannes Zimmermann
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Silvio Waschina
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Philipp Dirksen
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andreas Tholey
- Research Group Proteomics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Matthias Leippe
- Research Group Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Katja Dierking
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Hinrich Schulenburg
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
16
|
Silwal P, Kim JK, Yuk JM, Jo EK. AMP-Activated Protein Kinase and Host Defense against Infection. Int J Mol Sci 2018; 19:ijms19113495. [PMID: 30404221 PMCID: PMC6274990 DOI: 10.3390/ijms19113495] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
5′-AMP-activated protein kinase (AMPK) plays diverse roles in various physiological and pathological conditions. AMPK is involved in energy metabolism, which is perturbed by infectious stimuli. Indeed, various pathogens modulate AMPK activity, which affects host defenses against infection. In some viral infections, including hepatitis B and C viral infections, AMPK activation is beneficial, but in others such as dengue virus, Ebola virus, and human cytomegaloviral infections, AMPK plays a detrimental role. AMPK-targeting agents or small molecules enhance the antiviral response and contribute to the control of microbial and parasitic infections. In addition, this review focuses on the double-edged role of AMPK in innate and adaptive immune responses to infection. Understanding how AMPK regulates host defenses will enable development of more effective host-directed therapeutic strategies against infectious diseases.
Collapse
Affiliation(s)
- Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Jae-Min Yuk
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| |
Collapse
|
17
|
Lee SH, Omi S, Thakur N, Taffoni C, Belougne J, Engelmann I, Ewbank JJ, Pujol N. Modulatory upregulation of an insulin peptide gene by different pathogens in C. elegans. Virulence 2018; 9:648-658. [PMID: 29405821 PMCID: PMC5955453 DOI: 10.1080/21505594.2018.1433969] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
When an animal is infected, its innate immune response needs to be tightly regulated across tissues and coordinated with other aspects of organismal physiology. Previous studies with Caenorhabditis elegans have demonstrated that insulin-like peptide genes are differentially expressed in response to different pathogens. They represent prime candidates for conveying signals between tissues upon infection. Here, we focused on one such gene, ins-11 and its potential role in mediating cross-tissue regulation of innate immune genes. While diverse bacterial intestinal infections can trigger the up-regulation of ins-11 in the intestine, we show that epidermal infection with the fungus Drechmeria coniospora triggers an upregulation of ins-11 in the epidermis. Using the Shigella virulence factor OpsF, a MAP kinase inhibitor, we found that in both cases, ins-11 expression is controlled cell autonomously by p38 MAPK, but via distinct transcription factors, STA-2/STAT in the epidermis and HLH-30/TFEB in the intestine. We established that ins-11, and the insulin signaling pathway more generally, are not involved in the regulation of antimicrobial peptide gene expression in the epidermis. The up-regulation of ins-11 in the epidermis does, however, affect intestinal gene expression in a complex manner, and has a deleterious effect on longevity. These results support a model in which insulin signaling, via ins-11, contributes to the coordination of the organismal response to infection, influencing the allocation of resources in an infected animal.
Collapse
Affiliation(s)
- Song-Hua Lee
- a CIML , Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2 , INSERM CNRS UMR, Marseille , France
| | - Shizue Omi
- a CIML , Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2 , INSERM CNRS UMR, Marseille , France
| | - Nishant Thakur
- a CIML , Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2 , INSERM CNRS UMR, Marseille , France
| | - Clara Taffoni
- a CIML , Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2 , INSERM CNRS UMR, Marseille , France
| | - Jérôme Belougne
- a CIML , Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2 , INSERM CNRS UMR, Marseille , France
| | - Ilka Engelmann
- a CIML , Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2 , INSERM CNRS UMR, Marseille , France
| | - Jonathan J Ewbank
- a CIML , Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2 , INSERM CNRS UMR, Marseille , France
| | - Nathalie Pujol
- a CIML , Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2 , INSERM CNRS UMR, Marseille , France
| |
Collapse
|
18
|
Hoinville ME, Wollenberg AC. Changes in Caenorhabditis elegans gene expression following exposure to Photorhabdus luminescens strain TT01. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:165-176. [PMID: 29203330 DOI: 10.1016/j.dci.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Photorhabdus bacteria enter into a mutualistic symbiosis with Heterorhabditis nematodes to infect insect larvae. However, they rapidly kill the model nematode Caenorhabditis elegans. One hypothesis for these divergent outcomes is that the nematode defense responses differ. To begin testing this hypothesis, we have systematically analyzed available data on the transcriptional response of C. elegans to P. luminescens strain Hb. From a starting pool of over 7000 differentially expressed genes, we carefully chose 21 Heterorhabditis-conserved genes to develop as comparative markers. Using newly designed and validated qRT-PCR primers, we measured expression of these genes in C. elegans exposed to the sequenced TT01 strain of P. luminescens, on two different media types. Almost all (18/21) of the genes showed a significant response to P. luminescens strain TT01. One response is dependent on media type, and a subset of genes may respond differentially to distinct strains. Overall, we have established useful resources and generated new hypotheses regarding how C. elegans responds to P. luminescens infection.
Collapse
Affiliation(s)
- Megan E Hoinville
- Biology Department, Kalamazoo College, 1200 Academy St., Kalamazoo, MI 49006, USA
| | - Amanda C Wollenberg
- Biology Department, Kalamazoo College, 1200 Academy St., Kalamazoo, MI 49006, USA.
| |
Collapse
|
19
|
Makarova O, Rodríguez-Rojas A, Eravci M, Weise C, Dobson A, Johnston P, Rolff J. Antimicrobial defence and persistent infection in insects revisited. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0296. [PMID: 27160598 DOI: 10.1098/rstb.2015.0296] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2016] [Indexed: 01/26/2023] Open
Abstract
Insects show long-lasting antimicrobial immune responses that follow the initial fast-acting cellular processes. These immune responses are discussed to provide a form of phrophylaxis and/or to serve as a safety measure against persisting infections. The duration and components of such long-lasting responses have rarely been studied in detail, a necessary prerequisite to understand their adaptive value. Here, we present a 21 day proteomic time course of the mealworm beetle Tenebrio molitor immune-challenged with heat-killed Staphylococcus aureus The most upregulated peptides are antimicrobial peptides (AMPs), many of which are still highly abundant 21 days after infection. The identified AMPs included toll and imd-mediated AMPs, a significant number of which have no known function against S. aureus or other Gram-positive bacteria. The proteome reflects the selective arena for bacterial infections. The results also corroborate the notion of synergistic interactions in vivo that are difficult to model in vitroThis article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Olga Makarova
- Institut für Biologie, Evolutionary Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, Berlin 14195, Germany
| | - Alexandro Rodríguez-Rojas
- Institut für Biologie, Evolutionary Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, Berlin 14195, Germany
| | - Murat Eravci
- Institute of Chemistry and Biochemistry, Biochemistry, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Chris Weise
- Institute of Chemistry and Biochemistry, Biochemistry, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Adam Dobson
- Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Paul Johnston
- Institut für Biologie, Evolutionary Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, Berlin 14195, Germany Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Straße 6-8, Berlin 14195, Germany
| | - Jens Rolff
- Institut für Biologie, Evolutionary Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, Berlin 14195, Germany Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstraße 6, Berlin 14195, Germany
| |
Collapse
|
20
|
Rochester JD, Tanner PC, Sharp CS, Andralojc KM, Updike DL. PQN-75 is expressed in the pharyngeal gland cells of Caenorhabditiselegans and is dispensable for germline development. Biol Open 2017; 6:1355-1363. [PMID: 28916707 PMCID: PMC5612245 DOI: 10.1242/bio.027987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Caenorhabditis elegans, five pharyngeal gland cells reside in the terminal bulb of the pharynx and extend anterior processes to five contact points in the pharyngeal lumen. Pharyngeal gland cells secrete mucin-like proteins thought to facilitate digestion, hatching, molting and assembly of the surface coat of the cuticle, but supporting evidence has been sparse. Here we show pharyngeal gland cell expression of PQN-75, a unique protein containing an N-terminal signal peptide, nucleoporin (Nup)-like phenylalanine/glycine (FG) repeats, and an extensive polyproline repeat domain with similarities to human basic salivary proline-rich pre-protein PRB2. Imaging of C-terminal tagged PQN-75 shows localization throughout pharyngeal gland cell processes but not the pharyngeal lumen; instead, aggregates of PQN-75 are occasionally found throughout the pharynx, suggesting secretion from pharyngeal gland cells into the surrounding pharyngeal muscle. PQN-75 does not affect fertility and brood size in C. elegans but confers some degree of stress resistance and thermotolerance through unknown mechanisms. Summary: PQN-75 is expressed in pharyngeal gland cells and shares similarity with human basic salivary proline-rich protein PBR2, suggesting evolutionary conservation between gland cells in the upper digestive tract.
Collapse
Affiliation(s)
- Jesse D Rochester
- The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA
| | - Paige C Tanner
- The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA
| | - Catherine S Sharp
- The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA
| | | | - Dustin L Updike
- The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA
| |
Collapse
|
21
|
Kamaladevi A, Balamurugan K. Global Proteomics Revealed Klebsiella pneumoniae Induced Autophagy and Oxidative Stress in Caenorhabditis elegans by Inhibiting PI3K/AKT/mTOR Pathway during Infection. Front Cell Infect Microbiol 2017; 7:393. [PMID: 28932706 PMCID: PMC5592217 DOI: 10.3389/fcimb.2017.00393] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/22/2017] [Indexed: 01/29/2023] Open
Abstract
The enterobacterium, Klebsiella pneumoniae invades the intestinal epithelium of humans by interfering with multiple host cell response. To uncover a system-level overview of host response during infection, we analyzed the global dynamics of protein profiling in Caenorhabditis elegans using quantitative proteomics approach. Comparison of protein samples of nematodes exposed to K. pneumoniae for 12, 24, and 36 h by 2DE revealed several changes in host proteome. A total of 266 host-encoded proteins were identified by 2DE MALDI-MS/MS and LC-MS/MS and the interacting partners of the identified proteins were predicted by STRING 10.0 analysis. In order to understand the interacting partners of regulatory proteins with similar or close pI ranges, a liquid IEF was performed and the isolated fractions containing proteins were identified by LC-MS/MS. Functional bioinformatics analysis on identified proteins deciphered that they were mostly related to the metabolism, dauer formation, apoptosis, endocytosis, signal transduction, translation, developmental, and reproduction process. Gene enrichment analysis suggested that the metabolic process as the most overrepresented pathway regulated against K. pneumoniae infection. The dauer-like formation in infected C. elegans along with intestinal atrophy and ROS during the physiological analysis indicated that the regulation of metabolic pathway is probably through the involvement of mTOR. Immunoblot analysis supported the above notion that the K. pneumoniae infection induced protein mis-folding in host by involving PI3Kinase/AKT-1/mTOR mediated pathway. Furthermore, the susceptibility of pdi-2, akt-1, and mTOR C. elegans mutants confirmed the role and involvement of PI3K/AKT/mTOR pathway in mediating protein mis-folding which appear to be translating the vulnerability of host defense toward K. pneumoniae infection.
Collapse
|
22
|
Harvald EB, Sprenger RR, Dall KB, Ejsing CS, Nielsen R, Mandrup S, Murillo AB, Larance M, Gartner A, Lamond AI, Færgeman NJ. Multi-omics Analyses of Starvation Responses Reveal a Central Role for Lipoprotein Metabolism in Acute Starvation Survival in C. elegans. Cell Syst 2017; 5:38-52.e4. [PMID: 28734827 DOI: 10.1016/j.cels.2017.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/03/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022]
Abstract
Starvation causes comprehensive metabolic changes, which are still not fully understood. Here, we used quantitative proteomics and RNA sequencing to examine the temporal starvation responses in wild-type Caenorhabditis elegans and animals lacking the transcription factor HLH-30. Our findings show that starvation alters the abundance of hundreds of proteins and mRNAs in a temporal manner, many of which are involved in central metabolic pathways, including lipoprotein metabolism. We demonstrate that premature death of hlh-30 animals under starvation can be prevented by knockdown of either vit-1 or vit-5, encoding two different lipoproteins. We further show that the size and number of intestinal lipid droplets under starvation are altered in hlh-30 animals, which can be rescued by knockdown of vit-1. Taken together, this indicates that survival of hlh-30 animals under starvation is closely linked to regulation of intestinal lipid stores. We provide the most detailed poly-omic analysis of starvation responses to date, which serves as a resource for further mechanistic studies of starvation.
Collapse
Affiliation(s)
- Eva Bang Harvald
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Richard R Sprenger
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Kathrine Brændgaard Dall
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Ronni Nielsen
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Alejandro Brenes Murillo
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Mark Larance
- Centre for Gene Regulation and Expression, College of Life Science, University of Dundee, Dow Street, Dundee, UK
| | - Anton Gartner
- Centre for Gene Regulation and Expression, College of Life Science, University of Dundee, Dow Street, Dundee, UK
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, College of Life Science, University of Dundee, Dow Street, Dundee, UK
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
23
|
Schulenburg H, Félix MA. The Natural Biotic Environment of Caenorhabditis elegans. Genetics 2017; 206:55-86. [PMID: 28476862 PMCID: PMC5419493 DOI: 10.1534/genetics.116.195511] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/28/2017] [Indexed: 01/05/2023] Open
Abstract
Organisms evolve in response to their natural environment. Consideration of natural ecological parameters are thus of key importance for our understanding of an organism's biology. Curiously, the natural ecology of the model species Caenorhabditis elegans has long been neglected, even though this nematode has become one of the most intensively studied models in biological research. This lack of interest changed ∼10 yr ago. Since then, an increasing number of studies have focused on the nematode's natural ecology. Yet many unknowns still remain. Here, we provide an overview of the currently available information on the natural environment of C. elegans We focus on the biotic environment, which is usually less predictable and thus can create high selective constraints that are likely to have had a strong impact on C. elegans evolution. This nematode is particularly abundant in microbe-rich environments, especially rotting plant matter such as decomposing fruits and stems. In this environment, it is part of a complex interaction network, which is particularly shaped by a species-rich microbial community. These microbes can be food, part of a beneficial gut microbiome, parasites and pathogens, and possibly competitors. C. elegans is additionally confronted with predators; it interacts with vector organisms that facilitate dispersal to new habitats, and also with competitors for similar food environments, including competitors from congeneric and also the same species. Full appreciation of this nematode's biology warrants further exploration of its natural environment and subsequent integration of this information into the well-established laboratory-based research approaches.
Collapse
Affiliation(s)
- Hinrich Schulenburg
- Zoological Institute, Christian-Albrechts Universitaet zu Kiel, 24098 Kiel, Germany
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale Supérieure, L'université de Recherche Paris Sciences et Lettres, 75005, France
| |
Collapse
|
24
|
Wang H, Eyun SI, Arora K, Tan SY, Gandra P, Moriyama E, Khajuria C, Jurzenski J, Li H, Donahue M, Narva K, Siegfried B. Patterns of Gene Expression in Western Corn Rootworm (Diabrotica virgifera virgifera) Neonates, Challenged with Cry34Ab1, Cry35Ab1 and Cry34/35Ab1, Based on Next-Generation Sequencing. Toxins (Basel) 2017; 9:toxins9040124. [PMID: 28358336 PMCID: PMC5408198 DOI: 10.3390/toxins9040124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 11/16/2022] Open
Abstract
With Next Generation Sequencing technologies, high-throughput RNA sequencing (RNAseq) was conducted to examine gene expression in neonates of Diabrotica virgifera virgifera (LeConte) (Western Corn Rootworm, WCR) challenged with individual proteins of the binary Bacillus thuringiensis insecticidal proteins, Cry34Ab1 and Cry35Ab1, and the combination of Cry34/Cry35Ab1, which together are active against rootworm larvae. Integrated results of three different statistical comparisons identified 114 and 1300 differentially expressed transcripts (DETs) in the Cry34Ab1 and Cry34/35Ab1 treatment, respectively, as compared to the control. No DETs were identified in the Cry35Ab1 treatment. Putative Bt binding receptors previously identified in other insect species were not identified in DETs in this study. The majority of DETs (75% with Cry34Ab1 and 68.3% with Cry34/35Ab1 treatments) had no significant hits in the NCBI nr database. In addition, 92 DETs were shared between Cry34Ab1 and Cry34/35Ab1 treatments. Further analysis revealed that the most abundant DETs in both Cry34Ab1 and Cry34/35Ab1 treatments were associated with binding and catalytic activity. Results from this study confirmed the nature of these binary toxins against WCR larvae and provide a fundamental profile of expression pattern of genes in response to challenge of the Cry34/35Ab1 toxin, which may provide insight into potential resistance mechanisms.
Collapse
Affiliation(s)
- Haichuan Wang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583-0915, USA.
| | - Seong-Il Eyun
- Center for Biotechnology, School of Biological Sciences, UNL, Lincoln, NE 68583, USA.
| | | | - Sek Yee Tan
- Dow AgroSciences, Indianapolis, IN 46268, USA.
| | | | - Etsuko Moriyama
- Center for Biotechnology, School of Biological Sciences, UNL, Lincoln, NE 68583, USA.
| | | | - Jessica Jurzenski
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583-0915, USA.
| | - Huarong Li
- Dow AgroSciences, Indianapolis, IN 46268, USA.
| | | | - Ken Narva
- Dow AgroSciences, Indianapolis, IN 46268, USA.
| | - Blair Siegfried
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611-0620, USA.
| |
Collapse
|
25
|
Liu Y, Sellegounder D, Sun J. Neuronal GPCR OCTR-1 regulates innate immunity by controlling protein synthesis in Caenorhabditis elegans. Sci Rep 2016; 6:36832. [PMID: 27833098 PMCID: PMC5104976 DOI: 10.1038/srep36832] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023] Open
Abstract
Upon pathogen infection, microbial killing pathways and cellular stress pathways are rapidly activated by the host innate immune system. These pathways must be tightly regulated because insufficient or excessive immune responses have deleterious consequences. Increasing evidence indicates that the nervous system regulates the immune system to confer coordinated protection to the host. However, the precise mechanisms of neural-immune communication remain unclear. Previously we have demonstrated that OCTR-1, a neuronal G protein-coupled receptor, functions in the sensory neurons ASH and ASI to suppress innate immune responses in non-neural tissues against Pseudomonas aeruginosa in Caenorhabditis elegans. In the current study, by using a mass spectrometry-based quantitative proteomics approach, we discovered that OCTR-1 regulates innate immunity by suppressing translation and the unfolded protein response (UPR) pathways at the protein level. Functional assays revealed that OCTR-1 inhibits specific protein synthesis factors such as ribosomal protein RPS-1 and translation initiation factor EIF-3.J to reduce infection-triggered protein synthesis and UPR. Translational inhibition by chemicals abolishes the OCTR-1-controlled innate immune responses, indicating that activation of the OCTR-1 pathway is dependent on translation upregulation such as that induced by pathogen infection. Because OCTR-1 downregulates protein translation activities, the OCTR-1 pathway could function to suppress excessive responses to infection or to restore protein homeostasis after infection.
Collapse
Affiliation(s)
- Yiyong Liu
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Durai Sellegounder
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Jingru Sun
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| |
Collapse
|
26
|
GATA transcription factor as a likely key regulator of the Caenorhabditis elegans innate immune response against gut pathogens. ZOOLOGY 2016; 119:244-53. [DOI: 10.1016/j.zool.2016.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/19/2016] [Accepted: 05/27/2016] [Indexed: 01/29/2023]
|
27
|
Nakad R, Snoek LB, Yang W, Ellendt S, Schneider F, Mohr TG, Rösingh L, Masche AC, Rosenstiel PC, Dierking K, Kammenga JE, Schulenburg H. Contrasting invertebrate immune defense behaviors caused by a single gene, the Caenorhabditis elegans neuropeptide receptor gene npr-1. BMC Genomics 2016; 17:280. [PMID: 27066825 PMCID: PMC4827197 DOI: 10.1186/s12864-016-2603-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/25/2016] [Indexed: 01/22/2023] Open
Abstract
Background The invertebrate immune system comprises physiological mechanisms, physical barriers and also behavioral responses. It is generally related to the vertebrate innate immune system and widely believed to provide nonspecific defense against pathogens, whereby the response to different pathogen types is usually mediated by distinct signalling cascades. Recent work suggests that invertebrate immune defense can be more specific at least at the phenotypic level. The underlying genetic mechanisms are as yet poorly understood. Results We demonstrate in the model invertebrate Caenorhabditis elegans that a single gene, a homolog of the mammalian neuropeptide Y receptor gene, npr-1, mediates contrasting defense phenotypes towards two distinct pathogens, the Gram-positive Bacillus thuringiensis and the Gram-negative Pseudomonas aeruginosa. Our findings are based on combining quantitative trait loci (QTLs) analysis with functional genetic analysis and RNAseq-based transcriptomics. The QTL analysis focused on behavioral immune defense against B. thuringiensis, using recombinant inbred lines (RILs) and introgression lines (ILs). It revealed several defense QTLs, including one on chromosome X comprising the npr-1 gene. The wildtype N2 allele for the latter QTL was associated with reduced defense against B. thuringiensis and thus produced an opposite phenotype to that previously reported for the N2 npr-1 allele against P. aeruginosa. Analysis of npr-1 mutants confirmed these contrasting immune phenotypes for both avoidance behavior and nematode survival. Subsequent transcriptional profiling of C. elegans wildtype and npr-1 mutant suggested that npr-1 mediates defense against both pathogens through p38 MAPK signaling, insulin-like signaling, and C-type lectins. Importantly, increased defense towards P. aeruginosa seems to be additionally influenced through the induction of oxidative stress genes and activation of GATA transcription factors, while the repression of oxidative stress genes combined with activation of Ebox transcription factors appears to enhance susceptibility to B. thuringiensis. Conclusions Our findings highlight the role of a single gene, npr-1, in fine-tuning nematode immune defense, showing the ability of the invertebrate immune system to produce highly specialized and potentially opposing immune responses via single regulatory genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2603-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rania Nakad
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - L Basten Snoek
- Laboratory of Nematology, Wageningen University, Wageningen, 6708 PB, The Netherlands
| | - Wentao Yang
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Sunna Ellendt
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Franziska Schneider
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Timm G Mohr
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Lone Rösingh
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Anna C Masche
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Philip C Rosenstiel
- Institute for Clinical Molecular Biology, University of Kiel, 24098, Kiel, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Wageningen, 6708 PB, The Netherlands
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, 24098, Kiel, Germany.
| |
Collapse
|
28
|
Kamaladevi A, Balamurugan K. Lipopolysaccharide of Klebsiella pneumoniae attenuates immunity of Caenorhabditis elegans and evades by altering its supramolecular structure. RSC Adv 2016. [DOI: 10.1039/c5ra18206a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Given the prominence of lipopolysaccharide (LPS) in the pathogenesis of Gram-negative bacteria, investigations at the molecular level in in vivo conditions are in dire need to understand its role in provoking infection.
Collapse
Affiliation(s)
- Arumugam Kamaladevi
- Department of Biotechnology
- Science Campus
- Alagappa University
- Karaikudi 630 004
- India
| | | |
Collapse
|
29
|
Husson SJ, Moyson S, Valkenborg D, Baggerman G, Mertens I. Proteomics applications in Caenorhabditis elegans research. Biochem Biophys Res Commun 2015; 468:519-24. [DOI: 10.1016/j.bbrc.2015.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/04/2023]
|
30
|
Pees B, Yang W, Zárate-Potes A, Schulenburg H, Dierking K. High Innate Immune Specificity through Diversified C-Type Lectin-Like Domain Proteins in Invertebrates. J Innate Immun 2015; 8:129-42. [PMID: 26580547 DOI: 10.1159/000441475] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
A key question in current immunity research is how the innate immune system can generate high levels of specificity. Evidence is accumulating that invertebrates, which exclusively rely on innate defense mechanisms, can differentiate between pathogens on the species and even strain level. In this review, we identify and discuss the particular potential of C-type lectin-like domain (CTLD) proteins to generate high immune specificity. Whilst several CTLD proteins are known to act as pattern recognition receptors in the vertebrate innate immune system, the exact role of CTLD proteins in invertebrate immunity is much less understood. We show that CTLD genes are highly abundant in most metazoan genomes and summarize the current state of knowledge on CTLD protein function in insect, crustacean and nematode immune systems. We then demonstrate extreme CTLD gene diversification in the genomes of Caenorhabditis nematodes and provide an update of data from CTLD gene function studies in C. elegans, which indicate that the diversity of CTLD genes could contribute to immune specificity. In spite of recent achievements, the exact functions of the diversified invertebrate CTLD genes are still largely unknown. Our review therefore specifically discusses promising research approaches to rectify this knowledge gap.
Collapse
Affiliation(s)
- Barbara Pees
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | | | | | | | | |
Collapse
|
31
|
Yang W, Dierking K, Schulenburg H. WormExp: a web-based application for a Caenorhabditis elegans-specific gene expression enrichment analysis. Bioinformatics 2015; 32:943-5. [DOI: 10.1093/bioinformatics/btv667] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/06/2015] [Indexed: 11/13/2022] Open
Abstract
Abstract
Motivation: A particular challenge of the current omics age is to make sense of the inferred differential expression of genes and proteins. The most common approach is to perform a gene ontology (GO) enrichment analysis, thereby relying on a database that has been extracted from a variety of organisms and that can therefore only yield reliable information on evolutionary conserved functions.
Results: We here present a web-based application for a taxon-specific gene set exploration and enrichment analysis, which is expected to yield novel functional insights into newly determined gene sets. The approach is based on the complete collection of curated high-throughput gene expression data sets for the model nematode Caenorhabditis elegans, including 1786 gene sets from more than 350 studies.
Availability and implementation: WormExp is available at http://wormexp.zoologie.uni-kiel.de.
Contacts: hschulenburg@zoologie.uni-kiel.de
Supplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wentao Yang
- Evolutionary Ecology and Genetics, Zoological Institute, CAU Kiel, 24118 Kiel, Germany
| | - Katja Dierking
- Evolutionary Ecology and Genetics, Zoological Institute, CAU Kiel, 24118 Kiel, Germany
| | - Hinrich Schulenburg
- Evolutionary Ecology and Genetics, Zoological Institute, CAU Kiel, 24118 Kiel, Germany
| |
Collapse
|