1
|
Whittle M, Bonsall MB, Barreaux AMG, Ponton F, English S. A theoretical model for host-controlled regulation of symbiont density. J Evol Biol 2023; 36:1731-1744. [PMID: 37955420 PMCID: PMC7617405 DOI: 10.1111/jeb.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
There is growing empirical evidence that animal hosts actively control the density of their mutualistic symbionts according to their requirements. Such active regulation can be facilitated by compartmentalization of symbionts within host tissues, which confers a high degree of control of the symbiosis to the host. Here, we build a general theoretical framework to predict the underlying ecological drivers and evolutionary consequences of host-controlled endosymbiont density regulation for a mutually obligate association between a host and a compartmentalized, vertically transmitted symbiont. Building on the assumption that the costs and benefits of hosting a symbiont population increase with symbiont density, we use state-dependent dynamic programming to determine an optimal strategy for the host, i.e., that which maximizes host fitness, when regulating the density of symbionts. Simulations of active host-controlled regulation governed by the optimal strategy predict that the density of the symbiont should converge to a constant level during host development, and following perturbation. However, a similar trend also emerges from alternative strategies of symbiont regulation. The strategy which maximizes host fitness also promotes symbiont fitness compared to alternative strategies, suggesting that active host-controlled regulation of symbiont density could be adaptive for the symbiont as well as the host. Adaptation of the framework allowed the dynamics of symbiont density to be predicted for other host-symbiont ecologies, such as for non-essential symbionts, demonstrating the versatility of this modelling approach.
Collapse
Affiliation(s)
- Mathilda Whittle
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Michael B. Bonsall
- Department of Biology, University of Oxford, Oxford, UK
- St Peter’s College, Oxford, UK
| | | | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
2
|
Dodge R, Jones EW, Zhu H, Obadia B, Martinez DJ, Wang C, Aranda-Díaz A, Aumiller K, Liu Z, Voltolini M, Brodie EL, Huang KC, Carlson JM, Sivak DA, Spradling AC, Ludington WB. A symbiotic physical niche in Drosophila melanogaster regulates stable association of a multi-species gut microbiota. Nat Commun 2023; 14:1557. [PMID: 36944617 PMCID: PMC10030875 DOI: 10.1038/s41467-023-36942-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
The gut is continuously invaded by diverse bacteria from the diet and the environment, yet microbiome composition is relatively stable over time for host species ranging from mammals to insects, suggesting host-specific factors may selectively maintain key species of bacteria. To investigate host specificity, we used gnotobiotic Drosophila, microbial pulse-chase protocols, and microscopy to investigate the stability of different strains of bacteria in the fly gut. We show that a host-constructed physical niche in the foregut selectively binds bacteria with strain-level specificity, stabilizing their colonization. Primary colonizers saturate the niche and exclude secondary colonizers of the same strain, but initial colonization by Lactobacillus species physically remodels the niche through production of a glycan-rich secretion to favor secondary colonization by unrelated commensals in the Acetobacter genus. Our results provide a mechanistic framework for understanding the establishment and stability of a multi-species intestinal microbiome.
Collapse
Affiliation(s)
- Ren Dodge
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Eric W Jones
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Department of Physics, University of California, Santa Barbara, CA, 93106, USA
| | - Haolong Zhu
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Benjamin Obadia
- Molecular and Cell Biology Department, University of California, Berkeley, CA, 94720, USA
| | - Daniel J Martinez
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Chenhui Wang
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Howard Hughes Medical Institute, Baltimore, MD, 21218, USA
| | - Andrés Aranda-Díaz
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Kevin Aumiller
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhexian Liu
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Marco Voltolini
- Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
- Dipartimento di Scienze della Terra, Università degli Studi di Milano, Milano, Italy
| | - Eoin L Brodie
- Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Jean M Carlson
- Department of Physics, University of California, Santa Barbara, CA, 93106, USA
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Allan C Spradling
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Howard Hughes Medical Institute, Baltimore, MD, 21218, USA
| | - William B Ludington
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA.
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
3
|
Unraveling the Role of Antimicrobial Peptides in Insects. Int J Mol Sci 2023; 24:ijms24065753. [PMID: 36982826 PMCID: PMC10059942 DOI: 10.3390/ijms24065753] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short, mainly positively charged, amphipathic molecules. AMPs are important effectors of the immune response in insects with a broad spectrum of antibacterial, antifungal, and antiparasitic activity. In addition to these well-known roles, AMPs exhibit many other, often unobvious, functions in the host. They support insects in the elimination of viral infections. AMPs participate in the regulation of brain-controlled processes, e.g., sleep and non-associative learning. By influencing neuronal health, communication, and activity, they can affect the functioning of the insect nervous system. Expansion of the AMP repertoire and loss of their specificity is connected with the aging process and lifespan of insects. Moreover, AMPs take part in maintaining gut homeostasis, regulating the number of endosymbionts as well as reducing the number of foreign microbiota. In turn, the presence of AMPs in insect venom prevents the spread of infection in social insects, where the prey may be a source of pathogens.
Collapse
|
4
|
Proteolytic Activity of DegP Is Required for the Burkholderia Symbiont To Persist in Its Host Bean Bug. Microbiol Spectr 2023; 11:e0433022. [PMID: 36511662 PMCID: PMC9927360 DOI: 10.1128/spectrum.04330-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Symbiosis requires the adaptation of symbiotic bacteria to the host environment. Symbiotic factors for bacterial adaptation have been studied in various experimental models, including the Burkholderia-bean bug symbiosis model. Previously identified symbiotic factors of Burkholderia symbionts of bean bugs provided insight into the host environment being stressful to the symbionts. Because DegP, which functions as both a protease and a chaperone, supports bacterial growth under various stressful conditions, we hypothesized that DegP might be a novel symbiotic factor of Burkholderia symbionts in the symbiotic association with bean bugs. The expression level of degP was highly elevated in symbiotic Burkholderia cells in comparison with cultured cells. When the degP-deficient strain competed for symbiotic association against the wild-type strain, the ΔdegP strain showed no symbiotic competitiveness. In vivo monoinfection with the ΔdegP strain revealed a lower symbiont titer in the symbiotic organ than that of the wild-type strain, indicating that the ΔdegP strain failed to persist in the host. In in vitro assays, the ΔdegP strain showed susceptibility to heat and high-salt stressors and a decreased level of biofilm formation. To further determine the role of the proteolytic activity of DegP in symbiosis, we generated missense mutant DegPS248A exhibiting a defect in protease activity only. The ΔdegP strain complemented with degPS248A showed in vitro characteristics similar to those of the ΔdegP strain and failed to persist in the symbiotic organ. Together, the results of our study demonstrated that the proteolytic activity of DegP, which is involved in the stress resistance and biofilm formation of the Burkholderia symbiont, plays an essential role in symbiotic persistence in the host bean bug. IMPORTANCE Bacterial DegP has dual functions as a protease and a chaperone and supports bacterial growth under stressful conditions. In symbioses involving bacteria, bacterial symbionts encounter various stressors and may need functional DegP for symbiotic association with the host. Using the Burkholderia-bean bug symbiosis model, which is a useful model for identifying bacterial symbiotic factors, we demonstrated that DegP is indeed a symbiotic factor of Burkholderia persistence in its host bean bug. In vitro experiments to understand the symbiotic mechanisms of degP revealed that degP confers resistance to heat and high-salt stresses. In addition, degP supports biofilm formation, which is a previously identified persistence factor of the Burkholderia symbiont. Furthermore, using a missense mutation in a protease catalytic site of degP, we specifically elucidated that the proteolytic activity of degP plays essential roles in stress resistance, biofilm formation, and, thus, symbiotic persistence in the host bean bug.
Collapse
|
5
|
Holmes IA, Grundler MC. Phylogenetically under-dispersed gut microbiomes are not correlated with host genomic heterozygosity in a genetically diverse reptile community. Mol Ecol 2023; 32:258-274. [PMID: 36221927 PMCID: PMC9797449 DOI: 10.1111/mec.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022]
Abstract
While key elements of fitness in vertebrate animals are impacted by their microbiomes, the host genetic characteristics that factor into microbiome composition are not fully understood. Here, we correlate host genomic heterozygosity and gut microbiome phylogenetic diversity across a community of reptiles in southwestern New Mexico to test hypotheses about the behaviour of host genes that drive microbiome assembly. We find that microbiome communities are phylogenetically under-dispersed relative to random expectations, and that host heterozygosity is not correlated with microbiome diversity. Our analyses reinforce results from functional genomic work that identify conserved host immune and nonimmune genes as key players in microbiome assembly, rather than gene families that rely on heterozygosity for their function.
Collapse
Affiliation(s)
- Iris A. Holmes
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Cornell Institute of Host Microbe Interactions and Disease and Department of Microbiology, Cornell University, Ithaca, NY 14853 USA
| | - Michael C. Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
6
|
Nishide Y, Nagamine K, Kageyama D, Moriyama M, Futahashi R, Fukatsu T. A new antimicrobial peptide, Pentatomicin, from the stinkbug Plautia stali. Sci Rep 2022; 12:16503. [PMID: 36192417 PMCID: PMC9529961 DOI: 10.1038/s41598-022-20427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/13/2022] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides (AMPs) play crucial roles in the innate immunity of diverse organisms, which exhibit remarkable diversity in size, structural property and antimicrobial spectrum. Here, we describe a new AMP, named Pentatomicin, from the stinkbug Plautia stali (Hemiptera: Pentatomidae). Orthologous nucleotide sequences of Pentatomicin were present in stinkbugs and beetles but not in other insect groups. Notably, orthologous sequences were also detected from a horseshoe crab, cyanobacteria and proteobacteria, suggesting the possibility of inter-domain horizontal gene transfers of Pentatomicin and allied protein genes. The recombinant protein of Pentatomicin was effective against an array of Gram-positive bacteria but not against Gram-negative bacteria. Upon septic shock, the expression of Pentatomicin drastically increased in a manner similar to other AMPs. On the other hand, unlike other AMPs, mock and saline injections increased the expression of Pentatomicin. RNAi-mediated downregulation of Imd pathway genes (Imd and Relish) and Toll pathway genes (MyD88 and Dorsal) revealed that the expression of Pentatomicin is under the control of Toll pathway. Being consistent with in vitro effectiveness of the recombinant protein, adult insects injected with dsRNA of Pentatomicin exhibited higher vulnerability to Gram-positive Staphylococcus aureus than to Gram-negative Escherichia coli. We discovered high levels of Pentatomicin expression in eggs, which is atypical of other AMPs and suggestive of its biological functioning in eggs. Contrary to the expectation, however, RNAi-mediated downregulation of Pentatomicin did not affect normal embryonic development of P. stali. Moreover, the downregulation of Pentatomicin in eggs did not affect vertical symbiont transmission to the offspring even under heavily contaminated conditions, which refuted our expectation that the antimicrobial activity of Pentatomicin may contribute to egg surface-mediated symbiont transmission by suppressing microbial contaminants.
Collapse
Affiliation(s)
- Yudai Nishide
- Institute of Agrobiological Sciences Ohwashi, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8634, Japan.
| | - Keisuke Nagamine
- Institute of Agrobiological Sciences Ohwashi, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8634, Japan
- Japan Society for the Promotion of Science (JSPS), Tokyo, 102-0083, Japan
| | - Daisuke Kageyama
- Institute of Agrobiological Sciences Ohwashi, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8634, Japan
| | - Minoru Moriyama
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Ryo Futahashi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.
| | - Takema Fukatsu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.
| |
Collapse
|
7
|
Lee J, Cha WH, Lee DW. Multiple Precursor Proteins of Thanatin Isoforms, an Antimicrobial Peptide Associated With the Gut Symbiont of Riptortus pedestris. Front Microbiol 2022; 12:796548. [PMID: 35069496 PMCID: PMC8767025 DOI: 10.3389/fmicb.2021.796548] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/10/2021] [Indexed: 01/08/2023] Open
Abstract
Thanatin is an antimicrobial peptide (AMP) generated by insects for defense against bacterial infections. In the present study, we performed cDNA cloning of thanatin and found the presence of multiple precursor proteins from the bean bug, Riptortus pedestris. The cDNA sequences encoded 38 precursor proteins, generating 13 thanatin isoforms. In the phylogenetic analysis, thanatin isoforms were categorized into two groups based on the presence of the membrane attack complex/perforin (MACPF) domain. In insect-bacterial symbiosis, specific substances are produced by the immune system of the host insect and are known to modulate the symbiont’s population. Therefore, to determine the biological function of thanatin isoforms in symbiosis, the expression levels of three AMP genes were compared between aposymbiotic insects and symbiotic R. pedestris. The expression levels of the thanatin genes were significantly increased in the M4 crypt, a symbiotic organ, of symbiotic insects upon systemic bacterial injection. Further, synthetic thanatin isoforms exhibited antibacterial activity against gut-colonized Burkholderia symbionts rather than in vitro-cultured Burkholderia cells. Interestingly, the suppression of thanatin genes significantly increased the population of Burkholderia gut symbionts in the M4 crypt under systemic Escherichia coli K12 injection. Overgrown Burkholderia gut symbionts were observed in the hemolymph of host insects and exhibited insecticidal activity. Taken together, these results suggest that thanatin of R. pedestris is a host-derived symbiotic factor and an AMP that controls the population of gut-colonized Burkholderia symbionts.
Collapse
Affiliation(s)
- Junbeom Lee
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan, South Korea
| | - Wook Hyun Cha
- Department of Bio-Safety, Kyungsung University, Busan, South Korea
| | - Dae-Weon Lee
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan, South Korea.,Department of Bio-Safety, Kyungsung University, Busan, South Korea
| |
Collapse
|
8
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
9
|
Medina Munoz M, Brenner C, Richmond D, Spencer N, Rio RVM. The holobiont transcriptome of teneral tsetse fly species of varying vector competence. BMC Genomics 2021; 22:400. [PMID: 34058984 PMCID: PMC8166097 DOI: 10.1186/s12864-021-07729-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background Tsetse flies are the obligate vectors of African trypanosomes, which cause Human and Animal African Trypanosomiasis. Teneral flies (newly eclosed adults) are especially susceptible to parasite establishment and development, yet our understanding of why remains fragmentary. The tsetse gut microbiome is dominated by two Gammaproteobacteria, an essential and ancient mutualist Wigglesworthia glossinidia and a commensal Sodalis glossinidius. Here, we characterize and compare the metatranscriptome of teneral Glossina morsitans to that of G. brevipalpis and describe unique immunological, physiological, and metabolic landscapes that may impact vector competence differences between these two species. Results An active expression profile was observed for Wigglesworthia immediately following host adult metamorphosis. Specifically, ‘translation, ribosomal structure and biogenesis’ followed by ‘coenzyme transport and metabolism’ were the most enriched clusters of orthologous genes (COGs), highlighting the importance of nutrient transport and metabolism even following host species diversification. Despite the significantly smaller Wigglesworthia genome more differentially expressed genes (DEGs) were identified between interspecific isolates (n = 326, ~ 55% of protein coding genes) than between the corresponding Sodalis isolates (n = 235, ~ 5% of protein coding genes) likely reflecting distinctions in host co-evolution and adaptation. DEGs between Sodalis isolates included genes involved in chitin degradation that may contribute towards trypanosome susceptibility by compromising the immunological protection provided by the peritrophic matrix. Lastly, G. brevipalpis tenerals demonstrate a more immunologically robust background with significant upregulation of IMD and melanization pathways. Conclusions These transcriptomic differences may collectively contribute to vector competence differences between tsetse species and offers translational relevance towards the design of novel vector control strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07729-5.
Collapse
Affiliation(s)
- Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Caitlyn Brenner
- Department of Biology, Washington and Jefferson College, Washington, PA, 15301, USA
| | - Dylan Richmond
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Noah Spencer
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Rita V M Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA.
| |
Collapse
|
10
|
Chauhan VK, Dhania NK, Lokya V, Bhuvanachandra B, Padmasree K, Dutta-Gupta A. Midgut aminopeptidase N expression profile in castor semilooper (Achaea janata) during sublethal Cry toxin exposure. J Biosci 2021. [DOI: 10.1007/s12038-021-00148-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
The Gut Microbiota of the Insect Infraorder Pentatomomorpha (Hemiptera: Heteroptera) for the Light of Ecology and Evolution. Microorganisms 2021; 9:microorganisms9020464. [PMID: 33672230 PMCID: PMC7926433 DOI: 10.3390/microorganisms9020464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023] Open
Abstract
The stinkbugs of the infraorder Pentatomomorpha are a group of important plant sap-feeding insects, which host diverse microorganisms. Some are located in their complex morphological midgut compartments, while some within the specialized bacteriomes of insect hosts. This perpetuation of symbioses through host generations is reinforced via the diverse routes of vertical transmission or environmental acquisition of the symbionts. These symbiotic partners, reside either through the extracellular associations in midgut or intracellular associations in specialized cells, not only have contributed nutritional benefits to the insect hosts but also shaped their ecological and evolutionary basis. The stinkbugs and gut microbe symbioses present a valuable model that provides insights into symbiotic interactions between agricultural insects and microorganisms and may become potential agents for insect pest management.
Collapse
|
12
|
Gilbert SF. Evolutionary developmental biology and sustainability: A biology of resilience. Evol Dev 2021; 23:273-291. [PMID: 33400344 DOI: 10.1111/ede.12366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022]
Abstract
Evolutionary developmental biology, and especially ecological developmental biology, is essential for discussions of sustainability and the responses to global climate change. First, this paper explores examples of animals that have successfully altered their development to accommodate human-made changes to their environments. We next document the ability of global warming to disrupt the development of those organisms with temperature-dependent sex-determination or with phenologies coordinating that organism's development with those of other species. The thermotolerance of Homo sapiens is also related to key developmental factors concerning brain development and maintenance, and the development of corals, the keystone organisms of tropical reefs, is discussed in relation to global warming as well as to other anthropogenic changes. While teratogenic and endocrine-disrupting compounds are not discussed in this essay, the ability of glyphosate herbicides to block insect development is highlighted. Last, the paper discusses the need to creatively integrate developmental biology with ecological, political, religious, and economic perspectives, as the flourishing of contemporary species may require altering the ways that Western science has considered the categories of nature, culture, and self.
Collapse
Affiliation(s)
- Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
| |
Collapse
|
13
|
Mason CJ. Complex Relationships at the Intersection of Insect Gut Microbiomes and Plant Defenses. J Chem Ecol 2020; 46:793-807. [PMID: 32537721 DOI: 10.1007/s10886-020-01187-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Insect herbivores have ubiquitous associations with microorganisms that have major effects on how host insects may interact in their environment. Recently, increased attention has been given to how insect gut microbiomes mediate interactions with plants. In this paper, I discuss the ecology and physiology of gut bacteria associated with insect herbivores and how they may shape interactions between insects and their various host plants. I first establish how microbial associations vary between insects with different feeding styles, and how the insect host physiology and ecology can shape stable or transient relationships with gut bacteria. Then, I describe how these relationships factor in with plant nutrition and plant defenses. Within this framework, I suggest that many of the interactions between plants, insects, and the gut microbiome are context-dependent and shaped by the type of defense and the isolates present in the environment. Relationships between insects and plants are not pairwise, but instead highly multipartite, and the interweaving of complex microbial interactions is needed to fully explore the context-dependent aspects of the gut microbiome in many of these systems. I conclude the review by suggesting studies that would help reduce the unsureness of microbial interactions with less-defined herbivore systems and identify how each could provide a path to more robust roles and traits.
Collapse
Affiliation(s)
- Charles J Mason
- The Pennsylvania State University Department of Entomology, 501 ASI Building, University Park, PA, 16823, USA.
| |
Collapse
|
14
|
Burkholderia insecticola triggers midgut closure in the bean bug Riptortus pedestris to prevent secondary bacterial infections of midgut crypts. ISME JOURNAL 2020; 14:1627-1638. [PMID: 32203122 DOI: 10.1038/s41396-020-0633-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
In addition to abiotic triggers, biotic factors such as microbial symbionts can alter development of multicellular organisms. Symbiont-mediated morphogenesis is well-investigated in plants and marine invertebrates but rarely in insects despite the enormous diversity of insect-microbe symbioses. The bean bug Riptortus pedestris is associated with Burkholderia insecticola which are acquired from the environmental soil and housed in midgut crypts. To sort symbionts from soil microbiota, the bean bug develops a specific organ called the "constricted region" (CR), a narrow and symbiont-selective channel, located in the midgut immediately upstream of the crypt-bearing region. In this study, inoculation of fluorescent protein-labeled symbionts followed by spatiotemporal microscopic observations revealed that after the initial passage of symbionts through the CR, it closes within 12-18 h, blocking any potential subsequent infection events. The "midgut closure" developmental response was irreversible, even after symbiont removal from the crypts by antibiotics. It never occurred in aposymbiotic insects, nor in insects infected with nonsymbiotic bacteria or B. insecticola mutants unable to cross the CR. However, species of the genus Burkholderia and its outgroup Pandoraea that can pass the CR and partially colonize the midgut crypts induce the morphological alteration, suggesting that the molecular trigger signaling the midgut closure is conserved in this bacterial lineage. We propose that this drastic and quick alteration of the midgut morphology in response to symbiont infection is a mechanism for stabilizing the insect-microbe gut symbiosis and contributes to host-symbiont specificity in a symbiosis without vertical transmission.
Collapse
|
15
|
Kaltenpoth M, Flórez LV. Versatile and Dynamic Symbioses Between Insects and Burkholderia Bacteria. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:145-170. [PMID: 31594411 DOI: 10.1146/annurev-ento-011019-025025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Symbiotic associations with microorganisms represent major sources of ecological and evolutionary innovations in insects. Multiple insect taxa engage in symbioses with bacteria of the genus Burkholderia, a diverse group that is widespread across different environments and whose members can be mutualistic or pathogenic to plants, fungi, and animals. Burkholderia symbionts provide nutritional benefits and resistance against insecticides to stinkbugs, defend Lagria beetle eggs against pathogenic fungi, and may be involved in nitrogen metabolism in ants. In contrast to many other insect symbioses, the known associations with Burkholderia are characterized by environmental symbiont acquisition or mixed-mode transmission, resulting in interesting ecological and evolutionary dynamics of symbiont strain composition. Insect-Burkholderia symbioses present valuable model systems from which to derive insights into general principles governing symbiotic interactions because they are often experimentally and genetically tractable and span a large fraction of the diversity of functions, localizations, and transmission routes represented in insect symbioses.
Collapse
Affiliation(s)
- Martin Kaltenpoth
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| | - Laura V Flórez
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| |
Collapse
|
16
|
Haselkorn TS, DiSalvo S, Miller JW, Bashir U, Brock DA, Queller DC, Strassmann JE. The specificity of Burkholderia symbionts in the social amoeba farming symbiosis: Prevalence, species, genetic and phenotypic diversity. Mol Ecol 2019; 28:847-862. [PMID: 30575161 DOI: 10.1111/mec.14982] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/13/2018] [Accepted: 10/25/2018] [Indexed: 01/10/2023]
Abstract
The establishment of symbioses between eukaryotic hosts and bacterial symbionts in nature is a dynamic process. The formation of such relationships depends on the life history of both partners. Bacterial symbionts of amoebae may have unique evolutionary trajectories to the symbiont lifestyle, because bacteria are typically ingested as prey. To persist after ingestion, bacteria must first survive phagocytosis. In the social amoeba Dictyostelium discoideum, certain strains of Burkholderia bacteria are able to resist amoebal digestion and maintain a persistent relationship that includes carriage throughout the amoeba's social cycle that culminates in spore formation. Some Burkholderia strains allow their host to carry other bacteria, as food. This carried food is released in new environments in a trait called farming. To better understand the diversity and prevalence of Burkholderia symbionts and the traits they impart to their amoebae hosts, we first screened 700 natural isolates of D. discoideum and found 25% infected with Burkholderia. We next used a multilocus phylogenetic analysis and identified two independent transitions by Burkholderia to the symbiotic lifestyle. Finally, we tested the ability of 38 strains of Burkholderia from D. discoideum, as well as strains isolated from other sources, for traits relevant to symbiosis in D. discoideum. Only D. discoideum native isolates belonging to the Burkholderia agricolaris, B. hayleyella, and B. bonniea species were able to form persistent symbiotic associations with D. discoideum. The Burkholderia-Dictyostelium relationship provides a promising arena for further studies of the pathway to symbiosis in a unique system.
Collapse
Affiliation(s)
| | - Susanne DiSalvo
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Jacob W Miller
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Usman Bashir
- Department of Biology, Washington University in St. Louis, Missouri
| | - Debra A Brock
- Department of Biology, Washington University in St. Louis, Missouri
| | - David C Queller
- Department of Biology, Washington University in St. Louis, Missouri
| | | |
Collapse
|
17
|
Chouaia B, Goda N, Mazza G, Alali S, Florian F, Gionechetti F, Callegari M, Gonella E, Magoga G, Fusi M, Crotti E, Daffonchio D, Alma A, Paoli F, Roversi PF, Marianelli L, Montagna M. Developmental stages and gut microenvironments influence gut microbiota dynamics in the invasive beetle Popillia japonica Newman (Coleoptera: Scarabaeidae). Environ Microbiol 2019; 21:4343-4359. [PMID: 31502415 DOI: 10.1111/1462-2920.14797] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/16/2023]
Abstract
Popillia japonica Newman (Coleoptera: Scarabaeidae) is a highly polyphagous invasive beetle originating from Japan. This insect is highly resilient and able to rapidly adapt to new vegetation. Insect-associated microorganisms can play important roles in insect physiology, helping their hosts to adapt to changing conditions and potentially contributing to an insect's invasive potential. Such symbiotic bacteria can be part of a core microbiota that is stably transmitted throughout the host's life cycle or selectively recruited from the environment at each developmental stage. The aim of this study was to investigate the origin, stability and turnover of the bacterial communities associated with an invasive population of P. japonica from Italy. Our results demonstrate that soil microbes represent an important source of gut bacteria for P. japonica larvae, but as the insect develops, its gut microbiota richness and diversity decreased substantially, paralleled by changes in community composition. Notably, only 16.75% of the soil bacteria present in larvae are maintained until the adult stage. We further identified the micro-environments of different gut sections as an important factor shaping microbiota composition in this species, likely due to differences in pH, oxygen availability and redox potential. In addition, P. japonica also harboured a stable bacterial community across all developmental stages, consisting of taxa well known for the degradation of plant material, namely the families Ruminococcacae, Christensenellaceae and Lachnospiraceae. Interestingly, the family Christensenallaceae had so far been observed exclusively in humans. However, the Christensenellaceae operational taxonomic units found in P. japonica belong to different taxonomic clades within this family.
Collapse
Affiliation(s)
- Bessem Chouaia
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| | - Nizar Goda
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| | - Giuseppe Mazza
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Sumer Alali
- Dipartimento di Scienze e politiche ambientali (DESP), Università degli Studi di Milano, 20133, Milan, Italy
| | - Fiorella Florian
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Fabrizia Gionechetti
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Matteo Callegari
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, 20133, Milan, Italy
| | - Elena Gonella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, 10095, Grugliasco, Italy
| | - Giulia Magoga
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, 20133, Milan, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Alberto Alma
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, 10095, Grugliasco, Italy
| | - Francesco Paoli
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Pio Federico Roversi
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Leonardo Marianelli
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| |
Collapse
|
18
|
Lee J, Kim CH, Jang HA, Kim JK, Kotaki T, Shinoda T, Shinada T, Yoo JW, Lee BL. Burkholderia gut symbiont modulates titer of specific juvenile hormone in the bean bug Riptortus pedestris. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103399. [PMID: 31195052 DOI: 10.1016/j.dci.2019.103399] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Recent studies have provided molecular evidence that gut symbiotic bacteria modulate host insect development, fitness and reproduction. However, the molecular mechanisms through which gut symbionts regulate these aspects of host physiology remain elusive. To address these questions, we prepared two different Riptortus-Burkholderia insect models, Burkholderia gut symbiont-colonized (Sym) Riptortus pedestris insects and gut symbiont-noncolonized (Apo) insects. Upon LC-MS analyses, juvenile hormone III skipped bisepoxide (JHSB3) was newly identified from Riptortus Apo- and Sym-female and male adults' insect hemolymph and JHSB3 titer in the Apo- and Sym-female insects were measured because JH is important for regulating reproduction in adult insects. The JHSB3 titer in the Sym-females were consistently higher compared to those of Apo-females. Since previous studies reported that Riptortus hexamerin-α and vitellogenin proteins were upregulated by the topical abdominal application of a JH-analog, chemically synthesized JHSB3 was administered to Apo-females. As expected, the hexamerin-α and vitellogenin proteins were dramatically increased in the hemolymph of JHSB3-treated Apo-females, resulting in increased egg production compared to that in Sym-females. Taken together, these results demonstrate that colonization of Burkholderia gut symbiont in the host insect stimulates biosynthesis of the heteroptera-specific JHSB3, leading to larger number of eggs produced and enhanced fitness in Riptortus host insects.
Collapse
Affiliation(s)
- Junbeom Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Chan-Hee Kim
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Ho Am Jang
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Jiyeun Kate Kim
- Department of Microbiology, College of Medicine, Kosin University, Busan, 49267, South Korea
| | - Toyomi Kotaki
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8634, Japan
| | - Tetsuro Shinoda
- Faculty of Food and Agricultural Sciences Fukushima University, 1 Kanayagawa, Fukushima, 960-1248, Japan
| | - Tetsuro Shinada
- (e)Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Jin-Wook Yoo
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Bok Luel Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan, 46241, South Korea.
| |
Collapse
|
19
|
Established Cotton Stainer Gut Bacterial Mutualists Evade Regulation by Host Antimicrobial Peptides. Appl Environ Microbiol 2019; 85:AEM.00738-19. [PMID: 31028027 DOI: 10.1128/aem.00738-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/22/2019] [Indexed: 01/03/2023] Open
Abstract
Symbioses with microorganisms are ubiquitous in nature and confer important ecological traits to animal hosts but also require control mechanisms to ensure homeostasis of the symbiotic interactions. In addition to protecting hosts against pathogens, animal immune systems recognize, respond to, and regulate mutualists. The gut bacterial symbionts of the cotton stainer bug, Dysdercus fasciatus, elicit an immune response characterized by the upregulation of c-type lysozyme and the antimicrobial peptide pyrrhocoricin in bugs with their native gut microbiota compared to that in dysbiotic insects. In this study, we investigated the impact of the elicited antimicrobial immune response on the established cotton stainer gut bacterial symbiont populations. To this end, we used RNA interference (RNAi) to knock down immunity-related genes hypothesized to regulate the symbionts, and we subsequently measured the effect of this silencing on host fitness and on the abundance of the major gut bacterial symbionts. Despite successful downregulation of target genes by both ingestion and injection of double-stranded RNA (dsRNA), the silencing of immunity-related genes had no effect on either host fitness or the qualitative and quantitative composition of established gut bacterial symbionts, indicating that the host immune responses are not actively involved in the regulation of the nutritional and defensive gut bacterial mutualists. These results suggest that close associations of bacterial symbionts with their hosts can result in the evolution of mechanisms ensuring that symbionts remain insensitive to host immunological responses, which may be important for the evolutionary stability of animal-microbe symbiotic associations.IMPORTANCE Animal immune systems are central for the protection of hosts against enemies by preventing or eliminating successful infections. However, in the presence of beneficial bacterial mutualists, the immune system must strike a balance of not killing the beneficial symbionts while at the same time preventing enemy attacks. Here, using the cotton stainer bug, we reveal that its long-term associated bacterial symbionts are insensitive to the host's immune effectors, suggesting adaptation to the host's defenses, thereby strengthening the stability of the symbiotic relationship. The ability of the symbionts to elicit host immune responses but remain insensitive themselves may be a mechanism by which the symbionts prime hosts to fight future pathogenic infections.
Collapse
|
20
|
Nardi JB, Miller LA, Bee CM. Interfaces between microbes and membranes of host epithelial cells in hemipteran midguts. J Morphol 2019; 280:1046-1060. [PMID: 31087679 DOI: 10.1002/jmor.21000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 01/06/2023]
Abstract
Certain families of plant-feeding insects in the order Hemiptera (infraorder Pentatomomorpha) have established symbiotic relationships with microbes that inhabit specific pouches (caeca) of their midgut epithelium. The placement of these caeca in a well-delineated region at the most posterior end of the midgut bordering the hindgut is conserved in these families; in situ the convoluted midgut is predictably folded so that this caecal region lies adjacent to the anterior-most region of the midgut. Depending on the hemipteran family, caeca vary in their number and configuration at a given anterior-posterior location. At the host-microbe interface, epithelial plasma membranes of midgut epithelial cells interact with nonself antigens of microbial surfaces. In the different hemipteran species examined, a continuum of interactions is observed between microbes and host membranes. Bacteria can exist as free living cells within the midgut lumen without contacting host membranes while other host cells physically interact extensively with microbial surfaces by extending numerous processes that interdigitate with microbes; and, in many instances, processes completely envelope the microbes. The host cells can embrace the foreign microbes, completely enveloping each with a single host membrane or sometimes enveloping each with the two additional host membranes of a phagosome.
Collapse
Affiliation(s)
- James B Nardi
- Department of Entomology, University of Illinois, Urbana, Illinois
| | - Lou Ann Miller
- Biological Electron Microscopy, Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois
| | - Charles Mark Bee
- Imaging Technology Group, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois
| |
Collapse
|
21
|
Endosymbiosis as a source of immune innovation. C R Biol 2018; 341:290-296. [DOI: 10.1016/j.crvi.2018.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
|
22
|
Lee SA, Jang SH, Kim BH, Shibata T, Yoo J, Jung Y, Kawabata SI, Lee BL. Insecticidal activity of the metalloprotease AprA occurs through suppression of host cellular and humoral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:116-126. [PMID: 29174605 DOI: 10.1016/j.dci.2017.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
The biochemical characterization of virulence factors from entomopathogenic bacteria is important to understand entomopathogen-insect molecular interactions. Pseudomonas entomophila is a typical entomopathogenic bacterium that harbors virulence factors against several insects. However, the molecular actions of these factors against host innate immune responses are not clearly elucidated. In this study, we observed that bean bugs (Riptortus pedestris) that were injected with P. entomophila were highly susceptible to this bacterium. To determine how P. entomophila counteracts the host innate immunity to survive within the insect, we purified a highly enriched protein with potential host insect-killing activity from the culture supernatant of P. entomophila. Then, a 45-kDa protein was purified to homogeneity and identified as AprA which is an alkaline zinc metalloprotease of the genus Pseudomonas by liquid chromatography mass spectrometry (LC-MS). Purified AprA showed a pronounced killing effect against host insects and suppressed both host cellular and humoral innate immunity. Furthermore, to show that AprA is an important insecticidal protein of P. entomophila, we used an aprA-deficient P. entomophila mutant strain (ΔaprA). When ΔaprA mutant cells were injected to host insects, this mutant exhibited extremely attenuated virulence. In addition, the cytotoxicity against host hemocytes and the antimicrobial peptide-degrading ability of the ΔaprA mutant were greatly decreased. These findings suggest that AprA functions as an important insecticidal protein of P. entomophila via suppression of host cellular and humoral innate immune responses.
Collapse
Affiliation(s)
- Seung Ah Lee
- Global Research Laboratory of Insect Symbiosis, Pusan National University, Busan 46241, South Korea
| | - Seong Han Jang
- Global Research Laboratory of Insect Symbiosis, Pusan National University, Busan 46241, South Korea
| | - Byung Hyun Kim
- Global Research Laboratory of Insect Symbiosis, Pusan National University, Busan 46241, South Korea
| | - Toshio Shibata
- Institute for Advanced Study, Kyushu University, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Jinwook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Shun-Ichiro Kawabata
- Institute for Advanced Study, Kyushu University, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Bok Luel Lee
- Global Research Laboratory of Insect Symbiosis, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
23
|
Park KE, Jang SH, Lee J, Lee SA, Kikuchi Y, Seo YS, Lee BL. The roles of antimicrobial peptide, rip-thanatin, in the midgut of Riptortus pedestris. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:83-90. [PMID: 28919360 DOI: 10.1016/j.dci.2017.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Recently, we have reported the structural determination of antimicrobial peptides (AMPs), such as riptocin, rip-defensin, and rip-thanatin, from Riptortus pedestris. However, the biological roles of AMPs in the host midgut remain elusive. Here, we compared the expression levels of AMP genes in apo-symbiotic insects with those of symbiotic insects. Interestingly, the expression level of rip-thanatin was only significantly increased in the posterior midgut region of symbiotic insects. To further determine the role of rip-thanatin, we checked antimicrobial activity in vitro. Rip-thanatin showed high antimicrobial activity and had the same structural characteristics as other reported thanatins. To find the novel function of rip-thanatin, rip-thanatin was silenced by RNA interference, and the population of gut symbionts was measured. When rip-thanatin was silenced, the symbionts' titer was increased upon bacterial infection. These results suggest that rip-thanatin functions not only as an antimicrobial peptide but also in controlling the symbionts' titer in the host midgut.
Collapse
Affiliation(s)
- Kyoung-Eun Park
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Seong Han Jang
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Junbeom Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Seung Ah Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, Japan; Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 46241, South Korea
| | - Bok Luel Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
24
|
Kim JK, Jang HA, Kim MS, Cho JH, Lee J, Di Lorenzo F, Sturiale L, Silipo A, Molinaro A, Lee BL. The lipopolysaccharide core oligosaccharide of Burkholderia plays a critical role in maintaining a proper gut symbiosis with the bean bug Riptortus pedestris. J Biol Chem 2017; 292:19226-19237. [PMID: 28972189 DOI: 10.1074/jbc.m117.813832] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/14/2017] [Indexed: 12/26/2022] Open
Abstract
Lipopolysaccharide, the outer cell-wall component of Gram-negative bacteria, has been shown to be important for symbiotic associations. We recently reported that the lipopolysaccharide O-antigen of Burkholderia enhances the initial colonization of the midgut of the bean bug, Riptortus pedestris However, the midgut-colonizing Burkholderia symbionts lack the O-antigen but display the core oligosaccharide on the cell surface. In this study, we investigated the role of the core oligosaccharide, which directly interacts with the host midgut, in the Riptortus-Burkholderia symbiosis. To this end, we generated the core oligosaccharide mutant strains, ΔwabS, ΔwabO, ΔwaaF, and ΔwaaC, and determined the chemical structures of their oligosaccharides, which exhibited different compositions. The symbiotic properties of these mutant strains were compared with those of the wild-type and O-antigen-deficient ΔwbiG strains. Upon introduction into Riptortus via the oral route, the core oligosaccharide mutant strains exhibited different rates of colonization of the insect midgut. The symbiont titers in fifth-instar insects revealed significantly reduced population sizes of the inner core oligosaccharide mutant strains ΔwaaF and ΔwaaC These two strains also negatively affected host growth rate and fitness. Furthermore, R. pedestris individuals colonized with the ΔwaaF and ΔwaaC strains were vulnerable to septic bacterial challenge, similar to insects without a Burkholderia symbiont. Taken together, these results suggest that the core oligosaccharide from Burkholderia symbionts plays a critical role in maintaining a proper symbiont population and in supporting the beneficial effects of the symbiont on its host in the Riptortus-Burkholderia symbiosis.
Collapse
Affiliation(s)
- Jiyeun Kate Kim
- From the Department of Microbiology, Kosin University College of Medicine, Busan 49267, South Korea
| | - Ho Am Jang
- the Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Min Seon Kim
- the Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jae Hyun Cho
- the Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Junbeom Lee
- the Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Flaviana Di Lorenzo
- the Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Napoli 80126, Italy, and
| | - Luisa Sturiale
- the CNR-Istituto per i Polimeri, Compositi e Biomateriali IPCB, Via P. Gaifami 18, Catania 95126, Italy
| | - Alba Silipo
- the Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Napoli 80126, Italy, and
| | - Antonio Molinaro
- the Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Napoli 80126, Italy, and
| | - Bok Luel Lee
- the Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea,
| |
Collapse
|
25
|
PhaR, a Negative Regulator of PhaP, Modulates the Colonization of a Burkholderia Gut Symbiont in the Midgut of the Host Insect, Riptortus pedestris. Appl Environ Microbiol 2017; 83:AEM.00459-17. [PMID: 28341680 DOI: 10.1128/aem.00459-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Five genes encoding PhaP family proteins and one phaR gene have been identified in the genome of Burkholderia symbiont strain RPE75. PhaP proteins function as the surface proteins of polyhydroxyalkanoate (PHA) granules, and the PhaR protein acts as a negative regulator of PhaP biosynthesis. Recently, we characterized one phaP gene to understand the molecular cross talk between Riptortus insects and Burkholderia gut symbionts. In this study, we constructed four other phaP gene-depleted mutants (ΔphaP1, ΔphaP2, ΔphaP3, and ΔphaP4 mutants), one phaR gene-depleted mutant, and a phaR-complemented mutant (ΔphaR/phaR mutant). To address the biological roles of four phaP family genes and the phaR gene during insect-gut symbiont interaction, these Burkholderia mutants were fed to the second-instar nymphs, and colonization ability and fitness parameters were examined. In vitro, the ΔphaP3 and ΔphaR mutants cannot make a PHA granule normally in a stressful environment. Furthermore, the ΔphaR mutation decreased the colonization ability in the host midgut and negatively affected the host insect's fitness compared with wild-type Burkholderia-infected insects. However, other phaP family gene-depleted mutants colonized well in the midgut of the fifth-instar nymph insects. However, in the case of females, the colonization rate of the ΔphaP3 mutant was decreased and the host's fitness parameters were decreased compared with the wild-type-infected host, suggesting that the environment of the female midgut may be more hostile than that of the male midgut. These results demonstrate that PhaR plays an important role in the biosynthesis of PHA granules and that it is significantly related to the colonization of the Burkholderia gut symbiont in the host insects' midgut.IMPORTANCE Bacterial polyhydroxyalkanoate (PHA) biosynthesis is a complex process requiring several enzymes. The biological roles of PHA granule synthesis enzymes and the surface proteins of PHA granules during host-gut symbiont interactions are not fully understood. Here, we report the effects on colonization ability in the host midguts and the fitness of host insects after feeding Burkholderia mutant cells (four phaP-depleted mutants and one phaR-depleted mutant) to the host insects. Analyses of both synthesized PHA granule amounts and CFU numbers suggest that the phaR gene is closely related to synthesis of the PHA granule and the colonization of the Burkholderia gut symbiont in the host insect's midgut. Like our previous report, this study also supports the idea that the environment of the host midgut may not be favorable to symbiotic Burkholderia cells and that PHA granules may be required to adapt in the host midgut.
Collapse
|
26
|
Broderick NA. Friend, foe or food? Recognition and the role of antimicrobial peptides in gut immunity and Drosophila-microbe interactions. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150295. [PMID: 27160597 PMCID: PMC4874392 DOI: 10.1098/rstb.2015.0295] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2016] [Indexed: 01/07/2023] Open
Abstract
Drosophila melanogaster lives, breeds and feeds on fermenting fruit, an environment that supports a high density, and often a diversity, of microorganisms. This association with such dense microbe-rich environments has been proposed as a reason that D. melanogaster evolved a diverse and potent antimicrobial peptide (AMP) response to microorganisms, especially to combat potential pathogens that might occupy this niche. Yet, like most animals, D. melanogaster also lives in close association with the beneficial microbes that comprise its microbiota, or microbiome, and recent studies have shown that antimicrobial peptides (AMPs) of the epithelial immune response play an important role in dictating these interactions and controlling the host response to gut microbiota. Moreover, D. melanogaster also eats microbes for food, consuming fermentative microbes of decaying plant material and their by-products as both larvae and adults. The processes of nutrient acquisition and host defence are remarkably similar and use shared functions for microbe detection and response, an observation that has led to the proposal that the digestive and immune systems have a common evolutionary origin. In this manner, D. melanogaster provides a powerful model to understand how, and whether, hosts differentiate between the microbes they encounter across this spectrum of associations.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Nichole A Broderick
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|