1
|
Yang Y, He H, Huang Y, Ai X, Zhu X, Yin F, Xu J, Chen Y. Molecular mechanism of Yersinia ruckeri Flagellin C (FliC) induced intestinal inflammation in channel catfish (Ictalurus punctatus). Comp Biochem Physiol B Biochem Mol Biol 2025; 277:111072. [PMID: 39824434 DOI: 10.1016/j.cbpb.2025.111072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Yersinia ruckeri is known to cause enteric red mouth disease (ERM) in channel catfish (Ictalurus punctatus). This study established a model of Y. ruckeri-induced intestinal inflammation in channel catfish. Subsequently, using quantitative polymerase chain reaction (qPCR), gene cloning, recombinant protein expression, protein molecular docking, and tissue pathology techniques, we investigated the role and molecular mechanism of Flagellin C (FliC) from Y. ruckeri in inducing inflammation. The findings indicated that FliC was the main virulence gene in Y. ruckeri responsible for inducing intestinal inflammation. Specifically, FliC bound to the host Toll-like receptor 5 (tlr5), leading to the upregulation of multiple inflammatory factors such as tumor necrosis factor (tnf)-α, interleukin (il)-6, and il-1β, and the activation of the nuclear factor-kappaB (NF-κB) and JAK-STAT signaling pathways, thereby initiating inflammation. The results were validated through experiments conducted both in cellular models and in vivo. In summary, this study identified FliC as a virulence gene in Y. ruckeri infection of channel catfish and elucidated its role in inducing intestinal inflammation.
Collapse
Affiliation(s)
- Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Hao He
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yucong Huang
- College of Fisheries, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang 524088, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Fei Yin
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211,China.
| | - Jingen Xu
- Jiujiang Academy of Agricultural Sciences, Jiujiang 332005, China.
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
2
|
Fan K, Gao Q, Cai C, Xie Y, Qi Z, Sun Z, Xie J, Gao J. Cloning and expression analysis of Janus activated kinase family genes from spotted seabass (Lateolabrax maculatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105169. [PMID: 38522714 DOI: 10.1016/j.dci.2024.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Janus kinases (JAKs) are important components of the JAK-STAT signaling pathway and play vital roles in innate immunity, autoimmune diseases, and inflammation. However, information about JAKs remains largely unknown in the spotted seabass, a fish species of Perciformes with great commercial value in the aquaculture industry. The aims of this study are to obtain the complete cDNA sequences of JAKs (JAK1, JAK2A, JAK2B, JAK3 and TYK2) from spotted seabass and to investigate their roles upon stimulation with lipopolysaccharides (LPS) and Edwardsiella tarda, using RT-PCR, PCR and qRT-PCR methods. All five JAK genes from the spotted seabass, each encode more than 1100 amino acids residues. JAK1 and JAK3 consist of 24 exons and 23 introns, whereas JAK2A, JAK2B and TYK2 consist of 23 exons and 22 introns. Furthermore, these five spotted seabass JAKs share high sequence identities with those of other fish species in protein domain analysis, synteny analysis, and phylogenetic analysis. Moreover, these five JAK genes were ubiquitously expressed in all tissues examined from healthy fish, and inducible expressions of JAKs were observed in the intestine, gill, head kidney, and spleen following LPS treatment or E. tarda infection. These findings indicate that all these JAK genes are involved in the antibacterial immunity of the spotted seabass and provide a basis for further understanding the mechanism of JAKs antibacterial response in the spotted sea bass.
Collapse
Affiliation(s)
- Ke Fan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China.
| | - Chuanguo Cai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China
| | - Yushuai Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China
| | - Zhitao Qi
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China.
| | - Zhaosheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China
| | - Jiasong Xie
- School of Marine Sciences, Ningbo University, Zhejiang, 315211, China
| | - Jiaqi Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China
| |
Collapse
|
3
|
Leeuwis RHJ, Hall JR, Zanuzzo FS, Smith N, Clow KA, Kumar S, Vasquez I, Goetz FW, Johnson SC, Rise ML, Santander J, Gamperl AK. Climate change can impair bacterial pathogen defences in sablefish via hypoxia-mediated effects on adaptive immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105161. [PMID: 38521379 DOI: 10.1016/j.dci.2024.105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Low-oxygen levels (hypoxia) in aquatic habitats are becoming more common because of global warming and eutrophication. However, the effects on the health/disease status of fishes, the world's largest group of vertebrates, are unclear. Therefore, we assessed how long-term hypoxia affected the immune function of sablefish, an ecologically and economically important North Pacific species, including the response to a formalin-killed Aeromonas salmonicida bacterin. Sablefish were held at normoxia or hypoxia (100% or 40% air saturated seawater, respectively) for 6-16 weeks, while we measured a diverse array of immunological traits. Given that the sablefish is a non-model organism, this involved the development of a species-specific methodological toolbox comprised of qPCR primers for 16 key immune genes, assays for blood antibacterial defences, the assessment of blood immunoglobulin (IgM) levels with ELISA, and flow cytometry and confocal microscopy techniques. We show that innate immune parameters were typically elevated in response to the bacterial antigens, but were not substantially affected by hypoxia. In contrast, hypoxia completely prevented the ∼1.5-fold increase in blood IgM level that was observed under normoxic conditions following bacterin exposure, implying a serious impairment of adaptive immunity. Since the sablefish is naturally hypoxia tolerant, our results demonstrate that climate change-related deoxygenation may be a serious threat to the immune competency of fishes.
Collapse
Affiliation(s)
- Robine H J Leeuwis
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Fábio S Zanuzzo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Nicole Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Kathy A Clow
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Ignacio Vasquez
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Frederick W Goetz
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA
| | - Stewart C Johnson
- Pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, BC, V9T 6N7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Javier Santander
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
4
|
Xu C, Wu P, Gao Q, Cai C, Fan K, Zhou J, Lei L, Chen L. Molecular characterization, expression analysis and subcellular location of the members of STAT family from spotted seabass (Lateolabrax maculatus). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109241. [PMID: 37992914 DOI: 10.1016/j.fsi.2023.109241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway is a pervasive intracellular signal transduction pathway, involving in biological processes such as cell proliferation, differentiation, apoptosis and immune regulation. In this study, seven STAT genes, STAT1, STAT1-like, STAT2, STAT3, STAT4, STAT5a and STAT5b, were identified and characterized in spotted seabass (Lateolabrax maculatus). Analyses of multiple sequence alignment, genomic organization, phylogeny and conserved synteny were conducted to infer the evolutionary conservation of these genes in the STAT family. The results of the bioinformatics analysis assumed that STAT1 and STAT1-like might be homologous to STAT1a and STAT1b, respectively. Furthermore, the expression of the seven genes were detected in eight tissues of healthy spotted seabass, which revealed that they were expressed in a variety of tissues, mainly in gill, spleen and muscle, and extremely under-expression in liver. The expression of the seven genes in gill, head-kidney, spleen and intestine were significantly induced by lipopolysaccharide (LPS) or Edwardsiella tarda challenge. The expression of most of the LmSTATs were up-regulated, and the highest expression levels at 12 h after LPS stimulation, however, the LmSTATs were down-regulated by E. tarda infection. The results of subcellular localization show that the native LmSTAT1, LmSTAT1-like, LmSTAT2, LmSTAT3 and LmSTAT5a were localized in the cytoplasm, but they were translocated into the nucleus after LPS stimulation. Whereas, LmSTAT4 and LmSTAT5b were translocation into the nucleus whether with LPS stimulation or not. Overall, this is the first study to systematically revealed the localization of STAT members in fish, and indicated that LmSTATs participate in the process of protecting the host from pathogens invasion in the form of entry into nucleus.
Collapse
Affiliation(s)
- Chong Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ping Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Chuanguo Cai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ke Fan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jie Zhou
- University of Chinese Academy of Sciences, Beijing, China
| | - Lina Lei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
Rao SS, Nelson PA, Lunde HS, Haugland GT. Evolutionary, comparative, and functional analyses of STATs and regulation of the JAK-STAT pathway in lumpfish upon bacterial and poly(I:C) exposure. Front Cell Infect Microbiol 2023; 13:1252744. [PMID: 37808912 PMCID: PMC10556531 DOI: 10.3389/fcimb.2023.1252744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background The Janus kinase/signal transducers and activators of transcription (JAK-STAT) system regulates several biological processes by affecting transcription of genes as a response to cytokines and growth factors. In the present study, we have characterized the STAT genes in lumpfish (Cyclopterus lumpus L.), belonging to the order Perciformes, and investigated regulation of the JAK-STAT signaling pathway upon exposure to bacteria (Vibrio anguillarum) and poly(I:C), the latter mimicking antiviral responses. Methods Characterization and evolutionary analyses of the STATs were performed by phylogeny, protein domain, homology similarity and synteny analyses. Antibacterial and antiviral responses were investigated by performing KEGG pathway analysis. Results We observed that lumpfish have stat1a, 2, 3, 4, 5a, 5b, and 6. Transcriptome-wide analyses showed that most components of the JAK-STAT pathway were present in lumpfish. il-6, il-10, il-21, iκBα and stat3 were upregulated 6 hours post exposure (hpe) against bacteria while type I interferons (IFNs), irf1, irf3, irf10, stat1 and 2 were upregulated 24 hpe against poly(I:C). Conclusions Our findings shed light on the diversity and evolution of the STATs and the data show that the STAT genes are highly conserved among fish, including lumpfish. The transcriptome-wide analyses lay the groundwork for future research into the functional significance of these genes in regulating critical biological processes and make an important basis for development of prophylactic measure such as vaccination, which is highly needed for lumpfish since it is vulnerable for both bacterial and viral diseases.
Collapse
Affiliation(s)
- Shreesha S Rao
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Patrick A Nelson
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Harald S Lunde
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Gyri T Haugland
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Wang W, Dai S, Liu L, Fu Z, Yang R, Yu G, Ma Z, Zong H. Daily Rhythmicity of Muscle-Related and Rhythm Genes Expression in Mackerel Tuna ( Euthynnus affinis). BIOLOGY 2023; 12:1211. [PMID: 37759610 PMCID: PMC10525508 DOI: 10.3390/biology12091211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
The aim of this study was to investigate the circadian rhythm of muscle-related gene expression in mackerel tuna under different weather conditions. The experiment was carried out under two weather conditions at four sampling times (6:00, 12:00, 18:00, and 24:00) to determine the expression of growth, function, and rhythm genes: white muscle rhythm genes were rhythmic on sunny and cloudy days, except for PER3 and RORA; all functional genes had daily rhythmicity. Red muscle had daily rhythmicity on both sunny and cloudy days; functional genes had daily rhythmicity except for MBNL. The expression levels of the rhythm gene PER1 were determined to be significantly different by independent t-test samples in white muscle at 6:00, 12:00, 18:00, and 24:00 under different weather conditions; the expression levels of the functional genes MBNL and MSTN were both significantly different. In the red muscle, the expression of the rhythm genes PER3, REVERBA, and BMAL1 was determined by independent t-test samples at 6:00, 12:00, 18:00, and 24:00 on cloudy and sunny days; the functional gene MBNL was significantly different. The present study showed that mackerel tuna muscle rhythm genes and functional genes varied significantly in expression levels depending on weather, time of day, and light intensity and that the expression levels of myogenic genes were closely related to clock gene expression. The fish were also able to adapt to changes in light intensity in different weather conditions through positive physiological regulation.
Collapse
Affiliation(s)
- Wenwen Wang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Shiming Dai
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Longlong Liu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Zhengyi Fu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Rui Yang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Gang Yu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Humin Zong
- National Marine Environmental Center, Dalian 116023, China
| |
Collapse
|
7
|
Yang Y, Zhu X, Liu Y, Xu N, Ai X, Zhang H. Effects of diets rich in Agaricus bisporus polysaccharides on the growth, antioxidant, immunity, and resistance to Yersinia ruckeri in channel catfish. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108941. [PMID: 37463648 DOI: 10.1016/j.fsi.2023.108941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
To promote the application of Agaricus bisporus polysaccharides (ABPs) in channel catfish (Ictalurus punctatus) culture, we evaluated the effects of ABPs on the growth, immunity, antioxidant, and antibacterial activity of channel catfish. When the amount of ABPs was 250 mg/kg, channel catfish's weight gain and specific growth rates increased significantly while the feed coefficient decreased. We also found that adding ABPs in the feed effectively increased the activities of ACP, MDA, T-SOD, AKP, T-AOC, GSH, and CAT enzymes and immune-related genes such as IL-1β, Hsp70, and IgM in the head kidney of channel catfish. Besides, long-term addition will not cause pathological damage to the head kidney. When the amount of ABPs was over 125 mg/kg, the protection rate of channel catfish was more than 60%. According to the intestinal transcriptome analysis, the addition of ABPs promoted the expression of intestinal immunity genes and growth metabolism-related genes and enriched multiple related KEEG pathways. When challenged by Yersinia ruckeri infection, the immune response of channel catfish fed with ABPs was intenser and quicker. Additionally, the 16S rRNA gene sequencing analysis showed that the composition of the intestinal microbial community of channel catfish treated with ABPs significantly changed, and the abundance of microorganisms beneficial to channel catfish growth, such as Firmicutes and Bacteroidota increased. In conclusion, feeding channel catfish with ABPs promoted growth, enhanced immunity and antioxidant, and improved resistance to bacterial infections. Our current results might promote the use of ABPs in channel catfish and even other aquacultured fish species.
Collapse
Affiliation(s)
- Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Hongyu Zhang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| |
Collapse
|
8
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Polymeric immunoglobulin receptor (pIgR) in ray-finned fish (Actinopterygii). FISH & SHELLFISH IMMUNOLOGY 2023; 138:108814. [PMID: 37211331 DOI: 10.1016/j.fsi.2023.108814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Affiliation(s)
- Michał Stosik
- Institute of Biological Sciences, Faculty of Biological Sciences University of Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
9
|
Sun Q, Zhang J, Wang J, Wang H, Gao Z, Liu H. Janus kinase 1 in Megalobrama amblycephala: Identification, phylogenetic analysis and expression profiling after Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108620. [PMID: 36841516 DOI: 10.1016/j.fsi.2023.108620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Janus kinase 1 (JAK1), a member of the JAK family, plays an essential and non-redundant role in the mammalian immune system. However, the potential role of JAK1 in fish immune response remains largely unclear. In the present study, the JAK1 gene of Megalobrama amblycephala (MamJAK1) was identified and characterized. The open reading frame (ORF) of MamJAK1 was 3462 bp, encoding 1153 amino acids. MamJAK1 consists of four common domains of the JAK family, including B41, SH2, STyrKc (a pseudo kinase domain), and TyrKc (a kinase domain). Phylogenetic analysis showed that JAK1s are divided into two evolutionary clades, one containing fish JAK1s, and the other containing JAK1s from other vertebrates. The results of quantitative real-time PCR (qPCR) showed that in healthy M. amblycephala, MamJAK1 mRNA was highest expressed in blood, followed by spleen, intestine and mid-kidney, and lowly expressed in other tissues including gill, liver, head kidney, muscle, brain and heart. After Aeromonas hydrophila infection, the expression of MamJAK1 mRNA was significantly induced in four selected tissues including spleen, mid-kidney, liver and intestine, reaching a peak at 24 hpi (hour post infection) in spleen and mid-kidney, at 12 hpi in liver and at 4 hpi in intestine, and then the expression level was restricted to control levels at 72 or 120 hpi. In addition, the results of Western blot showed that the phosphorylation level of MamJAK1 protein in spleen and mid-kidney increased significantly after A. hydrophila infection, although MamJAK1 protein did not change obviously. Further, the JAK1 phosphorylation in Ctenopharyngodon idellus kidney (CIK) cells was found to be significantly induced by LPS stimulation and IL-6R over-expression. The results above suggest that MamJAK1 may play an essential role in the immune response against bacterial infection through the IL-6R mediated JAK1/STAT signaling pathway, which further deepen our understanding of JAK1 and provides a potential target for the treatment and prevention of bacterial diseases in teleost.
Collapse
Affiliation(s)
- Qianhui Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education / Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jian Zhang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education / Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jixiu Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education / Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Huanling Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education / Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zexia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education / Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education / Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
10
|
Zhao L, Huang J, Wu S, Li Y, Pan Y. Integrative analysis of miRNA and mRNA expression associated with the immune response in the intestine of rainbow trout (Oncorhynchus mykiss) infected with infectious hematopoietic necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2022; 131:54-66. [PMID: 36174908 DOI: 10.1016/j.fsi.2022.09.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss), an economically important cold-water fish cultured worldwide, suffers from infectious hematopoietic necrosis virus (IHNV) infection, resulting in huge financial losses. In order to understand the immune response of rainbow trout during virus infection, we explored trout intestine transcriptome profiles following IHNV challenge, and identified 3355 differentially expressed genes (DEGs) and 80 differentially expressed miRNAs (DEMs). Transcriptome analysis revealed numerous DEGs involved in immune responses, such as toll-like receptor 3 (TLR3), toll-like receptor 7/8 (TLR7/8), tripartite motif-containing 25 (TRIM25), DExH-Box helicase 58 (DHX58), interferon-induced with helicase C domain 1 (IFIH1), interferon regulatory factor 3 (IRF3/7), signal transducer and activator of transcription 1 (STAT1) and heat shock protein 90-alpha 1 (HSP90A1). Integrated analysis identified five key miRNAs (miR-19-y, miR-181-z, miR-203-y, miR-143-z and miR-206-y) targeting at least two important immune genes (TRIM25, DHX58, STAT1, TLR7/8 and HSP90A1). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that DEGs and target genes were significantly enriched in various immune-related terms including immune system process, binding, cell part and pathways of Toll-like receptor signalling, RIG-I-like receptor signalling, NOD-like receptor signalling, JAK-STAT signalling, PI3K-Akt signalling, NF-kappa B signalling, IL-17 signalling and AGE-RAGE signalling. In addition, protein-protein interaction networks (PPI) was used to display highly interactive DEG networks involving eight immune-related pathways. The expression trends of 12 DEGs and 10 DEMs were further verified by quantitative real-time PCR, which confirmed the reliability of the transcriptome sequencing results. This study expands our understanding of the immune response of rainbow trout infected with IHNV, and provides valuable resources for future studies on the immune molecular mechanism and disease resistance breeding.
Collapse
Affiliation(s)
- Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yucai Pan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
11
|
Nuclear and Morphological Alterations in Erythrocytes, Antioxidant Enzymes, and Genetic Disparities Induced by Brackish Water in Mrigal Carp (Cirrhinus mrigala). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4972622. [PMID: 36267815 PMCID: PMC9578798 DOI: 10.1155/2022/4972622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/07/2022] [Accepted: 09/24/2022] [Indexed: 11/18/2022]
Abstract
Salinization of aquatic ecosystem, abrupt climate change, and anthropogenic activities cause adverse impact on agricultural land/soil as well as the aquaculture industry. This experimental study was designed to evaluate different biomarkers of oxidative stress, antioxidant enzymes, and genotoxic potential of diverse salinities of brackish water on freshwater fish. A total of 84 fresh water mrigal carp (Cirrhinus mrigala) were randomly segregated and maintained in four groups (T0, T1, T2, and T3) in a glass aquarium under similar laboratory conditions at various salinity levels (0, 3, 5, and 7 parts per thousand) to determine the pathological influence of brackish water. All the fish in groups T1, T2, and T3 were exposed to various salinity levels of brackish water for a period of 90 days while the fish of group T0 served as the control group. The experimental fish reared in different groups T1, T2, and T3 displayed various physical and behavioral ailments. The results revealed significantly augmented quantity of different oxidative stress indicators including reactive oxygen species (ROS) and thiobarbituric acid reactive substance (TBARS) in different visceral tissues (kidneys, liver, and gills) of exposed fish. Different antioxidant enzymes such as reduced glutathione (GSH), peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) along with total proteins were remarkably reduced in the kidneys, gills, and liver tissues. Results showed significantly increased values of different nuclear abnormalities (erythrocyte with micronucleus, erythrocyte with condensed nucleus, and erythrocyte with lobed nucleus) and morphological changes (pear shaped erythrocyte, spindle-shaped erythrocytes, and spherocyte) in red blood cells of experimental fish. The results on genotoxic effects exhibited significantly increased DNA damage in isolated cells of liver, kidneys, and gills of exposed fish. The findings of our experimental research suggested that brackish water causes adverse toxicological impacts on different visceral tissues of fresh water fish at higher salinity level through disruption and disorder of physiological and biochemical markers.
Collapse
|
12
|
Wang J, Sun Q, Wu J, Tian W, Wang H, Liu H. Identification of four STAT3 isoforms and functional investigation of IL-6/JAK2/STAT3 pathway in blunt snout bream (Megalobrama amblycephala). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104484. [PMID: 35764161 DOI: 10.1016/j.dci.2022.104484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a major regulator of immune response and chronic inflammatory, which can be activated by interleukin-6 (IL-6). In mammals, STAT3 has multiple isoforms, and its function has been well studied. In teleost, a single stat3 has been cloned and identified in several species, but studies on its function are limited. In the present study, four stat3 isoforms including mastat3α1, mastat3α2, mastat3β1 and mastat3β2 were identified from blunt snout bream (Megalobrama amblycephala). The results of quantitative PCR (qPCR) showed that four mastat3 transcripts were ubiquitously expressed in all 10 tissues examined. After Aeromonas hydrophila challenge, the expression patterns of mastat3a1, mastat3a2 and mastat3β2 were similar, but significantly different from that of mastat3β1. In addition, western blot showed that rmaIL-6+rmasIL-6R (IL-6 trans-signaling) significantly up-regulated phosphorylation levels of the four maSTAT3 isoforms and mRNA levels of the il-10, il-11, tnf-a, socs3a and socs3b genes, while rmaIL-6 (IL-6 classical signaling) only significantly up-regulated phosphorylation levels of the two maSTAT3α isoforms and mRNA levels of the il-10, socs3a and socs3b genes. Meanwhile, overexpression or inhibition of JAK2 could significantly change the STAT3 phosphorylation. Finally, JAK2 and STAT3 inhibitors could significantly inhibit the up-regulation of il-10, il-11, tnf-a, socs3a and socs3b induced by rmaIL-6+rmasIL-6R or rmaIL-6. To sum up, this study reveals the functional distinctions and overlaps among the four maSTAT3 isoforms in blunt snout bream and reveals the differential regulation of IL-6 classical signaling and trans-signaling on downstream immune genes via the JAK2/STAT3 pathway, enriching our knowledge of fish's defense mechanisms against pathogens.
Collapse
Affiliation(s)
- Jixiu Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Qianhui Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jiaqi Wu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Wanping Tian
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Huanling Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
13
|
Xu X, Wang J, Wu J, Wang H, Liu H. Evolution and expression analysis of STAT family members in blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2022; 121:316-321. [PMID: 34998988 DOI: 10.1016/j.fsi.2021.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is involved in regulating the body's immunity, cell proliferation, differentiation, and apoptosis. Members of the STAT family have been extensively studied in different mammalian species. However, there are few studies on the STAT family genes in farmed economic fish. In this study, eight STAT genes including STAT1a, STAT1b, STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6, in blunt snout bream (Megalobrama amblycephala), an economically important fish in China, were identified and characterized. Analyses of gene location, phylogeny and conserved synteny were conducted to infer the evolutionary origin of these STAT family genes. Furthermore, the evolutionary origin model of STATs was constructed based on the 2R hypothesis and teleost genome duplication (TGD) hypothesis, which clarified the evolutionary origin of the eight STATs in blunt snout bream. Besides, expression of the eight STATs was detected in 10 tissues of healthy blunt snout bream, which showed different expression patterns, and all had the highest level in the blood. In addition, expression of the STATs was significantly induced in the spleen, liver, and kidney after infection of Aeromonas hydrophila, suggesting that they play an important role in protecting the host from pathogens. In general, the evolution of cytokine-related genes parallels that of the immune system, which has likely been a main evolutionary driver. Therefore, the evolutionary model of STAT genes, constructed in the non-model organism pioneeringly, may provide some enlightenment for the evolution of the fish STAT family genes and their involvement in the immune function.
Collapse
Affiliation(s)
- Xiaohui Xu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jixiu Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jiaqi Wu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Huanling Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
14
|
Xu X, Sun X, Bai Q, Zhang Y, Qin J, Zhang X. Molecular identification of an androgen receptor and the influence of long-term aggressive interaction on hypothalamic genes expression in black rockfish (Sebastes schlegelii). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:401-413. [PMID: 33774729 DOI: 10.1007/s00359-021-01480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
This study aims to explore the mechanism on how aggressive interaction alters reproductive physiology by testing whether aggressive interaction can activate the reproductive neuroendocrine function via the hypothalamus-pituitary-gonadal (HPG) axis in black rockfish (Sebastes schlegelii). The expressions of the androgen receptor gene (ar) and gonadotropin-releasing hormone genes (gnrhs), the concentration of plasma androgens, and GSI (the ratio of testes mass to body mass) were compared between the interaction group (dominant males or subordinate males) and the isolation group in male black rockfish after 3 weeks. A full-length cDNA encoding an androgen receptor (AR) of 766 amino acids was isolated. Transcripts encoding this AR were detected at a high relative abundance in the liver, kidney, testis, ovary, muscle, and intestine tissue. Further evaluation of brain genes transcripts abundance revealed that the mRNA levels of gnrh I and ar genes were significantly different between the interaction group and the isolation group in the hypothalamus. However, no significant difference was detected in testosterone, 11-keto-testosterone, and GSI between these two groups. This study indicates that a long-term aggressive interaction affect the expression of hypothalamic gnrh I and ar but may not change the physiological function of the HPG axis in an all-male condition.
Collapse
Affiliation(s)
- Xiuwen Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xin Sun
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qingqing Bai
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yuyang Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Xiumei Zhang
- Fisheries College, Zhejiang Ocean University, Zhoushan, 316022, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
15
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Type I interferons in ray-finned fish (Actinopterygii). FISH & SHELLFISH IMMUNOLOGY 2021; 110:35-43. [PMID: 33387659 DOI: 10.1016/j.fsi.2020.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Interferons (IFNs) are proteins of vital importance in the body's immune response. They are formed in different types of cells and have been found in fish, amphibians, reptiles and mammals. Two types of IFN have been found in ray-finned fish (Superclass: Osteichthyes, Class: Actinopterygii) so far, i.e. IFN type I (IFN I) and IFN type II (IFN II), while the presence of IFN type III (IFN III), which is found in phylogenetically older cartilaginous fishes, was not confirmed in this taxonomic group of vertebrates. Currently, type I IFN in Actinopterygii is divided into three groups, I, II and III, within which there are subgroups. These cytokines in these animals show primarily antiviral activity through the use of a signalling pathway JAK-STAT (Janus kinases - Signal transducer and activator of transcription) and the ability to induce ISG (IFN-stimulated genes) expression, which contain ISRE complexes (IFN-stimulated response elements). On the other hand, in Perciformes and Cyprinidae, it was found that type I/I interferons also participate in the antimicrobial response, inter alia, by inducing the expression of the inducible nitric oxide synthase (iNOS) and influencing the production of reactive oxygen species (ROS) in cells carrying out the phagocytosis process.
Collapse
Affiliation(s)
- Michał Stosik
- Faculty of Biological Sciences, Institute of Biological Sciences, University of Zielona Góra, Poland.
| | | | - Wiesław Deptuła
- Faculty of Biological and Veterinary Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
16
|
Akram R, Iqbal R, Hussain R, Jabeen F, Ali M. Evaluation of Oxidative stress, antioxidant enzymes and genotoxic potential of bisphenol A in fresh water bighead carp (Aristichthys nobils) fish at low concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115896. [PMID: 33187850 DOI: 10.1016/j.envpol.2020.115896] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 05/26/2023]
Abstract
Bisphenol A (BPA) is one of the emerging contaminants associated with deleterious health effects on both public and wildlife and is extensively incorporated into different industrial products. Therefore, the current trial was conducted to determine the oxidative stress, status of different antioxidant enzymes and genotoxic potential of bisphenol A in fresh water fish at low concentrations. For this purpose, a total of 80 fresh water bighead carp (Aristicthys nobilis) received from commercial fish center were randomly divided and kept in four groups (A-D). Fish in groups (B-D) were exposed to different levels of BPA for a period of 60 days while fish of group A served as control group. Treated fish exhibited different physical and behavioral ailments in a time and treatment manners. Results showed significantly (p < 0.05) increased quantity of different oxidative stress biomarkers such as thiobarbituric acid reactive substance (TBARS), reduced glutathione (GSH) and the contents of reactive oxygen species (ROS) in gills, liver, kidneys and brain of exposed fish. Concentration of different antioxidant enzymes like catalase, superoxide dismutase, peroxidase and total proteins was significantly (p < 0.05) decreased in gills, liver, kidneys and brain of exposed fish. Results showed significantly (p < 0.05) increased frequency of morphological alterations, nuclear changes in red blood cells and increased DNA damage potential of bisphenol A in gills, liver, kidneys and brain tissues. The current trial concludes that even at very low concentrations bisphenol A causes toxic effects via turbulences in physiological and biochemical parameters in multiple tissues of fish.
Collapse
Affiliation(s)
- Rabia Akram
- Institute of Pure and Applied Biology, Zoology Division, Bhauddin Zakariya University, Multan, Pakistan
| | - Rehana Iqbal
- Institute of Pure and Applied Biology, Zoology Division, Bhauddin Zakariya University, Multan, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary Sciences, Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Farhat Jabeen
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Ali
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| |
Collapse
|
17
|
Hussain R, Ghaffar A, Abbas G, Jabeen G, Khan I, Abbas RZ, Noreen S, Iqbal Z, Chaudhary IR, Ishaq HM, Ghori MT, Khan A. Thiamethoxam at sublethal concentrations induces histopathological, serum biochemical alterations and DNA damage in fish (Labeo rohita). TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1855655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdul Ghaffar
- Department of Life Sciences (Zoology), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ghulam Abbas
- Centre of Excellence in Marine Biology, University of Karachi, Karachi, Pakistan
| | - Ghazala Jabeen
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Iahtasham Khan
- Section of Epidemiology and Public Health, Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore Sub-Campus Jhang, Lahore, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, Faculty of Veterinary Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sobia Noreen
- Department of Life Sciences (Zoology), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zahid Iqbal
- Department of Pharmacology, Swat, Medical College Saidu Sharif, Swat, Pakistan
| | - Iqra Rasheed Chaudhary
- Department of Life Sciences (Zoology), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Muhammad Ishaq
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Muhammad Taslim Ghori
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ahrar Khan
- Department of Pathology, Faculty of Veterinary Sciences, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
18
|
Xie P, Han Q, Liu D, Yao D, Lu X, Wang Z, Zuo X. miR-525-5p Modulates Proliferation and Epithelial-Mesenchymal Transition of Glioma by Targeting Stat-1. Onco Targets Ther 2020; 13:9957-9966. [PMID: 33116581 PMCID: PMC7548333 DOI: 10.2147/ott.s257951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/23/2020] [Indexed: 12/21/2022] Open
Abstract
Background Glioma is the most aggressive human brain tumor. Recent studies revealed that microRNAs play vital roles in glioma. However, the function of microRNA-525-5p (miR-525-5p) in glioma remains unclear. Methods qRT-PCR and Western blotting were used to evaluate mRNA and protein levels in glioma tissues and cells. Colony formation, CCK-8, and Edu assays evaluated the growth of glioma cells. Wound-healing, transwell, and 3D invasion assays examined the migration and invasion activities of glioma cells. Luciferase reporter assays assessed the regulatory relationship interaction between miR-525-5p and Stat-1. A mouse xenograft model was used to examine the effect of miR-525-5p on glioma in vivo. Results miR-525-5p expression was downregulated in glioma tissues and cells. Overexpressing miR-525-5p decreased the growth of glioma cells and reduced the migration, invasion, and epithelial–mesenchymal transition of glioma cells. Bioinformatics analysis identified Stat-1 as a potential target of miR-525-5p, and dual luciferase reporter assays revealed that miR-525-5p negatively regulates Stat-1. Decreased Stat-1 led to the inhibition of FOXM1, affecting NF-κB signaling activity. Overexpressing miR-525-5p reduced tumor development in vivo. Conclusion miR-525-5p negatively regulates cell proliferation, migration, invasion, and epithelial–mesenchymal transition in glioma, and Stat 1 is a target of miR-525-5p. miR-525-5p may be a potential target for glioma treatment.
Collapse
Affiliation(s)
- Peng Xie
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, People's Republic of China
| | - Qiu Han
- Department of Neurology, Huai'an First People's Hospital, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223000, People's Republic of China
| | - Dachao Liu
- Department of Image, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, People's Republic of China
| | - Dan Yao
- Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, People's Republic of China
| | - Xiaoqing Lu
- Department of Orthopedic, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, People's Republic of China
| | - Ziyu Wang
- Department of Emergency Intensive Care Unit, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, People's Republic of China
| | - Xiaohua Zuo
- Department of Pain Management, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, People's Republic of China
| |
Collapse
|
19
|
Liang Y, Liu H, Li X, Huang W, Huang B, Xu J, Xiong J, Zhai S. Molecular insight, expression profile and subcellular localization of two STAT family members, STAT1a and STAT2, from Japanese eel, Anguilla japonica. Gene 2020; 769:145257. [PMID: 33164823 DOI: 10.1016/j.gene.2020.145257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Signal transducer and activator of transcription 1 (STAT1) and STAT2 are critical components of type I and type II IFNs signaling. To date, seven STAT family proteins have been identified from mammals. However, the information on STAT genes in teleost fish is still limited. In the present study, two STAT family genes (STAT1a and STAT2) were identified from Japanese eel, Anguilla japonica and designated as AjSTAT1a and AjSTAT2. The open reading frames of AjSTAT1a and AjSTAT2 are 2244 bp and 2421 bp, encoding for polypeptides of 747 aa and 806 aa, respectively. Both AjSTAT1a and AjSTAT2 contain the conserved domains of STAT proteins. Phylogenetic analysis was performed based on the STATs protein sequences, and showed that AjSTAT1a and AjSTAT2 shared the closest relationship with Oncorhynchus mykiss. Quantitative real-time PCR analysis revealed that AjSTAT1a and AjSTAT2 were expressed in most examined tissues, with the highest expression both in blood. Significantly up-regulated transcripts of AjSTAT1a and AjSTAT2 were detected in response to poly I:C stimulation, and Edwardsiella tarda induced increase in the expression of AjSTAT1a and AjSTAT2 genes. Subcellular localization analysis showed that in both IFNγ-stimulated and unstimulated EPC cells AjSTAT1a and AjSTAT2 were mainly distributed in the cytoplasm, but few AjSTAT1a was distributed in the nucleus. All these results suggested that AjSTAT1a and AjSTAT2 may be critical for regulating the host innate immune defense against pathogens invasion.
Collapse
Affiliation(s)
- Ying Liang
- Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361000, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China.
| | - Haizi Liu
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiang Li
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Wenshu Huang
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| | - Bei Huang
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| | - Jisong Xu
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| | - Jing Xiong
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| | - Shaowei Zhai
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| |
Collapse
|
20
|
Gan Z, Cheng J, Chen S, Laghari ZA, Hou J, Xia L, Lu Y, Nie P. Functional characterization of a group II interferon, IFNc in the perciform fish, Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2020; 105:86-94. [PMID: 32599057 DOI: 10.1016/j.fsi.2020.06.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Interferons are a family of class II α-helical cytokines playing vital roles in antiviral immune response, and little information is available to date regarding the interferon system of tilapia. In this study, a type I IFN gene, named On-IFNc, was identified in Nile tilapia, Oreochromis niloticus. The predicted protein of On-IFNc contains several structural features known in type I IFNs, and On-IFNc was clustered together with the known IFNc in fish into a separated clade in the phylogenetic tree. On-IFNc gene was constitutively expressed in all tissues examined, with the highest expression level observed in liver, and was rapidly induced in all organs/tissues tested following the stimulation of poly(I:C). In addition, recombinant On-IFNc has been proven to markedly induce the expression of the antiviral effectors, Mx and viperin, the signalling components, STAT1, STAT2, and IRF9, and the transcription factors, IRF3 and IRF7, as well as the tyrosine phosphorylation of STAT1 and STAT2 in fish cells. Furthermore, recombinant On-IFNc has been proven to possess antiviral activity against ISKNV. The present study thus contributes to a better understanding of the functional properties of the type I IFN system in tilapia.
Collapse
Affiliation(s)
- Zhen Gan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Shenzhen Dapeng New District Science and Technology Innovation Service Center, Shenzhen, 518120, China
| | - Jun Cheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Shannan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zubair Ahmed Laghari
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jing Hou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Shenzhen Dapeng New District Science and Technology Innovation Service Center, Shenzhen, 518120, China
| | - Liqun Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
21
|
Cheng K, Ma C, Guo X, Huang Y, Tang R, Karrow NA, Wang C. Vitamin D 3 modulates yellow catfish (Pelteobagrus fulvidraco) immune function in vivo and in vitro and this involves the vitamin D 3/VDR-type I interferon axis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 107:103644. [PMID: 32061641 DOI: 10.1016/j.dci.2020.103644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Vitamin D3 (VD3) has been shown to regulate immune function in mammals. 1,25-dihydroxyvitamin (1,25(OH)2D3) is the active form of vitamin D3, which is also known as calcitriol. The current study investigated the immunomodulatory effects of 1,25(OH)2D3 on the innate immune response of yellow catfish (Pelteobagrus fulvidraco) after in vivo and in vitro immune challenge. The in vivo results showed that increasing dietary vitamin D3 decreased mortality, enhanced the immune protective rate, and increased serum lysozyme, catalase and SOD activities in yellow catfish infected with Edwardsiella Ictaluri (p < 0.05). The in vitro results showed that 1,25(OH)2D3 (0, 1, 10, 100, 200 pM) dose-dependently attenuated the rate of apoptosis and production or reactive oxygen species and increased the phagocytic activity of head kidney macrophages stimulated with 10 mg/L lipopolysaccharide (LPS) and 100 mg/L of Poly(I:C) (p < 0.05). Real-time quantitative PCR results showed that increasing dietary vitamin D3 content in vivo and increasing the level of 1,25(OH)2D3in vitro partially regulated the expression of VD3/VDR-type I interferon axis genes (vdr, irf-3, ifn-a, jak1, stat1, ifi56 and ifp35) after immune challenge. These results indicated that vitamin D3 content helped yellow catfish to resist oxidative stress and inflammation caused by immune challenge, and immunomodulation involved the VD3/VDR-type I interferon action axis.
Collapse
Affiliation(s)
- Ke Cheng
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunsong Ma
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xun Guo
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanqing Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| | - Rong Tang
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Niel A Karrow
- Department of Animal Biosciences, University of Guelph, ON, N1G 2W1, Canada
| | - Chunfang Wang
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
22
|
Wang T, Lin P, Guo S, Wang Y, Zhang Z, Feng J. Molecular characterization and expression analysis of signal transducer and activator of transcription 1 (STAT1) in Japanese eel Anguilla japonica. FISH & SHELLFISH IMMUNOLOGY 2019; 86:956-964. [PMID: 30590158 DOI: 10.1016/j.fsi.2018.12.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Signal transducer and activator of transcription 1 (STAT1) is one of critical signal transduction proteins of interferon (IFN) pathway and the structure and function of this protein have been well identified in mammals, but the information about the STAT1 is still limited in teleost fishes. In the present study, the full-length cDNA sequence of STAT1 (AjSTAT1) in Japanese eel (Anguilla japonica) was identified and characterized. Multiple alignment of the amino acid sequence showed that the AjSTAT1 protein has the typical conserved domains including the amino-terminal, coiled-coil, DNA-binding, linker, Src homology 2 (SH2), transcriptional activation domains (TAD). Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed a broad expression for AjSTAT1 in a wide range of tissues, with the predominant expression in liver, followed by the spleen, intestine, gills, skin, kidney, and the very low expression in heart and muscle. The AjSTAT1 expressions in liver, spleen and kidney were significantly induced following injection with LPS, the viral mimic poly I:C, and Aeromonas hydrophila infection. In vitro, the AjSTAT1 transcripts of Japanese eel liver cells were significantly enhanced by the treatment of poly I:C or the stimulation of the high concentration of Aeromonas hydrophila (1 × 107 cfu/mL and 1 × 108 cfu/mL). Subcellular localization showed that in the natural state AjSTAT1was uniformly distributed in the cytoplasm, but AjSTAT1 was found to aggregated in the cytoplasm as well as partly in the nucleus after the stimulation of LPS and poly I:C. These results collectively suggested AjSTAT1 is an important transcription factor possibly involved in Japanese eel defense against viral and bacterial infection.
Collapse
Affiliation(s)
- Tingting Wang
- College of Fisheries, Jimei University, Xiamen, 361021, Fujian Province, China; Engineer Research Center of Eel Modern Industry Technology, Ministry of Education, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, China
| | - Peng Lin
- College of Fisheries, Jimei University, Xiamen, 361021, Fujian Province, China; Engineer Research Center of Eel Modern Industry Technology, Ministry of Education, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, China
| | - Songlin Guo
- College of Fisheries, Jimei University, Xiamen, 361021, Fujian Province, China; Engineer Research Center of Eel Modern Industry Technology, Ministry of Education, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, China
| | - Yilei Wang
- College of Fisheries, Jimei University, Xiamen, 361021, Fujian Province, China; Engineer Research Center of Eel Modern Industry Technology, Ministry of Education, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, China
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianjun Feng
- College of Fisheries, Jimei University, Xiamen, 361021, Fujian Province, China; Engineer Research Center of Eel Modern Industry Technology, Ministry of Education, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, China.
| |
Collapse
|
23
|
Wei M, Xu WT, Gan T, Wang L, Zhang HX, Zhao FZ, Chen SL. Cloning, expression prolife, and immune characterization of a novel stat family member (stat5bl) in Chinese tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2019; 84:962-969. [PMID: 30399402 DOI: 10.1016/j.fsi.2018.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/29/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
STAT plays important roles in innate immunity during JAK/STAT signaling pathway, and STAT5 is particularly focused due to the existence of duplicated forms in fish and mammal. In Chinese tongue sole, stat5bl was suggested to be a candidate related to Vibrio harveyi resistance based on previous QTL screening. In this study, the full length of stat5bl cDNA was cloned and its expression patterns were analyzed. stat5bl was predominantly expressed in immune tissues, where the highest level was observed in liver, followed by skin and gill. Time course expression patterns were examined in six tissues (liver, skin, gill, kidney, intestine, spleen) after V. harveyi infection. stat5bl could be up-regulated by V. harveyi infection in all tissues except liver, despite the timepoints of peak were different. In contrast, stat5bl was significantly downregulated in liver. To elucidate the role of stat5bl in liver, in vitro RNAi were performed using primary liver cell culture. Knockdown of stat5bl could regulate the expression of genes closely related to JAK/STAT pathway. This study would enlarge our understanding of stat5bl in fish immunity.
Collapse
Affiliation(s)
- Min Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Jiangsu Key Laboratory of Marine Biotechnology/College of Marine Science and Fisheries, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Wen-Teng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Tian Gan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Hong-Xiang Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Fa-Zhen Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Song-Lin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China.
| |
Collapse
|
24
|
Tan S, Wang W, Zhong X, Tian C, Niu D, Bao L, Zhou T, Jin Y, Yang Y, Yuan Z, Gao D, Dunham R, Liu Z. Increased Alternative Splicing as a Host Response to Edwardsiella ictaluri Infection in Catfish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:729-738. [PMID: 30014301 DOI: 10.1007/s10126-018-9844-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/04/2018] [Indexed: 05/26/2023]
Abstract
Alternative splicing is the process of generating multiple transcripts from a single pre-mRNA used by eukaryotes to regulate gene expression and increase proteomic complexity. Although alternative splicing profiles have been well studied in mammalian species, they have not been well studied in aquatic species, especially after biotic stresses. In the present study, genomic information and RNA-Seq datasets were utilized to characterize alternative splicing profiles and their induced changes after bacterial infection with Edwardsiella ictaluri in channel catfish (Ictalurus punctatus). A total of 27,476 alternative splicing events, derived from 9694 genes, were identified in channel catfish. Exon skipping was the most abundant while mutually exclusive exon was the least abundant type of alternative splicing. Alternative splicing was greatly induced by E. ictaluri infection with 21.9% increase in alternative splicing events. Interestingly, genes involved in RNA binding and RNA splicing themselves were significantly enriched in differentially alternatively spliced genes after infection. Sequence analyses of splice variants of a representative alternatively spliced gene, splicing factor srsf2, revealed that certain spliced transcripts may undergo nonsense-mediated decay (NMD), suggesting functional significance of the induced alternative splicing. Although statistical analysis was not possible with such large datasets, results from quantitative real-time PCR from representative differential alternative splicing events provided general validation of the bacterial infection-induced alternative splicing. This is the first comprehensive study of alternative splicing and its changes in response to bacterial infection in fish species, providing insights into the molecular mechanisms of host responses to biotic stresses.
Collapse
Affiliation(s)
- Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaoxiao Zhong
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Changxu Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- College of Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
25
|
Zhou T, Yuan Z, Tan S, Jin Y, Yang Y, Shi H, Wang W, Niu D, Gao L, Jiang W, Gao D, Liu Z. A Review of Molecular Responses of Catfish to Bacterial Diseases and Abiotic Stresses. Front Physiol 2018; 9:1113. [PMID: 30210354 PMCID: PMC6119772 DOI: 10.3389/fphys.2018.01113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022] Open
Abstract
Catfish is one of the major aquaculture species in the United States. However, the catfish industry is threatened by several bacterial diseases such as enteric septicemia of catfish (ESC), columnaris disease and Aeromonas disease, as well as by abiotic stresses such as high temperature and low oxygen. Research has been conducted for several decades to understand the host responses to these diseases and abiotic stresses. With the development of sequencing technologies, and the application of genome-wide association studies in aquaculture species, significant progress has been made. This review article summarizes recent progress in understanding the molecular responses of catfish after bacterial infection and stress challenges, and in understanding of genomic and genetic basis for disease resistance and stress tolerance.
Collapse
Affiliation(s)
- Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Huitong Shi
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Lei Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Wansheng Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, United States
| |
Collapse
|