1
|
Wang H, Guo J, Chen X, Liu S, Li W, Yang L, Wang J, Han Y. Biphasic role of L-TGF-β2 in modulating lamprey inflammation: Insights into vertebrate immune evolution. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 167:105372. [PMID: 40252986 DOI: 10.1016/j.dci.2025.105372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
The regulation of inflammatory balance is central to immune homeostasis, with disruptions contributing to autoimmune diseases. As representatives of early vertebrates, lampreys offer a valuable model for investigating the evolutionary foundations of immune regulation. This study examines the dual role of L-TGF-β2 in modulating inflammation in lampreys, providing insights into the evolutionary origins of immune homeostasis mechanisms. Using lipopolysaccharide (LPS)-induced inflammation models, recombinant L-TGF-β2 was found to enhance leukocyte chemotaxis in quiescent states while inhibiting excessive migration during activation. Quantitative PCR revealed that L-TGF-β2 stimulates pro-inflammatory cytokine expression during early inflammatory phases and attenuates it during resolution. Tissue-specific expression patterns of TGF-β receptors indicated their potential role in mediating the distinct regulatory effects of L-TGF-β2 across diverse immune environments. These findings align with the biphasic functions of TGF-β observed in higher vertebrates, underscoring the evolutionary conservation of this signaling pathway. This research enhances understanding the functional versatility of TGF-β signaling and its pivotal role in vertebrate immune evolution, providing insights into ancient mechanisms of immune homeostasis and their modern implications for inflammatory disease research.
Collapse
Affiliation(s)
- Hao Wang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Junfu Guo
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Xuanyi Chen
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Siqi Liu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Wenna Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Lu Yang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Jianmiao Wang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yinglun Han
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
2
|
Lao J, Zhu H, You Q, Nie M, Lal Pathak J. Updates on the role of leukocyte cell-derived chemotaxin-2 in inflammation regulation and immunomodulation. Cytokine 2024; 181:156697. [PMID: 39024680 DOI: 10.1016/j.cyto.2024.156697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Leukocyte cell-derived chemotaxin-2 (LECT2), originally identified as a novel neutrophil chemokine, is a multifunctional secreted factor primarily produced in hepatocytes. However, many studies have shown that LECT2 is a pleiotropic protein that not only exerts chemotaxis properties as a cytokine but also plays an important role in inflammatory regulation and immune regulation. Pathogens such as bacteria and the role of the host immune system are key factors in the inflammatory response. In antibacterial, LECT2 can directly destroy bacterial structure or affect the normal metabolism of bacteria to inactivate bacteria and can also achieve this effect by activating immune cells and regulating cytokines. In immunomodulation, LECT2 has neutrophil chemotactic activity and regulates the quantities of Natural killer T (NKT) cells, regulatory T cells, monocytes/macrophages, granulocytes, and/or the expression of associated cytokines, thereby influencing their effect in immune reaction. Inflammation and immune regulation are closely related to a variety of diseases, such as bacterial infection, liver cirrhosis, dermatitis, coronary atherosclerotic heart disease, and so on. This review summarizes the basic and clinical studies of LECT2 in antibacterial effects and its effects on immune cells to explore the mechanism of LECT in inflammatory regulation and immune regulation in physiological and pathological conditions better.
Collapse
Affiliation(s)
- Jiaying Lao
- School of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Haohui Zhu
- School of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Qianhui You
- School of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Min Nie
- Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, China; Department of Periodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, China.
| | - Janak Lal Pathak
- Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, China.
| |
Collapse
|
3
|
Teng J, Zhao Y, Li YB, Xue LY, Zhai YX, Liu JR, Wang H, Ji XS. LECT2 mediates antibacterial immune response induced by Nocardia seriolae infection in the northern snakehead. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109708. [PMID: 38908810 DOI: 10.1016/j.fsi.2024.109708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Leukocyte-derived chemotaxin-2 (LECT2) is a multifunctional immunoregulator that plays several pivotal roles in the host's defense against pathogens. This study aimed to elucidate the specific functions and mechanisms of LECT2 (CaLECT2) in the northern snakehead (Channa argus) during infections with pathogens such as Nocardia seriolae (N. seriolae). We identified CaLECT2 in the northern snakehead, demonstrating its participation in the immune response to N. seriolae infection. CaLECT2 contains an open reading frame (ORF) of 459 bp, encoding a peptide of 152 amino acids featuring a conserved peptidase M23 domain. The CaLECT2 protein shares 62%-84 % identities with proteins from various other fish species. Transcriptional expression analysis revealed that CaLECT2 was constitutively expressed in all examined tissues, with the highest expression observed in the liver. Following intraperitoneal infection with N. seriolae, CaLECT2 transcription increased in the spleen, trunk kidney, and liver. In vivo challenge experiments showed that injecting recombinant CaLECT2 (rCaLECT2) could protect the snakehead against N. seriolae infection by reducing bacterial load, enhancing serum antibacterial activity and antioxidant capacity, and minimizing tissue damage. Moreover, in vitro analysis indicated that rCaLECT2 significantly enhanced the migration, respiratory burst, and microbicidal activity of the head kidney-derived phagocytes. These findings provide new insights into the role of LECT2 in the antibacterial immunity of fish.
Collapse
Affiliation(s)
- Jian Teng
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, 252000, China; Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction By Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, 271000, China
| | - Yan Zhao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction By Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, 271000, China
| | - Yu Bao Li
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Liang Yi Xue
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Yi Xiang Zhai
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Jian Ru Liu
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Hui Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction By Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, 271000, China
| | - Xiang Shan Ji
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction By Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, 271000, China.
| |
Collapse
|
4
|
Zhang X, Sun K, Tang C, Cen L, Li S, Zhu W, Liu P, Chen Y, Yu C, Li L. LECT2 modulates dendritic cell function after Helicobacter pylori infection via the CD209a receptor. J Gastroenterol Hepatol 2023; 38:625-633. [PMID: 36740832 DOI: 10.1111/jgh.16138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/06/2022] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND Helicobacter pylori, a gram-negative bacterium persisting on the gastric mucosa, is involved in the pathogenesis of a variety of gastric diseases. Leukocyte cell-derived chemotaxin 2 (LECT2) treatment increased the phagocytic capacity of lymphocytes and improved immune function in bacterial infection. Whether the immune cells infected with H. pylori are affected by LECT2 is unclear. METHODS Bone marrow-derived dendritic cells (BMDCs) from wild-type C57BL/6 mice, CD209a knockout mice, or LECT2 knockout mice were exposed to H. pylori at a multiplicity of infection of 10 for 24 h. The maturity of DCs and the cytokines secreted by DCs were analyzed by flow cytometry, western blot, and real-time PCR. The signaling pathway underlying CD209a activation after LECT2 treatment were also detected. RESULTS LECT2 treatment promoted H. pylori-induced BMDC maturation and produced a high level of anti-inflammatory cytokine (IL-10) but a low level of pro-inflammatory cytokine (IL-23p40). Moreover, LECT2-pretreated DCs shifted the development of pro-inflammatory Th1/Th17 cells to Treg cells. CD209a mediated LECT2-induced maturation and secretion of DC in H. pylori-primed BMDCs. LECT2 was further confirmed to induce the secretion of certain cytokines via CD209a-JNK/P38 MAPK pathway. CONCLUSION This study reveals that LECT2 modulated the functions of H. pylori-primed DCs in a CD209a-dependent manner, which might hinder the clearance of H. pylori and contribute to its colonization.
Collapse
Affiliation(s)
- Xiaofen Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Kefang Sun
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Chenxi Tang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Li Cen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Sha Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Wei Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Peihao Liu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Yishu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Lan Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| |
Collapse
|
5
|
Zhu MH, Liu YJ, Li CY, Tao F, Yang GJ, Chen J. The emerging roles of leukocyte cell-derived chemotaxin-2 in immune diseases: From mechanisms to therapeutic potential. Front Immunol 2023; 14:1158083. [PMID: 36969200 PMCID: PMC10034042 DOI: 10.3389/fimmu.2023.1158083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Leukocyte cell-derived chemotaxin-2 (LECT2, also named ChM-II), initially identified as a chemokine mediating neutrophil migration, is a multifunctional secreted factor involved in diverse physiological and pathological processes. The high sequence similarity of LECT2 among different vertebrates makes it possible to explore its functions by using comparative biology. LECT2 is associated with many immune processes and immune-related diseases via its binding to cell surface receptors such as CD209a, Tie1, and Met in various cell types. In addition, the misfolding LECT2 leads to the amyloidosis of several crucial tissues (kidney, liver, and lung, etc.) by inducing the formation of insoluble fibrils. However, the mechanisms of LECT2-mediated diverse immune pathogenic conditions in various tissues remain to be fully elucidated due to the functional and signaling heterogeneity. Here, we provide a comprehensive summary of the structure, the “double-edged sword” function, and the extensive signaling pathways of LECT2 in immune diseases, as well as the potential applications of LECT2 in therapeutic interventions in preclinical or clinical trials. This review provides an integrated perspective on the current understanding of how LECT2 is associated with immune diseases, with the aim of facilitating the development of drugs or probes against LECT2 for the theranostics of immune-related diseases.
Collapse
Affiliation(s)
- Ming-Hui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- *Correspondence: Jiong Chen, ; ; Guan-Jun Yang,
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- *Correspondence: Jiong Chen, ; ; Guan-Jun Yang,
| |
Collapse
|
6
|
Sun R, Wang D, Song Y, Li Q, Su P, Pang Y. Granulin as an important immune molecule involved in lamprey tissue repair and regeneration by promoting cell proliferation and migration. Cell Mol Biol Lett 2022; 27:64. [PMID: 35907821 PMCID: PMC9338584 DOI: 10.1186/s11658-022-00360-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/30/2022] [Indexed: 01/17/2023] Open
Abstract
Progranulin (PGRN) is an autocrine growth factor that regulates cell proliferation, migration, wound healing, and tissue repair in mammals. Lamprey is the most primitive of the extant vertebrates and is regarded as the survivor of a once flourishing group of paleozoic vertebrates, with a history of more than 500 million years. To date, the evolutionary dynamics and the underlying function of the PGRNs remain largely unclear in lamprey. Here, we screened four genes encoding PGRNs from the genomes of Lethenteron reissneri and Petromyzon marinus, including one long form (named Lr-PGRN-L) and three short forms (named Lr-PGRN-S1, Lr-PGRN-S2, and Lr-PGRN-S3), and performed phylogenetic tree, functional domain, and synteny analyses to identify the evolutionary history of the four Lr-PGRNs. In addition, the expressions of the four Lr-pgrn family genes and the immune response against various pathogenic challenges were also investigated. We found that these genes were widely distributed in various tissues of lamprey and performed a variety of functions. Moreover, our results suggest that Lr-PGRN-S1 induces cell migration and proliferation, and is involved in repair after skin and spinal cord injury under appropriate conditions. Our findings are valuable because they improve the understanding of the evolutionary relationship of vertebrate pgrn genes, as well as providing new insights into the diverse and important roles of Lr-PGRNs.
Collapse
Affiliation(s)
- Ruixiang Sun
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Dong Wang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yuxuan Song
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Peng Su
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China. .,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China. .,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
7
|
Essfeld F, Reinwald H, Salinas G, Schäfers C, Eilebrecht E, Eilebrecht S. Transcriptomic profiling of clobetasol propionate-induced immunosuppression in challenged zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113346. [PMID: 35228030 DOI: 10.1016/j.ecoenv.2022.113346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
In the ecotoxicological hazard assessment of chemicals, the detection of immunotoxicity is currently neglected. This is mainly due to the complexity of the immune system and the consequent lack of standardized procedures and markers for the comprehensive assessment of immunotoxic modes of action. In this study, we present a new approach applying transcriptome profiling to an immune challenge with a mixture of pathogen-associated molecular patterns (PAMPs) in zebrafish embryos, analyzing differential gene expression during acute infection with and without prior exposure to the immunosuppressive drug clobetasol propionate (CP). While PAMP injection itself triggered biological processes associated with immune activation, some of these genes were more differentially expressed upon prior exposure to CP than by immune induction alone, whereas others showed weaker or no differential regulation in response to the PAMP stimulus. All of these genes responding differently to PAMP after prior CP exposure showed additivity of PAMP- and CP-induced effects, indicating independent regulatory mechanisms. The transcriptomic profiles suggest that CP impaired innate immune induction by attenuating the response of genes involved in antigen processing, TLR signaling, NF-КB signaling, and complement activation. We propose this approach as a powerful method for detecting gene biomarkers for immunosuppressive modes of action, as it was able to identify alternatively regulated processes and pathways in a sublethal, acute infection zebrafish embryo model. This allowed to define biomarker candidates for immune-mediated effects and to comprehensively characterize immunosuppression. Ultimately, this work contributes to the development of molecular biomarker-based environmental hazard assessment of chemicals in the future.
Collapse
Affiliation(s)
- Fabian Essfeld
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany; Computational Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Hannes Reinwald
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Elke Eilebrecht
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany.
| |
Collapse
|
8
|
Wang X, Chi Y, Li J, Pang Y, Li Q. Morphological characteristics and a single-cell analysis provide insights into function of immune and fat storage in the lamprey supraneural body. Int J Biochem Cell Biol 2022; 142:106131. [PMID: 34838690 DOI: 10.1016/j.biocel.2021.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
The supraneural body, also known as dorsal fat body is considered from adipose progenitors, and possesses hematopoietic activity. However, in-depth knowledge of cell-type by single-cell transcriptome sequencing and physiological functions are still lacking. Here, we determined at least four types of cells, such as white adipocytes, granulocytes, lymphocytes, and red blood cells by using 10 ×Genomics single-cell RNA sequencing (scRNA-Seq), hematoxylin-eosin (HE) staining, electron microscopy, immunofluorescence, and histochemistry. Additionally, most immune cells contain scattered small fat droplets except for white adipocytes with one large lipid droplet. The content of triglyceride in supraneural body is the highest compared with other tissues. The mRNA expression of both lipolysis-related genes and brown adipocytes-specific marker genes were up-regulated in supraneural body cells in response to epinephrine. Taken together, these data indicate that the supraneural body may play an important role in immune and fat storage. Our findings not only provided detailed insights into the unique molecular make-up of the supraneural body tissue, but also shed new light on future analyses of physiological functions in immune or lipid regulating.
Collapse
Affiliation(s)
- Xiaotong Wang
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Yan Chi
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Jun Li
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
9
|
Li Q, Zhang Z, Fan W, Huang Y, Niu J, Luo G, Liu X, Huang Y, Jian J. LECT2 Protects Nile Tilapia ( Oreochromis niloticus) Against Streptococcus agalatiae Infection. Front Immunol 2021; 12:667781. [PMID: 34093564 PMCID: PMC8174566 DOI: 10.3389/fimmu.2021.667781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/30/2021] [Indexed: 01/09/2023] Open
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2) is a multifunctional cytokine that especially plays an important role in innate immune. However, the roles of LECT2 in the immune response of the economically important fish Nile tilapia (Oreochromis niloticus) against bacterial infection remains unclear. In this study, a lect2 gene from Nile tilapia (On-lect2) was identified, and its roles in the fish’s immune response against bacterial infection were determined and characterised. On-lect2 contains an open reading frame of 456 bp that encodes a peptide of 151 amino acids, as well as the conservative peptidase M23 domain. On-LECT2 is 62%–84% identical to other fish species and about 50% identical to mammals. The highest transcriptional level of On-lect2 was detected in the liver, whereas the lowest levels were detected in the other tissues. Moreover, the On-LECT2 protein is located mainly in the brain and head kidney. The transcriptional levels of On-lect2 substantially increased in the head kidney, brain, liver and spleen after Streptococcus agalactiae infection. Knockdown On-lect2 led to higher mortality due to liver necrosis or haemorrhage and splenomegaly. In vitro analysis indicated that the recombinant protein of On-LECT2 improved phagocytic activity of head kidney-derived macrophages. In vivo challenge experiments revealed several functions of On-LECT2 in the immune response of Nile tilapia against bacterial infection, including promotion of inflammation, reduction of tissue damages and improvement of survival rate.
Collapse
Affiliation(s)
- Qi Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Weiqi Fan
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Jinzhong Niu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Guoling Luo
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Xinchao Liu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| |
Collapse
|
10
|
Sun Z, Qin Y, Liu D, Wang B, Jia Z, Wang J, Gao Q, Zou J, Pang Y. The evolution and functional characterization of CXC chemokines and receptors in lamprey. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103905. [PMID: 33164777 DOI: 10.1016/j.dci.2020.103905] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 05/20/2023]
Abstract
Chemokines are a large family of soluble peptides guiding cell migration in development and immune defense. They interact with chemokine receptors and are essential for the coordination of cell migration in diverse physiological processes. The CXC subfamily is one of the largest groups in the chemokine family and consists of multiple members. In this study, we identified homologues of three chemokine ligands (CXCL8, CXCL_F5 and CXCL12) and two CXC receptor like molecules (CXCR_L1 and CXCR_L2) in lamprey. Sequence analysis revealed that they share the same genomic organization with their counterparts in jawed vertebrates but synteny was not conserved. Lamprey CXCL8 and CXCL12 have four conserved cysteine residues whilst the CXCL_F5 has two additional cysteine residues. In addition, CXCL_F5 is evolutionarily related to the fish specific CXC chemokine groups previously identified and contains multiple cationic aa residues in the extended C- terminal region. The two CXCRs possess seven transmembrane domains and conserved structural elements for receptor activation and signaling, including the DRYXXI(V)Y motif in TM2, the disulphide bond connecting ECL2 and TM3, the WXP motif in TM6 and NPXXY motif in TM7. The identified CXC chemokines and receptors were constitutively expressed in tissues including the liver, kidney, intestine, heart, gills, supraneural body and primary leukocytes, but exhibited distinct expression patterns. Relatively high expression was detected in the gills for CXCL8, CXCL_F5 and CXCR_L1 and in the supraneural body for CXCL12 and CXCR_L2. All the genes except CXCL12 were upregulated by stimulation with LPS, pokeweed and bacterial infection, and the CXCL8 and CXCL_F5 was induced by poly (I:C). Functional analysis showed that the CXCL8 and CXCL_F5 specifically interacted with CXCR_L1 and CXCR_L2, respectively. Our results demonstrate that the CXC chemokine system had diversified in jawless fish.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Chemokines, CXC/chemistry
- Chemokines, CXC/genetics
- Chemokines, CXC/immunology
- Evolution, Molecular
- Fish Diseases/genetics
- Fish Diseases/immunology
- Fish Diseases/microbiology
- Fish Proteins/classification
- Fish Proteins/genetics
- Fish Proteins/immunology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Host-Pathogen Interactions/immunology
- Lampreys/genetics
- Lampreys/immunology
- Lampreys/microbiology
- Models, Molecular
- Phylogeny
- Poly I-C/pharmacology
- Protein Conformation
- Receptors, CXCR/chemistry
- Receptors, CXCR/genetics
- Receptors, CXCR/immunology
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Staphylococcus aureus/immunology
- Staphylococcus aureus/physiology
- Vibrio/immunology
- Vibrio/physiology
Collapse
Affiliation(s)
- Zhaosheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yuting Qin
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Danjie Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Bangjie Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yue Pang
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
11
|
Ha JH, Tu HC, Wilkens S, Loh SN. Loss of bound zinc facilitates amyloid fibril formation of leukocyte-cell-derived chemotaxin 2 (LECT2). J Biol Chem 2021; 296:100446. [PMID: 33617884 PMCID: PMC8039541 DOI: 10.1016/j.jbc.2021.100446] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Aggregation of the circulating protein leukocyte-cell-derived chemotaxin 2 (LECT2) causes amyloidosis of LECT2 (ALECT2), one of the most prevalent forms of systemic amyloidosis affecting the kidney and liver. The I40V mutation is thought to be necessary but not sufficient for ALECT2, with a second, as-yet undetermined condition being required for the disease. EM, X-ray diffraction, NMR, and fluorescence experiments demonstrate that LECT2 forms amyloid fibrils in vitro in the absence of other proteins. Removal of LECT2's single bound Zn2+ appears to be obligatory for fibril formation. Zinc-binding affinity is strongly dependent on pH: 9-13 % of LECT2 is calculated to exist in the zinc-free state over the normal pH range of blood, with this fraction rising to 80 % at pH 6.5. The I40V mutation does not alter zinc-binding affinity or kinetics but destabilizes the zinc-free conformation. These results suggest a mechanism in which loss of zinc together with the I40V mutation leads to ALECT2.
Collapse
Affiliation(s)
- Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Ho-Chou Tu
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
12
|
Shen Y, Cao M, Tang S, Zhao Y, Zhao J, Chen X, Bi Y. Genomic and functional characterization of the lect2 gene from Siniperca chuatsi. FISH & SHELLFISH IMMUNOLOGY 2020; 107:146-155. [PMID: 32991992 DOI: 10.1016/j.fsi.2020.09.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/09/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Mandarin fish (Siniperca chuatsi) is an important economic fish in China. Viral and bacterial diseases seriously affect the artificial culture of S. chuatsi. As a carnivorous fish, artificial feed domestication is also an important means to improve the scale of S. chuatsi culture. Therefore, the study of immunology and digestive physiology is very important to the industrial development of S. chuatsi. In this work, we analyzed the expression and function of the S. chuatsi leukocyte cell-derived chemotaxin 2 (Sc-lect2) gene on a basis of next generation, single-molecule long-read sequencing. Sc-lect2 was mainly expressed in the liver but barely expressed in the gill, skin, muscle, kidney, head kidney, brain, stomach, and intestine. When the fish were infected with infectious spleen and kidney necrosis virus and challenged with lipopolysaccharide and polyinosinic-polycytidylic acid, Sc-lect2 expression significantly increased by about 40, 17, and 7-fold, respectively, compared with unstimulated samples. We also found that Sc-lect2 increases by approximately 8-fold after the fish are fed an artificial diet. These results show that mandarin fish liver can not only digest food but also express specific immune genes. Changes in the diet can cause the differential expression of Sc-lect2 genes. Four Sc-lect2 interaction genes were differentially expressed in the skin or blood. Interestingly, miR-145-3p could inhibit Sc-lect2 gene expression by targeting its coding sequence region. One CpG island in the promoter region showed a high level of methylation, suggesting that high methylation does not affect Sc-lect2 gene expression in the liver.
Collapse
Affiliation(s)
- Yawei Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Ming Cao
- Guangdong Provincial Fishery Germplasm Conservation Center, Guangzhou, 511400, China
| | - Shoujie Tang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yan Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinliang Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
| | - Yanhui Bi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
13
|
Han Q, Han Y, Wen H, Pang Y, Li Q. Molecular Evolution of Apolipoprotein Multigene Family and the Original Functional Properties of Serum Apolipoprotein (LAL2) in Lampetra japonica. Front Immunol 2020; 11:1751. [PMID: 32849624 PMCID: PMC7431520 DOI: 10.3389/fimmu.2020.01751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/30/2020] [Indexed: 01/20/2023] Open
Abstract
Apolipoprotein (APO) genes represent a large family of genes encoding various binding proteins associated with plasma lipid transport. Due to the long divergence history, it remains to be confirmed whether these genes evolved from a common ancestor through gene duplication and original function, and how this evolution occurred. In this study, based on the phylogenetic tree, sequence alignment, motifs, and evolutionary analysis of gene synteny and collinearity, APOA, APOC, and APOE in higher vertebrates may have a common ancestor, lamprey serum apolipoprotein LAL1 or LAL2, which traces back to 360 million years ago. Moreover, the results of immunofluorescence, immunohistochemistry, and flow cytometry show that LAL2 is primarily distributed in the liver, kidney, and blood leukocytes of lampreys, and specifically localized in the cytoplasm of liver cells and leukocytes, as well as secreted into sera. Surface plasmon resonance technology demonstrates that LAL2 colocalizes to breast adenocarcinoma cells (MCF-7) or chronic myeloid leukemia cells (K562) associated with lamprey immune protein (LIP) and further enhances the killing effect of LIP on tumor cells. In addition, using quantitative real-time PCR (Q-PCR) and western blot methods, we found that the relative mRNA and protein expression of lal2 in lamprey leukocytes and sera increased significantly at different times after stimulating with Staphylococcus aureus, Vibrio anguillarum, and Polyinosinic-polycytidylic acid (Poly I:C). Moreover, LAL2 was found to recognize and bind to gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and gram-negative bacteria (Escherichia coli) and play an important role in the antibacterial process. All in all, our data reveals a long, complex evolutionary history for apolipoprotein genes under different selection pressures, confirms the immune effect of LAL2 in lamprey sera against pathogens, and lays the foundation for further research regarding biological functions of lamprey immune systems.
Collapse
Affiliation(s)
- Qing Han
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yinglun Han
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Hongyan Wen
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
14
|
Hou J, Pang Y, Li Q. Comprehensive Evolutionary Analysis of Lamprey TNFR-Associated Factors (TRAFs) and Receptor-Interacting Protein Kinase (RIPKs) and Insights Into the Functional Characterization of TRAF3/6 and RIPK1. Front Immunol 2020; 11:663. [PMID: 32373123 PMCID: PMC7179693 DOI: 10.3389/fimmu.2020.00663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/23/2020] [Indexed: 12/24/2022] Open
Abstract
TNFR-associated factors (TRAFs) and receptor-interacting protein kinases (RIPKs) are important immunological linker molecules in mammals and play important roles in the TNFα, TLR and IFN signaling pathways. However, the evolutionary origins of these genes in vertebrates have not previously been described in lampreys. In this study, we searched the genomes of Lampetra japonicum, Lethenteron reissneri, and Petromyzon marinus for genes encoding trafs and ripks and performed homologous sequence alignment, phylogenetic tree, functional domain, conserved motif, gene structure, and synteny analyses to determine their evolutionary relationships. The distribution of the lamprey traf and ripk families and the immune response of the gene families in lampreys stimulated by different pathogens were also demonstrated, suggesting a role of structural changes in expression and functional diversification. Additionally, the dual luciferase reporter gene assay showed that the addition of exogenous immunomodulator (TNFα or IFN) to the overexpression of LjLRIPK1a or LjTRAF3/6 significantly downregulated NF-κB or ISRE activation. LjRIPK1a can significantly enhance caspase-8 activity, and overexpression of LjRIPK1a or LjTRAF3a/6 in HEK293T cells results in cell apoptosis. In summary, this study makes an important contribution to the understanding of the traf and ripk gene families in different vertebrates. Our results also provide new evidence for the evolution of vertebrate TRAFs and RIPKs and their impacts on immune regulation.
Collapse
Affiliation(s)
- Jianqiang Hou
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| |
Collapse
|
15
|
Lv W, Ma A, Chi X, Li Q, Pang Y, Su P. A novel complement factor I involving in the complement system immune response from Lampetra morii. FISH & SHELLFISH IMMUNOLOGY 2020; 98:988-994. [PMID: 31712129 DOI: 10.1016/j.fsi.2019.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Complement factor I (CFI) is a serine protease which plays a key role in the modulation of complement system and the induced-fit factor responsible for controlling the complement-mediated processes. In this study, a CFI gene was cloned and characterized from Lampetra morii (designated as L-CFI) at molecular and cellular levels. The L-CFI protein included a factor I membrane attack complex domain (FIMAC), a scavenger receptor cysteine-rich domain (SRCR), a trypsin-like serine protease domain (Tryp_SPc) and 2 low-density lipoprotein receptor class A domains (LDLa) which would exhibit functional similarities to CFI superfamily proteins. Tissue expression profile analysis showed that L-CFI mRNA constitutively expressed in all tested tissues except erythrocytes, with the predominant expression in liver. The mRNA expression level of L-CFI increased significantly after Vibrio anguillarum and Staphylocccus aureus stimulation. It is demonstrated that L-CFI interacted with L-C3 protein and affected the deposition of L-C3 on the cell surface. Furthermore, lamprey serum after deplete L-CFI and L-C3 reduced the cytotoxic activity against HeLa cells. These findings suggest that L-CFI plays an important role in lamprey immunity and involved in the lamprey complement system.
Collapse
Affiliation(s)
- Wanrong Lv
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116081, China
| | - Anqi Ma
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116081, China
| | - Xiaoyuan Chi
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116081, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116081, China.
| | - Peng Su
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116081, China.
| |
Collapse
|
16
|
Wang D, Gou M, Hou J, Pang Y, Li Q. The role of serpin protein on the natural immune defense against pathogen infection in Lampetra japonica. FISH & SHELLFISH IMMUNOLOGY 2019; 92:196-208. [PMID: 31176010 DOI: 10.1016/j.fsi.2019.05.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Serine protease inhibitors (serpins) are a large protein family that is involved in various physiological processes and is known to regulate innate immunity pathways. However, research for the functional study of serpins in lamprey is limited. In the present study, a serpin gene was cloned and characterized from Lampetra japonica at molecular, protein and cellular levels, named L-serpin which belongs to family F serine protease inhibitors (serpin family). The L-serpin includes a serpin domain in the N-terminus. The mRNA transcript of L-serpin was extensively expressed in kidney, supraneural body, intestine, liver, heart, gill and the highest expression in leukocytes. The mRNA expression level of L-serpin increased significantly after Vibrio anguillarum, Staphylocccus aureus and Poly I:C stimulation and dramatically peak at 8 h. It is demonstrated that the L-serpin protected cells from lethal Gram-negative endotoxemia through associating with inhibition of lipopolysaccharide (LPS)-triggered cell death and inflammatory factors expression. Surface plasmon resonance (SPR) and the microbe binding assay were used to determine that L-serpin interacts directly with LPS (KD = 6.14 × 10-7 M). Furthermore, we confirmed L-serpin is a major inhibitor of complement activation by inactivating lamprey-C1q protein (KD = 2.06 × 10-6 M). Taken together, these findings suggest that L-serpin is a endogenous anti-inflammatory factor to defend against Gram-negative bacterial challenge and involved in lamprey innate immunity.
Collapse
Affiliation(s)
- Dayu Wang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Meng Gou
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Jianqiang Hou
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
17
|
Lee S, Lee RH, Kim SJ, Lee HK, Na CS, Song KD. Transcriptional regulation of chicken leukocyte cell-derived chemotaxin 2 in response to toll-like receptor 3 stimulation. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1942-1949. [PMID: 31480179 PMCID: PMC6819688 DOI: 10.5713/ajas.19.0192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023]
Abstract
Objective Leukocyte cell-derived chemotaxin 2 (LECT2) is associated with several physiological processes including inflammation, tumorigenesis, and natural killer T cell generation. Chicken LECT2 (chLECT2) gene was originally identified as one of the differentially expressed genes in chicken kidney tissue, where the chickens were fed with different calcium doses. In this study, the molecular characteristics and gene expression of chLECT2 were analyzed under the stimulation of toll-like receptor 3 (TLR3) ligand to understand the involvement of chLECT2 expression in chicken metabolic disorders. Methods Amino acid sequence of LECT2 proteins from various species including fowl, fish, and mammal were retrieved from the Ensembl database and subjected to Insilco analyses. In addition, the time- and dose-dependent expression of chLECT2 was examined in DF-1 cells which were stimulated with polyinosinic:polycytidylic acid (poly [I:C]), a TLR3 ligand. Further, to explore the transcription factors required for the transcription of chLECT2, DF-1 cells were treated with poly (I:C) in the presence or absence of the nuclear factor κB (NFκB) and activated protein 1 (AP-1) inhibitors. Results The amino acid sequence prediction of chLECT2 protein revealed that along with duck LECT2 (duLECT2), it has unique signal peptide different from other vertebrate orthologs, and only chLECT2 and duLECT2 have an additional 157 and 161 amino acids on their carboxyl terminus, respectively. Phylogenetic analysis suggested that chLECT2 is evolved from a common ancestor along with the actinopterygii hence, more closely related than to the mammals. Our quantitative polymerase chain reaction results showed that, the expression of chLECT2 was up-regulated significantly in DF-1 cells under the stimulation of poly (I:C) (p<0.05). However, in the presence of NFκB or AP-1 inhibitors, the expression of chLECT2 is suppressed suggesting that both NFκB and AP-1 transcription factors are required for the induction of chLECT2 expression. Conclusion The present results suggest that chLECT2 gene might be a target gene of TLR3 signaling. For the future, the expression pattern or molecular mechanism of chLECT2 under stimulation of other innate immune receptors shall be studied. The protein function of chLECT2 will be more clearly understood if further investigation about the mechanism of LECT2 in TLR pathways is conducted.
Collapse
Affiliation(s)
- Seokhyun Lee
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University, Jeonju 54896, Korea
| | - Ra Ham Lee
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University, Jeonju 54896, Korea
| | - Sung-Jo Kim
- Department of Biotechnology, Hoseo University, Asan 31499, Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University, Jeonju 54896, Korea
| | - Chong-Sam Na
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University, Jeonju 54896, Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University, Jeonju 54896, Korea.,The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
18
|
Li C, Wang D, Guan X, Liu S, Su P, Li Q, Pang Y. HMGB1 from Lampetra japonica promotes inflammatory activation in supraneural body cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:50-59. [PMID: 30423344 DOI: 10.1016/j.dci.2018.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
High mobility group box protein 1 (HMGB1) acts as a potent proinflammatory cytokine that involves in the pathogenesis of diverse inflammatory and infectious disorders. In previous study, we identified a homolog of HMGB1 in the Lampetra japonica(L-HMGB1), and further revealed that L-HMGB1 was able to induce the production of tumor necrosis factor-α (TNF-α) in activated human acute monocytic leukemia cells. However, the role of L-HMGB1 played in lamprey was unknown. Here, we found that L-HMGB1 was located in the cytoplasm of lamprey leukocytes and supraneural body (SB) cells. Importantly, we demonstrated that L-HMGB1 participated in activation of various key molecules in inflammation signaling pathway. LPS also promoted the release of L-HMGB1 from SB cells similar to Hu-HMGB1, and then extracellular L-HMGB1 in turn induced the release of cytokines. This study revealed that the synergistic action of LPS and L-HMGB1 played a crucial role in inflammation in lamprey. Our results suggested that lampreys used L-HMGB1 to activate their innate immunity for the purpose of pathogen defense.
Collapse
Affiliation(s)
- Changzhi Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Dong Wang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Xin Guan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Shuang Liu
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
19
|
Wang Z, Lu J, Li Q, Pang Y. Data on functional characterization of LECT2 from Lampetra japonica. Data Brief 2018; 17:1271-1275. [PMID: 29845097 PMCID: PMC5966521 DOI: 10.1016/j.dib.2018.02.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 11/30/2022] Open
Abstract
The data presented in this article are related to the research article entitled “Characterization of the LECT2 gene and its protective effects against microbial infection via large lymphocytes in Lampetra japonica” (Wang et al., 2017) [1]. Here, we presented new original data about the effect of rL-LECT2 on cancer cells migration and macrophages phagocytosis. Wound healing assay and transwell chemotaxis assays were used to measure rL-LECT2 inhibition rates on cancer cell migration. Additionally, fluospheres beads and Escherichia coli–FITC were used to measure whether the rL-LECT2 can affect the phagocytosis of RAW264.7 cells.
Collapse
Affiliation(s)
- Zhiliang Wang
- College of Life Science, Liaoning Normal University, Dalian 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Jiali Lu
- College of Life Science, Liaoning Normal University, Dalian 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
20
|
Chai Y, Cong B, Yu S, Liu Y, Man X, Wang L, Zhu Q. Effect of a LECT2 on the immune response of peritoneal lecukocytes against Vibrio anguillarum in roughskin sculpin. FISH & SHELLFISH IMMUNOLOGY 2018; 74:620-626. [PMID: 29331349 DOI: 10.1016/j.fsi.2017.12.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/28/2017] [Accepted: 12/31/2017] [Indexed: 06/07/2023]
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2) is a multi-functional protein that is mainly synthesized by the liver. However, its role in roughskin scalping is less known. Here, we cloned a leukocyte cell-derived chemotaxin 2 (TfLECT2) genes in the liver of roughskin scalping, Trachidermus fasciatus, and studied its possible role involved in the immune response against Vibrio anguillarum (V. anguillarum) of peritoneal lecukocytes under in vivo conditions. The cDNA sequence of TfLECT2 is 566 bp in size. Its deduced amino acid (aa) sequence comprises 151 residues, of which the first 16 residues form a putative signal peptide and 101 residues compose a typical peptidase M23 domain in the C-terminal region. The domain structure is conserved in all LECT2 proteins, which suggests a close phylogenetic relationship between TfLECT2 and LECT2 in other fish species. Real-time quantitative PCR analysis revealed that TfLECT2 gene expression was dramatically increased in liver after V. anguillarum stimulation. Subsequently, TfLECT2 was prokaryotic expressed and purified to prepare anti-TfLECT2 antibody. After V. anguillarum challenge, leukocytes recruitment and LECT2 levels in peritoneal exudates were increased, and positively correlated with each other. Moreover, recombinant TfLECT2 administration significantly improved immune responses after infection, principally in stimulating the recruitment, phagocytosis and respiratory burst of leukocytes at the site of infection; however, anti-TfLECT2 treatment neutralized these abilities. Therefore, TfLECT2 may trigger the early immune events of peritoneal leukocytes and it will be useful to induce innate immune response of fish.
Collapse
Affiliation(s)
- Yingmei Chai
- Marine College, Shandong University (Weihai), Weihai 264209, PR China.
| | - Bailin Cong
- The First Institute of Oceanography, Marine Ecological Center, State Oceanic Administration, Qingdao, 266061, PR China
| | - Shanshan Yu
- Marine College, Shandong University (Weihai), Weihai 264209, PR China
| | - Yingying Liu
- Marine College, Shandong University (Weihai), Weihai 264209, PR China
| | - Xin Man
- Marine College, Shandong University (Weihai), Weihai 264209, PR China
| | - Lujie Wang
- Marine College, Shandong University (Weihai), Weihai 264209, PR China
| | - Qian Zhu
- Marine College, Shandong University (Weihai), Weihai 264209, PR China.
| |
Collapse
|