1
|
Viana JT, Rocha RDS, Maggioni R. Immunological lectins in shrimp Penaeus vannamei challenged with infectious myonecrosis virus (IMNV) under low-salinity conditions. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109471. [PMID: 38452959 DOI: 10.1016/j.fsi.2024.109471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Lectins are proteins capable of recognizing and binding to glycan in a specific way. In invertebrates, lectins are a crucial group of Pattern Recognition Proteins (PRRs), activating cellular and humoral responses in the innate immune system. The shrimp Penaeus vannamei is the main crustacean cultivated worldwide, however, the productivity of cultures is strongly affected by diseases, mainly viral ones, such as Infectious Myonecrosis (IMN). Thus, we investigated the participation of five lectins (LvAV, LvCTL4, LvCTL5, LvCTLU, and LvLdlrCTL) in IMNV-challenged shrimp. We verified upregulation gene profiles of lectins after IMNV-challenge, especially in hepatopancreas and gills, in addition to an increase in total hemocytes count (THC) after to 12 h post-infection (hpi). The bioinformatics characterization also revealed several sites of post-translational modification (PTM), such as phosphorylation and glycosylation, which possibly influence the action and stabilization of these lectins. We conclude that LvLdlrCTL and LvCTL5 are the lectins with greater participation in the activation of the immune system against IMNV, showing the greatest potential for PTM, higher upregulation levels, and overlapping with the THC and IMNV viral load.
Collapse
Affiliation(s)
- Jhonatas Teixeira Viana
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceara, 60165-081, Fortaleza, CE, Brazil; Federal Institute of Education, Science and Technology of Ceara, 62580-000, Acaraú, CE, Brazil.
| | - Rafael Dos Santos Rocha
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceara, 60165-081, Fortaleza, CE, Brazil
| | - Rodrigo Maggioni
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceara, 60165-081, Fortaleza, CE, Brazil
| |
Collapse
|
2
|
Shrimp Antimicrobial Peptides: A Multitude of Possibilities. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Dolar A, Jemec Kokalj A, Drobne D. Time-Course of the Innate Immune Response of the Terrestrial Crustacean Porcellio scaber After Injection of a Single Dose of Lipopolysaccharide. Front Immunol 2022; 13:867077. [PMID: 35592321 PMCID: PMC9110979 DOI: 10.3389/fimmu.2022.867077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
Invertebrates, including crustaceans, rely on cellular and humoral immune responses to protect against extrinsic and intrinsic factors that threaten their integrity. Recently, different immune parameters have been increasingly used as biomarkers of effects of pollutants and environmental change. Here, we describe the dynamics of the innate immune response of the terrestrial crustacean Porcellio scaber to injection of a single dose of lipopolysaccharide (LPS), an important molecular surface component of the outer membrane of Gram-negative bacteria. The aim was to provide a basis for interpretation of change in immune parameters as a result of different challenges, including microplastics and nanoplastics exposure. Changes in total and differential numbers of hemocytes, hemocyte viability, and humoral immune parameters (i.e., phenoloxidase-like activity, nitric oxide levels) were assessed at different times (3, 6, 12, 24, 48 h). An injection of 0.5 μg/μL LPS into the body of P. scaber resulted in a rapid decrease (3 h after LPS injection) in the total number of hemocytes and reduced viability of the hemocytes. This was accompanied by changed proportions of the different hemocyte types, as a decrease in the numbers of semigranulocytes and granulocytes, and a marked increase in the numbers of hyalinocytes. In addition, phenoloxidase-like activity and nitric oxide levels in the hemolymph were increased at 3 h and 6 h, respectively, after the LPS challenge. Forty-eight hours after LPS injection, the immune parameters in the hemolymph of P. scaber had returned to those before the LPS challenge. This suggests that the innate immune system successfully protected P. scaber from the deleterious effects of the LPS challenge. These data indicate the need to consider the dynamics of innate immune responses of P. scaber when effects of infections, pollutants, or environmental changes are studied. We also propose an approach to test the immunocompetence of organisms after different challenges in ecotoxicity studies, based on the dynamics of their immune responses.
Collapse
Affiliation(s)
- Andraž Dolar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
4
|
Cui C, Zhu L, Tang X, Xing J, Sheng X, Chi H, Zhan W. Differential white spot syndrome virus-binding proteins in two hemocyte subpopulations of Chinese shrimp (Fenneropenaeus chinensis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104215. [PMID: 34324898 DOI: 10.1016/j.dci.2021.104215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
A number of white spot syndrome virus (WSSV)-binding proteins have been identified previously in the hemocytes of Fenneropenaeus chinensis. In order to further investigate the differential WSSV-binding proteins in hemocyte subpopulations, granular hemocytes and hyalinocytes were sorted from WSSV-infected shrimp by immunomagnetic bead (IMB) method. The results of ELISA and immuno-dot blot assay showed that the WSSV-binding activity of granular hemocytes proteins was much stronger than that of hyalinocytes proteins. And the percentage of WSSV-positive granular hemocytes was significantly higher than that of hyalinocytes post WSSV infection, indicating that granular hemocytes were more susceptible to WSSV infection. Moreover, a total of 9 WSSV-binding proteins were successfully identified in granular hemocytes and hyalinocytes by two-dimensional virus overlay protein binding assay (2D-VOPBA) and MALDI-TOF MS analysis, of which 3 binding proteins (arginine kinase, protease 1 and transglutaminase) existing in both hyalinocytes and granular hemocytes and 6 proteins (F1ATP synthase β-chain, hnRNPs, GAPDH, RACK1, β-actin and cellular retinoic acid) detected only in granular hemocytes. Among these identified WSSV-binding proteins, the transglutaminase (TG) was further recombinantly expressed, and the recombinant TG could be bound with WSSV. Subsequently, quantitative real-time PCR analysis showed that differential expression levels of WSSV-binding proteins were observed in granular hemocytes and hyalinocytes. The results of this study revealed that the WSSV-binding proteins were differentially expressed in granular hemocytes and hyalinocytes, which provided a deeper insight into the interaction between WSSV and hemocyte subpopulations.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Lei Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
5
|
Havanapan PO, Taengchaiyaphum S, Paemanee A, Phungthanom N, Roytrakul S, Sritunyalucksana K, Krittanai C. Caspase-3, a shrimp phosphorylated hemocytic protein is necessary to control YHV infection. FISH & SHELLFISH IMMUNOLOGY 2021; 114:36-48. [PMID: 33864947 DOI: 10.1016/j.fsi.2021.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
By using immunohistochemistry detection, yellow head virus (YHV) was found to replicate in granule-containing hemocytes including semi-granular hemocytes (SGC) and granular hemocytes (GC) during the early phase (24 h post injection) of YHV-infected shrimp. Higher signal of YHV infection was found in GC more than in SGC. Comparative phosphoproteomic profiles between YHV-infected and non-infected GC reveal a number of phosphoproteins with different expression levels. The phosphoprotein spot with later on identified as caspase-3 in YHV-infected GC is most interesting. Blocking caspase-3 function using a specific inhibitor (Ac-DEVD-CMK) demonstrated high replication of YHV and consequently, high shrimp mortality. The immunohistochemistry results confirmed the high viral load in shrimp that caspase-3 activity was blocked. Caspase-3 is regulated through a variety of posttranslational modifications, including phosphorylation. Analysis of phosphorylation sites of shrimp caspase-3 revealed phosphorylation sites at serine residue. Taken together, caspase-3 is a hemocytic protein isolated from shrimp granular hemocytes with a role in anti-YHV response and regulated through the phosphorylation process.
Collapse
Affiliation(s)
- Phattara-Orn Havanapan
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phutthamonthon 4 Rd, Salaya, Nakhon Pathom, 73170, Thailand
| | - Suparat Taengchaiyaphum
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Atchara Paemanee
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Nuanwan Phungthanom
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phutthamonthon 4 Rd, Salaya, Nakhon Pathom, 73170, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kallaya Sritunyalucksana
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Chartchai Krittanai
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phutthamonthon 4 Rd, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
6
|
Dolar A, Selonen S, van Gestel CAM, Perc V, Drobne D, Jemec Kokalj A. Microplastics, chlorpyrifos and their mixtures modulate immune processes in the terrestrial crustacean Porcellio scaber. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144900. [PMID: 33581511 DOI: 10.1016/j.scitotenv.2020.144900] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 05/12/2023]
Abstract
Microplastics and agrochemicals are common pollutants in terrestrial ecosystems. Their interaction during coexistence in soils may influence their fate and adverse effects on terrestrial organisms. The aim of this study was to investigate how the exposure to two types of microplastics; polyester fibres, and crumb rubber; induce changes in immune parameters of Porcellio scaber and if the co-exposure of microplastics affects the response induced by the organophosphate pesticide chlorpyrifos. A number of immune parameters, such as total haemocyte count, differential haemocyte count, and phenoloxidase-like activity were assessed. In addition, the acetylcholinesterase (AChE) activity in the haemolymph was evaluated as a measure of the bioavailability of chlorpyrifos. After three weeks of exposure, the most noticeable changes in the measured immune parameters and also a significantly reduced AChE activity were seen in chlorpyrifos-exposed animals. Both types of microplastic at environmentally relevant concentrations caused only slight changes in immune parameters which were not dependent on the type of microplastic, although the two types differed significantly in terms of the chemical complexity of the additives. Mixtures of chlorpyrifos and microplastics induced changes that differed from individual exposures. For example, alterations in some measured parameters suggested a reduced bioavailability of chlorpyrifos (AChE activity, haemocyte viability) caused by both types of microplastics exposure, but the increase of haemocyte count was promoted by the presence of fibres implying their joint action. In conclusion, this study suggests that immune processes in P. scaber are slightly changed upon exposure to both types of microplastics and microplastics can significantly modulate the effects of other co-exposed chemicals. Further research is needed on the short-term and long-term joint effects of microplastics and agrochemicals on the immunity of soil invertebrates.
Collapse
Affiliation(s)
- Andraž Dolar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Salla Selonen
- Vrije Universiteit Amsterdam, Faculty of Science, Department of Ecological Science, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Finnish Environment Institute (SYKE), Mustialankatu 3, 00790 Helsinki, Finland
| | - Cornelis A M van Gestel
- Vrije Universiteit Amsterdam, Faculty of Science, Department of Ecological Science, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Valentina Perc
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Jatuyosporn T, Laohawutthichai P, Supungul P, Sotelo-Mundo RR, Ochoa-Leyva A, Tassanakajon A, Krusong K. PmAP2-β depletion enhanced activation of the Toll signaling pathway during yellow head virus infection in the black tiger shrimp Penaeus monodon. Sci Rep 2021; 11:10534. [PMID: 34006863 PMCID: PMC8131699 DOI: 10.1038/s41598-021-89922-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
Yellow head virus (YHV) is a pathogen which causes high mortality in penaeid shrimp. Previous studies suggested that YHV enters shrimp cells via clathrin-mediated endocytosis. This research investigated the roles of clathrin adaptor protein 2 subunit β (AP-2β) from Penaeus monodon during YHV infection. PmAP2-β was continuously up-regulated more than twofold during 6-36 hpi. Suppression of PmAP2-β significantly reduced YHV copy numbers and delayed shrimp mortality. Quantitative RT-PCR revealed that knockdown of PmAP2-β significantly enhanced the expression level of PmSpätzle, a signaling ligand in the Toll pathway, by 30-fold at 6 and 12 hpi. Moreover, the expression levels of gene components in the Imd and JAK/STAT signaling pathways under the suppression of PmAP2-β during YHV infection were also investigated. Interestingly, anti-lipopolysaccharide factor isoform 3 (ALFPm3) was up-regulated by 40-fold in PmAP2-β knockdown shrimp upon YHV infection. In addition, silencing of PmAP2-β dramatically enhanced crustinPm1 expression in YHV-infected shrimp. Knockdown of ALFPm3 and crustinPm1 significantly reduced shrimp survival rate. Taken together, this work suggested that PmAP2-β-deficiency promoted the Toll pathway signalings, resulting in elevated levels of ALFPm3 and crustinPm1, the crucial antimicrobial peptides in defence against YHV.
Collapse
Affiliation(s)
- Thapanan Jatuyosporn
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pasunee Laohawutthichai
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Premruethai Supungul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación Y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazaran Rosas No. 46, 83304, Hermosillo, Sonora, Mexico
| | - Adrian Ochoa-Leyva
- Departamentos de Microbiología Molecular, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Mexico
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kuakarun Krusong
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Cui C, Liang Q, Tang X, Xing J, Sheng X, Zhan W. Differential Apoptotic Responses of Hemocyte Subpopulations to White Spot Syndrome Virus Infection in Fenneropenaeus chinensis. Front Immunol 2020; 11:594390. [PMID: 33365030 PMCID: PMC7750459 DOI: 10.3389/fimmu.2020.594390] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/05/2020] [Indexed: 11/13/2022] Open
Abstract
The apoptosis of hemocytes plays an essential function in shrimp immune defense against pathogen invasions. In order to further elucidate the differential apoptotic responses of the granulocytes and the hyalinocytes in Fenneropenaeus chinensis post WSSV infection, the characteristics of apoptotic dynamics and viral proliferation in total hemocytes and hemocyte subpopulations were respectively investigated in the present work. The results showed that the apoptotic rate of hemocytes changed significantly, and the apoptosis-related genes also showed significantly differential expression responses during WSSV infection. Interestingly, we found that the apoptotic rate of virus-negative hemocytes was significantly higher than that of virus-positive hemocytes in the early stage of WSSV infection, while it was significantly lower than that of virus-positive cells in the middle and late infection stages. The difference of apoptosis between virus-positive and virus-negative hemocytes seems to be an important way for the WSSV to destroy the host’s immune system and facilitate the virus spread at different infection stages. It was further found that the apoptosis rate of granulocytes was always significantly higher than that of hyalinocytes during WSSV infection, indicating that granulocytes have a stronger apoptotic response to WSSV infection. Moreover, a higher viral load was detected in granulocytes, and the density of granulocytes decreased more rapidly post WSSV infection, indicating that the granulocytes are more susceptible and vulnerable to WSSV infection compared with the hyalinocytes. These results collectively demonstrated that the apoptotic response in shrimp hemocytes was significantly influenced by the WSSV infection, and the differential apoptotic response of granulocytes and hyalinocytes to WSSV indicated the differences of antiviral mechanisms between the two hemocyte subpopulations.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Qianrong Liang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
9
|
Dolar A, Kostanjšek R, Mayall C, Drobne D, Kokalj AJ. Modulations of immune parameters caused by bacterial and viral infections in the terrestrial crustacean Porcellio scaber: Implications for potential markers in environmental research. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103789. [PMID: 32735963 DOI: 10.1016/j.dci.2020.103789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
The terrestrial crustacean Porcellio scaber (Crustacea: Isopoda) is an established invertebrate model in environmental research. Preceding research using isopods did not widely use immune markers. In order to advance their use in research, knowledge of the reference values in control animals as well as variations during infections is of importance. This study presents, for the first time, the morphology, and ultrastructure of the three main haemocyte types of Porcellio scaber as semigranulocytes (SGCs), granulocytes (GCs), and hyalinocytes (HCs), with the latter having two subtypes, using various light and electron microscopy approaches. The modulation of selected immune cellular and humoral parameters of P. scaber in symptomatic phases of Rhabdochlamydia porcellionis and Iridovirus IIV-31 infections is presented. A clear difference in the immune responses of bacterial and viral infections was shown. Remarkable changes in total haemocyte count (THC) values and the proportions of three different haemocyte types were found in animals with a viral infection, which were not as significant in bacterially infected animals. Modified NO levels and SOD activity were more pronounced in cases of bacterial infection. Knowledge of the morphological and ultrastructural features of distinct haemocyte types, understanding the baseline values of immune parameters in control animals without evident symptoms of infection, and the influence that infections can have on these parameters can serve as a basis for the further use of P. scaber immune markers in environmental research.
Collapse
Affiliation(s)
- Andraž Dolar
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| | - Rok Kostanjšek
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Craig Mayall
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| |
Collapse
|
10
|
Cui C, Zhu L, Tang X, Xing J, Sheng X, Zhan W. Molecular characterization of prohibitins and their differential responses to WSSV infection in hemocyte subpopulations of Fenneropenaeus chinensis. FISH & SHELLFISH IMMUNOLOGY 2020; 106:296-306. [PMID: 32717325 DOI: 10.1016/j.fsi.2020.07.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
In our previous work, prohibitin1 (PHB1) was identified to be only expressed in granulocytes of Fenneropenaeus chinensis. In order to elucidate the potential immunological properties of prohibitins in hemocyte subpopulations, in this paper, the full-length cDNAs of PHB1 and PHB2 were firstly cloned from F. chinensis using rapid amplification of cDNA ends approach, and they were designated FcPHB1 and FcPHB2, respectively. Based on the sequence analysis and multiple sequence alignment, FcPHB1 and FcPHB2 were members of SPFH protein family. By quantitative real-time RT-PCR, the higher mRNA transcription levels of FcPHB1 and FcPHB2 were detected in intestine and hemocytes of F. chinensis, and these two genes in hemocytes were significantly up-regulated upon WSSV infection. The FcPHB1 and FcPHB2 were recombinantly expressed in Escherichia coli BL21 (DE3), and employed as immunogens to produce the polyclonal antibodies (PAbs) in rabbits. Indirect immunofluorescence assay (IFA) revealed that the FcPHB1 and FcPHB2 were located both in the cytoplasm and nuclei of hemocytes, which could also be specifically recognized by the PAbs against FcPHB1 or FcPHB2 in Western blot. Interestingly, it was found that FcPHB1 and FcPHB2 were only expressed in the granulocytes of heathy shrimp and highly expressed in the WSSV-infected granulocytes, however only weak expressions of FcPHB1 and FcPHB2 were observed in the hyalinocytes of WSSV-infected shrimp. Meanwhile, silencing of FcPHB1 and FcPHB2 genes were performed by small interfering RNA, and the results showed that the WSSV copies in hemocytes were increased by knockdown of either FcPHB1 or FcPHB2, and the cumulative mortalities of shrimp in the silenced groups were also markedly increased. These results demonstrated that FcPHB1 and FcPHB2 played important roles in anti-WSSV infection, and their differential expression characteristics in hemocyte subpopulations provided a further understanding of the immune functions of granulocytes and hyalinocytes.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Lei Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
11
|
Bandeira PT, Vernal J, Matos GM, Farias ND, Terenzi H, Pinto AR, Barracco MA, Rosa RD. A Type IIa crustin from the pink shrimp Farfantepenaeus paulensis (crusFpau) is constitutively synthesized and stored by specific granule-containing hemocyte subpopulations. FISH & SHELLFISH IMMUNOLOGY 2020; 97:294-299. [PMID: 31863905 DOI: 10.1016/j.fsi.2019.12.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Crustins are cysteine-rich antimicrobial peptides (AMPs) widely distributed across crustaceans. From the four described crustin Types (I to IV), crustins from the subtype IIa are the most abundant and diverse members found in penaeid shrimp. Despite the critical role of Type IIa crustins in shrimp antimicrobial defenses, there is still limited information about their synthesis and antimicrobial properties. Here, we report the subcellular localization and the antibacterial spectrum of crusFpau, a Type IIa crustin from the pink shrimp Farfantepenaeus paulensis. The recombinantly expressed crusFpau showed antimicrobial activity against both Gram-positive and Gram-negative bacteria at low concentrations. Results from immunofluorescence using anti-rcrusFpau antiserum revealed that crusFpau is synthetized and stored by both granular and semigranular hemocytes, but not by hyaline cells. Interestingly, not all granular and semigranular hemocytes stained for crusFpau, revealing that this crustin is produced by specific granule-containing hemocyte subpopulations. Finally, we showed that the granule-stored peptides are not constitutively secreted into the plasma of healthy animals.
Collapse
Affiliation(s)
- Paula Terra Bandeira
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Javier Vernal
- Center for Structural Molecular Biology, Department of Biochemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Gabriel Machado Matos
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Natanael Dantas Farias
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Hernán Terenzi
- Center for Structural Molecular Biology, Department of Biochemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Aguinaldo Roberto Pinto
- Laboratory of Applied Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Margherita Anna Barracco
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Rafael Diego Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
12
|
Du ZQ, Li B, Shen XL, Wang K, Du J, Yu XD, Yuan JJ. A new antimicrobial peptide isoform, Pc-crustin 4 involved in antibacterial innate immune response in fresh water crayfish, Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2019; 94:861-870. [PMID: 31585246 DOI: 10.1016/j.fsi.2019.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The main advantage of antimicrobial peptides (AMPs) used as the effectors in the innate immunity system of invertebrates is that the high specificity is not indispensable. And they play important roles in the systemic defenses against microbial invasion. In this study, a new full-length cDNA of the crustins molecule was identified in red swamp crayfish, P. clarkii (named Pc-crustin 4). The ORF of Pc-crustin 4 contained 369 bp which encoded a protein of 122 amino acids, with a 20-amino-acid signal peptide sequence. On the base of the classification method established by Smith et al., Pc-crustin 4 belonged to Type Ⅰ crustin molecule. The Pc-crustin 4 transcripts were expressed in hemocytes at relatively high level, and relatively low level in hepatopancreas, gills, and intestine in normal crayfish. After respectively challenged with S. aureus or E. ictaluri, the expression levels of Pc-crustin 4 showed up-regulation trends at different degrees in the hemocytes, hepatopancreas, gills, and intestine tissues. Besides, the results of liquid antibacterial assay showed that rPc-crustin 4 inhibited obviously the growth of S. aureus and E. ictaluri. The results of bacteria binding assay showed that rPc-crustin 4 could bind strongly to S. aureus and E. ictaluri. Finally, RNAi assay was performed to study the immunity roles of Pc-crustin 4 in crayfish in vivo. Taken together, Pc-crustin 4 is an important immunity effector molecule, which plays crucial roles in defending against bacterial infection in crayfish.
Collapse
Affiliation(s)
- Zhi-Qiang Du
- Key Laboratory of Inshore Resources Biotechnology (Quanzhou Normal University) Fujian Province University, Quanzhou, 362000, China; School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Bo Li
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Xiu-Li Shen
- Library, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Kai Wang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Jie Du
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Xiao-Dong Yu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Jian-Jun Yuan
- Key Laboratory of Inshore Resources Biotechnology (Quanzhou Normal University) Fujian Province University, Quanzhou, 362000, China; College of Marine and Food Sciences, Quanzhou Normal University, Quanzhou, 362000, China.
| |
Collapse
|
13
|
Havanapan PO, Mangkalanan S, Phungthanom N, Krittanai C. Proteomic analysis and white spot syndrome virus interaction of mud crab (Scylla olivacea) revealed responsive roles of the hemocytes. FISH & SHELLFISH IMMUNOLOGY 2019; 89:458-467. [PMID: 30954523 DOI: 10.1016/j.fsi.2019.03.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
White spot disease (WSD) is a highly virulent viral disease in shrimps. Clinical signs and high mortality of WSD is generally observed after a few days of infection by White Spot Syndrome virus (WSSV). Mud crabs are the major carrier and persistent host for the WSSV. However, an elucidation of viral interaction and persistent mode of WSSV infection in mud crab is still limited. We investigated the defensive role of mud crab (Scylla olivacea) hemocytes against WSSV infection by using comparative proteomic analysis coupled with electrospray ionization liquid chromatography tandem mass spectrometry (ESI-LC/MS/MS). The proteomic maps of expressed proteins obtained from WSSV infected hemocytes revealed differential proteins related to various biological functions, including immune response, anti-apoptosis, endocytosis, phosphorylation signaling, stress response, oxygen transport, molting, metabolism, and biosynthesis. Four distinctive cell types of crab hemocytes: hyaline cells (HC), small granular cells (SGC), large granular cells (LGC) and mixed granular cells (MGC) were found susceptible to WSSV. However, immunohistochemistry analysis demonstrated a complete replication of WSSV only in SGC and LGC. WSSV induced apoptosis was also observed in HC, SGC and MGC except for LGC. These results suggested that HC and MGC may undergo apoptosis prior to a complete assembly of virion, while SGC is more susceptible showing higher amplification and releasing of virion. In contrast, WSSV may inhibit apoptosis in infected LGC to stay in latency. This present finding provides an insight for the responsive roles of crustacean hemocyte cells involved in molecular interaction and defense mechanism against WSSV.
Collapse
Affiliation(s)
- Phattara-Orn Havanapan
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, Thailand
| | - Seksan Mangkalanan
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, Thailand; Department of Applied Biology, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand
| | - Nuanwan Phungthanom
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, Thailand
| | - Chartchai Krittanai
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, Thailand.
| |
Collapse
|
14
|
Thansa K, Rungsiwiwut R, Kitiyanant N, Taengchaiyaphum S. Optimisation of electroporation and lipofection protocols to derive the black tiger shrimp cell line (Penaeus monodon). FISH & SHELLFISH IMMUNOLOGY 2018; 81:204-213. [PMID: 30010016 DOI: 10.1016/j.fsi.2018.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
To achieve in creating permanent shrimp cell lines, cellular arrest of primary cells in the culture is needed to be firstly solved. Considering the insertion of some markers affecting cellular proliferation into primary haemocytes in order to produce the black tiger shrimp cell line and the very low percent of transduced cells previously reported in penaeid shrimps, these paved us the way to set up suitable gene delivery protocols to increase percent of transduced cells in the shrimp as our primary aim. In this study, electroporation and lipofection were used to transfer construct plasmids (pLL3.7 plasmids containing CMV promoters and pGL-IE1-126(A)-EGFP plasmids carrying WSSV IE1 promoters) into primary haemocytes. As it was difficult to distinguish between cells expressing EGFP signal and auto-fluorescence of many dead cells occurred by electroporation during the first 72 h of experiment; so, only lipofection was managed to deliver plasmids into primary cells. Surprisingly, numbers of suspected proliferative cells were derived after electroporation with no insertion of immortalising markers. These cells survived in vitro for up to 45 days with high rate of cell viability, but the number of viable cells decreased throughout the experiment. In addition, these cells expressed genes and proteins closely related to hyaline cells determined using RT-PCR and western blot. For the lipofection experiment, no green fluorescence signal was detected in any primary cell introduced with these plasmids, suggesting that plasmids were not successfully inserted into cells. Also, a number of primary haemocytes had the apoptotic cell death characteristic within 5 days after lipofection. These possibly result from using inappropriate lipofection protocol and chemical substances. In summary, finding out suitable protocols to elevate the percent of transduced cells is still necessary. Additionally, continuous shrimp cell lines would be possibly established by transforming suspected proliferative cells derived from electroporation in this study.
Collapse
Affiliation(s)
- Kwanta Thansa
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand.
| | - Ruttachuk Rungsiwiwut
- Human Embryonic Stem Cell Research Center, Reproductive Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand.
| | - Narisorn Kitiyanant
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
| | - Suparat Taengchaiyaphum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand.
| |
Collapse
|
15
|
Koiwai K, Kondo H, Hirono I. The immune functions of sessile hemocytes in three organs of kuruma shrimp Marsupenaeus japonicus differ from those of circulating hemocytes. FISH & SHELLFISH IMMUNOLOGY 2018; 78:109-113. [PMID: 29684599 DOI: 10.1016/j.fsi.2018.04.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/05/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Shrimp, as invertebrates, have an open vasculature that allows circulating hemocytes to infiltrate the tissues, where they are referred to as sessile hemocytes. Sessile hemocytes are known to express immune-related genes, but it is not known whether their functions differ from those of circulating hemocytes. To answer this question, we enriched them from suspensions of different tissues using discontinuous density gradient centrifugation and analyzed their transcripts by RNA-seq. The results suggest that circulating hemocytes and sessile hemocytes of the gills are in a state that could react quickly to pathogens, immune-related genes expression of sessile hemocytes differ from circulating hemocytes, and the gills, heart and lymphoid organs have cells that express immune-related genes that are different from hemocytes.
Collapse
Affiliation(s)
- Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|
16
|
Zhu L, Tang X, Xing J, Sheng X, Zhan W. Differential proteome of haemocyte subpopulations responded to white spot syndrome virus infection in Chinese shrimp Fenneropenaeus chinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:82-93. [PMID: 29427599 DOI: 10.1016/j.dci.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
In our previous study, the differentially expressed proteins have been identified by proteomic analysis in total haemocytes of shrimp (Fenneropenaeus chinensis) after white spot syndrome virus (WSSV) infection. To further investigate the differential response of haemocyte subpopulations to WSSV infection, granulocytes and hyalinocytes were separated from healthy and WSSV-infected shrimp by immunomagnetic bead (IMB) method, respectively. Then two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) were used to analyze the differentially expressed proteins in haemocyte subpopulations between healthy and WSSV-infected shrimp. The results of flow cytometry (FCM) showed that about 98% of granulocytes and about 96% of hyalinocytes in purity were obtained. Quantitative intensity analysis revealed that 26 protein spots in granulocytes and 24 spots in hyalinocytes were significantly changed post WSSV infection. Among them, 24 proteins in granulocytes and 23 proteins in hyalinocytes were identified by MS analysis, which could be divided into eight categories according to Gene Ontology. The identification of prophenoloxidase (proPO), proPO 2 and peroxiredoxin in WSSV-infected granulocytes was consistent with the facts that the proPO-activating system and peroxiredoxin were mainly existed in granulocytes. The phagocytosis of hyalinocytes seemed to be enhanced during the infection, because several proteins that involved in phagocytosis, including clathrin heavy chain, ADP ribosylation factor 4 and Alpha2 macroglobulin were up-regulated in hyalinocytes upon WSSV infection. Our results also reflected the vital biological significance of calcium ion binding proteins in granulocytes and ATPase/GTPase in hyalinocytes during WSSV infection. The data in this study verified the roles of granulocytes and hyalinocytes involved in WSSV infection, and differentially expressed proteins identified in granulocytes and hyalinocytes had a close correlation with their function characteristics.
Collapse
Affiliation(s)
- Lei Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
17
|
Tassanakajon A, Rimphanitchayakit V, Visetnan S, Amparyup P, Somboonwiwat K, Charoensapsri W, Tang S. Shrimp humoral responses against pathogens: antimicrobial peptides and melanization. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:81-93. [PMID: 28501515 DOI: 10.1016/j.dci.2017.05.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Diseases have caused tremendous economic losses and become the major problem threatening the sustainable development of shrimp aquaculture. The knowledge of host defense mechanisms against invading pathogens is essential for the implementation of efficient strategies to prevent disease outbreaks. Like other invertebrates, shrimp rely on the innate immune system to defend themselves against a range of microbes by recognizing and destroying them through cellular and humoral immune responses. Detection of microbial pathogens triggers the signal transduction pathways including the NF-κB signaling, Toll and Imd pathways, resulting in the activation of genes involved in host defense responses. In this review, we update the discovery of components of the Toll and Imd pathways in shrimp and their participation in the regulation of shrimp antimicrobial peptide (AMP) synthesis. We also focus on a recent progress on the two most powerful and the best-studied shrimp humoral responses: AMPs and melanization. Shrimp AMPs are mainly cationic peptides with sequence diversity which endues them the broad range of activities against microorganisms. Melanization, regulated by the prophenoloxidase activating cascade, also plays a crucial role in killing and sequestration of invading pathogens. The progress and emerging research on mechanisms and functional characterization of components of these two indispensable humoral responses in shrimp immunity are summarized and discussed. Interestingly, the pattern recognition protein (PRP) crosstalk is evidenced between the proPO activating cascade and the AMP synthesis pathways in shrimp, which enables the innate immune system to build up efficient immune responses.
Collapse
Affiliation(s)
- Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand.
| | - Vichien Rimphanitchayakit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Suwattana Visetnan
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Piti Amparyup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Walaiporn Charoensapsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| | - Sureerat Tang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
18
|
Zhu L, Chang Y, Xing J, Tang X, Sheng X, Zhan W. Comparative proteomic analysis between two haemocyte subpopulations in shrimp Fenneropenaeus chinensis. FISH & SHELLFISH IMMUNOLOGY 2018; 72:325-333. [PMID: 28966142 DOI: 10.1016/j.fsi.2017.09.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/13/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
In our previous work, granulocytes and hyalinocytes were successfully separated by immunomagnetic bead (IMB) method using monoclonal antibodies (mAbs) against granulocytes of shrimp (Fenneropenaeus chinensis). In order to elucidate the proteomic differentiation between granulocytes and hyalinocytes, in this paper, the differentially expressed proteins were analyzed between non-fixed/un-permeabilized (NFP) haemocytes and fixed/permeabilized (FP) haemocytes using two-dimensional gel electrophoresis (2-DE) combined with mass spectrometry (MS). Then the FP haemocytes were separated into two haemocyte subpopulations using IMB method, and the comparative proteome between granulocytes and hyalinocytes was investigated. The results showed that 10 differentially expressed protein spots were detected and identified as 4 proteins in the NFP haemocytes. Twenty one differentially expressed proteins were successfully identified between granulocytes and hyalinocytes, which include 4 unique expressed proteins in granulocytes, 4 significantly highly expressed proteins in granulocytes, and 13 significantly high expressed proteins in hyalinocytes. According to Gene Ontology annotation, the identified proteins between granulocytes and hyalinocytes were classified into six categories, including binding proteins, proteins involved in catalytic activity, enzyme regulator activity, structural molecule activity, translation regulator activity, and ungrouped proteins. Furthermore, quantitative PCR confirmed that the trend of transcription levels of three selected genes were consistent with the proteomic data from 2-DE. The results may lead to better understanding of the functions of haemocyte subpopulations.
Collapse
Affiliation(s)
- Lei Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Yanhong Chang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China
| |
Collapse
|
19
|
Zhou YL, Gu WB, Tu DD, Zhu QH, Zhou ZK, Chen YY, Shu MA. Hemocytes of the mud crab Scylla paramamosain: Cytometric, morphological characterization and involvement in immune responses. FISH & SHELLFISH IMMUNOLOGY 2018; 72:459-469. [PMID: 29108971 DOI: 10.1016/j.fsi.2017.10.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/17/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
Hemocytes play essential roles in the innate immune system of crustaceans. Characterization of hemocytes from estuary mud crab Scylla paramamosain was performed by flow cytometry and morphological studies such as cytochemical staining and electron microscopy. The hemocyte subsets were further separated using a modified Percoll density gradient centrifugation method. Based on the morphological characteristics of the cells, three distinct categories of hemocytes were identified: granulocytes with abundant large granularity representing 5.27 ± 0.42%, semigranulocytes with small or less granularity representing 76.03 ± 3.34%, and hyalinocytes (18.70 ± 3.92%) which were almost no granularity. The total hemocyte cell count and the percentage of hemocyte subsets varied after pathogen infection, including Vibrio alginolyticus and the viral double-stranded RNA analog Poly (I:C). The phagocytic process is of fundamental importance for crustaceans' cellular immune response as well as development and survival. The results of the in vitro phagocytosis assays analyzed by flow cytometry demonstrated that granulocytes and semigranulocytes had significantly higher phagocytic ability than hyalinocytes. A primary culture system, L-15 medium supplemented with 5-10% fetal bovine serum, was developed to further investigate the immune function of hemocytes. Furthermore, adenovirus can be utilized to effectively transfer GFP gene into hemocytes. Overall, three hemocyte sub-populations of S. paramamosain were successfully discriminated, moreover, their response to pathogen infections, phagocytic activity and adenovirus mediated transfection were also investigated for the first time. This study may contribute to a better understanding of the innate immune system of estuary crabs.
Collapse
Affiliation(s)
- Yi-Lian Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Bin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan-Dan Tu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi-Hui Zhu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhong-Kai Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Yin Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Koiwai K, Alenton RRR, Shiomi R, Nozaki R, Kondo H, Hirono I. Two hemocyte sub-populations of kuruma shrimp Marsupenaeus japonicus. Mol Immunol 2017; 85:1-8. [PMID: 28167202 DOI: 10.1016/j.molimm.2017.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 12/18/2022]
Abstract
Hemocytes in the circulating hemolymph play important roles for immune responses in shrimp. Previous studies on immune responses by hemocytes in penaeid shrimp were based on gene expression analyses of the entire population of hemocytes and thus may have missed different immune responses of different hemocyte sub-populations. In this study, we separated hemocytes into two sub-populations by Percoll gradient centrifugation, morphological characteristics of each population were then analyzed by May-Giemsa staining, flow cytometry, and FACSCalibur. Results showed hemocytes were divided into an upper layer basophilic, and lower layer of eosinophilic hemocytes. Basophilic hemocytes were larger in size compared to eosinophilic hemocytes, which were more granulated than the basophilic hemocytes. Transcriptome analysis was then conducted through RNA-seq analysis by Miseq, which revealed 16 differentially-expressed transcripts between the two sub-populations. In the upper-layer, the highly expressed transcripts that were homologous to immune-related genes that suggest hemocytes from this layer may play as the regulator of immune system and control the action of other cells to eliminate pathogen. On the other hand, transcripts that were highly expressed in the lower-layer were homologous to the antimicrobial peptide (AMP) crustin, which supports that hemocytes on this layer have granules as crustins are normally secreted from hemocyte granules. The high expression of crustin in the lower-layer also provides insight on the mechanism of the anti-microbial function, where hemocytes produce and store AMPs in its granules. These differentially expressed genes are potential hemocyte molecular markers, and among them we identified one of the highly expressed genes in the hemocytes from the upper-layer (c11736_g1) to be a promising candidate molecular marker predicted to be a surface molecule, which is a common characteristic for molecular markers.
Collapse
Affiliation(s)
- Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Rod Russel R Alenton
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Reina Shiomi
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Reiko Nozaki
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|