1
|
Tang Y, Zou Q, Yu G, Liu F, Wu Y, Zhao X, Wang W, Liu X, Hu F, Wang Z. Immunotranscriptomic Profiling of Spodoptera frugiperda Challenged by Different Pathogenic Microorganisms. INSECTS 2025; 16:360. [PMID: 40332833 PMCID: PMC12028137 DOI: 10.3390/insects16040360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/13/2025] [Accepted: 03/22/2025] [Indexed: 05/08/2025]
Abstract
Spodoptera frugiperda is a globally significant migratory agricultural pest that requires proactive monitoring. Understanding the molecular mechanisms underlying the interactions between pathogenic microorganisms and S. frugiperda is crucial for enhancing the effectiveness of microbial control agents against this pest. This study used transcriptome sequencing and molecular biology techniques on S. frugiperda larvae infected by bacteria and fungi to investigate the composition and molecular regulatory mechanisms of its immune system. A total of 598 immune-related genes were identified. Upon microbial infection, most immune-related genes showed an upregulated expression trend. Phylogenetic analysis revealed that the immune gene repertoire of S. frugiperda is relatively conserved. The expression of the genes of peptidoglycan recognition proteins in different tissues of S. frugiperda induced by microorganisms at different times was verified using qPCR, and the results confirmed that these genes were significantly upregulated under specific pathogenic infections. This study elucidates the immune transcriptome of S. frugiperda in response to various pathogenic microorganisms, providing valuable insights for improving the effectiveness of existing microbial agents and developing new, highly efficient, and specific biopesticides.
Collapse
Affiliation(s)
- Yan Tang
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou 233100, China; (Y.T.); (G.Y.)
| | - Qi Zou
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
| | - Guojie Yu
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou 233100, China; (Y.T.); (G.Y.)
| | - Feng Liu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
| | - Yu Wu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
| | - Xueyan Zhao
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
| | - Wensheng Wang
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
| | - Xinchang Liu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
| | - Fei Hu
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China;
| | - Zengxia Wang
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
- Anhui Engineering Research Center for Smart Crop Planting and Processin Technology, Anhui Science and Technology University, Chuzhou 233100, China
| |
Collapse
|
2
|
Lou Y, Wang G, Zhang W, Xu L. Adaptation strategies of insects to their environment by collecting and utilizing external microorganisms. Integr Zool 2025; 20:208-212. [PMID: 39045684 DOI: 10.1111/1749-4877.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Insects adjust their adaptive capacity to biotic and abiotic stresses by collecting and utilizing microorganisms from the environment and diet.
Collapse
Affiliation(s)
- Yulu Lou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, China
| | - Guangmin Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, China
| | - Wei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
3
|
Vivekanandhan P, Swathy K, Lucy A, Sarayut P, Patcharin K. Entomopathogenic fungi based microbial insecticides and their physiological and biochemical effects on Spodoptera frugiperda (J.E. Smith). Front Cell Infect Microbiol 2023; 13:1254475. [PMID: 38149005 PMCID: PMC10750404 DOI: 10.3389/fcimb.2023.1254475] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
Background 'The fall armyworm, Spodoptera frugiperda', represents a significant threat to maize production, a major staple crop in Asian countries. Methods In pursuit of more effective control of this insect pest, our study assessed the physiological and biochemical effects of the entomopathogenic fungus Metarhizium anisopliae against the larvae of S. frugiperda. Results Results revealed that, following nine days of treatment, a high concentration of conidia (1.5x107 conidia/mL-1) was toxic to all stages of larvae (second to fifth instar), resulting in 97% mortality of the second instar, 89% mortality of the third instar, 77% mortality of the fourth instar, and 72% mortality of fifth instar. All larval instars were found to have dose-dependent mortality effects. Treated S. frugiperda larvae further displayed significant physiological, morphological, and behavioral changes. Here, treated larvae displayed significantly lower levels of acetylcholinesterase, α-carboxylesterase, and β-carboxylesterase enzyme activity when compared to control groups. Treated larvae underwent an outward morphological change as the result of a decrease in the exterior cuticle of the anal papillae and a demelanization of the interior cuticle. Treated larvae also exhibited abnormal feeding behaviors as a consequence of the negative impact of conidia treatment on the neuromuscular system. Investigation into the effect of M. anisopliae on the non-target organism, the earthworm Eudrilus eugeniae, revealed that M. anisopliae conidia did not produce significant pathogenicity following three days of treatment. Furthermore, histological analysis revealed no significant effect of the entomopathogenic fungi on the gut tissue of the non-target organism. Conclusion This study highlights the potential of M. anisopliae in the control of S. frugiperda.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Alford Lucy
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Pittarate Sarayut
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Krutmuang Patcharin
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Duffield KR, Rosales AM, Muturi EJ, Behle RW, Ramirez JL. Increased Phenoloxidase Activity Constitutes the Main Defense Strategy of Trichoplusia ni Larvae against Fungal Entomopathogenic Infections. INSECTS 2023; 14:667. [PMID: 37623376 PMCID: PMC10455440 DOI: 10.3390/insects14080667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
The cabbage looper Trichoplusia ni is an important agricultural pest worldwide and is frequently used as a model organism for assessing entomopathogenic fungi virulence, though few studies have measured the host response repertoire to fungal biocontrol agents. Here, we quantified the immune response of T. ni larvae following exposure to two entomopathogenic fungal species: Beauveria bassiana and Cordyceps javanica. Results from our study demonstrate that T. ni larvae exposed to fungal entomopathogens had higher total phenoloxidase activity compared to controls, indicating that the melanization cascade is one of the main immune components driving defense against fungal infection and contrasting observations from other insect-fungi interaction studies. We also observed differences in host response depending on the species of entomopathogenic fungi, with significantly higher induction observed during infections with B. bassiana than with C. javanica. Larvae exposed to B. bassiana had an increased expression of genes involved in prophenoloxidase response and the Imd, JNK, and Jak/STAT immune signaling pathways. Our results indicate a notable absence of Toll pathway-related responses, further contrasting results to other insect-fungi pathosystems. Important differences were also observed in the induction of antimicrobial effectors, with B. bassiana infections eliciting three antimicrobial effectors (lysozyme, gloverin, and cecropin), while C. javanica only induced cecropin expression. These results provide insight into the host response strategies employed by T. ni for protection against entomopathogenic fungi and increase our understanding of insect-fungal entomopathogen interactions, aiding in the design of more effective microbial control strategies for this important agricultural pest.
Collapse
Affiliation(s)
- Kristin R. Duffield
- USDA-ARS, National Center for Agricultural Utilization Research, Crop BioProtection Research Unit, 1815 N. University St., Peoria, IL 61604, USA; (E.J.M.)
| | | | - Ephantus J. Muturi
- USDA-ARS, National Center for Agricultural Utilization Research, Crop BioProtection Research Unit, 1815 N. University St., Peoria, IL 61604, USA; (E.J.M.)
| | - Robert W. Behle
- USDA-ARS, National Center for Agricultural Utilization Research, Crop BioProtection Research Unit, 1815 N. University St., Peoria, IL 61604, USA; (E.J.M.)
| | - José L. Ramirez
- USDA-ARS, National Center for Agricultural Utilization Research, Crop BioProtection Research Unit, 1815 N. University St., Peoria, IL 61604, USA; (E.J.M.)
| |
Collapse
|
5
|
Guo H, Jia N, Chen H, Xie D, Chi D. Preliminary Analysis of Transcriptome Response of Dioryctria sylvestrella (Lepidoptera: Pyralidae) Larvae Infected with Beauveria bassiana under Short-Term Starvation. INSECTS 2023; 14:insects14050409. [PMID: 37233037 DOI: 10.3390/insects14050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
The Dioryctria genus contains several destructive borer pests that are found in coniferous forests in the Northern Hemisphere. Beauveria bassiana spore powder was tested as a new method of pest control. In this study, Dioryctria sylvestrella (Lepidoptera: Pyralidae) was used as the object. A transcriptome analysis was performed on a freshly caught group, a fasting treatment control group, and a treatment group inoculated with a wild B. bassiana strain, SBM-03. Under the conditions of 72-h fasting and a low temperature of 16 ± 1 °C, (i) in the control group, 13,135 of 16,969 genes were downregulated. However, in the treatment group, 14,558 of 16,665 genes were upregulated. (ii) In the control group, the expression of most genes in the upstream and midstream of the Toll and IMD pathways was downregulated, but 13 of the 21 antimicrobial peptides were still upregulated. In the treatment group, the gene expression of almost all antimicrobial peptides was increased. Several AMPs, including cecropin, gloverin, and gallerimycin, may have a specific inhibitory effect on B. bassiana. (iii) In the treatment group, one gene in the glutathione S-transferase system and four genes in the cytochrome P450 enzyme family were upregulated, with a sharp rise in those that were upregulated significantly. In addition, most genes of the peroxidase and catalase families, but none of the superoxide dismutase family were upregulated significantly. Through innovative fasting and lower temperature control, we have a certain understanding of the specific defense mechanism by which D. sylvestrella larvae may resist B. bassiana in the pre-wintering period. This study paves the way for improving the toxicity of B. bassiana to Dioryctria spp.
Collapse
Affiliation(s)
- Hongru Guo
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Niya Jia
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Huanwen Chen
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Dan Xie
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Defu Chi
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
6
|
Bai J, Xu Z, Li L, Zhang Y, Diao J, Cao J, Xu L, Ma L. Gut bacterial microbiota of Lymantria dispar asiatica and its involvement in Beauveria bassiana infection. J Invertebr Pathol 2023; 197:107897. [PMID: 36806463 DOI: 10.1016/j.jip.2023.107897] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
The gut bacterial microbiota of insects has been shown to play essential roles in processes related to physiology, metabolism, and innate immunity. In this study, we firstly performed a broad analysis of the gut bacteria in Lymantria dispar asiatica, one of the most devastating forestry defoliators. We analyzed the bacterial composition among different individuals from lab-reared or wild-collected using 16 s rRNA-sequencing, revealing that the gut bacteria of wild-collected larvae were highly diverse, while lab-reared larvae were only associated with a few genera. We found Lactobacillus sp. present in all the gut samples, which indicates that it is part of the core microbiome in the caterpillar. Further Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h. Moreover, we isolated several bacteria from the hemolymph of the non-axenic larvae infected by B. bassiana, which may be caused by the translocation of gut bacteria from the gut to the hemocoel. Reintroduction of Enterococcus sp., Pseudomonas sp., Enterobacter sp., and Microbacterium sp. into axenic larvae recurred the larval mortality in their non-axenic counterpart. Taken together, our study demonstrates that the gut bacteria of L. dispar asiatica are highly volatile, and different bacteria taxa can promote host infection by entomopathogenic fungus, providing a new strategy for the pest management.
Collapse
Affiliation(s)
- Jianyang Bai
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhe Xu
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Lu Li
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yue Zhang
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jian Diao
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jingyu Cao
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
| | - Ling Ma
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; Forest Protection Technology Innovation Center, Harbin, China.
| |
Collapse
|
7
|
Zhang L, Tang X, Wang Z, Tang F. The transcriptomic response of Hyphantria cunea (Drury) to the infection of Serratia marcescens Bizio based on full-length SMRT transcriptome sequencing. Front Cell Infect Microbiol 2023; 13:1093432. [PMID: 36896191 PMCID: PMC9989771 DOI: 10.3389/fcimb.2023.1093432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Hyphantria cunea (Drury) is a globally important forest pest. We found that the Serratia marcescens Bizio strain SM1 had insecticidal activity against H. cunea, but the transcriptomic response of H. cunea to SM1 were not clear. Therefore, we performed full-length sequencing of the transcriptomes of H. cunea larvae infected with SM1 and the control group. A total of 1,183 differentially expressed genes (DEGs) were identified by comparing the group infected with SM1 and the control group, including 554 downregulated genes and 629 upregulated genes. We found many downregulated genes in metabolic pathways. Furthermore, some of these downregulated genes were involved in cellular immunity, melanization, and detoxification enzymes, which showed that SM1 weakened H. cunea immunity. In addition, genes in the juvenile hormone synthesis pathway were upregulated, which was detrimental to the survival of H. cunea. This research analyzed the transcriptomic response of H. cunea to SM1 by high-throughput full-length transcriptome sequencing. The results provide useful information to explore the relationship between S. marcescens and H. cunea, and theoretical support for the application of S. marcescens and the control of H. cunea in the future.
Collapse
Affiliation(s)
- Ling Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Xinyi Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
- *Correspondence: Fang Tang,
| |
Collapse
|
8
|
Bai J, Cao J, Zhang Y, Xu Z, Li L, Liang L, Ma X, Han R, Ma W, Xu L, Ma L. Comparative analysis of the immune system and expression profiling of Lymantria dispar infected by Beauveria bassiana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105212. [PMID: 36127056 DOI: 10.1016/j.pestbp.2022.105212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Lymantria dispar is one of the most devastating forest pests worldwide. Fungal biopesticides have great potential as alternatives owing to their high lethality to pests and eco-friendly feature, which is, however, often severely compromised by the pests' innate immunity. A better understanding of the antifungal immune system in L. dispar would significantly facilitate the development of the biopesticide. Here, we investigated phylogenetic characteristics of immunity-related genes as well as the tissue expression patterns in L. dispar after the infection of an entomopathogen Beauveria bassiana using RNA-sequencing data. Results showed most immune genes remain at a low level of response after 24 h post-infection (HPI). Almost all genes in the Toll pathway were significantly up-regulated at 48 HPI, and SPH1, SPN6, Toll6, Toll12, Myd88, pelle, and Drosal were significantly down-regulated at 72 HPI. Immunoblotting analysis revealed that the protein levels of βGRP3 and PPO1 were significantly upregulated at 24 and 48 HPI, while Myd88 was downregulated at 24 HPI, which was further confirmed by Quantitative real-time PCR experiments. Moreover, the relative content of H2O2, a potent reactive oxygen species (ROS), was significantly increased with the decrease of the total antioxidant capacity, indicating that oxidative stress system positively participates in the clearance of the pathogenic fungus. Together, our study provides detailed genetic characteristics of antifungal immunity as well as profiling of the host defense against entomopathogenic infection, and comprehensive insight into molecular interaction between L. dispar and the entomopathogen.
Collapse
Affiliation(s)
- Jianyang Bai
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jingyu Cao
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yue Zhang
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zhe Xu
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Lu Li
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Liwei Liang
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Xiaoqian Ma
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; Institute of Forest Protection, Heilongjiang Academy of Forestry, Harbin 150081, China
| | - Runhua Han
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China.
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
| | - Ling Ma
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; Forest Protection Technology Innovation Center, Harbin, China.
| |
Collapse
|
9
|
Analysis of the Humoral Immunal Response Transcriptome of Ectropis obliqua Infected by Beauveria bassiana. INSECTS 2022; 13:insects13030225. [PMID: 35323523 PMCID: PMC8955196 DOI: 10.3390/insects13030225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Ectropis obliqua is a destructive leaf-eating pest that is widely distributed in China’s tea gardens. This pest shows remarkable resistance against multiple insecticides. As an environmentally friendly entomopathogen, Beauveria bassiana has been widely used to prevent agricultural pest infestations. However, the molecular mechanism of B. bassiana against E. obliqua remains unclear. We firstly isolated and identified a highly virulent B. bassiana strain. Using a transcriptome, we analyzed the differences of immune gene expression levels in fat bodies and hemocytes of E. obliqua that were infected by the B. bassiana, which provide molecular insights into the insect–pathogen interaction. Abstract Ectropis obliqua is a destructive masticatory pest in China’s tea gardens. Beauveria bassiana as microbial insecticides can effectively control E. obliqua larvae; however, the immune response of this insect infected by B. bassiana are largely unknown. Here, after isolating a highly virulent strain of B. bassiana from E. obliqua, the changes in gene expression among different tissues, including hemocytes and fat bodies, of E. obliqua larvae infected by the entomopathogen were investigated using transcriptome sequencing. A total of 5877 co-expressed differentially expressed genes (DEGs) were identified in hemocytes and fat bodies, of which 5826 were up-regulated in hemocytes and 5784 were up-regulated in fat bodies. We identified 249 immunity-related genes, including pattern recognition receptors, immune effectors, signal modulators, and members of immune pathways. A quantitative real-time PCR analysis confirmed that several pattern recognition receptors were upregulated in hemocytes and fat bodies; however, others were downregulated. The investigated immune effectors (ATT and PPO-1) were suppressed. The results showed that there were tissue differences in the expression of immune genes. This study provides a large number of immunity-related gene sequences from E. obliqua after being infected by B. bassiana, furthering the understanding of the molecular mechanisms of E. obliqua defenses against B. bassiana.
Collapse
|
10
|
Bai J, Li L, Xu Z, Zhang Y, Liang L, Ma X, Ma W, Ma L. Mutation of glucan synthase catalytic subunit in Beauveria bassiana affects fungal growth and virulence. Fungal Genet Biol 2021; 158:103637. [PMID: 34798271 DOI: 10.1016/j.fgb.2021.103637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/19/2022]
Abstract
Beauveria bassiana is a well-known entomopathogenic fungus that parasitizes on a variety of insect species. Glucan in the cell wall of B. bassiana plays a crucial role in its structure and growth and is also involved in the activation of the host insect's immune system. Glucan biosynthesis is primarily regulated by glucan synthase, however, it is unclear if the glucan synthase catalytic subunit gene (GluS) affects the growth and virulence of B. bassiana. In this study, we constructed the mutant of the B. bassiana glucan synthase catalytic subunit (ΔGluS) by homologous recombination and observed that glucan synthase knockout affects both spore germination and cell area. Further enzyme-based assays along with gene expression analysis of glucan synthase revealed a significant downregulation in the mutant strains compared to the wild type of B. bassiana. Moreover, the virulence of ΔGluS strains against gypsy moth (Lymantria dispar) showed no significant difference compared to the wild-type strains when injected, while the spraying gypsy moths with the conidia of ΔGluS was significantly more lethal than spraying the conidia of the wild type. Altogether, our study constructed a new, highly efficient B. bassiana mutant that can be used for pest control and provides a readily transferable method for other insect-entomopathogenic interaction studies.
Collapse
Affiliation(s)
- Jianyang Bai
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Lu Li
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zhe Xu
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yue Zhang
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Liwei Liang
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Xiaoqian Ma
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; Institute of Forest Protection, Heilongjiang Academy of Forestry, Harbin 150081, China
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China.
| | - Ling Ma
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; Forest Protection Technology Innovation Center, Harbin, China.
| |
Collapse
|
11
|
Zhou F, Gao Y, Liu M, Xu L, Wu X, Zhao X, Zhang X. Bacterial Inhibition on Beauveria bassiana Contributes to Microbiota Stability in Delia antiqua. Front Microbiol 2021; 12:710800. [PMID: 34690955 PMCID: PMC8527029 DOI: 10.3389/fmicb.2021.710800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/01/2021] [Indexed: 02/01/2023] Open
Abstract
Given the multiple roles of associated microbiota in improving animal host fitness in a microbial environment, increasing numbers of researchers have focused on how the associated microbiota keeps stable under complex environmental factors, especially some biological ones. Recent studies show that associated microbiota interacts with pathogenic microbes. However, whether and how the interaction would influence microbiota stability is limitedly investigated. Based on the interaction among Delia antiqua, its associated microbiota, and one pathogen Beauveria bassiana, the associated microbiota's response to the pathogen was determined in this study. Besides, the underlying mechanism for the response was also preliminarily investigated. Results showed that B. bassiana neither infect D. antiqua larvae nor did it colonize inside the associated microbiota, and both the bacterial and fungal microbiota kept stable during the interaction. Further experiments showed that bacterial microbiota almost completely inhibited conidial germination and mycelial growth of B. bassiana during its invasion, while fungal microbiota did not inhibit conidial germination and mycelial growth of B. bassiana. According to the above results, individual dominant bacterial species were isolated, and their inhibition on conidial germination and mycelial growth of B. bassiana was reconfirmed. Thus, these results indicated that bacterial instead of fungal microbiota blocked B. bassiana conidia and stabilized the associated microbiota of D. antiqua larvae during B. bassiana invasion. The findings deepened the understanding of the role of associated microbiota–pathogen microbe interaction in maintaining microbiota stability. They may also contribute to the development of novel biological control agents and pest management strategies.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Yunxiao Gao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Mei Liu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiaoqing Wu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Xiaoyan Zhao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Xinjian Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| |
Collapse
|
12
|
Moreira-Pinto CE, Coelho RR, Leite AGB, Silveira DA, de Souza DA, Lopes RB, Macedo LLP, Silva MCM, Ribeiro TP, Morgante CV, Antonino JD, Grossi-de-Sa MF. Increasing Anthonomus grandis susceptibility to Metarhizium anisopliae through RNAi-induced AgraRelish knockdown: a perspective to combine biocontrol and biotechnology. PEST MANAGEMENT SCIENCE 2021; 77:4054-4063. [PMID: 33896113 DOI: 10.1002/ps.6430] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/21/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The hemolymph and insect gut together have an essential role in the immune defense against microorganisms, including the production of antimicrobial peptides (AMP). AMPs are mainly induced by two specific signaling pathways, Toll and immune deficiency (IMD). Here, we characterize the expression profile of four genes from both pathways and describe the importance of AgraRelish in the immune defense of Anthonomus grandis against the entomopathogenic fungus Metarhizium anisopliae by RNA interference (RNAi). RESULTS To characterize the pathway that is activated early during the A. grandis-M. anisopliae interaction, we assessed the expression profiles of AgraMyD88 and AgraDorsal (Toll pathway), AgraIMD and AgraRelish (IMD pathway), and several AMP genes. Interestingly, we found that IMD pathway genes are upregulated early, and Toll pathway genes are upregulated just 3 days after inoculation (DAI). Furthermore, nine AMPs were upregulated 24 h after fungus inoculation, including attacins, cecropins, coleoptericins, and defensins. AgraRelish knockdown resulted in a reduction in median lethal time (LT50 ) for M. anisopliae-treated insects of around 2 days compared to control treatments. In addition, AgraRelish remained knocked down at 3 DAI. Finally, we identified that AgraRelish knockdown increased fungal loads at 2 DAI compared to control treatments, possibly indicating a faster infection. CONCLUSIONS Our data indicate the influence of the IMD pathway on the antifungal response in A. grandis. Combining biocontrol and RNAi could significantly improve cotton boll weevil management. Hence, AgraRelish is a potential target for the development of biotechnological tools aimed at improving the efficacy of M. anisopliae against A. grandis.
Collapse
Affiliation(s)
- Clidia E Moreira-Pinto
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Roberta R Coelho
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Ana G B Leite
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Daniela A Silveira
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | | | - Rogerio B Lopes
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Leonardo L P Macedo
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasilia, Brazil
| | - Maria C M Silva
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasilia, Brazil
| | - Thuanne P Ribeiro
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasilia, Brazil
- Embrapa Semi-Arid, Petrolina, Brazil
| | - José D Antonino
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasilia, Brazil
- Departamento de Agronomia-Entomologia, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasilia, Brazil
- Catholic University of Brasilia, Brasília, Brazil
| |
Collapse
|
13
|
Mann AJ, Davis TS. Entomopathogenic fungi to control bark beetles: a review of ecological recommendations. PEST MANAGEMENT SCIENCE 2021; 77:3841-3846. [PMID: 33728813 DOI: 10.1002/ps.6364] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
There is considerable interest in applying entomopathogenic fungi as a biological control to limit insect populations due to their low environmental and human applicator impacts. However, despite many promising laboratory tests, there are few examples where these fungi were successfully applied to manage bark beetles. Here, we explore how environmental conditions unique to bark beetle habitats may have limited previous entomopathogenic fungus applications, including variable temperatures, ultraviolet light, bark beetle symbiotic microorganisms, tree phytochemicals, and cryptic bark beetle behaviors. Based on the existing literature, we provide a framework for interpreting the pathogenicity of entomopathogenic fungi to bark beetles, with emphasis on both standardizing and improving laboratory approaches to enhance field applications. Our synthesis indicates that most previous laboratory evaluations are conducted under conditions that are not representative of actual bark beetle systems; this may render fungal isolates functionally non-pathogenic in field settings. We recommend that future studies place particular effort into understanding entomopathogen response to the presence of bark beetle symbiotic microorganisms, plant phytochemicals, and potential as a tree endophyte. Additionally, field application methods should aid entomopathogens in overcoming stressful conditions and allow the fungus to infect multiple bark beetle life stages. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrew J Mann
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
| | - Thomas S Davis
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
14
|
Ma M, Guo L, Tu C, Wang A, Xu L, Luo J. Comparative Analysis of Adelphocoris suturalis Jakovlev (Hemiptera: Miridae) Immune Responses to Fungal and Bacterial Pathogens. Front Physiol 2021; 12:646721. [PMID: 33815150 PMCID: PMC8012897 DOI: 10.3389/fphys.2021.646721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/18/2021] [Indexed: 01/30/2023] Open
Abstract
The wide-spread culture of transgenic Bt cotton resisting the infamous cotton bollworms has reduced the adoption of broad-spectrum insecticides to a large extent. Consequently, the non-targeted insect Adelphocoris suturalis Jakovlev has become a major cotton pest in China. Entomopathogenic microbes show promising results for controlling this pest in the future, but A. suturalis innate immune responses to these pathogens are poorly understood. Here, we used the entomopathogenic fungus Beauveria bassiana and the Gram-negative pathogenic bacteria Enterobactor cloacae to infect A. suturalis nymphs, followed by high throughput RNA-seq to analyze the immune transcriptomes of A. suturalis in response to the two pathogens. A total of 150 immunity-related genes were identified, including pattern recognition receptors, extracellular signal modulators, signal pathways (Toll, IMD, JNK, and JAK/STAT), and response effectors. Further quantitative real-time PCR analysis demonstrated that B. bassiana and E. cloacae were recognized by different receptors (GNBP and PGRP, respectively); activated Toll pathway and IMD pathway respectively; and both induced expression of the effector gene Defensin. However, melanization is suppressed in B. bassiana-infected nymphs. Collectively, this study provides a transcriptomic snapshot of the A. suturalis immune system, and at the genetic level, gains multifaceted insights of the immune response to fungal and Gram-negative bacterial pathogens. Ultimately this work pioneers the study of molecular mechanisms underlying immune interactions between A. suturalis and its pathogens and assists in the development of novel mitigation strategies to control this pest.
Collapse
Affiliation(s)
- Meiqi Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Libin Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Chengjie Tu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Aoli Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
15
|
Ye J, Mang D, Kang K, Chen C, Zhang X, Tang Y, R Purba E, Song L, Zhang QH, Zhang L. Putative carboxylesterase gene identification and their expression patterns in Hyphantria cunea (Drury). PeerJ 2021; 9:e10919. [PMID: 33717687 PMCID: PMC7934681 DOI: 10.7717/peerj.10919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/18/2021] [Indexed: 11/20/2022] Open
Abstract
The olfactory system of insects is important for behavioral activities as it recognizes internal and external volatile stimuli in the environment. Insect odorant degrading enzymes (ODEs), including antennal-specific carboxylesterases (CXEs), are known to degrade redundant odorant molecules or to hydrolyze important olfactory sex pheromone components and plant volatiles. Compared to many well-studied Type-I sex pheromone-producing lepidopteran species, the molecular mechanisms of the olfactory system of Type-II sex pheromone-producing Hyphantria cunea (Drury) remain poorly understood. In the current study, we first identified a total of ten CXE genes based on our previous H. unea antennal transcriptomic data. We constructed a phylogenetic tree to evaluate the relationship of HcunCXEs with other insects’ CXEs, and used quantitative PCR to investigate the gene expression of H. cunea CXEs (HcunCXEs). Our results indicate that HcunCXEs are highly expressed in antennae, legs and wings, suggesting a potential function in degrading sex pheromone components, host plant volatiles, and other xenobiotics. This study not only provides a theoretical basis for subsequent olfactory mechanism studies on H. cunea, but also offers some new insights into functions and evolutionary characteristics of CXEs in lepidopteran insects. From a practical point of view, these HcunCXEs might represent meaningful targets for developing behavioral interference control strategies against H. cunea.
Collapse
Affiliation(s)
- Jia Ye
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Dingze Mang
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tyoko, Japan
| | - Ke Kang
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China.,Anhui Forestry Bureau, Hefei, China
| | - Cheng Chen
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Xiaoqing Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yanping Tang
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Endang R Purba
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Liwen Song
- Jilin Provincial Academy of Forestry Sciences, Changchun, China
| | | | - Longwa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
16
|
Yang Z, Wu Q, Fan J, Huang J, Wu Z, Lin J, Bin S, Shu B. Effects of the entomopathogenic fungus Clonostachys rosea on mortality rates and gene expression profiles in Diaphorina citri adults. J Invertebr Pathol 2021; 179:107539. [PMID: 33508316 DOI: 10.1016/j.jip.2021.107539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/20/2022]
Abstract
Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a serious pest of citrus. The insect also transmits Candidatus Liberibacter asiaticus, the pathogen of a devastating citrus disease called Huanglongbing. Clonostachys rosea is a versatile fungus that possesses nematicidal and insecticidal activities. The effect of C. rosea against D. citri remains unclear. Here we examined the pathogenicity of C. rosea against D. citri adults. A mortality rate of 46.67% was observed in adults treated with 1 × 108 conidia/mL spore suspension. Comparative transcriptomic analyses identified 259 differentially-expressed genes (DEGs) between controls and samples treated with fungi. Among the DEGs, 183 were up-regulated and 76 down-regulated. Genes with altered expression included those involved in immunity, apoptosis and cuticle formation. Our preliminary observation indicated that C. rosea is virulent against ACP adults and has the potential as a biological control agent for ACP management in the field.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qijing Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jinlan Fan
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jierong Huang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhongzhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shuying Bin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
17
|
Bai J, Xu Z, Li L, Ma W, Xu L, Ma L. Temporospatial modulation of Lymantria dispar immune system against an entomopathogenic fungal infection. PEST MANAGEMENT SCIENCE 2020; 76:3982-3989. [PMID: 32506667 DOI: 10.1002/ps.5947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/21/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Lymantria dispar is an economically impactful forest pest worldwide. The entomopathogenic fungi Beauveria bassiana shows great promise in pest management due to its high lethality in Lymantria dispar. A complete understanding of the immune interactions between the pest and the pathogenic fungus is essential to actualizing biological pest management. RESULTS Following the infection of Lymantria dispar by Beauveria bassiana spores, we performed a time-course analysis of transcriptome in Lymantria dispar fat bodies and hemocytes to explore host immune response. A total of 244 immunity-related genes including pattern recognition receptors, extracellular signal modulators, immune pathways (Toll, IMD, JNK and JAK/STAT), and response effectors were identified. We observed contrasting tissue and time-specific differences in the expression of immune genes. At the early stage of infection, several recognition receptors and effector genes were activated, while the signal modulation and effector genes were suppressed at later stages. Further enzyme activity-based assays coupled with gene expression analysis of prophenoloxidase revealed a significant upregulation of phenoloxidase activity at 48- and 72-h post-infection. Moreover, fungal infection led to dysbiosis in gut microbiota that seems to be partially attributed to reduced gut hydrogen peroxide (H2 O2 ) amount, which indicates a significant impact of fungal infection on host gut microbes. CONCLUSION Our study provides a comprehensive sequence resource and crucial new insights about an economically important forest pest. Specifically, we elucidate the complicated multipartite interaction between host and fungal pathogen and contribute to a better understanding of Lymantria dispar anti-fungal immunity, resulting in better tools for biological pest control. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianyang Bai
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Zhe Xu
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Lu Li
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ling Ma
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
- Forest Protection Technology Innovation Center, Harbin, China
| |
Collapse
|
18
|
Zhang J, Zhong Y, Tang R, Rebijith KB, Li F, Chen G, Zhang F. Olfactory Reception of Host Alarm Pheromone Component by the Odorant-Binding Proteins in the Samurai Wasp, Trissolcus japonicus (Hymenoptera: Scelionidae). Front Physiol 2020; 11:1058. [PMID: 33013453 PMCID: PMC7494974 DOI: 10.3389/fphys.2020.01058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/31/2020] [Indexed: 11/13/2022] Open
Abstract
The samurai wasp, Trissolcus japonicus, is the predominant egg parasitoid of the brown marmorated stink bug, Halyomorpha halys, in its native range in China. (E)-2-Decenal is a major component of the alarm pheromone of H. halys, an important invasive insect pest with significant economic importance. T. japonicus can be strongly repelled by (E)-2-decenal, and thus its host location efficiency would be reduced in the field. Better understanding on the molecular basis of olfactory reception of this host alarm pheromone component by T. japonicus may provide opportunities to develop novel approaches to enhance biological control efficacy of the parasitoid against H. halys. We identified six Odorant Binding Proteins (OBPs) from T. japonicus by transcriptome sequencing, within which three classical OBPs were expressed in a heterologous expression system with E. coli, harvested, and then challenged with (E)-2-decenal in binding assay experiments. TjapOBP2 showed the highest binding ability to (E)-2-decenal, compared to TjapOBP1 and TjapOBP3. Our results unambiguously suggest that TjapOBP2 would play an important role in discriminating (E)-2-decenal and could be a possible target for further intervention in the parasitoid-host system.
Collapse
Affiliation(s)
- Jinping Zhang
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongzhi Zhong
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Plant Protection, Yunnan Agricultural University, Kunming, China.,Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Rui Tang
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Sciences, Guangzhou, China
| | - K B Rebijith
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
| | - Fengqi Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guohua Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Feng Zhang
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agriculture and Ecological Engineering, Hexi University, Zhangye, China
| |
Collapse
|
19
|
Kadoić Balaško M, Mikac KM, Bažok R, Lemic D. Modern Techniques in Colorado Potato Beetle ( Leptinotarsa decemlineata Say) Control and Resistance Management: History Review and Future Perspectives. INSECTS 2020; 11:insects11090581. [PMID: 32882790 PMCID: PMC7563253 DOI: 10.3390/insects11090581] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 01/04/2023]
Abstract
Simple Summary The Colorado potato beetle (CPB) is one of the most important potato pest worldwide. It is native to U.S. but during the 20th century it has dispersed through Europe, Asia and western China. It continues to expand in an east and southeast direction. Damages are caused by larvae and adults. Their feeding on potato plant leaves can cause complete defoliation and lead to a large yield loss. After the long period of using only chemical control measures, the emergence of resistance increased and some new and different methods come to the fore. The main focus of this review is on new approaches to the old CPB control problem. We describe the use of Bacillus thuringiensis and RNA interference (RNAi) as possible solutions for the future in CPB management. RNAi has proven successful in controlling many pests and shows great potential for CPB control. Better understanding of the mechanisms that affect efficiency will enable the development of this technology and boost potential of RNAi to become part of integrated plant protection in the future. We described also the possibility of using single nucleotide polymorphisms (SNPs) as a way to go deeper into our understanding of resistance and how it influences genotypes. Abstract Colorado potato beetle, CPB (Leptinotarsa decemlineata Say), is one of the most important pests of the potato globally. Larvae and adults can cause complete defoliation of potato plant leaves and can lead to a large yield loss. The insect has been successfully suppressed by insecticides; however, over time, has developed resistance to insecticides from various chemical groups, and its once successful control has diminished. The number of available active chemical control substances is decreasing with the process of testing, and registering new products on the market are time-consuming and expensive, with the possibility of resistance ever present. All of these concerns have led to the search for new methods to control CPB and efficient tools to assist with the detection of resistant variants and monitoring of resistant populations. Current strategies that may aid in slowing resistance include gene silencing by RNA interference (RNAi). RNAi, besides providing an efficient tool for gene functional studies, represents a safe, efficient, and eco-friendly strategy for CPB control. Genetically modified (GM) crops that produce the toxins of Bacillus thuringiensis (Bt) have many advantages over agro-technical, mechanical, biological, and chemical measures. However, pest resistance that may occur and public acceptance of GM modified food crops are the main problems associated with Bt crops. Recent developments in the speed, cost, and accuracy of next generation sequencing are revolutionizing the discovery of single nucleotide polymorphisms (SNPs) and field of population genomics. There is a need for effective resistance monitoring programs that are capable of the early detection of resistance and successful implementation of integrated resistance management (IRM). The main focus of this review is on new technologies for CPB control (RNAi) and tools (SNPs) for detection of resistant CPB populations.
Collapse
Affiliation(s)
- Martina Kadoić Balaško
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (R.B.); (D.L.)
- Correspondence: ; Tel.: +385-1-239-3654
| | - Katarina M. Mikac
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong 2522, Australia;
| | - Renata Bažok
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (R.B.); (D.L.)
| | - Darija Lemic
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (R.B.); (D.L.)
| |
Collapse
|
20
|
Luo J, Wang A, Cheng Y, Rong H, Guo L, Peng Y, Xu L. Selection and Validation of Suitable Reference Genes for RT-qPCR Analysis in Apolygus lucorum (Hemiptera: Miridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:451-460. [PMID: 31773146 DOI: 10.1093/jee/toz301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Apolygus lucorum (Meyer-Dür) is a destructive pest to >280 plants. Major economic significance and pesticide resistance issues have created a need for integrated pest management (e.g., RNAi, entomopathogen-based bioinsecticides) for A. lucorum. To better develop these control strategies, large-scale genetic studies involving gene-expression analysis are required and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the most commonly used method. However, there have been no reports on appropriate reference genes in A. lucorum. Here, we evaluated nine widely utilized reference genes including EF1γ, RPL32, RPL27, SDH, TBP, ACT, ACT2, GAPDH, and βTUB for their expression stabilities in A. lucorum under five different conditions i.e., life stage, tissue, sex, dsRNA injection, and entomopathogen infection. Based on the gene stability ranking calculated by RefFinder, which integrates four algorithms (geNorm, delta Ct method, NormFinder, and BestKeeper), we recommend RPL27 and RPL32 as the most appropriate reference genes for molecular studies in different life stages and tissues; GAPDH and EF1γ for different sexes and entomopathogen infection studies; and RPL27 and EF1γ for RNAi studies. The results of this study will help improve the accuracy and reliability for normalizing the RT-qPCR data for further molecular analysis in A. lucorum.
Collapse
Affiliation(s)
- Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Aoli Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yanxia Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Haoling Rong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Libin Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yu Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|