1
|
Wang F, Xu J, Hu C, Lai J, Shen P, Lu Y, Jiang F. β-glucan improves intestinal health of pearl gentian grouper via activation of the p38 mitogen-activated protein kinase signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109868. [PMID: 39216713 DOI: 10.1016/j.fsi.2024.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/04/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Our previous study has demonstrated that supplementation of yeast β-glucan improves intestinal health in pearl gentian grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀), accompanied by the activation of the mitogen-activated protein kinase (MAPK) signaling pathway. In this study, we investigated the effects of perturbing p38 MAPK activity using an inhibitor on the intestinal health of β-glucan-injected pearl gentian grouper to elucidate the potential molecular mechanism underlying the protective effects of β-glucan on the fish gut. The pearl gentian grouper was categorized into four groups: PBS injected (CD group), β-glucan injected at a dose of 80 mg/kg (βG group), p38 MAPK inhibitor SB203580 injected at a dose of 1 mg/kg (SB203580 group), and a combination of β-glucan (80 mg/kg) and SB203580 (1 mg/kg) injected together (βG + SB203580 group). The results revealed that the introduction of SB203580 significantly suppressed the β-glucan-induced increase in p38α and p38β mRNA expression, as well as the phosphorylation of p38 MAPK. Both the βG group and SB203580 group exhibited reduced plica height and muscularis thickness. The βG + SB203580 group displayed a significant reduction in mucin cell level; interleukin 1β (il1β) mRNA expression; induced nitric oxide synthase, tumor necrosis factor α, and IL1β concentration; catalase and total antioxidant capacity activities. Additionally, there was a significant increase in the levels of intestinal malondialdehyde in the βG + SB203580 group compared to the βG group. The inhibition of the p38 MAPK signaling halted the trend of apoptosis-related caspase molecular expression induced by β-glucan. In conclusion, β-glucan injection resulted in elevated levels of mucous cells, nonspecific immunity, antioxidant capacity, and anti-apoptosis in grouper by modulating the p38 MAPK pathway. This study offers insights into the potential molecular mechanism underlying the protective effects of β-glucan on intestinal health in pearl gentian grouper.
Collapse
Affiliation(s)
- Fan Wang
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China; College of Life Science and Technology of Guangxi University, Nanning 530005, Guangxi, China
| | - Jia Xu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Chaoqun Hu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Junxiang Lai
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Peihong Shen
- College of Life Science and Technology of Guangxi University, Nanning 530005, Guangxi, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Fajun Jiang
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China.
| |
Collapse
|
2
|
Wang F, Wang Z, Cao J, Lu Y. Long- and short-term dietary β-glucan improves intestinal health and disease resistance in pearl gentian grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:973-988. [PMID: 38421537 DOI: 10.1007/s10695-024-01310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
β-Glucans are immunostimulants and are widely used in aquaculture industry. The present study was conducted to evaluate the effects of different periods of β-glucan management on growth performance, intestinal health, and disease resistance in pearl gentian grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). A commercial feed was used as control diet (CD), and the β-glucan diet (βD) was based on CD and further supplemented with 0.1% β-glucan. Grouper in control and long-term β-glucan diet (LGD) groups were fed with CD and βD for 8 weeks, respectively. Groupers in short-term β-glucan diet (SGD) group were fed with CD for the first 4 weeks and βD for the last 4 weeks. We found that LGD and SGD had no effect on growth performance but reduced the mortalities of grouper after challenging with Vibrio harveyi. In addition, both LGD and SGD increased intestinal morphology, enhanced antioxidant capacity, enhanced immunity, inhibited apoptosis, altered the transcriptional profile, and activated mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling pathway in the intestine of grouper. Furthermore, the effect of LGD on most of the above parameters was comparable to that of SGD. In conclusion, LGD and SGD did not affect growth rate parameters but enhanced the intestinal health and disease resistance of pearl gentian grouper.
Collapse
Affiliation(s)
- Fan Wang
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518210, China
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, 530000, China
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhiwen Wang
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518210, China
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Junming Cao
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
- Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518210, China.
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
3
|
Jiang C, Wang S. Identification and functional characterization of bactericidal permeability/increasing protein (BPI) from frog Nanorana yunnanensis (Paa yunnanensis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 137:104517. [PMID: 36028172 DOI: 10.1016/j.dci.2022.104517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Bactericidal permeability/increasing protein (BPI) and lipopolysaccharide-binding protein (LBP) have been most extensively studied in mammals, but little information is available regarding BPI and LBP in Amphibia. In this study we showed that the cDNA of BPI in the frog N. yunnanensis (P. yunnanensis) encoded a 490-amino-acid-long protein, the predicted tertiary structure appears closely similar to mammalian BPIs in terms of sequence and structure. Like mammalian BPI gene, the frog gene nybpi was widely expressed in various tissues and was inducible by challenge with LPS or Gram-negative bacterium. We also showed that recombinant NyBPI, resembling mammalian BPIs, specifically binds with LPS. In addition, the recombinant NyBPI displayed antibacterial activity against Gram-negative bacteria Vibrio anguillarum in a dose-dependent manner. These results indicate that NyBPI may play an important role in an immune response against bacteria in amphibians.
Collapse
Affiliation(s)
- Chengyan Jiang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China.
| | - Shaolong Wang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China
| |
Collapse
|
4
|
β-glucan as a promising food additive and immunostimulant in aquaculture industry. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
The use of antibiotics in aquatic feed reduces the incidence of disease and enhances growth performance, although it presents harmful effects, such as development of resistant bacteria and accumulation in the natural environment. A variety of immune stimulants including probiotics, prebiotics, synbiotics, phytobiotics, organic acids, nucleotides, antioxidants, microalgae, yeast and enzymes have been used in the aquaculture industry. In recent decades, much attention has been paid on finding a variety of immunostimulants with lower cost which also affect specific and non-specific immunity and improve fish resistance against a wide range of pathogens. These stimulants strengthen the fish’s immune system by increasing the number of phagocytes, lysozyme activity and level of immunoglobulin. The use of immune stimulants as an effective tool to overcome diseases and strengthen the immune system of farmed species, leads to the promotion of cellular and humoral defense mechanisms and increases resistance to infectious diseases. Among these immunostimulants used in aquaculture, β-glucans are of particular importance. Glucans are complex polysaccharide compounds extracted from the cell wall of yeasts and fungi. These compounds can stimulate fish growth, survival, and immune function. Therefore, this review discusses the role and importance of β-glucan as a food additive in aquaculture and examines the impact of these compounds on the growth performance, immunity and biochemical parameters of farmed species.
Collapse
|
5
|
Žák J, Dyková I, Reichard M. Good performance of turquoise killifish (Nothobranchius furzeri) on pelleted diet as a step towards husbandry standardization. Sci Rep 2020; 10:8986. [PMID: 32488062 PMCID: PMC7265286 DOI: 10.1038/s41598-020-65930-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/28/2020] [Indexed: 01/23/2023] Open
Abstract
Dietary alteration is one of the most universally effective aging interventions, making its standardization a fundamental need for model organisms in aging. In this dietetic study we address the current lack of standardized formulated diet for turquoise killifish Nothobranchius furzeri – a promising model organism. We first demonstrated that N. furzeri can be fully weaned at the onset of puberty onto a commercially available pelleted diet as the sole nutrition when kept in social tanks. We then compared nine somatic and six reproductive parameters between fish fed a typical laboratory diet - frozen chironomid larvae (bloodworms) and fish weaned from bloodworms to BioMar pellets. Both dietary groups had comparable somatic and reproductive performance. There was no difference between diet groups in adult body size, specific growth rate, condition or extent of hepatocellular vacuolation. Fish fed a pelleted diet had higher juvenile body mass and more visceral fat. Pellet-fed males had lower liver mass and possessed a lipid type of hepatocellular vacuolation instead of the prevailing glycogen-like vacuolation in the bloodworm-fed group. No considerable effect was found on reproductive parameters. The negligible differences between dietary groups and good acceptance of pellets indicate their suitability as a useful starting point for the development of standardized diet for Nothobranchius furzeri.
Collapse
Affiliation(s)
- Jakub Žák
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 65, Brno, Czech Republic.,Department of Zoology, Faculty of Sciences, Charles University, Viničná 7, 122 44, Prague, Czech Republic
| | - Iva Dyková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - Martin Reichard
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 65, Brno, Czech Republic.
| |
Collapse
|
6
|
Song L, Zhou Y, Ni S, Wang X, Yuan J, Zhang Y, Zhang S. Dietary Intake of β-Glucans Can Prolong Lifespan and Exert an Antioxidant Action on Aged Fish Nothobranchius guentheri. Rejuvenation Res 2019; 23:293-301. [PMID: 31591931 DOI: 10.1089/rej.2019.2223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
One of the widely accepted conjectures regarding mechanisms of aging is probably the oxidative stress hypothesis. β-1,3-Glucans, well-known immunostimulants, have been shown to increase nonspecific immunity and resistance against infections or pathogenic bacteria in several fish species, but its antiaging function remains poorly understood. By feeding of β-1,3-glucans to the annual fish, Nothobranchius guentheri, we detected the survivorship of the fish and estimated the development of age-related biomarkers at different stages. We first showed that administration of β-1,3-glucans was able to prolong the lifespan of the fish (p < 0.05). We then showed that β-1,3-glucans clearly reduced the accumulation of lipofuscin in the gills and the senescence-associated β-galactosidase in the caudal fins. Moreover, β-1,3-glucans were able to lower the levels of protein oxidation, lipid peroxidation, and reactive oxygen species (ROS) in the muscles. Finally, β-1,3-glucans could promote the activities of the antioxidant enzymes, including catalase, superoxide dismutase, and glutathione peroxidase in the fish, and slow down the increase of P66shc, a critical factor involved in the regulation of intracellular ROS contents. These data together suggest for the first time that β-1,3-glucans can extend the lifespan, delay the onset of age-related biomarkers and exert an antioxidant action of the aged fish, N. guentheri. It also implies that β-1,3-glucans may be potentially useful for health care in the elderly, including extension of the lifespan.
Collapse
Affiliation(s)
- Lili Song
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yang Zhou
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Shousheng Ni
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xia Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Jiangshui Yuan
- The Third Clinical College Department, Qingdao University, Qingdao, China.,Clinical Laboratory Department, Qingdao Municipal Hospital, Qingdao, China
| | - Yu Zhang
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Shicui Zhang
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
7
|
Luo J, Chen D, Mao X, He J, Yu B, Cheng L, Zeng D. Purified β-glucans of Different Molecular Weights Enhance Growth Performance of LPS-challenged Piglets via Improved Gut Barrier Function and Microbiota. Animals (Basel) 2019; 9:ani9090602. [PMID: 31450592 PMCID: PMC6770163 DOI: 10.3390/ani9090602] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Beta-glucan is currently under consideration as an alternative to in-feed antibiotics for the sustainable pig production industry in China. Modulating intestinal function by β-glucan treatment in young pigs is one potential way of decreasing disease susceptibility and presumably increasing growth performance. In the present study, as a newly developed commercial product, β-glucans have proved to modulate gut function, and have improved growth performance in lipopolysaccharide (LPS)-challenged piglets. The present study aimed to determine the mechanisms involved inβ-glucan of low and high molecular weight mediated growth alterations in weaned piglets. The results confirmed that β-glucans isolated from Agrobacterium sp. ZX09 could improve growth performance in weaned piglets and they showed intestinal modulatory properties via different mechanisms in regulating the mucosal barrier function and microbial populations between two different molecular weight β-glucans. Abstract This study investigated β-glucan derived from Agrobacterium sp. ZX09 with high (2000 kDa) and low (300 kDa) molecular weight (MW) to compare their effects on growth performance and gut function in LPS-induced weaned piglets. Changes in jejunal morphology, mucosal barrier function, microbial populations, and fermentation in the piglets were determined. Data showed that β-glucan prevented body weight loss in LPS challenged piglets. Supplementation with both β-glucan fractions improved jejunal morphology. Compared to low MW, β-glucan of high MW generally up-regulated transcripts of ZO-1, MUC1, and MUC2 in jejunal mucosa to a lesser extent. Mucosal D-lactate, diamine oxidase, and anti-oxidation index were effectively resumed in β-glucan treatment. Both β-glucan diets provoked the emergence of a balanced microbiota and a richer concentration of volatile fatty acids in the colon. The richest community of bifidobacterium and concentration of butyrate emerged after feeding β-glucan with high MW. Results suggested that the effect of Agrobacterium sp. ZX09 β-glucans on the gut-modulatory function is largely linked to their MW. Low MW β-glucan mainly improved the mucosal barrier function in the jejunum, while high MW β-glucan had profound effects on the microbial community and fermentation in the hindgut of piglets.
Collapse
Affiliation(s)
- Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu 611130, Sichuan, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu 611130, Sichuan, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu 611130, Sichuan, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu 611130, Sichuan, China
| | - Long Cheng
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Dookie Campus, VIC 3647, Australia
| | - Dafu Zeng
- Sichuan Synlight Biotech Ltd., Chengdu 610041, Sichuan, China
| |
Collapse
|
8
|
Luo J, Liu S, Yu B, He J, Mao X, Cheng L, Chen D. Beta-glucan from Agrobacterium sp. ZX09 improves growth performance and intestinal function in weaned piglets. J Anim Physiol Anim Nutr (Berl) 2019; 103:1818-1827. [PMID: 31441134 DOI: 10.1111/jpn.13163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
Beta-glucan is currently under consideration as an alternative to in-feed antibiotics. The aim of the study was to investigate Agrobacterium sp. ZX09 beta-glucan on intestinal morphology, cytokine concentration, mucin expression and microbial populations of weaning piglets. Pigs were randomly assigned to one of five dietary treatments supplemented with 0, 25, 50, 100 and 200 mg/kg beta-glucan. Data showed an increase in ADG at the 100 mg/kg group (p = .03). A significant increase in villus height and reduction in crypt depth were fund in ileal tissue at the 100 mg/kg inclusion level (p < .05). Dietary supplementation of 100 mg/kg beta-glucan enhanced IL-10 concentration (p = .04) and gene expression of MUC1 and MUC2 (p < .05) in the jejunum. Dietary supplementation of 100 mg/kg beta-glucan provoked the up-regulation of Lactobacillus counts and down-regulation of Escherichia coli counts in the caecum (p = .05). Data suggested that improved growth performance in response to beta-glucan supplementation at 100 mg/kg in weaned piglets may be explained by the improved intestinal function.
Collapse
Affiliation(s)
- Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, China
| | - Shuli Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, China
| | - Long Cheng
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Shepparton, Victoria, Australia
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, China
| |
Collapse
|
9
|
Dietary β-glucan supplementation improves growth performance, carcass traits and meat quality of finishing pigs. ACTA ACUST UNITED AC 2019; 5:380-385. [PMID: 31890915 PMCID: PMC6920398 DOI: 10.1016/j.aninu.2019.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/15/2019] [Accepted: 06/13/2019] [Indexed: 11/21/2022]
Abstract
This experiment was conducted to investigate growth performance, carcass traits and meat quality of finishing pigs with dietary β-glucan supplementation. A total of 96 healthy pigs (Duroc × Landrace × Yorkshire; initial average BW = 25 kg) were randomly allocated into 4 dietary treatments with 6 replicates per treatment and 4 pigs per replicate. The control group was fed a basal diet, and the experimental diets were supplemented with 50, 100 and 200 mg/kg Agrobacterium sp. ZX09 β-glucan, respectively. The experiment lasted 103 d. The basal diet supplemented with 100 mg/kg β-glucan significantly increased average daily gain and feed conversion ratio, probably due to the improved digestibility of dry matter, gross energy and crude protein (P < 0.05). Beta-glucan supplementation from 100 to 200 mg/kg of diet significantly increased carcass length (P < 0.05). The basal diet supplemented with 100 mg/kg β-glucan supplementation also significantly (P < 0.05) increased muscle pH, reduced drip losses and increased a∗ values. The basal diet supplemented with 100 mg/kg β-glucan increased the content of intramuscular fat and changed the proportion of saturated fatty acid and unsaturated fatty acid, thereby improved the flavor of meat. In conclusion, the basal diet supplemented with 100 mg/kg Agrobacterium sp. ZX09 β-glucan improves growth performance, nutrient digestibility, carcass length, and pork quality of finishing pigs.
Collapse
|
10
|
Cárdenas-Reyna T, Angulo C, Guluarte C, Hori-Oshima S, Reyes-Becerril M. In vitro immunostimulatory potential of fungal β-glucans in pacific red snapper (Lutjanus peru) cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:350-358. [PMID: 28888536 DOI: 10.1016/j.dci.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
This study attempts to describe the immunostimulatory effects of three fungal glucans on innate immunity responses in an in vitro assays using Pacific red snapper leukocytes. First, the yield glucans obtained was higher in Aspergillus niger, follow by Aspergillus ochraceus and Alternaria botrytis (40, 20 and 10%, respectively). Structural characterization of these fungal glucans by proton nuclear magnetic resonance (NMR) indicated structures containing (1-6)-branched (1-3)-β-D-glucan. The immunostimulatory activity of fungal glucans were assessed in head-kidney leukocytes at 24 h using colorimetric assays and molecular gene expression. In addition, the response against bacterial infection using Aeromonas hydrophila was evaluated by flow cytometry with annexin V/propidium iodide. Leukocytes responded positively to fungal glucans where the viability was higher than 80%. Interestingly, A. niger β-glucans enhanced the phagocytic ability and capacity in head-kidney leukocytes. Immunological assays reveled an increased in nitric oxide production, myeloperoxidase, superoxide dismutase and catalase activities, in fish stimulated with A. niger β-glucans. Induction of cytokines (IL-1β, TNF-α, IL-6, IL-8 and IL-12) were more pronounced in A. niger β-glucans leukocytes stimulated compared to other group. Finally, flow cytometry assay showed that A. botrytis and A. niger β-glucans were able to inhibit apoptosis caused by Aeromonas hydrophila in the Pacific red snapper leukocytes indicating an immunostimulant potent response by fungi derived-glucans. These results strongly support the idea that fungal β-glucans can stimulate the immune mechanism in head-kidney leukocytes and that Aspergillus niger β-glucan possess immunostimulatory properties cell increasing viability, and reducing necrotic cell death caused by Aeromonas hydrophila.
Collapse
Affiliation(s)
- Tomás Cárdenas-Reyna
- Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Carretera San Felipe Km. 3.5, Fraccionamiento Laguna Campestre, Mexicali, Baja California 21386, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, BCS 23090, Mexico
| | - Crystal Guluarte
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, BCS 23090, Mexico
| | - Sawako Hori-Oshima
- Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Carretera San Felipe Km. 3.5, Fraccionamiento Laguna Campestre, Mexicali, Baja California 21386, Mexico
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, BCS 23090, Mexico.
| |
Collapse
|
11
|
Wang P, Jiang C, Liu S, Cui P, Zhang Y, Zhang S. Trans-generational enhancement of C-type lysozyme level in eggs of zebrafish by dietary β-glucan. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 74:25-31. [PMID: 28408333 DOI: 10.1016/j.dci.2017.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/14/2017] [Indexed: 06/07/2023]
Abstract
β-glucan has been shown to increase non-specific immunity and resistance against infections or pathogenic bacteria in several fish species, but information regarding its trans-generational immune-enhancing effects is still rather limited. Lysozyme is a maternal immune factor playing an important role in the developing embryos of zebrafish. Here we clearly showe that β-glucan enhanced the level of C-type lysozyme in eggs of zebrafish, and the embryos derived from β-glucan-treated zebrafish were more resistant to bacterial challenge than control embryos. Moreover, the transferred lysozyme was apparently linked with the antimicrobial defense of early embryos. In addition, we also showed that β-glucan induced a significant increase in the synthesis of C-type lysozyme in previtellogenetic oocytes. Therefore, we show for the first time that β-glucan can enhance the lysozyme level in offspring via both inducing the transfer of the molecule from mothers to eggs and stimulating its endogenous production in oocytes.
Collapse
Affiliation(s)
- Peng Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Chengyan Jiang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China; College of Life Science and Technology, Hong He University, Mengzi, Yunnan 661100, China
| | - Shousheng Liu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Pengfei Cui
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Yu Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
12
|
Douxfils J, Fierro-Castro C, Mandiki SNM, Emile W, Tort L, Kestemont P. Dietary β-glucans differentially modulate immune and stress-related gene expression in lymphoid organs from healthy and Aeromonas hydrophila-infected rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2017; 63:285-296. [PMID: 28232282 DOI: 10.1016/j.fsi.2017.02.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
Although β-glucans stimulating effects have already been demonstrated on the immune system of numerous animal species, available data remain relatively variable and more research should be done regarding the complexity of underlying mechanisms. In this context, the present study aimed to evaluate the stress and immune-related effects of dietary β-glucans (i.e. Macrogard®) by considering a number of influencing factors such as the dose (0, 0.1, 0.2 and 0.5% in food), feeding duration (15 versus 30 days), tissue (blood, kidney, spleen, gills) and infection status (healthy or infected). Blood parameters (lysozyme, ACH50 activities, leucocyte populations) and mRNA expression level of several immune- and stress-related genes (TFN-α1, IL-1β, IL10, COX-2, TGF-β, MC2R, HSP70) were measured. Our results suggest that spleen may be a highly responsive organ to dietary β-glucans both in healthy or infected fish, and that this organ may therefore significantly contribute to the immune reinforcement induced by such immunostimulatory diet. Our study further reveals that overdoses of β-glucans and/or prolonged medication can lead to a non-reactive physiological status and, consequently, to a poor immune response. All in all, the current data emphasizes the need for further extensive research in the field of dietary β-glucans as a preventive method for farmed fish protection.
Collapse
Affiliation(s)
- Jessica Douxfils
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Camino Fierro-Castro
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain
| | - S N M Mandiki
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Wakson Emile
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium.
| |
Collapse
|