1
|
Zimmerman LM. Adaptive Immunity in Reptiles: Conventional Components but Unconventional Strategies. Integr Comp Biol 2022; 62:1572-1583. [PMID: 35482599 DOI: 10.1093/icb/icac022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 01/05/2023] Open
Abstract
Recent studies have established that the innate immune system of reptiles is broad and robust, but the question remains: What role does the reptilian adaptive immune system play? Conventionally, adaptive immunity is described as involving T and B lymphocytes that display variable receptors, is highly specific, improves over the course of the response, and produces a memory response. While reptiles do have B and T lymphocytes that utilize variable receptors, their adaptive response is relatively non-specific, generates a prolonged antibody response, and does not produce a typical memory response. This alternative adaptive strategy may allow reptiles to produce a broad adaptive response that complements a strong innate system. Further studies into reptile adaptive immunity cannot only clarify outstanding questions on the reptilian immune system but can shed light on a number of important immunological concepts, including the evolution of the immune system and adaptive immune responses that take place outside of germinal centers.
Collapse
|
2
|
Fogha J, Bayry J, Diharce J, de Brevern AG. Structural and evolutionary exploration of the IL-3 family and its alpha subunit receptors. Amino Acids 2021; 53:1211-1227. [PMID: 34196789 DOI: 10.1007/s00726-021-03026-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
Interleukin-3 (IL-3) is a cytokine belonging to the family of common β (βc) and is involved in various biological systems. Its activity is mediated by the interaction with its receptor (IL-3R), a heterodimer composed of two distinct subunits: IL-3Rα and βc. IL-3 and its receptor, especially IL-3Rα, play a crucial role in pathologies like inflammatory diseases and therefore are interesting therapeutic targets. Here, we have performed an analysis of these proteins and their interaction based on structural and evolutionary information. We highlighted that IL-3 and IL-3Rα structural architectures are conserved across evolution and shared with other proteins belonging to the same βc family interleukin-5 (IL-5) and granulocyte-macrophage colony-stimulating factor (GM-CSF). The IL-3Rα/IL-3 interaction is mediated by a large interface in which most residues are surprisingly not conserved during evolution and across family members. In spite of this high variability, we suggested small regions constituted by few residues conserved during the evolution in both proteins that could be important for the binding affinity.
Collapse
Affiliation(s)
- Jade Fogha
- UMR_S 1134, DSIMB, Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, 75739, Paris, France
- Institut National de La Transfusion Sanguine (INTS), 75739, Paris, France
- Laboratoire D'Excellence GR-Ex, 75739, Paris, France
| | - Jagadeesh Bayry
- Centre de Recherche Des Cordeliers, Institut National de La Santé Et de La Recherche Médicale, Sorbonne Université, Université de Paris, 75006, Paris, France
- Indian Institute of Technology Palakkad, Kozhippara, Palakkad, 678 557, India
| | - Julien Diharce
- UMR_S 1134, DSIMB, Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, 75739, Paris, France.
- Institut National de La Transfusion Sanguine (INTS), 75739, Paris, France.
- Laboratoire D'Excellence GR-Ex, 75739, Paris, France.
| | - Alexandre G de Brevern
- UMR_S 1134, DSIMB, Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, 75739, Paris, France.
- Institut National de La Transfusion Sanguine (INTS), 75739, Paris, France.
- Laboratoire D'Excellence GR-Ex, 75739, Paris, France.
- UMR_S 1134, DSIMB, Université de La Réunion, Inserm, Biologie Intégrée du Globule Rouge, La Réunion, 97744, Saint-Denis, France.
| |
Collapse
|
3
|
Dijkstra JM. A method for making alignments of related protein sequences that share very little similarity; shark interleukin 2 as an example. Immunogenetics 2021; 73:35-51. [PMID: 33512550 DOI: 10.1007/s00251-020-01191-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
An optimized alignment of related protein sequences helps to see their important shared features and to deduce their phylogenetic relationships. At low levels of sequence similarity, there are no suitable computer programs for making the best possible alignment. This review summarizes some guidelines for how in such instances, nevertheless, insightful alignments can be made. The method involves, basically, the understanding of molecular family features at both the protein and intron-exon level, and the collection of many related sequences so that gradual differences may be observed. The method is exemplified by identifying and aligning interleukin 2 (IL-2) and related sequences in Elasmobranchii (sharks/rays) and coelacanth, as other authors have expressed difficulty with their identification. From the point of general immunology, it is interesting that the unusual long "leader" sequence of IL-15, already known in other species, is even more impressively conserved in cartilaginous fish. Furthermore, sequence comparisons suggest that IL-2 in cartilaginous fish has lost its ability to bind an IL-2Rα/15Rα receptor chain, which would prohibit the existence of a mechanism for regulatory T cell regulation identical to mammals.
Collapse
Affiliation(s)
- Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Dengaku-gakubo 1-98Toyoake-shi, Aichi-ken, 470-1192, Japan.
| |
Collapse
|
4
|
Yamaguchi T, Chang CJ, Karger A, Keller M, Pfaff F, Wangkahart E, Wang T, Secombes CJ, Kimoto A, Furihata M, Hashimoto K, Fischer U, Dijkstra JM. Ancient Cytokine Interleukin 15-Like (IL-15L) Induces a Type 2 Immune Response. Front Immunol 2020; 11:549319. [PMID: 33193315 PMCID: PMC7658486 DOI: 10.3389/fimmu.2020.549319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Related interleukin-2, -15, and -15-like (IL-2, -15, and -15L) are ancient cytokines, with all three genes surviving in extant fish and some mammals. The present study is the first to identify IL-15L functions, namely in rainbow trout. In isolated trout splenocytes, and in vivo, purified recombinant IL-15L+IL-15Rα molecules induced expression of IL-4 and IL-13 homologs, which are markers of type 2 immunity. In contrast, trout IL-15 stimulated type 1 immunity markers, thus IL-15 and IL-15L can have opposing functions. Trout IL-15L was more dependent on "in trans" presentation by the receptor chain IL-15Rα than IL-15, and stimulated CD4-CD8-(IgM-) lymphocytes from thymus and spleen. We propose an important role for IL-15L early in the type 2 immunity cytokine cascade. Trout IL-2 and IL-15 exhibited features reminiscent of their mechanistic and functional dichotomy observed in mammals; for example, IL-15 but not IL-2 required a receptor alpha chain (only IL-15Rα in the case of fish) for its stability, and only IL-15 was efficient in stimulating lymphocytes from mucosal tissues. Data suggest that IL-15L and IL-15 may be particularly effective in stimulating innate lymphocyte type 2 cells (ILC2) and natural killer (NK) cells, respectively, but further identification of the cell types is needed. An interesting finding different from in mammals was the efficient stimulation of CD4+CD8+ thymocytes by IL-2. In short, this study presents fundamental information on the evolution of the IL-2/15/15L cytokine family.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Chia Jung Chang
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Azusa Kimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Mitsuru Furihata
- Nagano Prefectural Fisheries Experimental Station, Nagano, Japan
| | - Keiichiro Hashimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Uwe Fischer
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
5
|
Nishiya K, Sawada M, Dijkstra JM, Miyamae J, Okano M, Katakura F, Moritomo T. A fish cytokine related to human IL-3, IL-5, and GM-CSF, induces development of eosinophil/basophil/mast-cell type (EBM) granulocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103671. [PMID: 32147469 DOI: 10.1016/j.dci.2020.103671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Interleukin-3 (IL-3), IL-5, and granulocyte-macrophage colony-stimulating factor (GM-CSF) are related cytokines that signal through receptors possessing the β common (βc) chain. As a family, these cytokines combine rather non-specific hematopoietic growth factor properties with a special importance for eosinophils, basophils, and mast cells. In fish the cytokines of this family are called IL-5fam, and the present study, using carp, constitutes their first functional analysis. Carp il-5fam expression was enhanced by stimulation with phytohemagglutinin and killed bacteria. Reminiscent of mammalian IL-3/IL-5/GM-CSF family members, recombinant carp IL-5fam (rcIL-5fam) induced activation of transcription factor STAT5 and efficiently promoted proliferation and colony-formation of eosinophil/basophil/mast-cell type (EBM) granulocytes. Upon addition of recombinant carp βc the growth effect of rcIL-5fam was reduced, suggesting βc participation in the signaling route. In summary, despite differences in individual cytokines and cell populations, fish and mammalian IL-3/IL-5/GM-CSF family members share growth factor functions for non-neutrophil granulocytes.
Collapse
Affiliation(s)
- Kohei Nishiya
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Mai Sawada
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Dengakugakubo 1-98, Toyoake, Aichi, 470-1192, Japan
| | - Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari, Ehime, 794-8555, Japan
| | - Masaharu Okano
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Fumihiko Katakura
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Tadaaki Moritomo
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
6
|
Role of the β Common (βc) Family of Cytokines in Health and Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028514. [PMID: 28716883 DOI: 10.1101/cshperspect.a028514] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The β common ([βc]/CD131) family of cytokines comprises granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5, all of which use βc as their key signaling receptor subunit. This is a prototypic signaling subunit-sharing cytokine family that has unveiled many biological paradigms and structural principles applicable to the IL-2, IL-4, and IL-6 receptor families, all of which also share one or more signaling subunits. Originally identified for their functions in the hematopoietic system, the βc cytokines are now known to be truly pleiotropic, impacting on multiple cell types, organs, and biological systems, and thereby controlling the balance between health and disease. This review will focus on the emerging biological roles for the βc cytokines, our progress toward understanding the mechanisms of receptor assembly and signaling, and the application of this knowledge to develop exciting new therapeutic approaches against human disease.
Collapse
|