1
|
Sirisena DMKP, Kim G, Warnakula WADLR, Jayamali BPMV, Tharanga EMT, Jayasinghe JDHE, Sandeepani RI, Wan Q, Sohn H, Lee J. Interferon regulatory factor 2 of red-spotted grouper (Epinephelus akaara): Insights into its transcriptional profiling, antiviral potential, and function in macrophage polarization. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 163:105323. [PMID: 39848353 DOI: 10.1016/j.dci.2025.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/19/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Interferon regulatory factor 2 (IRF2) is a member of the IRF family that is specifically involved in diverse immune responses via interferon (IFN)/IRF-dependent signaling pathways. In this study, IRF2 of Epinephelus akaara (EAIRF2) was identified and characterized by evaluating its structural and functional properties. EAIRF2 showed the highest homology with IRF2 of Epinephelus coioides and clustered with teleosts in the phylogenetic tree. The highest level of EAIRF2 mRNA was found in the blood under normal physiological conditions. In the immune challenge experiment, significant transcriptional modulation of EAIRF2 upon lipopolysaccharide (LPS), polyinosinic: polycytidylic acid (poly I:C), and nervous necrosis virus (NNV) challenge were observed. The subcellular localization assay confirmed the role of EAIRF2 as a transcription factor by revealing its specific nuclear localization. To elucidate its functional implications in antiviral defense, EAIRF2 was overexpressed in fathead minnow cells, which were subsequently infected with viral hemorrhagic septicemia virus (VHSV). Notably, cells overexpressing EAIRF2 exhibited a significant reduction in the transcription of VHSV genes. Concurrently, the genes associated with the IFN/IRF signaling pathway were upregulated. Furthermore, the Hoechst and propidium iodide dual staining assay, water-soluble tetrazolium-1 (WST-1) assay, and transcriptional analysis of B-cell lymphoma 2-associated X protein (Bax)/B-cell lymphoma 2 (Bcl-2) indicated that EAIRF2 possesses anti-apoptotic properties during viral infection and poly I:C treatment. Additionally, EAIRF2 overexpression in murine macrophages induced M1 polarization and augmented relative marker gene expression. Collectively, these findings suggest that EAIRF2 is a pivotal immune-related gene, specifically implicated in the IFN/IRF-mediated antiviral defense mechanism, apoptotic signaling pathway, and activation of macrophage-mediated immune responses in Epinephelus akaara. The finding of this study enhances our understanding of IRF2's function in teleost immunity and presents potential avenues for developing therapeutic strategies against viral infections and other immune-related conditions in aquaculture species.
Collapse
Affiliation(s)
- D M K P Sirisena
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - B P M Vileka Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - E M T Tharanga
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - J D H E Jayasinghe
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - R I Sandeepani
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Hanchang Sohn
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
2
|
Wang Z, Chen Y, Chen Y, Chen R, Wang W, Hu S, Li Y, Chen H, Wei P, He X. Infectious bursal disease virus affecting interferon regulatory factor 7 signaling through VP3 protein to facilitate viral replication. Front Cell Infect Microbiol 2025; 14:1529159. [PMID: 39872942 PMCID: PMC11770046 DOI: 10.3389/fcimb.2024.1529159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Interferon regulatory factor 7 (IRF7)-mediated type I interferon antiviral response is crucial for regulating the host following viral infection in chickens. Infectious bursal disease virus (IBDV) is a double-stranded RNA virus that induces immune suppression and high mortality rates in chickens aged 3-6 weeks. Previous studies have shown that IBDV infection antagonizes the type I interferon production to facilitate viral replication in the cell, and IRF7 signaling might play an important role. However, the underlying mechanisms that enable IBDV to block the IRF7 pathway remain unclear. In this study, we found that IRF7 and IFN-β expression were suppressed in DF-1 cells during infection with very virulent IBDV (vvIBDV), but not with attenuated IBDV, while the virus continued to replicate. Overexpression of IRF7 inhibits IBDV replication while knocking down IRF7 promotes IBDV replication. Overexpression of IRF7 couldn't compensate the IRF7 protein level in vvIBDV-infected cells, which suggested that IRF7 protein was degraded by IBDV infection. By using inhibitors, the degradation of IRF7 was found to be related to the proteasome pathway. Further study revealed that IRF7 was observed to interact and colocalize with the IBDV VP3 protein. Consistent with IBDV infection results, IBDV VP3 protein was observed to inhibit the IRF7-IFN-β expression, affect the degradation of IRF7 protein via proteasome pathway. All these results suggest that the IBDV exploits IRF7 by affecting its expression and proteasome degradation via the viral VP3 protein to facilitate viral replication in the cells. These findings revealed a novel mechanism that IBDV uses to evade host antiviral defense.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Yang Chen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Yanyan Chen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Rui Chen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Weiwei Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, China
| | - Shichen Hu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Yihai Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, China
| | - Xiumiao He
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Chen Y, Yang H, Wu X, Liu Z, Chen Y, Wei Q, Lin J, Yu Y, Tu Q, Li H. Interferon Regulatory Factors ( IRF1, IRF4, IRF5, IRF7 and IRF9) in Sichuan taimen ( Hucho bleekeri): Identification and Functional Characterization. Genes (Basel) 2024; 15:1418. [PMID: 39596618 PMCID: PMC11593489 DOI: 10.3390/genes15111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Interferon regulatory factors (IRFs) are multifunctional transcription factors that play important roles in the transcriptional regulation of interferons and in the immune response to pathogens. Therefore, studying the interferon system in fish is highly relevant in the prevention and treatment of viral diseases. Methods: In this study, five IRF genes (IRF1, IRF4, IRF5, IRF7 and IRF9) were identified and characterized in Hucho bleekeri, and their expression profiles were determined after LPS and Poly(I:C) treatment. Results: These IRFs have typical DNA-binding domains and IRF-association domains. Amino acid sequence comparison revealed high homology between these IRFs and those of other vertebrates, with the highest homology being with other salmonid fish. Phylogenetic analysis revealed that these IRFs are divided into four subfamilies (IRF1, IRF3, IRF4 and IRF5), with both IRF4 and IRF9 belonging to the IRF4 subfamily. IRF genes were widely expressed in all of the tested tissues, with IRF1, IRF4 and IRF9 being highly expressed in the spleen and kidney and IRF5 and IRF7 highly expressed in the gonads. IRF1, IRF4 and IRF5 expression was induced at different time points post-LPS challenge. IRF7 and IRF9 expression in the spleen and head kidney was not significantly altered by LPS induction. Poly(I:C) treatment altered IRF expression more significantly than LPS treatment. Poly(I:C) significantly altered the spleen and head kidney expression of all five IRFs. Conclusions: These findings reveal the potential role of IRFs in the antiviral response of H. bleekeri and provide a reference for examining signal transduction pathways in the interferon system in fish.
Collapse
Affiliation(s)
- Yeyu Chen
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Y.C.); (H.Y.); (X.W.); (Z.L.); (Y.C.); (Q.W.); (J.L.); (Y.Y.); (Q.T.)
- Fish Resources and Environment, The Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Huanchao Yang
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Y.C.); (H.Y.); (X.W.); (Z.L.); (Y.C.); (Q.W.); (J.L.); (Y.Y.); (Q.T.)
- Fish Resources and Environment, The Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Xiaoyun Wu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Y.C.); (H.Y.); (X.W.); (Z.L.); (Y.C.); (Q.W.); (J.L.); (Y.Y.); (Q.T.)
- Fish Resources and Environment, The Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Zhao Liu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Y.C.); (H.Y.); (X.W.); (Z.L.); (Y.C.); (Q.W.); (J.L.); (Y.Y.); (Q.T.)
- Fish Resources and Environment, The Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Yanling Chen
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Y.C.); (H.Y.); (X.W.); (Z.L.); (Y.C.); (Q.W.); (J.L.); (Y.Y.); (Q.T.)
- Fish Resources and Environment, The Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Qinyao Wei
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Y.C.); (H.Y.); (X.W.); (Z.L.); (Y.C.); (Q.W.); (J.L.); (Y.Y.); (Q.T.)
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jue Lin
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Y.C.); (H.Y.); (X.W.); (Z.L.); (Y.C.); (Q.W.); (J.L.); (Y.Y.); (Q.T.)
- Fish Resources and Environment, The Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Yi Yu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Y.C.); (H.Y.); (X.W.); (Z.L.); (Y.C.); (Q.W.); (J.L.); (Y.Y.); (Q.T.)
- Fish Resources and Environment, The Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Quanyu Tu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Y.C.); (H.Y.); (X.W.); (Z.L.); (Y.C.); (Q.W.); (J.L.); (Y.Y.); (Q.T.)
- Fish Resources and Environment, The Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Hua Li
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Y.C.); (H.Y.); (X.W.); (Z.L.); (Y.C.); (Q.W.); (J.L.); (Y.Y.); (Q.T.)
- Fish Resources and Environment, The Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| |
Collapse
|
4
|
He HX, Guo HY, Liu BS, Zhang N, Zhu KC, Zhang DC. Two IFNa3s mediate the regulation of IRF9 in the process of infection with Streptococcus iniae in yellowfin seabream, Acanthopagrus latus (Hottuyn, 1782). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105167. [PMID: 38574830 DOI: 10.1016/j.dci.2024.105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
IRF9 can play an antibacterial role by regulating the type I interferon (IFN) pathway. Streptococcus iniae can cause many deaths of yellowfin seabream, Acanthopagrus latus in pond farming. Nevertheless, the regulatory mechanism of type I IFN signalling by A. latus IRF9 (AlIRF9) against S. iniae remains elucidated. In our study, AlIRF9 has a total cDNA length of 3200 bp and contains a 1311 bp ORF encoding a presumed 436 amino acids (aa). The genomic DNA sequence of AlIRF9 has nine exons and eight introns, and AlIRF9 was expressed in various tissues, containing the stomach, spleen, brain, skin, and liver, among which the highest expression was in the spleen. Moreover, AlIRF9 transcriptions in the spleen, liver, kidney, and brain were increased by S. iniae infection. By overexpression of AlIRF9, AlIRF9 is shown as a whole-cell distribution, mainly concentrated in the nucleus. Moreover, the promoter fragments of -415 to +192 bp and -311 to +196 bp were regarded as core sequences from two AlIFNa3s. The point mutation analyses verified that AlIFNa3 and AlIFNa3-like transcriptions are dependent on both M3 sites with AlIRF9. In addition, AlIRF9 could greatly reduce two AlIFNa3s and interferon signalling factors expressions. These results showed that in A. latus, both AlIFNa3 and AlIFNa3-like can mediate the regulation of AlIRF9 in the process of infection with S. iniae.
Collapse
Affiliation(s)
- Hong-Xi He
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| |
Collapse
|
5
|
Periyasamy T, Ming-Wei L, Velusamy S, Ahamed A, Khan JM, Pappuswamy M, Viswakethu V. Functional characterization of Malabar grouper (Epinephelus malabaricus) interferon regulatory factor 9 involved in antiviral response. Int J Biol Macromol 2024; 266:131282. [PMID: 38565369 DOI: 10.1016/j.ijbiomac.2024.131282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
IRF9 is a crucial component in the JAK-STAT pathway. IRF9 interacts with STAT1 and STAT2 to form IFN-I-stimulated gene factor 3 (ISGF3) in response to type I IFN stimulation, which promotes ISG transcription. However, the mechanism by which IFN signaling regulates Malabar grouper (Epinephelus malabaricus) IRF9 is still elusive. Here, we explored the nd tissue-specific mRNA distribution of the MgIRF9 gene, as well as its antiviral function in E. malabaricus. MgIRF9 encodes a protein of 438 amino acids with an open reading frame of 1317 base pairs. MgIRF9 mRNA was detected in all tissues of a healthy M. grouper, with the highest concentrations in the muscle, gills, and brain. It was significantly up-regulated by nervous necrosis virus infection and poly (I:C) stimulation. The gel mobility shift test demonstrated a high-affinity association between MgIRF9 and the promoter of zfIFN in vitro. In GK cells, grouper recombinant IFN-treated samples showed a significant response in ISGs and exhibited antiviral function. Subsequently, overexpression of MgIRF9 resulted in a considerable increase in IFN and ISGs mRNA expression (ADAR1, ADAR1-Like, and ADAR2). Co-immunoprecipitation studies demonstrated that MgIRF9 and STAT2 can interact in vivo. According to the findings, M. grouper IRF9 may play a role in how IFN signaling induces ISG gene expression in grouper species.
Collapse
Affiliation(s)
- Thirunavukkarasu Periyasamy
- Laboratory of Molecular Virology and Immunology, Department of Aquaculture, The College of Life Science, National Taiwan Ocean University, Keelung 202, Taiwan; Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India.
| | - Lu Ming-Wei
- Laboratory of Molecular Virology and Immunology, Department of Aquaculture, The College of Life Science, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Sharmila Velusamy
- Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India
| | - Anis Ahamed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manikantan Pappuswamy
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka 560029, India
| | - Velavan Viswakethu
- Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India
| |
Collapse
|
6
|
Guo HY, He HX, Liu BS, Zhang N, Zhu KC, Zhang DC. The regulatory mechanisms of IRF7 mediated by the type I IFN signalling pathway against Streptococcus iniae in yellowfin seabream, Acanthopagrus latus (Hottuyn, 1782). Int J Biol Macromol 2023; 247:125635. [PMID: 37399879 DOI: 10.1016/j.ijbiomac.2023.125635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Interferon regulatory factor 7 (IRF7) regulates type I interferon (IFN) genes via combining to the ISRE region in the immune response against bacteria. Streptococcus iniae is one of the dominant pathogenic bacteria of yellowfin seabream, Acanthopagrus latus. However, the regulatory mechanisms of A. latus IRF7 (AlIRF7) mediated by the type I IFN signalling pathway against S. iniae was ambiguously. In the present study, IRF7, and two IFNa3s (IFNa3 and IFNa3-like) were authenticated from A. latus. The total length of AlIRF7 cDNA is 2142 bp, containing a 1314 bp open reading frame (ORF) encoding an inferred 437 amino acids (aa). Three typical regions, a serine-rich domain (SRD), a DNA-binding domain (DBD), and an IRF association domain (IAD), are conserved in AlIRF7. Furthermore, AlIRF7 is fundamentally expressed in various kinds of organs, with high levels in the spleen and liver. Additionally, S. iniae challenge promoted AlIRF7 expression in the spleen, liver, kidney, and brain. AlIRF7 is confirmed to be located at the nucleus and cytoplasm by overexpression of AlIRF7. Moreover, truncation mutation analyses shows that the regions, -821 bp to +192 bp and -928 bp to +196 bp, were known as core promoters from AlIFNa3 and AlIFNa3-like, respectively. The point mutation analyses and electrophoretic mobile shift assay (EMSA) verified that AlIFNa3 and AlIFNa3-like transcriptions are depended on the M2/5 and M2/3/4 binding sites with AlIRF7 regulation, respectively. Additionally, an overexpression experiment showed that AlIRF7 can dramatically decrease the mRNA levels of two AlIFNa3s and interferon signalling molecules. These results suggest that two IFNa3s may mediate the regulation of AlIRF7 in the immune responses of A. latus against S. iniae infection.
Collapse
Affiliation(s)
- Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Hong-Xi He
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| |
Collapse
|
7
|
Crossman AH, Ignatz EH, Hall JR, Kumar S, Fast MD, Eslamloo K, Rise ML. Basal and immune-responsive transcript expression of two Atlantic salmon interferon regulatory factor 2 (irf2) paralogues. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 143:104689. [PMID: 36934886 DOI: 10.1016/j.dci.2023.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Atlantic salmon (Salmo salar) is one of the most economically important aquaculture species globally. However, disease has become a prevalent threat to this industry. A thorough understanding of the genes and molecular pathways involved in the immune responses of Atlantic salmon is imperative for selective breeding of disease-resistant broodstock, as well as developing new diets and vaccines to mitigate the impact of disease. Members of the interferon regulatory factor (IRF) family of transcription factors play roles in the induction of interferons and other cytokines involved in host immune responses to intracellular and parasitic pathogens. IRF family members also play diverse roles in other biological processes, such as stress response, reproduction and development. The current study focused on one member of the IRF family: interferon regulatory factor 2 (irf2). As previously shown, due to the genome duplication that occurred ∼80 million years ago in the salmonid lineage, there are two irf2 paralogues in the Atlantic salmon genome. In silico analyses at the cDNA and deduced amino acid levels were conducted followed by phylogenetic tree construction with IRF2 amino acid sequences from various ray-finned fishes, cartilaginous fish and tetrapods. qPCR was then used to analyze paralogue-specific irf2 constitutive expression across 17 adult tissues, as well as responses to the viral mimic pIC (i.e., synthetic double-stranded RNA analog) in cultured macrophage-like cells (in vitro) and to infection with the Gram-negative bacterium Moritella viscosa in skin samples (in vivo). The qPCR studies showed sex- and paralogue-specific differences in expression across tissues. For example, expression of both paralogues was higher in ovary than in testes; expression (considering both sexes together) was highest for irf2-1 in gonad and for irf2-2 in hindgut. Both irf2 paralogues were responsive to pIC stimulation, but varied in their induction level, with irf2-1 having an overall stronger response than irf2-2. Only one paralogue, irf2-2, was significantly responsive to M. viscosa infection. Differences in irf2-1 and irf2-2 transcript expression levels constitutively across tissues, and in response to pIC and M. viscosa, may suggest neo- or subfunctionalization of the duplicated genes. This novel information expands current knowledge and provides insight into how genome duplication events may impact host regulation of important immune markers.
Collapse
Affiliation(s)
- Aleksandra H Crossman
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Eric H Ignatz
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Jennifer R Hall
- Memorial University, Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Surendra Kumar
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Mark D Fast
- Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, PE, CIA 4P3, Canada.
| | - Khalil Eslamloo
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Matthew L Rise
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
8
|
Dong X, Li Z, Zhao S, Liu J, Luo S, Zhang Y, Xu Q, Chen G, Zhang Y. Molecular cloning and expression analysis of Myxovirus resistance gene in Yangzhou goose ( Anser cygnoides domesticus). Br Poult Sci 2023:1-9. [PMID: 36637331 DOI: 10.1080/00071668.2022.2163617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1. Myxovirus resistance (Mx) is a protein produced by the interferon-induced natural immune response with broad spectrum antiviral function. However, the role and expression characteristics of the Mx gene in immune defence against viral infection in goose have not yet been reported.2. This study found a 2576 bp genomic sequence and a 2112 bp mRNA sequence for Mx, encoding 703 amino acids. Multiple sequence alignments of the amino acid sequences showed that the Yangzhou goose Mx (goMx) had 86.99% similarity to the mallard duck (Anas platyrhynchos).3. Tissue-specific expression profiling revealed that the expression of goMx was highest in the lung and spleen. Both poly (I:C) and GPV were found to elevate the expression of goMx. The upregulated expression of goMx was associated with interferon pathway-related genes IRF7, JAK1, STAT1, and STAT2. Furthermore, overexpression of goMx significantly activated the transcription of poly (I:C) induced TNF-α, IL-1β, IL-6, and IL-18.4. The findings of this study suggest that the goMx modulation of the antiviral response is mediated by the interferon pathway.
Collapse
Affiliation(s)
- X Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Z Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - S Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - J Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - S Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Q Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - G Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
9
|
Li H, Chen X, Zhu Y, Liu R, Zheng L, Shan S, Zhang F, An L, Yang G. Molecular characterization and immune functional analysis of IRF2 in common carp (Cyprinus carpio L.): different regulatory role in the IFN and NF-κB signalling pathway. BMC Vet Res 2021; 17:303. [PMID: 34503504 PMCID: PMC8428054 DOI: 10.1186/s12917-021-03012-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/02/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Interferon regulatory factor 2 (IRF2) is an important transcription factor, which can regulate the IFN response and plays a role in antiviral innate immunity in teleost. RESULTS In the present study, the full-length cDNA sequence of IRF2 (CcIRF2) was characterized in common carp (Cyprinus carpio L.), which encoded a protein containing a conserved DNA-binding domain (DBD) and an IRF-associated domain (IAD). Phylogenetic analysis showed that CcIRF2 was most closely related with IRF2 of Ctenopharyngodon idella. CcIRF2 transcripts were detectable in all examined tissues, with higher expression in the gills, spleen and brain. CcIRF2 expression was upregulated in immune-related tissues of common carp upon polyinosinic:polycytidylic acid (poly (I:C)) and Aeromonas hydrophila stimulation and induced by poly (I:C), lipopolysaccharide (LPS), peptidoglycan (PGN) and flagellin in the peripheral blood leucocytes (PBLs) and head kidney leukocytes (HKLs). In addition, overexpression of CcIRF2 decreased the expression of IFN and IFN-stimulated genes (ISGs), and a dual-luciferase reporter assay revealed that CcIRF2 could increase the activation of NF-κB. CONCLUSIONS These results indicate that CcIRF2 participates in antiviral and antibacterial immune response and negatively regulates the IFN response, which provide a new insight into the regulation of IFN system in common carp, and are helpful for the prevention and control of infectious diseases in carp farming.
Collapse
Affiliation(s)
- Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| | - Xinping Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Yaoyao Zhu
- College of Fisheries and Life Science, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya, 572022, China
| | - Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Linlin Zheng
- Jinan Eco-environmental Monitoring Center of Shandong Province, No. 17199 Lvyou Road, Jinan, 250101, China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Fumiao Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
10
|
Wang Y, Yang F, Yin H, He Q, Lu Y, Zhu Q, Lan X, Zhao X, Li D, Liu Y, Xu H. Chicken interferon regulatory factor 7 (IRF7) can control ALV-J virus infection by triggering type I interferon production through affecting genes related with innate immune signaling pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104026. [PMID: 33497733 DOI: 10.1016/j.dci.2021.104026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
In order to breed new birds with strong disease resistance, it is necessary to first understand the mechanism of avian antiviral response. Interferon regulatory factor 7 (IRF7) is not only a member of type I interferons (IFNs) regulatory factor (IRFs) family, but also a major regulator of the IFN response in mammals. However, whether IRF7 is involved in the host innate immune response remains unclear in poultry, due to the absence of IRF3. Here, we first observed by HE stains that with the increase of the time of ALV-J challenge, the thymus was obviously loose and swollen, the arrangement of liver cell was disordered, and the bursa of fabricius formed vacuolated. Real-time PCR detection showed that the expression level of IRF7 gene and related immune genes in ALV-J group was significantly higher than that in control group (P < 0.05). To further study the role of chicken IRF7 during avian leukosis virus subgroup J (ALV-J) infection, we constructed an induced IRF7 overexpression and interfered chicken embryo fibroblasts (CEFs) cell and performed in vitro infection using low pathogenic ALV-J and virus analog poly(I:C). In ALV-J and poly(I:C) stimulated CEFs cells, the expression level of STAT1, IFN-α, IFN-β, TLR3 and TLR7 were increased after IRF7 overexpressed, while the results were just the opposite after IRF7 interfered, which indicating that IRF7 may be associated with Toll-like receptor signaling pathway and JAK-STAT signaling pathway. These findings suggest that chicken IRF7 is an important regulator of IFN and is involved in chicken anti-ALV-J innate immunity.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Fuling Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Huadong Yin
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Qijian He
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Yuxiang Lu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Qing Zhu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, 2# Tiansheng Road, Beibei District Chongqing, 400715, China
| | - Xiaoling Zhao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Yiping Liu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Hengyong Xu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China.
| |
Collapse
|
11
|
Wu Y, Zhou Y, Cao Z, Chen X, Du H, Sun Y. Interferon regulatory factor 7 contributes to the host response during Vibrio harveyi infection in the golden pompano Trachinotus ovatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103959. [PMID: 33316357 DOI: 10.1016/j.dci.2020.103959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Vibrio harveyi is regarded as serious pathogen for marine fishes. However, host defense mechanisms involved in V. harveyi infection remain incompletely defined. The transcription factor IFN regulatory factor 7 (IRF7) is largely associated with host defense against viral infections, and the role of IRF7 during V. harveyi infection in fish has not been well illuminated previously. In this study, IRF7 from golden pompano (Trachinotus ovatus) was characterized (TroIRF7). The TroIRF7 gene is 1323 bp, which encodes 440 amino acid residues. Multiple amino acid alignments of TroIRF7 shows 30.37%-80.18% identity with other fish IRF7s, including Epinephelus coioides (80.18%), Larimichthys crocea (79.72%), Collichthys lucidus (79.26%), Miichthys miiuy (79.26%), Channa argus (78.77%), Cynoglossus semilaevis (72.67%), and Gadus morhua (65.23%). Like other IRF7s, TroIRF7 also contains 3 conserved domains: an N-terminal DNA-binding domain (DBD), an IRF association domain (IAD), and a C-terminal serine-rich domain (SRD). In the DBD, 4-5 conserved tryptophans were observed, which is a characteristic unique to all fish IRF7 members. TroIRF7 was constitutively expressed, with high levels in gill, head kidney, spleen, skin, and intestine. V. harveyi infection-induced TroIRF7 transcripts significantly up-regulation and translocation to the nucleus. TroIRF7 overexpression promote the fish to inhibit the replication of V. harveyi. And TroIRF7 knockdown led to decreased bacterial clearance in fish tissue. Furthermore, over-expression of TroIRF7 resulted in an increased production of interferon a3 and IFN signaling molecule in the spleen, suggesting that V. harveyi activates the IRF7- IFN pathway. These results suggest that TroIRF7 is an important component of immune responses against V. harveyi infection.
Collapse
Affiliation(s)
- Ying Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Zhenjie Cao
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Xiaojuan Chen
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Hehe Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| |
Collapse
|
12
|
Guan Y, Chen X, Luo T, Ao J, Ai C, Chen X. Molecular characterization of the interferon regulatory factor (IRF) family and functional analysis of IRF11 in the large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2020; 107:218-229. [PMID: 33011435 DOI: 10.1016/j.fsi.2020.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Interferon regulatory factors (IRFs) are a family of transcription factors involved in regulating interferon (IFN) responses and immune cell development. A total of 11 IRFs have been identified in teleost fish. Here, a complete repertoire of 11 IRFs (LcIRFs) in the large yellow croaker (Larimichthys crocea) was characterized with the addition of five newly identified members, LcIRF2, LcIRF5, LcIRF6, LcIRF10, and LcIRF11. These five LcIRFs possess a DNA-binding domain (DBD) at the N-terminal that contains five to six conserved tryptophan residues and an IRF-association domain (IAD) or IAD2 at the C-terminal that is responsible for interaction with other IRFs or co-modulators. Phylogenetic analysis showed that the 11 LcIRFs were divided into four clades including the IRF1 subfamily, IRF3 subfamily, IRF4 subfamily, and IRF5 subfamily. These are evolutionarily related to their respective counterparts in other fish species. The 11 LcIRFs were constitutively expressed in all examined tissues, although at different expression levels. Upon polyinosinic: polycytidylic acid (poly (I:C)) stimulation, the expression of all 11 LcIRFs was significantly induced in the head kidney and reached the highest levels at 6 h post-stimulation (except LcIRF4). LcIRF1, LcIRF3, LcIRF7, LcIRF8, and LcIRF10 were more strongly induced by poly (I:C) than the other LcIRFs. Significant induction of all LcIRFs was observed in the spleen, with LcIRF2, LcIRF5, LcIRF6, LcIRF7, LcIRF9, and LcIRF11 reaching their highest levels at 48 h LcIRF3 and LcIRF11 showed a stronger response to poly (I:C) in the spleen than the other LcIRFs. In addition, LcIRF1, LcIRF3, LcIRF7, LcIRF9, LcIRF10, and LcIRF11 were significantly induced by Vibro alginolyticus in both the spleen and the head kidney, with LcIRF1 strongly induced. Thus, LcIRFs exhibited differential inducible expression patterns in response to different stimuli in different tissues, suggesting that LcIRFs have different functions in the regulation of immune responses. Furthermore, overexpression of LcIRF11 activated the promoters of LcIFNc, LcIFNd, and LcIFNh, and differentially induced the expression levels of LcIFNs and IFN-stimulated genes (ISGs). Overexpression of LcIRF11 in epithelioma papulosum cyprinid (EPC) cells inhibited the replication of viral genes after infection of spring viremia of carp virus (SVCV). These data suggested that LcIRF11 may function as a positive regulator in regulating the cellular antiviral response through induction of type I IFN expression. Taken together, the present study reported molecular characterization and expression analysis of 11 IRFs in the large yellow croaker, and investigated the role of LcIRF11 in the antiviral response, which laid a good foundation for further study on the evolution and functional characterization of fish IRFs.
Collapse
Affiliation(s)
- Yanyun Guan
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xiaojuan Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Tian Luo
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, PR China
| | - Chunxiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China.
| | - Xinhua Chen
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.
| |
Collapse
|
13
|
Zhu Y, Shan S, Zhao H, Liu R, Wang H, Chen X, Yang G, Li H. Identification of an IRF10 gene in common carp (Cyprinus carpio L.) and analysis of its function in the antiviral and antibacterial immune response. BMC Vet Res 2020; 16:450. [PMID: 33213475 PMCID: PMC7678311 DOI: 10.1186/s12917-020-02674-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Interferon (IFN) regulatory factors (IRFs), as transcriptional regulatory factors, play important roles in regulating the expression of type I IFN and IFN- stimulated genes (ISGs) in innate immune responses. In addition, they participate in cell growth and development and regulate oncogenesis. Results In the present study, the cDNA sequence of IRF10 in common carp (Cyprinus carpio L.) was characterized (abbreviation, CcIRF10). The predicted protein sequence of CcIRF10 shared 52.7–89.2% identity with other teleost IRF10s and contained a DNA-binding domain (DBD), a nuclear localization signal (NLS) and an IRF-associated domain (IAD). Phylogenetic analysis showed that CcIRF10 had the closest relationship with IRF10 of Ctenopharyngodon idella. CcIRF10 transcripts were detectable in all examined tissues, with the highest expression in the gonad and the lowest expression in the head kidney. CcIRF10 expression was upregulated in the spleen, head kidney, foregut and hindgut upon polyinosinic:polycytidylic acid (poly I:C) and Aeromonas hydrophila stimulation and induced by poly I:C, lipopolysaccharide (LPS) and peptidoglycan (PGN) in peripheral blood leucocytes (PBLs) and head kidney leukocytes (HKLs) of C. carpio. In addition, overexpression of CcIRF10 was able to decrease the expression of the IFN and IFN-stimulated genes PKR and ISG15. Conclusions These results indicate that CcIRF10 participates in antiviral and antibacterial immunity and negatively regulates the IFN response, which provides new insights into the IFN system of C. carpio. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02674-z.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.,College of Fisheries and Life Science, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya, 572022, China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Huaping Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Hui Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Xinping Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
14
|
Yu Y, Cheng L, Xu Z, Zhang Y, Ou C, Wang Q, Gao P, Ma J. Tissue distribution and developmental changes of interferon regulatory factors in chickens and effects of infectious bursal disease virus infection. Microb Pathog 2020; 152:104601. [PMID: 33137404 DOI: 10.1016/j.micpath.2020.104601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
Interferon regulatory factors (IRFs) are a family of transcription factors that play a role in a variety of biological processes including immune regulation of interferon and expression of inflammatory cytokines. However, the data on IRFs are rather limited in chickens. In the present study, qRT-PCR was used to study the tissue distribution of IRFs in chickens at D15 (the 15th day of raising) and developmental changes of all chIRFs (Chicken interferon regulatory factors) in BF from E15 (the 15th day of incubation) to D15. The effects of IBDV infection with chickens on the transcriptional level of chIRFs were also investigated. The results showed: (1) chIRF1 mRNA was expressed much more abundantly in intestinal tract, chIRF2, chIRF6, chIRF7, chIRF8 and chIRF10 distributed mainly in liver or/and kidney. The expression of chIRF5 was mainly in spleen and chIRF4 distributed uniquely abundantly in BF. (2) The mRNA expression levels of chIRF5, chIRF7, chIRF8 and chIRF10 was low before hatching of chicken and at D1 and increased significantly from D5 till to the experiment end and the fold change of chIRF5 at D10 and chIRF7 at D5 reached 41.0-fold and 15.7-fold compared to that of E15, respectively (P < 0.05). ChIRF4 mRNA level was always high during the whole experiment except for E15 and it was 11.9-fold at the highest time point than that of E15 (the lowest time point). (3) When chicken was infected with IBDV, the expression levels of chIRF2, chIRF7 and chIRF10 mRNA had the tendency of increasing first and then decreasing but they peaked at 1dpi, 2 dpi, and 3dpi, respectively. The expression of chIRF5 mRNA was suppressed obviously during the whole experiment stage in IBDV-infected chicken. And chIRF4 expression was up-regulated transitorily at 1dpi and then was suppressed on a very low level till to the experiment end. Conclusion: The chIRFs were constitutively expressed in different tissues examined and has tissue-specific expression. Of them, chIRF2, chIRF4, chIRF5, chIRF7, chIRF8 and chIRF10 were related closely with the development or immune response of BF, and when chicken was infected with IBDV, some of them were activated, earlier or later on, some of them were suppressed. These findings would help to sieve out a few antiviral chIRF candidate gene to improve the host's innate immune and provide a foundation of the further exploiting a new vaccine adjuvant.
Collapse
Affiliation(s)
- Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Lingling Cheng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Zhiyong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Changbo Ou
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
| |
Collapse
|
15
|
Zhu KC, Liu BS, Zhang N, Guo HY, Guo L, Jiang SG, Zhang DC. Interferon regulatory factor 2 plays a positive role in interferon gamma expression in golden pompano, Trachinotus ovatus (Linnaeus 1758). FISH & SHELLFISH IMMUNOLOGY 2020; 96:107-113. [PMID: 31805410 DOI: 10.1016/j.fsi.2019.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/21/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
In fish, interferon (IFN) regulatory factor 2 (IRF2) is a regulator of the type I IFN-dependent immune response, thereby playing a crucial role in innate immunity. However, the specific mechanism by which IRF2 regulates type II IFN in fish remains unclear. In the present study, first, to analyse the potential role of golden pompano (Trachinotus ovatus) IRF2 (ToIRF2) in the immune response, the mRNA level of ToIRF2 was detected by quantitative real-time polymerase chain reaction (qRT-PCR) after parasite infection. ToIRF2 was upregulated at early time points in both local infection sites (skin and gill) and system immune tissues (liver, spleen, and head-kidney) after stimulation with Cryptocaryon irritans. Second, to investigate the modulation effect of ToIRF2 on type II IFN (interferon gamma, IFNγ) expression, a promoter analysis was performed using progressive deletion mutations of ToIFNγ. The expression level of IFNγ-5 was highest among the five truncated mutants in response to ToIRF2, indicating that the core promoter region was located from -189 bp to +120 bp, which included the IRF2 binding sites. Mutation analyses showed that the activity of the ToIFNγ promoter dramatically decreased after the targeted mutation of the M1, M2 or M3 binding sites. Additionally, electrophoretic mobile shift assay (EMSA) confirmed that IRF2 interacted with the M1 binding site in the ToIFNγ promoter region to dominate ToIFNγ expression. Finally, overexpressing ToIRF2 in vitro notably increased ToIFNγ and the transcription of several type II IFN/IRF-based signalling pathway genes. These results suggested that ToIRF2 might be involved in the host defence against C. irritans infection and contribute to a better understanding of the transcriptional mechanisms by which ToIRF2 regulates type II IFN in fish.
Collapse
Affiliation(s)
- Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
16
|
Zhu KC, Guo HY, Zhang N, Guo L, Liu BS, Jiang SG, Zhang DC. Functional characterization of interferon regulatory factor 2 and its role in the transcription of interferon a3 in golden pompano Trachinotus ovatus (Linnaeus 1758). FISH & SHELLFISH IMMUNOLOGY 2019; 93:90-98. [PMID: 31326586 DOI: 10.1016/j.fsi.2019.07.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Similar to mammals, fish possess interferon (IFN) regulatory factor 2 (IRF2)-dependent type I IFN responses. Nevertheless, the detailed mechanism through which IRF2 regulates type I IFNa3 remains largely unknown. In the present study, we first identified two genes from golden pompano (Trachinotus ovatus), IRF2 (ToIRF2) and IFNa3 (ToIFNa3), in the IFN/IRF-based signalling pathway. The open reading frame (ORF) sequence of ToIRF2 encoded 335 amino acids possessing four typical characteristic domains, including a conserved DNA-binding domain (DBD), an interferon association domain 2 (IAD2), a transcriptional activation domain (TAD), and a transcriptional repression domain (TRD). Furthermore, transcripts of ToIRF2 were significantly upregulated after stimulation by polyinosinic: polycytidylic acid [poly (I:C)], lipopolysaccharide (LPS) and flagellin in immune-related tissues (blood, liver, and head-kidney). Moreover, to investigate whether ToIRF2 was a regulator of ToIFNa3, promoter analysis was performed. The results showed that the region from -896 bp to -200 bp is defined as the core promoter using progressive deletion mutations of IFNa3. Additionally, ToIRF2 overexpression led to a clear time-dependent enhancement of ToIFNa3 promoter expression in HEK293T cells. Mutation analyses indicated that the activity of the ToIFNa3 promoter significantly decreased after targeted mutation of M4/5 binding sites. Electrophoretic mobile shift assays (EMSAs) verified that IRF2 interacted with the binding site of the ToIFNa3 promoter region to regulate ToIFNa3 transcription. Last, the promoter activity of ToIFNa3-2 was more responsive to treatment with poly (I:C) than LPS and flagellin. Furthermore, overexpression of ToIRF2 in vitro obviously increased the expression of several IFN/IRF-based signalling pathway genes after poly (I:C) abduction. In conclusion, the present study provides the first evidence of the positive regulation of ToIFNa3 transcription by ToIRF2 and contributes to a better understanding of the transcriptional mechanisms of ToIRF2 in fish.
Collapse
Affiliation(s)
- Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
17
|
Liu T, Han Y, Chen S, Zhao H. Global characterization and expression analysis of interferon regulatory factors in response to Aeromonas hydrophila challenge in Chinese soft-shelled turtle (Pelodiscus sinensis). FISH & SHELLFISH IMMUNOLOGY 2019; 92:821-832. [PMID: 31299462 DOI: 10.1016/j.fsi.2019.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/29/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Interferon regulatory factors (IRFs) were originally identified as transcriptional regulators of type I interferon (IFN) expression. Recent studies have widely identified the roles of IRFs as central mediators in immune defence against pathogen infection. However, the functional roles and expression profiles of IRFs are still unclear in Chinese soft-shelled turtle (Pelodiscus sinensis). In this study, eight members of the PsIRF family were identified in P. sinensis through a genome-wide search. These PsIRF genes contained the conserved domains of this group of proteins, including the N-terminal DNA-binding domain and C-terminal IRF-associated domain. Phylogenetic analyses among IRF homologs showed that the PsIRFs shared the closest phylogenetic relationships with IRFs of other turtle species. Further molecular evolutionary analyses revealed evolutionary conservation of the PsIRF genes. Moreover, expression profiling demonstrated that eight PsIRF genes exhibited constitutive expression in different tissues of P. sinensis. Several genes, such as PsIRF1, PsIRF2 and PsIRF4, showed predominant expression in the spleen and were significantly upregulated upon Aeromonas hydrophila infection. Remarkably, PsIRF1, PsIRF2 and PsIRF4 exhibited rapid increases in their protein expression levels post-infection and were mainly expressed in the splenic red pulp according to immunohistochemistry analysis. These results provide rich resources for further exploration of the roles of PsIRFs in immune regulation in P. sinensis and other turtles.
Collapse
Affiliation(s)
- Tengfei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Yawen Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Huiying Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
18
|
Inkpen SM, Solbakken MH, Jentoft S, Eslamloo K, Rise ML. Full characterization and transcript expression profiling of the interferon regulatory factor (IRF) gene family in Atlantic cod (Gadus morhua). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:166-180. [PMID: 30928323 DOI: 10.1016/j.dci.2019.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Atlantic cod (Gadus morhua) represents a unique immune system among teleost fish, making it a species of interest for immunological studies, and especially for investigating the evolutionary history of immune gene families. The interferon regulatory factor (IRF) gene family encodes transcription factors which function in the interferon pathway, but also in areas including leukocyte differentiation, cell growth, autoimmunity, and development. We previously characterized several IRF family members in Atlantic cod (Irf4a, Irf4b, Irf7, Irf8, and two Irf10 splice variants) at the cDNA and putative amino acid levels, and in the current study we took advantage of the new and improved Atlantic cod genome assembly in combination with rapid amplification of cDNA ends (RACE) to characterize the remaining family members (i.e. Irf3, Irf5, Irf6, Irf9, and two Irf2 splice variants). Real-time quantitative PCR (QPCR) was used to investigate constitutive expression of all IRF transcripts during embryonic development, suggesting several putative maternal transcripts, and potential stage-specific roles. QPCR studies also showed 11 of 13 transcripts were responsive to stimulation with poly(I:C), while 6 of 13 transcripts were responsive to lipopolysaccharide (LPS) in Atlantic cod head kidney macrophages, indicating roles for cod IRF family members in both antiviral and antibacterial responses. This study is the first to investigate expression of the complete IRF family in Atlantic cod, and suggests potential novel roles for several of these transcription factors within immunity as well as in early development of this species.
Collapse
Affiliation(s)
- Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada.
| | - Monica H Solbakken
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada.
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada.
| |
Collapse
|
19
|
Zhu Y, Shan S, Feng H, Jiang L, An L, Yang G, Li H. Molecular characterization and functional analysis of interferon regulatory factor 9 (irf9) in common carp Cyprinus carpio: a pivotal molecule in the Ifn response against pathogens. JOURNAL OF FISH BIOLOGY 2019; 95:510-519. [PMID: 31059592 DOI: 10.1111/jfb.14000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
In the present study, interferon (IFN) regulatory factor (IRF) 9 gene (irf9) was identified and characterized in common carp Cyprinus carpio. The predicted protein sequence of Irf9 contains a DNA binding domain (DBD) that possess five tryptophans, an IRF association domain (IAD) and two nuclear localisation signals (NLS). Alignment of Irf9 of C. carpio with the corresponding Irf9 proteins of other species showed that the DBD is more highly conserved than the IAD. The putative Irf9 protein sequence of C. carpio shares higher identities with teleosts (53.8-82.3%) and lower identities with mammals (30.2-31.0%). Phylogenetic studies of the putative amino-acid sequence of IRF9 based on the neighbour-joining method showed that Irf9 of C. carpio has the closest relationship with the grass carp Ctenopharyngodon idella. Tissue distribution analysis showed that irf9 transcripts were detectable in all examined tissues with the highest expression in the skin and the lowest expression in the head kidney. Poly I:C and Aeromonas hydrophila stimulation up-regulated irf9 expression in the spleen, head kidney, foregut and hindgut at different time intervals. In addition, irf9 was induced by Poly I:C and lipopolysaccharides (LPS) in vitro. These results indicate that Irf9 participates in antiviral and antibacterial immunity. Transfection of irf9 up-regulated the expression of cytokines, including type I IFN, protein kinase R (PKR), interferon-stimulated gene (ISG)15 and tumour necrosis factor (TNF)α in epithelioma papulosum cyprini cells (EPC) upon poly I:C and LPS stimulation. A dual-luciferase reporter assay revealed that Irf9 has no effect on NF-κB activation. The present study on Irf9 provides new insights into the IFN system of C. carpio and a valuable experimental platform for future studies on the immune system of fish.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, People's Republic of China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, People's Republic of China
| | - Hanxiao Feng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, People's Republic of China
| | - Lei Jiang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, People's Republic of China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, People's Republic of China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, People's Republic of China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, People's Republic of China
| |
Collapse
|
20
|
Paul A, Tang TH, Ng SK. Interferon Regulatory Factor 9 Structure and Regulation. Front Immunol 2018; 9:1831. [PMID: 30147694 PMCID: PMC6095977 DOI: 10.3389/fimmu.2018.01831] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/25/2018] [Indexed: 12/24/2022] Open
Abstract
Interferon regulatory factor 9 (IRF9) is an integral transcription factor in mediating the type I interferon antiviral response, as part of the interferon-stimulated gene factor 3. However, the role of IRF9 in many important non-communicable diseases has just begun to emerge. The duality of IRF9's role in conferring protection but at the same time exacerbates diseases is certainly puzzling. The regulation of IRF9 during these conditions is not well understood. The high homology of IRF9 DNA-binding domain to other IRFs, as well as the recently resolved IRF9 IRF-associated domain structure can provide the necessary insights for progressive inroads on understanding the regulatory mechanism of IRF9. This review sought to outline the structural basis of IRF9 that guides its regulation and interaction in antiviral immunity and other diseases.
Collapse
Affiliation(s)
| | | | - Siew Kit Ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
21
|
Chen S, Wang T, Liu P, Yang C, Wang M, Jia R, Zhu D, Liu M, Yang Q, Wu Y, Zhao X, Cheng A. Duck interferon regulatory factor 7 (IRF7) can control duck Tembusu virus (DTMUV) infection by triggering type I interferon production and its signal transduction pathway. Cytokine 2018; 113:31-38. [PMID: 29885990 DOI: 10.1016/j.cyto.2018.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/02/2018] [Accepted: 06/01/2018] [Indexed: 12/21/2022]
Abstract
Human interferon regulatory factor 7 (IRF7) plays an important role in the innate antiviral immune response. To date, the characteristics and functions of waterfowl IRF7 have not been clarified. This study reports the cDNA sequence, tissue distribution, and antiviral function of duck IRF7. The duck IRF7 gene has a 1536-bp open read frame (ORF) and encodes a 511-amino acid polypeptide. IRF7 is highly expressed in the blood and pancreas of 5-day-old ducklings and in the small intestine, large intestine and liver of 60-day-old adult ducks. Indirect immunofluorescence assay (IFA) showed that over-expressed duck IRF7 was located in both the cytoplasm and nucleus of transfected duck embryo fibroblasts (DEFs), which was also observed in poly(I:C)-stimulated or duck Tembusu virus (DTMUV)-infected DEFs. Titres and copies of DTMUV were significantly reduced in DEFs overexpressing IRF7. Moreover, overexpression of duck IRF7 significantly induced IFNα/β, but not IFNγ, mRNA expression, and transcription of downstream interferon-stimulated genes (ISGs), such as MX, OASL and IL-6, which were significantly induced by poly(I:C) co-stimulation, was enhanced. Additionally, duck IRF7 overexpression can significantly activate the IFNβ promoter in DEFs. Collectively, duck IRF7 plays an important role in host anti-DTMUV immune regulation, which depends on type I interferons and associated signal transduction pathway(s).
Collapse
Affiliation(s)
- Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Tao Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Peng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
22
|
Zhao X, Hong X, Chen R, Yuan L, Zha J, Qin J. New cytokines and TLR pathway signaling molecules in Chinese rare minnow (Gobiocypris rarus): Molecular characterization, basal expression, and their response to chlorpyrifos. CHEMOSPHERE 2018; 199:26-34. [PMID: 29427811 DOI: 10.1016/j.chemosphere.2018.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
In this study, the cDNA fragments of cytokines (il-8) and toll-like receptor (TLR) pathway signaling molecules (myd88, irak-1, irf5, and irf7) in the Chinese rare minnow were cloned and exhibited a high amino-acid sequence identity compared to other cyprinid fish orthologs. The mRNA expressions of these genes in the different tissues (liver, brain, spleen, kidney, and skin) were observed. The highest expression levels of myd88, irak-1, and irf5 were detected in the spleen, whereas il-8 and irf7 were detected in the kidney and liver respectively. The mRNA expression of irak-1, irf5, and irf7 in the liver from 0.1 μg/L and 0.5 μg/L CPF treatments were significantly increased on day 7 (p < 0.05), whereas the levels of only irak-1 and irf7 were markedly increased on day 28 (p < 0.05). Moreover, the mRNA expression of il-8 in the spleen following 0.5 μg/L CPF treatments was significantly decreased on day 7 (p < 0.05), whereas significantly decrease were observed in the levels of irf7 in the spleen at 2.5 μg/L CPF on days 7 and 28 (p < 0.05). The 0.1 μg/L and 0.5 μg/L of CPF significantly induced the levels of irak-1 and myd88 in the spleen after 28 d exposure (p < 0.05). Therefore, the high induction of cytokines and TLR pathway signaling molecules demonstrated that Chinese rare minnow was immune-compromised exposed to CPF. Moreover, our finding indicated that these immune-related genes could be feasible to screen for substances hazardous to the immune system of fish.
Collapse
Affiliation(s)
- Xu Zhao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lilai Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jianhui Qin
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
23
|
Tang J, Jiang L, Liu W, Lou B, Wu C, Zhang J. Expression and functional characterization of interferon regulatory factors 4, 8, and 9 in large yellow croaker (Larimichthys crocea). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:35-41. [PMID: 28928075 DOI: 10.1016/j.dci.2017.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
Interferon regulatory factor (IRF)-4, 8, and 9 are essential in host defense against pathogens. Here, the full-length coding sequence (CDS), protein structure, and immune response of IRF4/8/9 (lc IRF4/8/9) were characterized in large yellow croaker (Larimichthys crocea). The open reading frame of lcIRF4, lcIRF8 and lcIRF9 encoded putative proteins of 463,422 and 406 amino acids, respectively. These IRFs share high sequence homology with other vertebrate IRFs and were constitutively expressed in all examined tissues. IRFs were upregulated following stimulation with Vibrio anguillarum in the liver, spleen, and kidney. These results suggest that IRF4/8/9 are vital in the defense of L. crocea against bacterial infection and further increase our understanding of IRFs function in innate immunity in teleosts.
Collapse
Affiliation(s)
- Jingteng Tang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province 316022, China
| | - Lihua Jiang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province 316022, China.
| | - Wei Liu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province 316022, China
| | - Bao Lou
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province 316022, China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province 316022, China
| | - Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province 316022, China.
| |
Collapse
|
24
|
Wu Z, Wang L, Xu X, Lin G, Mao H, Ran X, Zhang T, Huang K, Wang H, Huang Q, Xu Q, Hu C. Interaction of IRF9 and STAT2 synergistically up-regulates IFN and PKR transcription in Ctenopharyngodon idella. Mol Immunol 2017; 85:273-282. [PMID: 28347954 DOI: 10.1016/j.molimm.2017.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 02/01/2023]
Abstract
IRF9 is a key factor in the JAK-STAT pathway. Under the stimulation of type I IFN, IRF9 interacts with STAT1 and STAT2 to form the IFN-I-stimulated gene factor 3 (ISGF3) which activates the transcription of ISG. However, many studies also showed that the dimmer IRF9/STAT2 rather than the tripolymer IRF9/STAT1/STAT2 acts as the ISGF3 in cells in response to IFN signals. In the present study, the full-length cDNA sequence of IRF9 (termed CiIRF9, KT601055) and STAT2 (term CiSTAT2, KT781914) from grass carp were cloned and identified. A low level of constitutive expression of CiIRF9 was detected by RT-PCR in grass carp tissues, but it was significantly up-regulated by LPS and poly I:C stimulation. In vitro, a high-affinity interaction between CiIRF9 and the promoter of CiIFN or CiPKR was demonstrated by gel mobility shift assay. In vivo, the promoter activities of CiIFN and CiPKR were not only increased by transient transfection of CiIRF9, but also prominently increased by co-transfection of CiIRF9 and CiSTAT2. Moreover, the interaction of CiIRF9 and CiSTAT2 was further investigated by in vivo and in vitro protein interaction assays. Recombinant CiIRF9 and CiSTAT2, both tagged with FLAG (or HA), were expressed in HEK 293T cells by transient transfection experiment. Co-immunoprecipitation assays showed that CiIRF9 can interact with CiSTAT2 in vivo. Soluble GST-ST2-936 (containing the N-terminal and coiled-coil domain of CiSTAT2) was expressed and purified from E. coli. A GST pull-down assay suggested that GST-tagged ST2-936 efficiently bound to FLAG-tagged IRF9. The data indicated that interaction of IRF9 and STAT2 synergistically up-regulated the transcriptional level of IFN and ISG genes.
Collapse
Affiliation(s)
- Zhen Wu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Liqiang Wang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Gang Lin
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Huiling Mao
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Xiaoqin Ran
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Tao Zhang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Keyi Huang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Haizhou Wang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Qingli Huang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Qun Xu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China.
| |
Collapse
|