1
|
Sambade IM, Estêvão J, Pampín M, Cruz A, Guévélou E, Blanco A, Câmara F, Gómez‐Garrido J, Cruz F, Bargelloni L, Carboni S, Alioto T, Costas B, Fernández‐Boo S, Martínez P. Signatures of Selection for Resistance/Tolerance to Perkinsus olseni in Grooved Carpet Shell Clam ( Ruditapes decussatus) Using a Population Genomics Approach. Evol Appl 2025; 18:e70106. [PMID: 40365167 PMCID: PMC12070250 DOI: 10.1111/eva.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
The grooved carpet shell clam (Ruditapes decussatus) is a bivalve of high commercial value distributed throughout the European coast. Its production has suffered a decline caused by different factors, especially by the parasite Perkinsus olsenii. Improving production of R. decussatus requires genomic resources to ascertain the genetic factors underlying resistance/tolerance to P. olsenii. In this study, the first reference genome of R. decussatus was assembled through long- and short-read sequencing (1677 contigs; 1.386 Mb) and further scaffolded at chromosome level with Hi-C (19 superscaffolds; 95.4% of assembly). Repetitive elements were identified (32%) and masked for annotation of 38,276 coding- and 13,056 non-coding genes. This genome was used as a reference to develop a 2bRAD-Seq 13,438 SNP panel for a genomic screening on six shellfish beds distributed across the Atlantic Ocean and Mediterranean Sea. Beds were selected by perkinsosis prevalence and the infection level was individually evaluated in all the samples. Genetic diversity was significantly higher in the Mediterranean than in the Atlantic region. The main genetic breakage was detected between those regions (FST = 0.224), being the Mediterranean more heterogeneous than the Atlantic. Several loci under divergent selection (394 outliers; 261 genomic windows) were detected across shellfish beds. Samples were also inspected to detect signals of selection for resistance/tolerance to P. olsenii by using infection-level and population-genomics approaches, and 90 common divergent outliers for resistance/tolerance to perkinsosis were identified and used for gene mining. Candidate genes and markers identified provide invaluable information for controlling perkinsosis and for improving production of the grooved carpet shell clam.
Collapse
Affiliation(s)
- Inés M. Sambade
- Department of Zoology, Genetics and Physical Anthropology, Facultad de Veterinaria, Campus TerraUniversidade de Santiago de CompostelaLugoSpain
| | - João Estêvão
- Department of Zoology, Genetics and Physical Anthropology, Facultad de Veterinaria, Campus TerraUniversidade de Santiago de CompostelaLugoSpain
- Aquatic Animal Health (A2S)CIIMAR—University of PortoPortoPortugal
| | - Marina Pampín
- Department of Zoology, Genetics and Physical Anthropology, Facultad de Veterinaria, Campus TerraUniversidade de Santiago de CompostelaLugoSpain
| | | | | | - Andrés Blanco
- Department of Zoology, Genetics and Physical Anthropology, Facultad de Veterinaria, Campus TerraUniversidade de Santiago de CompostelaLugoSpain
| | - Francisco Câmara
- Centre Nacional d'Anàlisi Genòmica (CNAG)BarcelonaSpain
- Universitat de Barcelona (UB)BarcelonaSpain
| | - Jessica Gómez‐Garrido
- Centre Nacional d'Anàlisi Genòmica (CNAG)BarcelonaSpain
- Universitat de Barcelona (UB)BarcelonaSpain
| | - Fernando Cruz
- Centre Nacional d'Anàlisi Genòmica (CNAG)BarcelonaSpain
- Universitat de Barcelona (UB)BarcelonaSpain
| | | | | | - Tyler Alioto
- Centre Nacional d'Anàlisi Genòmica (CNAG)BarcelonaSpain
- Universitat de Barcelona (UB)BarcelonaSpain
| | - Benjamin Costas
- Aquatic Animal Health (A2S)CIIMAR—University of PortoPortoPortugal
| | | | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Facultad de Veterinaria, Campus TerraUniversidade de Santiago de CompostelaLugoSpain
| |
Collapse
|
2
|
Grouzdev D, Pales Espinosa E, Tettelbach S, Tanguy A, Boutet I, Tobi H, Allam B. Survival of the fittest: genomic investigations of the bay scallop reveal a shift in population structure through a summer mortality event. BMC Genomics 2025; 26:146. [PMID: 39955531 PMCID: PMC11829576 DOI: 10.1186/s12864-025-11337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Understanding the genetic basis of resilience in marine organisms is critical for conservation and management, particularly in the face of escalating environmental stress and disease outbreaks. The bay scallop Argopecten irradians is a commercially and recreationally important shellfish species found in estuarine and coastal environments of the United States from New England to the Gulf of Mexico. In New York, adult bay scallop populations have been decimated every summer since 2019 leading to the collapse of their fishery. These mortality events were associated with annual outbreaks of an undescribed apicomplexan parasite recently named Bay Scallop Marosporida (BSM) that disrupts scallop kidneys. RESULTS This study investigates host-pathogen interactions and assesses changes in population structure during BSM-associated mortality events. The research compared wild and aquacultured scallops used for stock enhancement in New York, revealing significant change in population structures throughout the mortality outbreak. The results underscore the selective pressures exerted by BSM infection and environmental stressors, as evidenced by shifts in genetic divergence and allele frequencies particularly in genes associated with kidney function, stress and infection response. Through a detailed genomic and population genetic approach, this research represents a unique case study highlighting the impact of disease on marine biodiversity and advances our understanding of the impact of summer mortality events on the scallop population in NY. CONCLUSIONS This study highlights changes in the genomic structure of bay scallops during a BSM-associated mortality event. Identified mutations (such as the one in the nephrocystin-3-like gene) represent prime candidates for specific targeted investigations to link genotypes to phenotypes. By integrating genomic and epidemiological data, the research provides a basis for understanding the impact of disease on scallop biodiversity. These findings may help guide conservation strategies for sustainable fisheries in the face of environmental change and disease outbreaks.
Collapse
Affiliation(s)
- Denis Grouzdev
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA.
| | | | - Stephen Tettelbach
- Cornell Cooperative Extension of Suffolk County, Southold, NY, 11971, USA
| | - Arnaud Tanguy
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier, 29680, Roscoff, France
| | - Isabelle Boutet
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier, 29680, Roscoff, France
| | - Harrison Tobi
- Cornell Cooperative Extension of Suffolk County, Southold, NY, 11971, USA
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA.
| |
Collapse
|
3
|
Krueger Q, Phippen B, Reitzel A. Antibiotics alter development and gene expression in the model cnidarian Nematostella vectensis. PeerJ 2024; 12:e17349. [PMID: 38784394 PMCID: PMC11114123 DOI: 10.7717/peerj.17349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Background Antibiotics are commonly used for controlling microbial growth in diseased organisms. However, antibiotic treatments during early developmental stages can have negative impacts on development and physiology that could offset the positive effects of reducing or eliminating pathogens. Similarly, antibiotics can shift the microbial community due to differential effectiveness on resistant and susceptible bacteria. Though antibiotic application does not typically result in mortality of marine invertebrates, little is known about the developmental and transcriptional effects. These sublethal effects could reduce the fitness of the host organism and lead to negative changes after removal of the antibiotics. Here, we quantify the impact of antibiotic treatment on development, gene expression, and the culturable bacterial community of a model cnidarian, Nematostella vectensis. Methods Ampicillin, streptomycin, rifampicin, and neomycin were compared individually at two concentrations, 50 and 200 µg mL-1, and in combination at 50 µg mL-1 each, to assess their impact on N. vectensis. First, we determined the impact antibiotics have on larval development. Next Amplicon 16S rDNA gene sequencing was used to compare the culturable bacteria that persist after antibiotic treatment to determine how these treatments may differentially select against the native microbiome. Lastly, we determined how acute (3-day) and chronic (8-day) antibiotic treatments impact gene expression of adult anemones. Results Under most exposures, the time of larval settlement extended as the concentration of antibiotics increased and had the longest delay of 3 days in the combination treatment. Culturable bacteria persisted through a majority of exposures where we identified 359 amplicon sequence variants (ASVs). The largest proportion of bacteria belonged to Gammaproteobacteria, and the most common ASVs were identified as Microbacterium and Vibrio. The acute antibiotic exposure resulted in differential expression of genes related to epigenetic mechanisms and neural processes, while constant application resulted in upregulation of chaperones and downregulation of mitochondrial genes when compared to controls. Gene Ontology analyses identified overall depletion of terms related to development and metabolism in both antibiotic treatments. Discussion Antibiotics resulted in a significant increase to settlement time of N. vectensis larvae. Culturable bacterial species after antibiotic treatments were taxonomically diverse. Additionally, the transcriptional effects of antibiotics, and after their removal result in significant differences in gene expression that may impact the physiology of the anemone, which may include removal of bacterial signaling on anemone gene expression. Our research suggests that impacts of antibiotics beyond the reduction of bacteria may be important to consider when they are applied to aquatic invertebrates including reef building corals.
Collapse
Affiliation(s)
- Quinton Krueger
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
- Computational Intelligence to Predict Health and Environmental Risks (CIPHER) Center, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Britney Phippen
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Adam Reitzel
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
- Computational Intelligence to Predict Health and Environmental Risks (CIPHER) Center, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| |
Collapse
|
4
|
Schwaner C, Barbosa M, Haley J, Pales Espinosa E, Allam B. Transcriptomics, proteomics, and physiological assays reveal immunosuppression in the eastern oyster Crassostrea virginica exposed to acidification stress. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109366. [PMID: 38218419 DOI: 10.1016/j.fsi.2024.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Ocean acidification (OA) is recognized as a major stressor for a broad range of marine organisms, particularly shell-building invertebrates. OA can cause alterations in various physiological processes such as growth and metabolism, although its effect on host-pathogen interactions remains largely unexplored. In this study, we used transcriptomics, proteomics, and physiological assays to evaluate changes in immunity of the eastern oyster Crassostrea virginica exposed to OA conditions (pH = 7.5 vs pH = 7.9) at various life stages. The susceptibility of oyster larvae to Vibrio infection increased significantly (131 % increase in mortality) under OA conditions, and was associated with significant changes in their transcriptomes. The significantly higher mortality of larvae exposed to pathogens and acidification stress could be the outcome of an increased metabolic demand to cope with acidification stress (as seen by upregulation of metabolic genes) at the cost of immune function (downregulation of immune genes). While larvae were particularly vulnerable, juveniles appeared more robust to the stressors and there were no differences in mortality after pathogen (Aliiroseovarius crassostrea and Vibrio spp.) exposure. Proteomic investigations in adult oysters revealed that acidification stress resulted in a significant downregulation of mucosal immune proteins including those involved in pathogen recognition and microbe neutralization, suggesting weakened mucosal immunity. Hemocyte function in adults was also impaired by high pCO2, with a marked reduction in phagocytosis (67 % decrease in phagocytosis) in OA conditions. Together, results suggest that OA impairs immune function in the eastern oyster making them more susceptible to pathogen-induced mortality outbreaks. Understanding the effect of multiple stressors such as OA and disease is important for accurate predictions of how oysters will respond to future climate regimes.
Collapse
Affiliation(s)
- Caroline Schwaner
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook NY, 11790, USA
| | - Michelle Barbosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook NY, 11790, USA
| | - John Haley
- Stony Brook University, Biological Mass Spectrometry Center, Stony Brook Medicine, Stony Brook, NY, 11790, USA
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook NY, 11790, USA.
| |
Collapse
|
5
|
Saha B, McNinch CM, Lu S, Ho MCW, De Carvalho SS, Barillas-Mury C. In-depth transcriptomic analysis of Anopheles gambiae hemocytes uncovers novel genes and the oenocytoid developmental lineage. BMC Genomics 2024; 25:80. [PMID: 38243165 PMCID: PMC10799387 DOI: 10.1186/s12864-024-09986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Hemocytes are immune cells that patrol the mosquito hemocoel and mediate critical cellular defense responses against pathogens. However, despite their importance, a comprehensive transcriptome of these cells was lacking because they constitute a very small fraction of the total cells in the insect, limiting the study of hemocyte differentiation and immune function. RESULTS In this study, an in-depth hemocyte transcriptome was built by extensive bulk RNA sequencing and assembly of hemocyte RNAs from adult A. gambiae female mosquitoes, based on approximately 2.4 billion short Illumina and about 9.4 million long PacBio high-quality reads that mapped to the A. gambiae PEST genome (P4.14 version). A total of 34,939 transcripts were annotated including 4,020 transcripts from novel genes and 20,008 novel isoforms that result from extensive differential splicing of transcripts from previously annotated genes. Most hemocyte transcripts identified (89.8%) are protein-coding while 10.2% are non-coding RNAs. The number of transcripts identified in the novel hemocyte transcriptome is twice the number in the current annotation of the A. gambiae genome (P4.14 version). Furthermore, we were able to refine the analysis of a previously published single-cell transcriptome (scRNAseq) data set by using the novel hemocyte transcriptome as a reference to re-define the hemocyte clusters and determine the path of hemocyte differentiation. Unsupervised pseudo-temporal ordering using the Tools for Single Cell Analysis software uncovered a novel putative prohemocyte precursor cell type that gives rise to prohemocytes. Pseudo-temporal ordering with the Monocle 3 software, which analyses changes in gene expression during dynamic biological processes, determined that oenocytoids derive from prohemocytes, a cell population that also gives rise to the granulocyte lineage. CONCLUSION A high number of mRNA splice variants are expressed in hemocytes, and they may account for the plasticity required to mount efficient responses to many different pathogens. This study highlights the importance of a comprehensive set of reference transcripts to perform robust single-cell transcriptomic data analysis of cells present in low abundance. The detailed annotation of the hemocyte transcriptome will uncover new facets of hemocyte development and function in adult dipterans and is a valuable community resource for future studies on mosquito cellular immunity.
Collapse
Affiliation(s)
- Banhisikha Saha
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Colton M McNinch
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, 20892, Bethesda, MD, USA
| | - Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Margaret C W Ho
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, 20892, Bethesda, MD, USA
| | - Stephanie Serafim De Carvalho
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA.
| |
Collapse
|
6
|
Song Y, Song X, Zhang D, Yang Y, Wang L, Song L. An HECT domain ubiquitin ligase CgWWP1 regulates granulocytes proliferation in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104148. [PMID: 34097916 DOI: 10.1016/j.dci.2021.104148] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Ubiquitination is involved in the regulation of granulocyte proliferation in vertebrate, and E3 ubiquitin ligase WWP1 has been reported to play an essential role in this process. In the present study, an HECT type E3 ubiquitin ligase (CgWWP1) was identified from oyster Crassostrea gigas, which contained a N-terminal C2 domain, four WW domains, and a C-terminal HECT domain. CgWWP1 was able to bind the activated ubiquitin (Ub) and formed CgWWP1-Ub complex in vitro. The mRNA transcripts of CgWWP1 were expressed in granulocytes, semi-granulocytes and agranulocytes, with the highest expression level in granulocytes. The expressions of potential granulocyte markers CgSOX11 (0.18-fold, p < 0.05) and CgAATase (0.2-fold, p < 0.01) in haemocytes were significantly down-regulated at 24 h after the treatment with Indole-3-carbinol (I3C), a WWP1 inhibitor. The proportions of EdU+ granulocytes reduced significantly at 12 h (8.1% ± 1.4%) and 24 h (9.7% ± 2.8%) after I3C treatment, which were significantly lower than that in the sterile seawater treatment (SW) group at 12 h (15.8% ± 4.2%) and 24 h (17.6% ± 0.8%), respectively. Meanwhile, the green EdU signals observed by confocal scanning microscopy in granulocytes of oysters treated by I3C became weaker compared to that in the SW group. These results indicated that CgWWP1 was involved in the regulation of granulocyte proliferation as a ubiquitin-protein ligase.
Collapse
Affiliation(s)
- Ying Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Dan Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Ying Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
7
|
Li M, Chen H, Wang M, Zhong Z, Wang H, Zhou L, Zhang H, Li C. A Toll-like receptor identified in Gigantidas platifrons and its potential role in the immune recognition of endosymbiotic methane oxidation bacteria. PeerJ 2021; 9:e11282. [PMID: 33986997 PMCID: PMC8092104 DOI: 10.7717/peerj.11282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/24/2021] [Indexed: 11/20/2022] Open
Abstract
Symbiosis with chemosynthetic bacteria is an important ecological strategy for the deep-sea megafaunas including mollusks, tubeworms and crustacean to obtain nutrients in hydrothermal vents and cold seeps. How the megafaunas recognize symbionts and establish the symbiosis has attracted much attention. Bathymodiolinae mussels are endemic species in both hydrothermal vents and cold seeps while the immune recognition mechanism underlying the symbiosis is not well understood due to the nonculturable symbionts. In previous study, a lipopolysaccharide (LPS) pull-down assay was conducted in Gigantidas platifrons to screen the pattern recognition receptors potentially involved in the recognition of symbiotic methane-oxidizing bacteria (MOB). Consequently, a total of 208 proteins including GpTLR13 were identified. Here the molecular structure, expression pattern and immune function of GpTLR13 were further analyzed. It was found that GpTLR13 could bind intensively with the lipid A structure of LPS through surface plasmon resonance analysis. The expression alternations of GpTLR13 transcripts during a 28-day of symbiont-depletion assay were investigated by real-time qPCR. As a result, a robust decrease of GpTLR13 transcripts was observed accompanying with the loss of symbionts, implying its participation in symbiosis. In addition, GpTLR13 transcripts were found expressed exclusively in the bacteriocytes of gills of G. platifrons by in situ hybridization. It was therefore speculated that GpTLR13 may be involved in the immune recognition of symbiotic methane-oxidizing bacteria by specifically recognizing the lipid A structure of LPS. However, the interaction between GpTLR13 and symbiotic MOB was failed to be addressed due to the nonculturable symbionts. Nevertheless, the present result has provided with a promising candidate as well as a new approach for the identification of symbiont-related genes in Bathymodiolinae mussels.
Collapse
Affiliation(s)
- Mengna Li
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Chen
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hao Wang
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Zhou
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaolun Li
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
8
|
Sun H, Zhou Z, Dong Y, Yang A, Jiang J. Insights into the DNA methylation of sea cucumber Apostichopus japonicus in response to skin ulceration syndrome infection. FISH & SHELLFISH IMMUNOLOGY 2020; 104:155-164. [PMID: 32502611 DOI: 10.1016/j.fsi.2020.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/23/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
DNA methylation is an important epigenetic modification that regulates gene expression in many biological processes, including immune response. In this study, whole-genome bisulfite sequencing (WGBS) was carried out on healthy body wall (HB) and skin ulceration syndrome (SUS) infected body wall (SFB) to gain insights into the epigenetic regulatory mechanism in sea cucumber Apostichopus japonicus. After comparison, a total of 116,522 differentially methylated regions (DMRs) were obtained including 67,269 hyper-methylated and 49,253 hypo-methylated DMRs (p < 0.05, FDR < 0.001). GO enrichment analysis indicated that regulation of DNA-templated transcription (GO: 0006355), where DNA methylation occurred, was the most significant term in the biology process. The integration of methylome and transcriptome analysis revealed that 10,499 DMRs were negatively correlated with 496 differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that these DEGs were enriched in the phosphoinositide 3-kinase-protein kinase B (PI3K/Akt)/mammalian target of rapamycin (mTOR) signaling pathway. Interestingly, two serine/threonine-protein kinases, nemo-like kinase (NLK) and mTOR, were highlighted after functional analysis. The variations of methylation in these two genes were associated with SUS infection and immune regulation. They regulated gene expression at different levels and showed interaction during response process. The validation of methylation sites showed high consistency between pyrosequencing and WGBS. WGBS analysis not only revealed the changes of DNA methylation, but also presented important information about the regulation of key genes after SUS infection in A. japonicus.
Collapse
Affiliation(s)
- Hongjuan Sun
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| | - Ying Dong
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Aifu Yang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Jingwei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| |
Collapse
|
9
|
Delisle L, Pauletto M, Vidal-Dupiol J, Petton B, Bargelloni L, Montagnani C, Pernet F, Corporeau C, Fleury E. High temperature induces transcriptomic changes in Crassostrea gigas that hinders progress of Ostreid herpesvirus (OsHV-1) and promotes survival. J Exp Biol 2020; 223:jeb.226233. [PMID: 34005719 PMCID: PMC7578350 DOI: 10.1242/jeb.226233] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022]
Abstract
Among all the environmental factors, seawater temperature plays a decisive role in triggering marine diseases. Like fever in vertebrates, high seawater temperature could modulate the host response to the pathogens in ectothermic animals. In France, massive mortality of Pacific oysters Crassostrea gigas caused by the ostreid herpesvirus 1 (OsHV-1) is markedly reduced when temperatures exceed 24°C in the field. In the present study we assess how high temperature influences the host response to the pathogen by comparing transcriptomes (RNA-sequencing) during the course of experimental infection at 21°C (reference) and 29°C. We show that high temperature induced host physiological processes that are unfavorable to the viral infection. Temperature influenced the expression of transcripts related to the immune process and increased the transcription of genes related to apoptotic process, synaptic signaling, and protein processes at 29°C. Concomitantly, the expression of genes associated to catabolism, metabolites transport, macromolecules synthesis and cell growth remained low since the first stage of infection at 29°C. Moreover, viral entry into the host might have been limited at 29°C by changes in extracellular matrix composition and protein abundance. Overall, these results provide new insights into how environmental factors modulate the host-pathogen interactions.
Collapse
Affiliation(s)
- Lizenn Delisle
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Jeremie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, F-34095 Montpellier, France
| | - Bruno Petton
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, F-34095 Montpellier, France
| | - Fabrice Pernet
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | | | - Elodie Fleury
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| |
Collapse
|
10
|
Silliman K. Population structure, genetic connectivity, and adaptation in the Olympia oyster ( Ostrea lurida) along the west coast of North America. Evol Appl 2019; 12:923-939. [PMID: 31080505 PMCID: PMC6503834 DOI: 10.1111/eva.12766] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/28/2018] [Accepted: 12/02/2018] [Indexed: 01/02/2023] Open
Abstract
Effective management of threatened and exploited species requires an understanding of both the genetic connectivity among populations and local adaptation. The Olympia oyster (Ostrea lurida), patchily distributed from Baja California to the central coast of Canada, has a long history of population declines due to anthropogenic stressors. For such coastal marine species, population structure could follow a continuous isolation-by-distance model, contain regional blocks of genetic similarity separated by barriers to gene flow, or be consistent with a null model of no population structure. To distinguish between these hypotheses in O. lurida, 13,424 single nucleotide polymorphisms (SNPs) were used to characterize rangewide population structure, genetic connectivity, and adaptive divergence. Samples were collected across the species range on the west coast of North America, from southern California to Vancouver Island. A conservative approach for detecting putative loci under selection identified 235 SNPs across 129 GBS loci, which were functionally annotated and analyzed separately from the remaining neutral loci. While strong population structure was observed on a regional scale in both neutral and outlier markers, neutral markers had greater power to detect fine-scale structure. Geographic regions of reduced gene flow aligned with known marine biogeographic barriers, such as Cape Mendocino, Monterey Bay, and the currents around Cape Flattery. The outlier loci identified as under putative selection included genes involved in developmental regulation, sensory information processing, energy metabolism, immune response, and muscle contraction. These loci are excellent candidates for future research and may provide targets for genetic monitoring programs. Beyond specific applications for restoration and management of the Olympia oyster, this study lends to the growing body of evidence for both population structure and adaptive differentiation across a range of marine species exhibiting the potential for panmixia. Computational notebooks are available to facilitate reproducibility and future open-sourced research on the population structure of O. lurida.
Collapse
|
11
|
Liu R, Cheng Q, Song X, Wang H, Wang X, Wang L, Zhu B, Song L. A vital ubiquitin-conjugating enzyme CgUbe2g1 participated in regulation of immune response of Pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:132-142. [PMID: 30389518 DOI: 10.1016/j.dci.2018.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
As an important post-translational protein modification, ubiquitination has been demonstrated to play a vital role in immune response of vertebrates. Ubiquitin (Ub)-conjugating enzyme E2 is the "heart" of ubiquitination, which is responsible for Ub cellular signaling and substrate modification. In the present study, an Ub-conjugating enzyme E2 (designed as CgUbe2g1) was identified from oyster Crassostrea gigas, and its regulation in the immune response against lipopolysaccharide (LPS) stimulation was investigated. CgUbe2g1 encoded a polypeptide of 168 amino acids with the predicted molecular mass of 19.20 kDa and contained conserved catalytic 'Ubc' domains. It shared a higher similarity with the known UBC2G1 type E2s and was closely clustered with the type E2s identified from invertebrates in the phylogenetic assay. The mRNA transcripts of CgUbe2g1 were mainly distributed in hemocyte, mantle, hepatopancreas and male gonad of C. gigas. CgUbe2g1 protein was found to be colocalized with Ub around the nucleus of oyster hemocyte. The recombinant CgUbe2g1 protein (rCgUbe2g1) could activate the ubiquitination in vitro by binding both activated and un-activated Ub. The expressions of inflammation-related factors TNF-α and NF-κB in CgUbe2g1 transfected cells were both significantly up-regulated after LPS stimulation, which were 12.9-fold at 3 h (p < 0.01) and 2.3-fold at 6 h (p < 0.01) of that in negative control group, respectively. The phagocytic rate of hemocyte and the ROS level in hemocyte were both significantly decreased (p < 0.01), while the apoptosis rate was significantly increased (p < 0.01) after CgUbe2g1 mRNA was interfered. These results demonstrated that Ub-conjugating enzyme CgUbe2g1 was involved in the innate immune response of oyster against invading pathogen, which might play important roles in the activation of inflammatory response and regulation of cellular immune response.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Qi Cheng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiaorui Song
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
12
|
Yang J, Luo S, Li J, Zheng Z, Du X, Deng Y. Transcriptome analysis of growth heterosis in pearl oyster Pinctada fucata martensii. FEBS Open Bio 2018; 8:1794-1803. [PMID: 30410859 PMCID: PMC6212643 DOI: 10.1002/2211-5463.12502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/24/2023] Open
Abstract
Heterosis improves growth and survival of shellfish species. Although breeders have widely exploited heterosis, its underlying molecular mechanisms remain unclear. In this study, a 2 × 2 complete diallel cross was facilitated between two full-sib families to produce two inbred families (A and D) and their reciprocal hybrid families (B and C) of pearl oyster Pinctada fucata martensii. Growth traits of the four families were compared at the adult stages. Transcriptome analysis was conducted on the four families using an Illumina sequencing platform. The results revealed that the growth traits of the four families significantly varied (P < 0.05). The mid-parent heterosis values of shell length, shell height, shell width, shell weight, and total weight were 12.9%, 14.9%, 18.2%, 17.2%, and 33.2%, respectively. The B- and C-inbred (A and D) triads had 79 and 68 differentially expressed genes (DEGs), respectively, which were dominantly nonadditive, including overdominance, underdominance, and low-parent dominance. Gene ontology term analysis showed that the DEGs in the B- and C-inbred triads were enriched for metabolic process, cellular process cell part, binding, and catalytic activity. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the DEGs in the B- and C-inbred triads were involved in focal adhesion, the P13K-Akt signaling pathway, the mRNA surveillance pathway, and the focal adhesion pathway. The reliability of the sequencing data was confirmed by real-time polymerase chain reaction analysis of six growth-related genes. The findings of this study provide new insights into heterosis for growth traits and the design of genetic breeding programs for this species.
Collapse
Affiliation(s)
- Jingmiao Yang
- Fisheries College Guangdong Ocean University Zhanjiang China
| | - Shaojie Luo
- Fisheries College Guangdong Ocean University Zhanjiang China
| | - Junhui Li
- Fisheries College Guangdong Ocean University Zhanjiang China
| | - Zhe Zheng
- Fisheries College Guangdong Ocean University Zhanjiang China
| | - Xiaodong Du
- Fisheries College Guangdong Ocean University Zhanjiang China.,Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province Zhanjiang China
| | - Yuewen Deng
- Fisheries College Guangdong Ocean University Zhanjiang China.,Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province Zhanjiang China
| |
Collapse
|
13
|
Wang M, Liu M, Wang B, Jiang K, Jia Z, Wang L, Wang L. Transcriptomic analysis of exosomal shuttle mRNA in Pacific oyster Crassostrea gigas during bacterial stimulation. FISH & SHELLFISH IMMUNOLOGY 2018; 74:540-550. [PMID: 29355763 DOI: 10.1016/j.fsi.2018.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/16/2017] [Accepted: 01/12/2018] [Indexed: 06/07/2023]
Abstract
As marine invertebrates, oysters lack adaptive immunity and employ innate immunity as the front line and almost the solo defense mechanism to protect them against invaders. Accumulating research achievements demonstrated that exosomes could act as innate immune effectors that contribute to host defense mechanism. To better understand the immune functions of exosomes in Crassostrea gigas against bacterial stimulation, RNA-Seq was applied to explore the global expression changes of exosomes in oyster after Staphylococcus aureus and Vibrio splendidus stimulation. Totally 171573691 single end raw reads were yielded via Ion Torrent Proton sequencing, which were trimmed into 121988325 clean reads, and then 1505 abundant exosomal shuttle mRNAs (esmRNAs) were identified. Gene ontology (GO) analysis revealed that these abundant esmRNAs could be categorized into 15 cellular components, 12 molecular functions and 21 biological processes, and these abundant esmRNAs were mapped onto 62 biological signaling pathways by KEGG. In total, 68 significant differentially expressed genes (DEGs, Fold change ≥ 2, Q-value < 0.05) were identified between S. aureus stimulated group and control group, including 21 up-regulated and 47 down-regulated ones. While 99 significant DEGs between V. splendidus challenged group and control group were identified, including 42 up-regulated and 57 down-regulated ones. To validate the transcriptomic data, 24 DEGs were randomly selected and confirmed via quantitative real-time PCR (qRT-PCR) and the results showed that their expression patterns agreed well with the RNA-Seq analysis. This study would enrich the C. gigas transcriptome database and provide insight into the immune functions of oyster exosomes against bacterial infection.
Collapse
Affiliation(s)
- Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Research Platform for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Mei Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Baojie Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Keyong Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Lei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Functional Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
14
|
Kim JH, Jeong SY, Kim PJ, Dahms HU, Han KN. Bio-effect-monitoring of long-term thermal wastes on the oyster, Crassostrea gigas, using heat shock proteins. MARINE POLLUTION BULLETIN 2017; 119:359-364. [PMID: 28454761 DOI: 10.1016/j.marpolbul.2017.04.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/23/2017] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
We bio-monitored the stress of oyster, Crassostrea gigas, for possible long term effects of thermal waste from a power plant. The expression level of its heat shock proteins (HSPs) was measured by real time-reverse transcript PCR along with their density and growth in the field. Oyster size varied in a distance dependent pattern. Physics modeling for evaluation of spreading of the thermal effluent revealed that station A is affected by the thermal effluents abundance, and the size of C. gigas showed a negative relationship with distance to the power plant. The abundance and size of C. gigas were smallest at station A, which was closest to the thermal effluent outlet. The kinetics of changes in the hsp70 and hsp90 mRNA levels in the mantle of C. gigas were also investigated. Regardless of the higher expression level of hsp70 mRNA than hsp90, both hsp70 and hsp90 mRNA levels were significantly higher at station A. The expression levels decreased inversely with distance from the thermal effluent outlet, with expression of hsp70 mRNA at station A being approximately 7-fold higher than at station B and 15-fold higher than at station C. Similarly, expression of hsp90 mRNA at station A was approximately 14-fold higher than at station B and 22-fold higher than at station C. The present findings provide new insights on biological correlation among the growth of individuals and population size and the molecular index in C. gigas following thermal effects.
Collapse
Affiliation(s)
- Jin-Hyoung Kim
- Unit of Polar Genomics, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Su-Young Jeong
- Department of Oceanography, College of Natural Sciences, Inha University, Incheon 402-751, South Korea
| | - Pyung-Joong Kim
- ARA Consulting & Technology, D-1510, SMART Valley Bldg., 30, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Hans-Uwe Dahms
- Kaohsiung Medical University, Department of Biomedical Science and Environmental Biology, No. 100, Shin-Chuan 1st Road, Kaohsiung 80708, Taiwan, ROC; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung 80424, Taiwan, ROC
| | - Kyung-Nam Han
- Department of Oceanography, College of Natural Sciences, Inha University, Incheon 402-751, South Korea.
| |
Collapse
|
15
|
Liu R, Cheng Q, Wang X, Chen H, Wang W, Zhang H, Wang L, Song L. The B-cell translocation gene 1 (CgBTG1) identified in oyster Crassostrea gigas exhibit multiple functions in immune response. FISH & SHELLFISH IMMUNOLOGY 2017; 61:68-78. [PMID: 27940367 DOI: 10.1016/j.fsi.2016.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/26/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
B-cell translocation gene 1 (BTG1) is a member of the anti-proliferative gene family, which plays important roles in regulation of cell cycle. In the present study, a B-cell translocation gene 1 molecule homologue (designed CgBTG1) are identified and characterized in oyster Crassostrea gigas. CgBTG1 contains a conserved BTG domain with Box A and Box B motifs, and it shares high similarities with both BTG1 and BTG2 proteins in vertebrates. CgBTG1 mRNA is predominantly expressed in hemocytes, and its expression level in hemocytes is significantly up-regulated at 6 h (5.40-fold, p < 0.01) post Vibrio splendidus stimulation. The apoptosis rate of oyster hemocytes is significantly decreased (p < 0.05) after CgBTG1 interfered by dsRNA (dsCgBTG1). This is indicated that CgBTG1 participated in the regulation of oyster hemocytes apoptosis. Furthermore, CgBTG1 could also induce the apoptosis of cancer cells (HeLa, A549 and BEL7402) in vitro. Compared with normal oysters, both vessel-like structures and muscle fibers in CgBTG1 interfered oysters are severely damaged after V. splendidus challenge in paraffin section, considering that CgBTG1 possessed an analogous feature of angiogenesis for maintenance of vessel-like structures in adductor muscle of oyster. The results suggests that CgBTG1 is a multi-functional molecule involved in the immune response of C. gigas against pathogen infection, which provides more clues for intensive studies of BTG family proteins in invertebrates.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qi Cheng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|