1
|
Guan X, Zhang B, Sun L. TNFR2 is a regulatory target of pol-miR-194a and promotes the antibacterial immunity of Japanese flounder Paralichthys olivaceus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104477. [PMID: 35752347 DOI: 10.1016/j.dci.2022.104477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) are regulatory RNAs that modulate target gene expression after transcription. Pol-miR-194a had been reported to be a miRNA of Japanese flounder (Paralichthys olivaceus) involved in Edwardsiella tarda infection. Here, we identified tumor necrosis factor receptor 2 (TNFR2) as a target gene of pol-miR-194a. Pol-miR-194a markedly repressed the protein expression of flounder TNFR2 (PoTNFR2) via specific interaction with the 3'UTR of PoTNFR2. PoTNFR2 responded to E. tarda infection in a manner that was opposite to that of pol-miR-194a and inhibited E. tarda invasion by activating the NF-κB pathway. Consistently, dysregulation of PoTNFR2 had a significant impact on E. tarda dissemination in flounder tissues. Together, these results add new insights into the regulation mechanism and immune function of fish TNFR2 and pol-miR-194a.
Collapse
Affiliation(s)
- Xiaolu Guan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Baocun Zhang
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Molecular Characterization, Evolution and Expression Analysis of TNFSF14 and Three TNFSF Receptors in Spotted Gar Lepisosteus oculatus. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10081035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tumor necrosis superfamily (TNFSF) and their receptors (TNFRs) play an essential role in inflammatory responses. In this study, tnfsf14, tnfrsf1a, tnfrsf1b and tnfrsf14 were identified in spotted gar. All the genes have conserved genomic organization and synteny with their respective homologs in zebrafish and humans. The putative TNFSF protein contains a typical TNF homology domain in the extracellular region. All three TNFRSFs possess characteristic cysteine-rich domains. TNFRSF1a has a death domain in the cytosolic region which is absent in the TNFRSF1b and TNFRSF14. Notably, TNFRSF14 lacks a transmembrane domain and is predicted to be secreted. Protein structure modeling revealed that the key residues involved in the interaction between TNFSF14 and TNFRSF14 are well conserved in spotted gar. All four genes were ubiquitously expressed in the spleen, liver, kidney, gills and intestine. Infection with Klebsiella pneumoniae resulted in remarkable downregulation of tnfsf14 and tnfrsf14 in tissues but upregulation of tnfrsf1a and tnfrsf1b. The results indicate that tnfsf14, tnfrsf1a, tnfrsf1b and tnfrsf14 are involved in the immune response to bacterial infection, and expand knowledge on the TNF system in the primitive ray-finned fish.
Collapse
|
3
|
Valenzuela B, Benavides A, Gutierrez D, Blamey L, Monsalves MT, Modak B, Blamey JM. Violacein from an Antarctic Iodobacter sp. 7MAnt and its function as immunomodulator of the defence mechanism of innate immunity in fish cells. JOURNAL OF FISH DISEASES 2022; 45:485-489. [PMID: 34850980 DOI: 10.1111/jfd.13559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Beatriz Valenzuela
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Department of Environmental Sciences, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Almendra Benavides
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Department of Environmental Sciences, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Daniela Gutierrez
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Department of Environmental Sciences, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | | | | | - Brenda Modak
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Department of Environmental Sciences, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Jenny M Blamey
- Fundación Biociencia, Santiago, Chile
- Biology Department, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| |
Collapse
|
4
|
Fei C, Nie L, Zhang J, Chen J. Potential Applications of Fluorescence-Activated Cell Sorting (FACS) and Droplet-Based Microfluidics in Promoting the Discovery of Specific Antibodies for Characterizations of Fish Immune Cells. Front Immunol 2021; 12:771231. [PMID: 34868030 PMCID: PMC8635192 DOI: 10.3389/fimmu.2021.771231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/21/2021] [Indexed: 11/21/2022] Open
Abstract
Akin to their mammalian counterparts, teleost fish possess a complex assortment of highly specialized immune cells that are capable of unleashing potent innate immune responses to eradicate or mitigate incoming pathogens, and also differentiate into memory lymphocytes to provide long-term protection. Investigations into specific roles and functions of fish immune cells depend on the precise separation of each cell type. Commonly used techniques, for example, density gradient centrifugation, rely on immune cells to have differing sizes or densities and thus fail to separate between similar cell types (e.g. T and B lymphocytes). Furthermore, a continuously growing database of teleost genomic information has revealed an inventory of cellular markers, indicating the possible presence of immune cell subsets in teleost fish. This further complicates the interpretation of results if subsets of immune cells are not properly separated. Consequently, monoclonal antibodies (mAbs) against specific cellular markers are required to precisely identify and separate novel subsets of immune cells in fish. In the field of fish immunology, mAbs are largely generated using the hybridoma technology, resulting in the development of mAbs against specific cellular markers in different fish species. Nevertheless, this technology suffers from being labour-intensive, time-consuming and most importantly, the inevitable loss of diversities of antibodies during the fusion of antibody-expressing B lymphocytes and myeloma cells. In light of this, the focus of this review is to discuss the potential applications of fluorescence-activated cell sorting and droplet-based microfluidics, two emerging technologies capable of screening and identifying antigen-specific B lymphocytes in a high-throughput manner, in promoting the development of valuable reagents for fish immunology studies. Our main goal is to encourage the incorporation of alternative technologies into the field of fish immunology to promote the production of specific antibodies in a high-throughput and cost-effective way, which could better allow for the precise separation of fish immune cells and also facilitate the identification of novel immune cell subsets in teleost fish.
Collapse
Affiliation(s)
- Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jianhua Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Molecular characterization, expression analysis and function identification of Pf_TNF-α and its two receptors Pf_TNFR1 and Pf_TNFR2 in yellow catfish (Pelteobagrus fulvidraco). Int J Biol Macromol 2021; 185:176-193. [PMID: 34144067 DOI: 10.1016/j.ijbiomac.2021.06.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Accepted: 06/12/2021] [Indexed: 01/24/2023]
Abstract
Inflammation is a common manifestation of body immunity and mediates a cascade of cytokines. Tumor necrosis factor-α (TNF-α), as a multi-effect cytokine, plays an important role in the inflammatory response by interacting with its receptor (TNFR). In this study, Pf_TNF-α, Pf_TNFR1 and Pf_TNFR2 genes were cloned from yellow catfish (Pelteobagrus fulvidraco), and bioinformatics analyses showed that the three genes were conserved and possessed similar sequence characteristics as those of other vertebrates. The qPCR results showed that Pf_TNF-α, Pf_TNFR1 and Pf_TNFR2 mRNAs were constitutively expressed in 14 tissues and the lymphocytes of four tissues from healthy adults. The mRNA expression levels of Pf_TNF-α and Pf_TNFR1 genes were significantly up-regulated in the spleen, liver, trunk kidney, head kidney and gill after Edwardsiella ictaluri infection, while the mRNA expression of Pf_TNFR2 was significantly up-regulated in the spleen, and down-regulated in the liver and gill. In the isolated peripheral blood leukocytes (PBLs) of yellow catfish, the expression of Pf_TNF-α mRNA was notably up-regulated and the two Pf_TNFR transcripts were distinctly down-regulated after stimulation with lipopolysaccharides (LPS), peptidoglycan (PGN), polyinosinic-polycytidylic acid (Poly I:C) and phytohaemagglutinin (PHA). After stimulated by recombinant (r) Pf_sTNF protein, the mRNA expressions of various inflammatory factors genes were up-regulated in the PBLs. Meanwhile, rPf_sTNF promoted the phagocytic activity of leukocytes, whereas the activity mediated by rPf_sTNF could be inhibited by rPf_TNFR1CRD2/3 and rPf_TNFR2CRD2/3. The up-regulation of TNF-α and IL-1β mRNAs expression triggered by rPf_sTNF could be inhibited by MAPK inhibitor (VX-702) and NF-κB inhibitor (PDTC). rPf_sTNF induced the expression of FADD mRNA in PBLs and increased the apoptotic rate of PBLs, and inhibiting the NF-κB and MAPK signal pathways could enhance the apoptosis of PBLs. The results indicate that Pf_TNF-α, Pf_TNFR1 and Pf_TNFR2 play important roles in the immune response of yellow catfish to bacterial invasion.
Collapse
|
6
|
Lu JF, Jin TC, Zhou T, Lu XJ, Chen JP, Chen J. Identification and characterization of a tumor necrosis factor receptor like protein encoded by Cyprinid Herpesvirus 2. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103930. [PMID: 33212093 DOI: 10.1016/j.dci.2020.103930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/10/2020] [Accepted: 11/15/2020] [Indexed: 06/11/2023]
Abstract
Virus-encoded tumor necrosis factor receptors (vTNFRs) facilitate viral escape from the host immune response during viral propagation. Cyprinid Herpesvirus-2 (CyHV-2) is a double-stranded DNA virus of alloherpesviridae family that causes great economic losses in the aquaculture industry. The present study identified and characterized a novel TNFR homolog termed ORF4 in CyHV-2. ORF4 was identified as a secreted protein and a homolog of herpesvirus entry mediator (HVEM). ORF4 localized to the cytoplasm in infected GiCF cells. ORF4 overexpression enhanced viral propagation, while downregulation of ORF4 via siRNA decreased viral propagation. ORF4 overexpression promoted GiCF proliferation, and its downregulation suppressed CyHV-2-induced apoptosis. GST-pulldown and LC-MS/MS assays identified 44 conditional binding proteins that interact with ORF4 protein, while the GST pulldown test did not support the idea that ORF4 interact with histone H3.3. Taken together, our results contribute to our understanding of the vTNFR function in alloherpesviridae pathogenesis and host immune regulation.
Collapse
Affiliation(s)
- Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Tian-Cheng Jin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Ting Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
7
|
Cui ZW, Kong LL, Zhao F, Tan AP, Deng YT, Jiang L. Two types of TNF-α and their receptors in snakehead (Channa argus): Functions in antibacterial innate immunity. FISH & SHELLFISH IMMUNOLOGY 2020; 104:470-477. [PMID: 32585357 DOI: 10.1016/j.fsi.2020.05.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is a pluripotent mediator of pro-inflammatory and antimicrobial defense mechanisms and a regulator of lymphoid organ development. Although two types of TNF-α have been identified in several teleost species, their functions in pathogen infection remain largely unexplored, especially in pathogen clearance. Herein, we cloned and characterized two types of TNF-α, termed shTNF-α1 and shTNF-α2, and their receptors, shTNFR1 and shTNFR2, from snakehead (Channa argus). These genes were constitutively expressed in all tested tissues, and were induced by Aeromonas schubertii and Nocardia seriolae in head kidney and spleen in vivo, and by lipoteichoic acid (LTA), lipopolysaccharides (LPS), and Polyinosinic-polycytidylic acid [Poly (I:C)] in head kidney leukocytes (HKLs) in vitro. Moreover, recombinant shTNF-α1 and shTNF-α2 upregulated the expression of endogenous shTNF-α1, shTNF-α2, shTNFR1, and shTNFR2, and enhanced intracellular bactericidal activity, with shTNF-α1 having a greater effect than shTNF-α2. These findings suggest important roles of fish TNFα1, TNFα2, and their receptors in bacterial infection and pathogen clearance, and provide a new insight into their function in antibacterial innate immunity.
Collapse
Affiliation(s)
- Zheng-Wei Cui
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lu-Lu Kong
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
| | - Ai-Ping Tan
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yu-Ting Deng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lan Jiang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
8
|
Fish TNF and TNF receptors. SCIENCE CHINA-LIFE SCIENCES 2020; 64:196-220. [DOI: 10.1007/s11427-020-1712-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022]
|
9
|
Liu F, Wang T, Hu Y, Tian G, Secombes CJ, Wang T. Expansion of fish CCL20_like chemokines by genome and local gene duplication: Characterisation and expression analysis of 10 CCL20_like chemokines in rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103502. [PMID: 31568810 DOI: 10.1016/j.dci.2019.103502] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Mammalian CCL20, or macrophage inflammatory protein-3α, can function as a homeostatic and inflammatory chemokine. In relation to the latter, it is responsible for the chemoattraction of lymphocytes and dendritic cells to mucosal immune sites under inflammatory and pathological conditions. CK1, CK8A and CK8B are rainbow trout (Oncorhynchus mykiss) CC chemokines that were reported previously to be phylogenetically related to mammalian CCL20. In the current study, an additional seven CCL20_L paralogues in rainbow trout are reported, that are divided into three subgroups and have been designated here as: CCL20_L1a (also referred to as CK1), CCL20_L1b1-2, CCL20_L2a (CK8A), CCL20_L2b (CK8B), CCL20_L3a, and CCL20_L3b1-4. Multiple CCL20_L genes were also identified in other salmonids that arose from both whole genome duplication and local gene duplication. Phylogenetic tree, homology and synteny analysis support that CCL20_L1-3 found in salmonids are also present in most teleosts arose from the 3 R whole genome duplication and in some species, local gene duplication. Like mammalian CCL20, rainbow trout CCL20_L molecules possess a high positive net charge with a pI of 9.34-10.16, that is reported to be important for antimicrobial activity. Rainbow trout CCL20_L paralogues are differentially expressed and in general highly expressed in mucosal tissues, such as gills, thymus and intestine. The expression levels of rainbow trout CCL20_L paralogues are increased during development and following PAMP/cytokine stimulation. For example, in RTS-11 cells CCL20_L3b1 and CCL20_L3b2 are highly up-regulated by LPS, Poly I:C, recombinant(r) IFNa and rIL-1β. Trout CCL20_L paralogues are also increased after Yersinia ruckeri infection or Poly I:C stimulation in vivo, with CCL20_L3b1 and CCL20_L3b2 again highly up-regulated. Overall, this is the first report of the complete CCL20 chemokine subfamily in rainbow trout, and the analysis of their expression and modulation in vitro and in vivo. These results suggest that teleosts possess divergent CCL20_L molecules that may have important roles in anti-viral/anti-bacterial defence and in mucosal immunity.
Collapse
Affiliation(s)
- Fuguo Liu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
| | - Tingyu Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
| | - Yehfang Hu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
| | - Guangming Tian
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom; School of Animal Science, Yangtze University, Jingzhou, 434020, PR China
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom.
| |
Collapse
|