1
|
Zhi S, Wang J, Wang Y, Li Y, Zhao M, Yang L, Qin C, Yan X, Nie G. Molecular characterization of AMP-activated protein kinase (AMPK) α1/α2 from Cyprinus carpio and its roles in glucolipid metabolism and immune response. Int J Biol Macromol 2025; 303:140736. [PMID: 39920952 DOI: 10.1016/j.ijbiomac.2025.140736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
AMPKα1 and AMPKα2, key kinases in regulating energy homeostasis, have not been previously cloned or characterized in common carp (Cyprinus carpio). This study identified the open reading frame (ORF) sequences of ampkα1 (1722 bp, encoding 573 amino acids) and ampkα2 (1659 bp, encoding 552 amino acids) through homologous cloning. Sequence alignment and phylogenetic analysis showed a high similarity of both genes with fish homologs. Expression analysis revealed that ampkα1 and ampkα2 are widely expressed across tissues in carp, with ampkα1 highly expressed in the gonads and ampkα2 in the heart. Fasting significantly reduced ampkα1 expression in the heart, adipose tissue, and foregut but increased it in the hindgut and white muscle. Similarly, ampkα2 expression decreased in the hypothalamus and muscle during fasting, with an increase in the midgut. Glucose tolerance tests showed dynamic regulation of ampkα1 and ampkα2, with initial downregulation followed by upregulation in the hepatopancreas, red muscle, and brain. High-glucose and high-fat diets significantly increased ampkα1 and ampkα2 expression in multiple tissues. Insulin and glucagon treatment induced time-dependent changes in both genes in hepatocytes, while Aeromonas hydrophila infection, LPS, and Poly (I:C) stimulation upregulated ampkα1 and ampkα2 in immune-related tissues. Knockdown of ampkα2, but not ampkα1, reduced glut1b mRNA levels, while both knockdowns of ampkα1 and ampkα2 promoted the expression of gsk3β, pygm, acc, fas, srebp, cs, and pro-inflammatory cytokines, suggesting their involvement in metabolic and immune regulation in carp.
Collapse
Affiliation(s)
- Shaoyang Zhi
- Aquatic Animal Nutrition and Feed Research Laboratory, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Junli Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China.
| | - Yiran Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Yijie Li
- Aquatic Animal Nutrition and Feed Research Laboratory, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Mengjuan Zhao
- Aquatic Animal Nutrition and Feed Research Laboratory, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Liping Yang
- Aquatic Animal Nutrition and Feed Research Laboratory, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Chaobin Qin
- Aquatic Animal Nutrition and Feed Research Laboratory, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xiao Yan
- Aquatic Animal Nutrition and Feed Research Laboratory, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Guoxing Nie
- Aquatic Animal Nutrition and Feed Research Laboratory, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
2
|
Assar DH, Salah AS, Rashwan AG, Al-Hawary II, Hendam BM, Elsheshtawy A, Al Ali A, Al Shmrany H, Elbialy ZI. Dietary L-carnitine supplementation recovers the hepatic damage induced by high-fat diet in Nile tilapia (Oreochromis niloticus L.) via activation of Nrf2/Keap pathway and inhibition of pro-inflammatory cytokine. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:40. [PMID: 39903304 DOI: 10.1007/s10695-024-01430-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/05/2024] [Indexed: 02/06/2025]
Abstract
A feeding trial for 8 weeks was performed to explore whether nutritional supplementation of L-carnitine may minimize the adverse effects of high-fat diet (HFD) on tilapia growth performance, antioxidant, immune parameters, inflammatory response, histopathology of liver, kidney, and intestine, as well as hepatic lipid metabolism aiming to reveal the mechanism and providing a shred of molecular evidence in Nile tilapia (Oreochromis niloticous). Six groups of the Nile tilapia (17.13 ± 0.49 g) in triplicate were fed for 60 days. Six experimental diets were formulated, incorporating different concentrations of L-carnitine. The first three groups were administered a diet comprising 6% fat, with L-carnitine concentrations of 0, 0.5, and 1 g/kg diet was designated as F6Car0, F6Car0.5, and F6Car1, respectively. Moreover, the fourth, fifth, and sixth groups were fed on a diet containing 12% fat, with L-carnitine concentrations of 0, 0.5, and 1 g/kg diet, respectively termed F12Car0, F12Car0.5, and F12Car1. The main results were as follows: compared to the control group HFD caused a significant reduction in BWG and PER (P > 0.05), but significantly increased the feed conversion rate (FCR), hepatosomatic index (HSI), intraperitoneal fat (IPF), as well as increased visceral fat deposits and liver fat accumulation with higher activities of serum aminotransferases, glucose, triglycerides, and cholesterol. HFD exacerbates hepatic lipid accumulation by enhancing lipogenic gene expression. HFD-fed fish exhibited the lowest crude protein and highest crude fat levels. This study demonstrates that dietary supplementation with L-carnitine significantly boosts growth, improves hemato-biochemical parameters, decreases lipogenesis, elevates lipolysis pathway genes, and lowers lipid levels, thereby rebalancing lipid metabolism and lessening hepatic steatosis. It also mitigates inflammation by downregulating pro-inflammatory genes, upregulating immune genes, and positively affecting Nile tilapia's histopathology.
Collapse
Affiliation(s)
- Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Abdallah S Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Aya G Rashwan
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Ibrahim I Al-Hawary
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Elsheshtawy
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, 67714, Bisha, Saudi Arabia
| | - Humood Al Shmrany
- Department of Medical Laboratory , College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Alkharj, Saudi Arabia
| | - Zizy I Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
3
|
Rashwan AG, Assar DH, Salah AS, Abualreesh MH, Salem SMR, Althobaiti N, Elbialy ZI. Assessing clenbuterol's modulation of metabolic and inflammatory pathways in Nile tilapia (Oreochromas niloticous) fed high fat diet. Sci Rep 2025; 15:1581. [PMID: 39794453 PMCID: PMC11724019 DOI: 10.1038/s41598-024-84814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
This study was performed to reveal the metabolic effects and molecular mechanisms that govern the dietary incorporation of clenbuterol on growth performance, haemato-biochemical changes, histological alteration, and gene expression regulating glucose and lipid metabolism in normal and high-fat diets fed in Nile tilapia (Oreochromis niloticus). Six experimental diets were formulated, incorporating different concentrations of clenbuterol. The 1st three groups were supplemented with a diet comprising 6% fat, with clenbuterol of 0, 5, and 10 g/kg diet was designated as F6 clenb0, F6clenb5, and F6clenb10, respectively. The other treatment groups were fed a diet of 12% fat, with clenbuterol 0, 5, and 10 g/kg diet, respectively termed F12 clenb0, F12 clenb5, and F12 clenb10. The results revealed that compared to the control group, HFD exhibited a marked reduction in FBW, BWG, PER, and body protein percent but significantly increased the FCR, IPF, liver fat percent, and body ash percent with altered hematological parameters, raised serum biomarkers of hepatic and renal injury. HFD signally raised mRNA expression of pro-inflammatory cytokines, and declined nrf2 and antioxidative function-related genes. Also increased mRNA expression of lipogenic genes as FAS and SREBP-1c and gluconeogenic genes as pepck and g6pc while downregulated, pparα, cpt1, acox1. Nevertheless, clenbuterol supplementation significantly reversed the aforementioned findings induced by HFD. Clenbuterol inclusion significantly improves growth performance and antioxidant defenses by modulating nrf2 signaling and reducing inflammatory response, reduces fatty acid synthesis, and enhances mitochondrial β-oxidation not only functioning as a lipid regulator and effectively alleviating fat accumulation in the liver but playing an essential role in the control of glucose metabolism by reducing hepatic glucose production in high-fat diet-fed Nile tilapias well.
Collapse
Affiliation(s)
- Aya G Rashwan
- Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Abdallah S Salah
- Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Muyassar H Abualreesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdul-Aziz University (KAU), 21589, Jeddah, Saudi Arabia
- Center of Excellence for Environmental Studies (CEES), King Abdulaziz University, 22252, Jeddah, Saudi Arabia
| | - Shimaa M R Salem
- Department of Animal Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Norah Althobaiti
- Biology Department, College of Science and Humanities-Al Quwaiiyah, Shaqra University, 19257, Al Quwaiiyah, Saudi Arabia
| | - Zizy I Elbialy
- Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
4
|
Alarfaj SJ, Bahaa MM, Elmasry TA, Elberri EI, El-Khateeb E, Hamouda AO, Salahuddin MM, Kamal M, Gadallah ANAA, Eltantawy N, Yasser M, Negm WA, Hamouda MA, Alsegiani AS, Alrubia S, Eldesoqui M, Abdallah MS. Fenofibrate as an Adjunct Therapy for Ulcerative Colitis: Targeting Inflammation via SIRT1, NLRP3, and AMPK Pathways: A Randomized Controlled Pilot Study. Drug Des Devel Ther 2024; 18:5239-5253. [PMID: 39575188 PMCID: PMC11578921 DOI: 10.2147/dddt.s490772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Background Ulcerative colitis (UC) is an idiopathic chronic inflammation of colonic and rectal mucosa. The peroxisome proliferator-activated receptor α (PPARα) has been identified as having protective effects in UC. Aim The study aimed to investigate the efficacy of fenofibrate, a PPARα agonist, in UC. Methods A total of 70 patients with mild to moderate UC were allocated randomly and assigned to two groups (n = 35 each) from Gastroenterology Department, Faculty of Medicine, Menoufia University. The mesalamine group received a placebo along with 1 g of mesalamine three times daily, while the fenofibrate group received 1 g of mesalamine three times and fenofibrate 160 mg once daily. The study duration was for six months. A gastroenterologist assessed patients by non-invasive Partial Mayo Score (PMS) and the Inflammatory Bowel Disease Questionnaire (IBDQ) to evaluate clinical response and remission. The serum levels of silent information regulator 1 (SIRT1), NOD-like receptor protein 3 (NLRP3), and adenosine monophosphate activated protein kinase (AMPK), as well as fecal calprotectin levels were examined to determine the biological effect of fenofibrate. Results After treatment, the fenofibrate group showed statistically significant reductions in PMS (p = 0.044) and improved digestive domain of IBDQ (p = 0.023). Additionally, there were significant decreases in serum NLRP3 (p = 0.041) and fecal calprotectin (p = 0.035), along with significant increases in SIRT1 (p = 0.002) and AMPK (p = 0.0003). The fenofibrate group also had higher response and remission rates compared to the mesalamine group. Conclusion Fenofibrate may be a promising adjunct for improving clinical outcomes, quality of life, and modulating inflammation in mild to moderate patients with UC. Trial Registration Identifier NCT05781698.
Collapse
Affiliation(s)
- Sumaiah J Alarfaj
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Thanaa A Elmasry
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eman I Elberri
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eman El-Khateeb
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amir O Hamouda
- Department of Biochemistry and Pharmacology, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Muhammed M Salahuddin
- Department of Biochemistry and Pharmacology, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Marwa Kamal
- Department of Clinical Pharmacy, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | | | - Nashwa Eltantawy
- Department of Pharmacy Practice, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Mohamed Yasser
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Horus University, New Damietta, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, East Port Said National University, Port Said, Egypt
| | - Walaa A Negm
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Manal A Hamouda
- Department of Clinical Pharmacy, Faculty of Pharmacy, Menofia University, Menofia, Egypt
| | - Amsha S Alsegiani
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sarah Alrubia
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mahmoud S Abdallah
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Sadat City (USC), Sadat City, Menoufia, Egypt
- Department of PharmD, Faculty of Pharmacy, Jadara University, Irbid, Jordan
| |
Collapse
|
5
|
Zhao W, Shen Y, Bao Y, Monroig Ó, Zhu T, Sun P, Tocher DR, Zhou Q, Jin M. Fucoidan alleviates hepatic lipid deposition by modulating the Perk-Eif2α-Atf4 axis via Sirt1 activation in Acanthopagrus schlegelii. Int J Biol Macromol 2024; 282:137266. [PMID: 39505163 DOI: 10.1016/j.ijbiomac.2024.137266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
With the increasing use of high-fat diets (HFD), fatty liver disease has become common in fish, and fucoidan is of interest as a natural sulfated polysaccharide with lipid-lowering activity. To explore the molecular regulatory mechanisms of fucoidan's alleviation of HFD-induced lipid deposition in liver, black seabream (Acanthopagrus schlegelii) was used to construct in vivo and in vitro HFD models. In vivo HFD stimulated the protein kinase RNA-like endoplasmic reticulum kinase (Perk) pathway, and up-regulated proliferator-activated receptor gamma (Pparγ) nuclear translocation and expression of lipogenic genes, while it down-regulated Ppar alpha (Pparα) nuclear translocation and expression of lipolytic genes. However, fucoidan reversed these effects of HFD and significantly alleviated HFD-induced lipid accumulation in liver. Moreover, after sirtuin 1 (sirt1) knockdown, these effects of fucoidan disappeared. In the in vitro HFD model, GSK2606414 (GSK)-specific inhibition of the Perk pathway, decreased Pparγ nuclear translocation and increased Pparα nuclear translocation. Overall, fucoidan mitigated HFD-induced, Perk pathway-mediated lipid deposition in the liver of black seabream by activating Sirt1. The findings provided a new prospect for the application of green polysaccharides in aquatic animal feeds.
Collapse
Affiliation(s)
- Wenli Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Yangguang Bao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellon, Spain
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Douglas R Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
6
|
Jin M, Shen Y, Monroig Ó, Zhao W, Bao Y, Zhu T, Tocher DR, Zhou Q. Sirt1 Mitigates Hepatic Lipotoxic Injury Induced by High-Fat-Diet in Fish Through Ire1α Deacetylation. J Nutr 2024; 154:3210-3224. [PMID: 39303797 DOI: 10.1016/j.tjnut.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Silent information regulator protein 1 (Sirt1) is crucial in regulating lipid metabolism, but its specific role and mechanism in fish hepatic lipotoxic injury remain undefined. OBJECTIVES This study aimed to elucidate the regulatory role of Sirt1 and the underlying mechanisms in dietary lipid-induced hepatic lipotoxic injury in a marine teleost black seabream. METHODS Black seabream were fed a control diet (12% lipid level), high-fat diet (HFD) [18% lipid level, oleic acid (OA)-rich], or HFD supplemented with 0.25%, 0.50%, or 1.00% resveratrol (RSV) for 8 wk. The cultured hepatocytes were stimulated by OA (200 μM), OA supplemented with RSV (20 μM), or transfection with sirt1-small interfering RNA (sisirt1). Biochemical indices, gene expression (qPCR), histology, transmission electron microscope, immunofluorescence, Western blot, flow cytometry, and immunoprecipitation assays were conducted to evaluate hepatic lipid deposition, lipid metabolism, endoplasmic reticulum stress, inflammation and apoptosis, and determine protein interactions between Sirt1 and Ire1α. RESULTS In vivo, RSV supplementation increased mRNA and protein expression levels of sirt1 (236.2% ± 16.1% and 53.1% ± 14.3%) and downregulated the mRNA and phosphorylated protein expression levels of ire1α/Ire1α (46.0% ± 7.6% and 38.6% ± 7.0%), jnk/Jnk (57.6% ± 7.3% and 122.1%), and nuclear factor κ B (nf-κb/Nf-κb) p65 (41.7% ± 7.1% and 24.6% ± 0.8%) compared with the HFD group. Similar patterns were found in the in vitro experiments; however, after knockdown of sirt1, although the cells were incubated with RSV, the expression levels of ire1α/ Ire1α, jnk/Jnk, and nf-κb/Nf-κb p65 showed no significant differences compared with the OA treatment. Moreover, we found that mutation of K61 to arginine to mimic Ire1α deacetylation confers protection against Ire1α-mediated OA-rich HFD-induced inflammation and apoptosis. CONCLUSIONS The findings revealed that Sirt1 protects against OA-rich HFD-induced hepatic lipotoxic injury via the deacetylation of Ire1α on K61, hence reducing Ire1α autophosphorylation level, and suppressing Jnk and Nf-κb p65 activation. This mechanism is elucidated for the first time in fish.
Collapse
Affiliation(s)
- Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China
| | - Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China.
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellon, Spain
| | - Wenli Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China
| | - Yangguang Bao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China
| | - Douglas R Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China.
| |
Collapse
|
7
|
Calo J, Blanco AM, Soengas JL. Dietary lipid sensing through fatty acid oxidation and chylomicron formation in the gastrointestinal tract of rainbow trout. Comp Biochem Physiol A Mol Integr Physiol 2024; 294:111638. [PMID: 38657943 DOI: 10.1016/j.cbpa.2024.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
In mammals, physiological processes related to lipid metabolism, such as chylomicron synthesis or fatty acid oxidation (FAO), modulate eating, highlighting the importance of energostatic mechanisms in feeding control. This study, using rainbow trout (Oncorhynchus mykiss) as model, aimed to characterize the role of FAO and chylomicron formation as peripheral lipid sensors potentially able to modulate feeding in fish. Fish fed with either a normal- (24%) or high- (32%) fat diet were intraperitoneally injected with water alone or containing etomoxir (inhibitor of FAO rate-limiting enzyme carnitine palmitoyl-transferase 1). First, feed intake levels were recorded. We observed an etomoxir-derived decrease in feeding at short times, but a significant increase at 48 h after treatment in fish fed normal-fat diet. Then, we evaluated putative etomoxir effects on the mRNA abundance of genes related to lipid metabolism, chylomicron synthesis and appetite-regulating peptides. Etomoxir treatment upregulated mRNA levels of genes related to chylomicron assembly in proximal intestine, while opposite effects occurred in distal intestine, indicating a clear regionalization in response. Etomoxir also modulated gastrointestinal hormone mRNAs in proximal intestine, upregulating ghrl in fish fed normal-fat diet and pyy and gcg in fish fed high-fat diet. These results provide evidence for an energostatic control of feeding related to FAO and chylomicron formation at the peripheral level in fish.
Collapse
Affiliation(s)
- Jessica Calo
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain
| | - Ayelén M Blanco
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain.
| | - José L Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
8
|
Zhou Y, Bai F, Xiao R, Chen M, Sun Y, Ye J. Proteomics and Its Combined Analysis with Transcriptomics: Liver Fat-Lowering Effect of Taurine in High-Fat Fed Grouper ( Epinephelus coioides). Animals (Basel) 2024; 14:2039. [PMID: 39061501 PMCID: PMC11274106 DOI: 10.3390/ani14142039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In order to understand the intervention effect of taurine on liver fat deposition induced by high fat intake in the orange-spotted grouper (Epinephelus coioides), we performed proteomic analysis and association analysis with previously obtained transcriptomic data. Three isoproteic (47% crude protein) diets were designed to contain two levels of fat and were named as the 10% fat diet (10F), 15% fat diet (15F), and 15% fat with 1% taurine (15FT). The 10F diet was used as the control diet. After 8 weeks of feeding, the 15F diet exhibited comparable weight gain, feed conversion ratio, and hepatosomatic index as the 10F diet, but the former increased liver fat content vs. the latter. Feeding with the 15FT diet resulted in an improvement in weight gain and a reduction in feed conversion ratio, hepatosomatic index, and liver fat content compared with feeding the 15F diet. When comparing liver proteomic data between the 15F and 15FT groups, a total of 133 differentially expressed proteins (DEPs) were identified, of which 51 were upregulated DEPs and 82 were downregulated DEPs. Among these DEPs, cholesterol 27-hydroxylase, phosphatidate phosphatase LPIN, phosphatidylinositol phospholipase C, and 6-phosphofructo-2-kinase were further screened out and were involved in primary bile acid biosynthesis, glycerolipid metabolism, the phosphatidylinositol signaling system, and the AMPK signaling pathway as key DEPs in terms of alleviating liver fat deposition of taurine in high-fat fed fish. With the association analysis of transcriptomic and proteomic data through KEGG, three differentially expressed genes (atp1a, arf1_2, and plcd) and four DEPs (CYP27α1, LPIN, PLCD, and PTK2B) were co-enriched into five pathways related to fat metabolism including primary bile acid synthesis, bile secretion, glycerolipid metabolism, phospholipid D signaling, or/and phosphatidylinositol signaling. The results showed that dietary taurine intervention could trigger activation of bile acid biosynthesis and inhibition of triglyceride biosynthesis, thereby mediating the liver fat-lowering effects in high-fat fed orange-spotted grouper. The present study contributes some novel insight into the liver fat-lowering effects of dietary taurine in high-fat fed groupers.
Collapse
Affiliation(s)
| | | | | | | | | | - Jidan Ye
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China; (Y.Z.); (F.B.); (R.X.); (M.C.); (Y.S.)
| |
Collapse
|
9
|
Zhang YY, Wang JX, Qiao F, Zhang ML, Luo Y, Du ZY. Pparα activation stimulates autophagic flux through lipid catabolism-independent route. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1141-1155. [PMID: 38401031 DOI: 10.1007/s10695-024-01327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Autophagy is a cellular process that involves the fusion of autophagosomes and lysosomes to degrade damaged proteins or organelles. Triglycerides are hydrolyzed by autophagy, releasing fatty acids for energy through mitochondrial fatty acid oxidation (FAO). Inhibited mitochondrial FAO induces autophagy, establishing a crosstalk between lipid catabolism and autophagy. Peroxisome proliferator-activated receptor α (PPARα), a transcription factor, stimulates lipid catabolism genes, including fatty acid transport and mitochondrial FAO, while also inducing autophagy through transcriptional regulation of transcription factor EB (TFEB). Therefore, the study explores whether PPARα regulates autophagy through TFEB transcriptional control or mitochondrial FAO. In aquaculture, addressing liver lipid accumulation in fish is crucial. Investigating the link between lipid catabolism and autophagy is significant for devising lipid-lowering strategies and maintaining fish health. The present study investigated the impact of dietary fenofibrate and L-carnitine on autophagy by activating Pparα and enhancing FAO in Nile tilapia (Oreochromis niloticus), respectively. The dietary fenofibrate and L-carnitine reduced liver lipid content and enhanced ATP production, particularly fenofibrate. FAO enhancement by L-carnitine showed no changes in autophagic protein levels and autophagic flux. Moreover, fenofibrate-activated Pparα promoted the expression and nuclear translocation of Tfeb, upregulating autophagic initiation and lysosomal biogenesis genes. Pparα activation exhibited an increasing trend of LC3II protein at the basal autophagy and cumulative p62 protein trends after autophagy inhibition in zebrafish liver cells. These data show that Pparα activation-induced autophagic flux should be independent of lipid catabolism.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jun-Xian Wang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Luo
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
10
|
Huang Z, Ye Y, Kong L, Xu A, Liu L, Li Z. Regulatory effects of Astragalus membranaceus polysaccharides on lipid metabolism disorders induced by a high-fat diet in spotted sea bass (Lateolabrax maculatus). Int J Biol Macromol 2024; 271:132584. [PMID: 38795881 DOI: 10.1016/j.ijbiomac.2024.132584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
This study evaluated the regulatory effects of Astragalus membranaceus polysaccharides (AMP) on lipid metabolism disorders induced by a high-fat diet (HFD) in spotted sea bass (Lateolabrax maculatus). Compared with the normal diets (10 % lipids), diets containing 15 % lipid levels were used as the high-fat diet (HFD). Three levels of the AMP (0.06 %, 0.08 %, 0.10 %) were added in the HFD and used as experimental diets. A total of 375 spotted sea bass (average weight 3.00 ± 0.01 g) were divided into 15 tanks and deemed as 5 groups, with each tank containing 25 fish. Fish in each group were fed with different diets for 56 days. After feeding, the HFD induced lipid metabolism disorders in fish, as evidenced by elevated serum lipids, malonaldehyde levels, and more severe liver damage. The AMP alleviated the HFD-induced liver damage, as evidenced by the reduced severity of liver histological lesions and malonaldehyde levels. The low-density lipoprotein cholesterol was reduced, and the expression of FAS and PPAR-α were down and up-regulated, respectively. However, the AMP had a limited ability to affect the serum lipids and abdominal fat percentage. These results reveal the potential of the AMP used in aquaculture to regulate lipid metabolism disorders induced by the HFD.
Collapse
Affiliation(s)
- Zhangfan Huang
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China.
| | - Youling Ye
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Lumin Kong
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Anle Xu
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Longhui Liu
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China.
| |
Collapse
|
11
|
Lei W, Li J, Fang P, Wu S, Deng Y, Luo A, He Z, Peng M. Effects of Dietary Bile Acids on Growth Performance, Lipid Deposition, and Intestinal Health of Rice Field Eel ( Monopterus albus) Fed with High-Lipid Diets. AQUACULTURE NUTRITION 2023; 2023:3321734. [PMID: 38174087 PMCID: PMC10764146 DOI: 10.1155/2023/3321734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
The purpose of this trial was to study the positive effects of bile acids (BAs) on growth performance and intestinal health of rice field eel fed with high-lipid diets (HLDs). Rice field eels (initial weight 17.00 ± 0.10 g) were divided into four groups, each group containing four repetitions and feeding with different isonitrogenous diet: control diet containing 7% lipid content, HLDs containing the lipid content increased to 13%, HLDs supplementing with 0.025% BAs and 0.05% BAs, respectively. After 8 weeks, compared control group, the fish fed HLDs had no significant effect on weight gain rate and specific growth rate (P > 0.05), but increased the lipid deposition in tissues and intestinal lipase activity, and damaged to intestinal oxidative stress, inflammatory response, physical barrier, and structural integrity (P < 0.05). Dietary BAs significantly increased weight gain rate and specific growth rate in fish fed with HL diets (P < 0.05) and reduced feed conversation rate (P < 0.05). Further, the eels fed with BAs reduced the total lipid content in liver, muscle, and whole body (P < 0.05). Dietary BAs decreased the activity of intestinal lipase (P < 0.05). Meanwhile, BAs supplemented in HLDs improved intestinal antioxidant capacity through increasing the activities of T-SOD (total superoxide dismutase), GSH-PX (glutathione peroxidase), CAT (catalase), T-AOC (total antioxidant capacity), whereas reducing MDA (malondialdehyde) content (P < 0.05). Moreover, dietary BAs regulated the mRNA expression related to inflammatory response, oxidative stress, and physical barrier in intestine, such as tnf-α, il-8, tlr-8, il-10, nrf2, keap1, claudin12, and claudin15 (P < 0.05). Dietary BAs supplementation also enhanced the intestinal structural integrity characterized by increased fold height and lamina propria width (P < 0.05). This study showed that dietary BAs supplemented in HLDs (13% lipid) could increase the growth performance of rice field eel, reduce lipid deposition in tissues and whole body, and enhance intestinal health.
Collapse
Affiliation(s)
- Wei Lei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiamin Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Peng Fang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shanshan Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Deng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ao Luo
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhengwei He
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mo Peng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang 330045, China
| |
Collapse
|
12
|
Shen Y, Zhao W, Monroig Ó, Bao Y, Zhu T, Jiao L, Sun P, Tocher DR, Zhou Q, Jin M. High-fat-diet induced inflammation and apoptosis via activation of Ire1α in liver and hepatocytes of black seabream (Acanthopagrus schlegelii). FISH & SHELLFISH IMMUNOLOGY 2023; 143:109212. [PMID: 37926203 DOI: 10.1016/j.fsi.2023.109212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
The present study aimed to reveal the role of inositol-requiring enzyme 1α (Ire1α) in mediating high-fat-diet (HFD) induced inflammation and apoptosis in fish and elucidate underling mechanisms of action. In experiment 1, black seabream juveniles were fed a control diet (Control, 12 % dietary lipid) or a high fat diet (HFD, 19 % dietary lipid) for eight weeks. In experiment 2, primary hepatocytes were isolated from black seabream juveniles and treated with oleic acid (OA, 200 μmol/L), OA + transfection with non-silencing control siRNA (negative control) (OA + NC), and OA + transfection with ire1α-small interfering RNA (OA + siire1α) for 48 h versus untreated (Control). Results indicated that fish fed HFD increased lipid deposition in the liver and caused hepatic steatosis. HFD group had significantly higher ire1α/Ire1α mRNA and phosphorylated protein expression and endoplasmic reticulum stress (ERS) related genes expression compared to the Control group, indicating that ERS was triggered. Meanwhile, feeding HFD induced inflammation and apoptosis by evaluated nuclear factor kappa B (nf-κb) mRNA and phosphorylated Nf-κb p65 protein expression, and c-Jun N-terminal kinase (jnk) mRNA and protein expression. However, knock down of ire1α (OA + siire1α) in primary hepatocytes alleviated OA-induced increased expression of ire1α/Ire1α mRNA and protein expression, nf-κb/Nf-κb p65 mRNA and phosphorylated protein expression, and jnk/Jnk mRNA and phosphorylated protein expression. These findings revealed the underling mechanism of action of HFD in fish, confirming that HFD increased ESR stress and Ire1α that, in turn, activated Nf-κb and Jnk pathways in hepatocytes and liver mediating HFD-induced inflammation and apoptosis.
Collapse
Affiliation(s)
- Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, 315211, China
| | - Wenli Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, 315211, China
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Yangguang Bao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, 315211, China
| | - Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, 315211, China
| | - Douglas R Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, 315211, China.
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
13
|
Pinna G. Role of PPAR-Allopregnanolone Signaling in Behavioral and Inflammatory Gut-Brain Axis Communications. Biol Psychiatry 2023; 94:609-618. [PMID: 37156350 DOI: 10.1016/j.biopsych.2023.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
The gut microbiome regulates emotional behavior, stress responses, and inflammatory processes by communicating with the brain. How and which neurobiological mediators underlie this communication remain poorly understood. PPAR-α (peroxisome proliferator-activated receptor α), a transcription factor susceptible to epigenetic modifications, regulates pathophysiological functions, including metabolic syndrome, inflammation, and behavior. Mood disorders, inflammatory processes, and obesity are intertwined phenomena that are associated with low blood concentrations of the anti-inflammatory and "endogenous tranquilizer" neurosteroid allopregnanolone and poor PPAR-α function. Stress and consumption of obesogenic diets repress PPAR function in brain, enterocytes, lipocytes, and immune modulatory cells favoring inflammation, lipogenesis, and mood instability. Conversely, micronutrients and modulators of PPAR-α function improve microbiome composition, dampen systemic inflammation and lipogenesis, and improve anxiety and depression. In rodent stress models of anxiety and depression, PPAR activation normalizes both PPAR-α expression downregulation and decreased allopregnanolone content and ameliorates depressive-like behavior and fear responses. PPAR-α is known to regulate metabolic and inflammatory processes activated by short-chain fatty acids; endocannabinoids and congeners, such as N-palmitoylethanolamide, drugs that treat dyslipidemias; and micronutrients, including polyunsaturated fatty acids. Both PPAR-α and allopregnanolone are abundantly expressed in the colon, and they exert potent anti-inflammatory actions by blocking the toll-like receptor-4-nuclear factor-κB pathway in peripheral immune cells, neurons, and glia. The perspective that PPAR-α regulation in the colon by gut microbiota or metabolites influences central allopregnanolone content after trafficking to the brain, thereby serving as a mediator of gut-brain axis communications, is examined in this review.
Collapse
Affiliation(s)
- Graziano Pinna
- Psychiatric Institute, University of Illinois Center on Depression and Resilience, and Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
14
|
Huang Z, Ye Y, Long Z, Qin H, Liu L, Xu A, Li Z. Lycium barbarum polysaccharides improve lipid metabolism disorders of spotted sea bass Lateolabrax maculatus induced by high lipid diet. Int J Biol Macromol 2023; 242:125122. [PMID: 37263324 DOI: 10.1016/j.ijbiomac.2023.125122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
This experiment explored the effects of Lycium barbarum polysaccharides (LBP) on lipid metabolism of spotted sea bass Lateolabrax maculatus. Blank and experimental control diets with 100 and 150 g/kg lipid were designed, respectively, and three dosages of LBP (0.75, 1.00, 1.25 g/kg) were supplemented in the experimental control diet. A total 375 of spotted sea bass (19.33 ± 0.15) g were divided into 5 groups, and were given experimental diets for 56 days, respectively. Results showed fish were induced to lipid metabolism disorders with dietary 150 g/kg lipid intake, which manifested in reduced feeding, oxidative stress, elevated serum lipid, and more severe hepatic damage. Dietary LBP improved the lipid metabolism disorders of fish, as indicated by significant enhancements in weight gain, digestion, superoxide dismutase activity, and decreases in malonaldehyde content, and activity of alanine aminotransferase and aspartate aminotransferase. Accordingly, an improvement in the hepatic morphological and expression of lipid metabolism related genes, including FAS, PPAR-α, CPT1 and ATGL, was observed. Nevertheless, no significant variation in serum triglyceride and total cholesterol was observed. Overall, dietary LBP can improve the growth, digestion, antioxidant capacity, and liver health of spotted sea bass, thereby improving the lipid metabolism disorders induced by 150 g/kg dietary lipid intake.
Collapse
Affiliation(s)
- Zhangfan Huang
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Youling Ye
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongying Long
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Huihui Qin
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Longhui Liu
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Anle Xu
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China.
| |
Collapse
|
15
|
Miao M, Wang X, Liu T, Li YJ, Yu WQ, Yang TM, Guo SD. Targeting PPARs for therapy of atherosclerosis: A review. Int J Biol Macromol 2023:125008. [PMID: 37217063 DOI: 10.1016/j.ijbiomac.2023.125008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Atherosclerosis, a chief pathogenic factor of cardiovascular disease, is associated with many factors including inflammation, dyslipidemia, and oxidative stress. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and are widely expressed with tissue- and cell-specificity. They control multiple genes that are involved in lipid metabolism, inflammatory response, and redox homeostasis. Given the diverse biological functions of PPARs, they have been extensively studied since their discovery in 1990s. Although controversies exist, accumulating evidence have demonstrated that PPAR activation attenuates atherosclerosis. Recent advances are valuable for understanding the mechanisms of action of PPAR activation. This article reviews the recent findings, mainly from the year of 2018 to present, including endogenous molecules in regulation of PPARs, roles of PPARs in atherosclerosis by focusing on lipid metabolism, inflammation, and oxidative stress, and synthesized PPAR modulators. This article provides information valuable for researchers in the field of basic cardiovascular research, for pharmacologists that are interested in developing novel PPAR agonists and antagonists with lower side effects as well as for clinicians.
Collapse
Affiliation(s)
- Miao Miao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xue Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tian Liu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wen-Qian Yu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tong-Mei Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
16
|
Yang L, Zhao M, Liu M, Zhang W, Zhi S, Qu L, Xiong J, Wang L, Qin C, Nie G. Effects of Genistein on Lipid Metabolism, Antioxidant Activity, and Immunity of Common Carp ( Cyprinus carpio L.) Fed with High-Carbohydrate and High-Fat Diets. AQUACULTURE NUTRITION 2023; 2023:9555855. [PMID: 37034827 PMCID: PMC10081910 DOI: 10.1155/2023/9555855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/19/2022] [Accepted: 12/05/2022] [Indexed: 06/03/2023]
Abstract
A 56-day feeding trial was conducted to investigate the effects of genistein on growth, lipid metabolism, antioxidant capacity, and immunity of common carp fed with high-carbohydrate or high-fat diets. Five diets were used to feed fish: control diet (5% fat; CO), high-fat diet (11% fat; HF), high-carbohydrate diet (45% carbohydrate; HC), and HF or HC diet with 500 mg/kg genistein (FG or CG). Results showed that final body weight (FW) and specific growth rate (SGR) were significantly reduced, but the supplementation with genistein resulted in higher values of FW and SGR than the HF or HC group. Both high carbohydrate and high fat belong to high-energy diets, which may promote lipid deposition. Genistein obviously decreased liver triglyceride (TG) content and alleviated hepatic fat vacuolation in the HF and HC groups. The expression of lipid metabolism genes (cpt-1 and atgl) was markedly higher in the FG group than in the HF group. The lipid synthesis-related genes (fas, acc, and pparγ) were elevated in high-energy diets but recovered to the control level or reduced after genistein treatments. With respect to fatty acid transporter genes, fatp increased in the FG group, and cd36 increased in the CG group. Furthermore, the antioxidant and immune indexes, such as total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), acid phosphatase (ACP), and lysozyme (LZM) activities, were decreased, while malonate aldehyde (MDA) content, activities of alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were enhanced in the HF and HC groups. The antioxidant and immunity values could be ameliorated by treatment with genistein. Moreover, the transcript levels of antioxidant-related genes (cat, gr, and nrf2) in the liver and anti-inflammatory factors (tgf-β and il-10) and lyz in the head kidney tissue were promoted, although the expression levels of proinflammatory factors (tnf-α and il-6) declined in the genistein supplementation group, which confirmed the antioxidant and immune-enhancing effects of genistein. Therefore, 500 mg/kg genistein could ameliorate the negative effects of high-energy diets on immunity.
Collapse
Affiliation(s)
- Liping Yang
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Mengjuan Zhao
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Mingyu Liu
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Wenlei Zhang
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Shaoyang Zhi
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Leya Qu
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Jinrui Xiong
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Luming Wang
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Chaobin Qin
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, China
| |
Collapse
|
17
|
Jin M, Li X, Shen Y, Bao Y, Yang B, Wu Z, Jiao L, Zhou Q. The Benefit of Optimal Dietary Lipid Level for Black Seabream Acanthopagrus schlegelii Juveniles under Low-Salinity Environment. AQUACULTURE NUTRITION 2022; 2022:2222029. [PMID: 36860453 PMCID: PMC9973135 DOI: 10.1155/2022/2222029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 06/18/2023]
Abstract
The present study was aimed at evaluating the regulatory effects of dietary lipid levels on growth performance, osmoregulation, fatty acid composition, lipid metabolism, and physiological response in Acanthopagrus schlegelii under low salinity (5 psu). An 8-week feeding trial was conducted in juvenile A. schlegelii with an initial weight of 2.27 ± 0.05 g, and six isonitrogenous experimental diets were formulated with graded levels of lipid: 68.7 g/kg (D1), 111.7 g/kg (D2), 143.5 g/kg (D3), 188.9 g/kg (D4), 239.3 g/kg (D5), and 269.4 g/kg (D6), respectively. Results indicated that fish fed with diet containing 188.9 g/kg lipid significantly improved growth performance. Dietary D4 improved ion reabsorption and osmoregulation by increasing the concentrations of Na+, K+, and cortisol in serum and activities of Na+/K+-ATPase as well as expression levels of osmoregulation related to gene expression levels in the gill and intestine. The expression levels of long chain polyunsaturated fatty acid biosynthesis-related genes were dramatically upregulated when dietary lipid levels increased from 68.7 g/kg to 189.9 g/kg with levels of docosahexaenoic (DHA), eicosapentaenoic (EPA), and DHA/EPA ratio being highest in the D4 group. When fish fed dietary lipid levels from 68.7 g/kg to 188.9 g/kg, lipid homeostasis could be maintained by upregulating sirt1 and pparα expression levels, whereas lipid accumulation was observed in dietary lipid levels of 239.3 g/kg and over. Fish fed with high dietary lipid levels resulted in physiological stress related to oxidative stress and endoplasmic reticulum stress. In conclusion, based on weight gain, the optimal dietary lipid requirement of juvenile A. schlegelii reared at low-salinity water is 196.0 g/kg. These findings indicate that the optimal dietary lipid level can improve growth performance, n-3 LC-PUFA accumulation, and osmoregulatory ability and maintain lipid homeostasis and normal physiological functions of juvenile A. schlegelii.
Collapse
Affiliation(s)
- Min Jin
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xuejiao Li
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Yuedong Shen
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Yangguang Bao
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Bingqian Yang
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Zhaoxun Wu
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Lefei Jiao
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| |
Collapse
|
18
|
Balbuena-Pecino S, Montblanch M, García-Meilán I, Fontanillas R, Gallardo Á, Gutiérrez J, Navarro I, Capilla E. Hydroxytyrosol-rich extract from olive juice as an additive in gilthead sea bream juveniles fed a high-fat diet: Regulation of somatic growth. Front Physiol 2022; 13:966175. [PMID: 36277183 PMCID: PMC9584614 DOI: 10.3389/fphys.2022.966175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
The dietary inclusion of plant-based products in fish feeds formulation is required for the sustainable development of aquaculture. Moreover, considering functional diets, hydroxytyrosol, one of the major phenolic compounds found in olives (Olea europaea), has been identified as a potential candidate to be used in the aquafeeds industry due to its health promoting abilities. The aim of this study was to evaluate the effects of the inclusion of an olive juice extract rich in hydroxytyrosol as an additive (0.52 g HT/kg feed) in a high-fat (24% lipids) diet in gilthead sea bream (Sparus aurata) juveniles. Moreover, the experimental diets, with or without the extract, were administered daily at a standard (3% of total biomass in the tank) or restricted ration (40% reduction) for 8–9 weeks. Growth and biometric parameters, insulin-like growth factor 1 (IGF-1) plasma levels and growth hormone/IGF axis-, myogenic- and osteogenic-related genes expression in liver, white muscle and/or bone were analyzed. Moreover, in vitro cultures of vertebra bone-derived cells from fish fed the diets at a standard ration were performed at weeks 3 and 9 to explore the effects of hydroxytyrosol on osteoblasts development. Although neither body weight or any other biometric parameter were affected by diet composition after 4 or 8 weeks, the addition of the hydroxytyrosol-rich extract to the diet increased IGF-1 plasma levels, regardless of the ration regime, suggesting an anabolic condition. In muscle, the higher mRNA levels of the binding protein igfbp-5b and the myoblast fusion marker dock5 in fish fed with the hydroxytyrosol-rich diet suggested that this compound may have a role in muscle, inducing development and a better muscular condition. Furthermore in bone, increased osteogenic potential while delayed matrix mineralization after addition to the diet of the olive juice extract was supported by the upregulated expression of igf-1 and bmp4 and reduced transcript levels of osteopontin. Overall, this study provides new insights into the beneficial use of hydroxytyrosol as a dietary additive in gilthead sea bream functional diets to improve muscle-skeletal condition and, the aquaculture industry.
Collapse
Affiliation(s)
- Sara Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Manel Montblanch
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Irene García-Meilán
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | - Ángeles Gallardo
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Encarnación Capilla,
| |
Collapse
|
19
|
Shen Y, Li X, Bao Y, Zhu T, Wu Z, Yang B, Jiao L, Zhou Q, Jin M. Lipid metabolic disorders and physiological stress caused by a high-fat diet have lipid source-dependent effects in juvenile black seabream Acanthopagrus schlegelii. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:955-971. [PMID: 35771297 DOI: 10.1007/s10695-022-01095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
This study was conducted to evaluate the effects of different dietary lipid sources on growth performance, lipid metabolism, and physiological stress responses including oxidative stress (OS) and endoplasmic reticulum stress (ERS) of juvenile Acanthopagrus schlegelii (initial weight 0.88 ± 0.01 g) fed a high-fat diet (HFD). Four isonitrogenous and isolipidic experimental diets containing different lipid sources were formulated: fish oil (FO), palm oil (PO), linseed oil (LO), and soybean oil (SO), respectively. Results indicated that fish fed HFD supplemented with FO significantly improved growth than SO treatment. The high concentrations of aspartate aminotransferase and alanine transaminase were found in HFD supplemented with SO. Fish fed dietary LO supplementation showed significantly lower serum cholesterol, triglyceride, low-density lipoprotein, and high-density lipoprotein contents than those in SO group. Likewise, hepatic paraffin section analysis indicated that HFD with PO or SO supplementation increased fat drop. The expression levels of peroxisome proliferators-activated receptor alpha (pparα) and silent regulator 1 (sirt1) were significantly elevated by HFD with FO or LO supplementation. Additionally, the key marker of OS malonaldehyde was significantly increased in FO and SO groups. ERS-related genes were activated in dietary PO or SO supplementation and, hence, triggering inflammation and apoptosis by promoting the expression levels of nuclear factor kappa B (nf-κb) and c-Jun N-terminal kinase (jnk). Overall, the present study reveals that lipid metabolic disorders and physiological stress caused by a HFD have significant lipid source-dependent effects, which have important guiding significance for the use of HFD in marine fish.
Collapse
Affiliation(s)
- Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xuejiao Li
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Yangguang Bao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Zhaoxun Wu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Bingqian Yang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
20
|
Chen M, Bai F, Song T, Niu X, Wang X, Wang K, Ye J. Hepatic Transcriptome Analysis Provides New Insight into the Lipid-Reducing Effect of Dietary Taurine in High-Fat Fed Groupers ( Epinephelus coioides). Metabolites 2022; 12:670. [PMID: 35888794 PMCID: PMC9318954 DOI: 10.3390/metabo12070670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/18/2022] Open
Abstract
A transcriptome analysis was conducted to provide the first detailed overview of dietary taurine intervention on liver lipid accumulation caused by high-fat in groupers. After an eight-week feeding, the fish fed 15% fat diet (High-fat diet) had higher liver lipid contents vs. fish fed 10% fat diet (Control diet). 15% fat diet with 1% taurine (Taurine diet) improved weight gain and feed utilization, and decreased hepatosomatic index and liver lipid contents vs. the High-fat diet. In the comparison of the Control vs. High-fat groups, a total of 160 differentially expressed genes (DEGs) were identified, of which up- and down-regulated genes were 72 and 88, respectively. There were 49 identified DEGs with 26 and 23 of up- and down-regulated in the comparison to High-fat vs. Taurine. Several key genes, such as cysteine dioxygenase (CDO1), ADP-ribosylation factor 1/2 (ARF1_2), sodium/potassium-transporting ATPase subunit alpha (ATP1A), carnitine/acylcarnitine translocase (CACT), and calcium/calmodulin-dependent protein kinase II (CAMK) were obtained by enrichment for the above DEGs. These genes were enriched in taurine and hypotaurine metabolism, bile secretion, insulin secretion, phospholipase D signaling pathway, and thermogenesis pathways, respectively. The present study will also provide a new insight into the nutritional physiological function of taurine in farmed fish.
Collapse
Affiliation(s)
- Mingfan Chen
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China; (M.C.); (F.B.); (T.S.); (X.N.); (K.W.)
| | - Fakai Bai
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China; (M.C.); (F.B.); (T.S.); (X.N.); (K.W.)
| | - Tao Song
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China; (M.C.); (F.B.); (T.S.); (X.N.); (K.W.)
| | - Xingjian Niu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China; (M.C.); (F.B.); (T.S.); (X.N.); (K.W.)
| | - Xuexi Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China or
| | - Kun Wang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China; (M.C.); (F.B.); (T.S.); (X.N.); (K.W.)
| | - Jidan Ye
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China; (M.C.); (F.B.); (T.S.); (X.N.); (K.W.)
| |
Collapse
|
21
|
Bao Y, Shen Y, Li X, Wu Z, Jiao L, Li J, Zhou Q, Jin M. A New Insight Into the Underlying Adaptive Strategies of Euryhaline Marine Fish to Low Salinity Environment Through Cholesterol Nutrition to Regulate Physiological Responses. Front Nutr 2022; 9:855369. [PMID: 35571938 PMCID: PMC9097951 DOI: 10.3389/fnut.2022.855369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/14/2022] [Indexed: 01/28/2023] Open
Abstract
Salinity is an important environmental factor that can affect the metabolism of aquatic organisms, while cholesterol can influence cellular membrane fluidity which are vital in adaption to salinity changes. Hence, a 4-week feeding trial was conducted to evaluate the effects of water salinity (normal 23 psu and low 5 psu) and three dietary cholesterol levels (CH0.16, 0.16%, CH1.0, 1.0% and CH1.6, 1.6%) on osmoregulation, cholesterol metabolism, fatty acid composition, long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis, oxidative stress (OS), and endoplasmic reticulum stress (ERS) of the euryhaline fish black seabream (Acanthopagrus schlegelii). The results indicated that in low salinity, fish fed with the CH1.0 diet improved ion reabsorption and osmoregulation by increased Na+ concentration in serum as well as expression levels of osmoregulation-related gene expression levels in gills. Both dietary cholesterol level and water salinity significantly affected most cholesterol metabolic parameters in the serum and tissues, and the results showed that low salinity promoted cholesterol synthesis but inhibited cholesterol catabolism. Besides, in low salinity, hepatic expression levels of LC-PUFA biosynthesis genes were upregulated by fed dietary cholesterol supplementation with contents of LC-PUFAs, including EPA and DHA being increased. Malondialdehyde (MDA) was significantly increased in low-salinity environment, whereas MDA content was decreased in fish fed with dietary CH1.0 by activating related antioxidant enzyme activity and gene expression levels. A similar pattern was recorded for ERS, which stimulated the expression of nuclear factor kappa B (nf-κb), triggering inflammation. Nevertheless, fish reared in low salinity and fed with dietary CH1.0 had markedly alleviated ERS and downregulated gene expression levels of pro-inflammatory cytokines. Overall, these findings demonstrate that cholesterol, as an important nutrient, plays vital roles in the process of adaptation to low salinity of A. schlegelii, and provides a new insight into underlying adaptive strategies of euryhaline marine fish reared in low salinity.
Collapse
Affiliation(s)
- Yangguang Bao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Xuejiao Li
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Zhaoxun Wu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Jing Li
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- *Correspondence: Min Jin
| |
Collapse
|
22
|
Mahmoudi A, Butler AE, Jamialahmadi T, Sahebkar A. Target Deconvolution of Fenofibrate in Nonalcoholic Fatty Liver Disease Using Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3654660. [PMID: 34988225 PMCID: PMC8720586 DOI: 10.1155/2021/3654660] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 12/14/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of liver damage, affecting ~25% of the global population. NAFLD comprises a spectrum of liver pathologies, from hepatic steatosis to nonalcoholic steatohepatitis (NASH), and may progress to liver fibrosis and cirrhosis. The presence of NAFLD correlates with metabolic disorders such as hyperlipidemia, obesity, blood hypertension, cardiovascular, and insulin resistance. Fenofibrate is an agonist drug for peroxisome proliferator-activated receptor alpha (PPARα), used principally for treatment of hyperlipidemia. However, fenofibrate has recently been investigated in clinical trials for treatment of other metabolic disorders such as diabetes, cardiovascular disease, and NAFLD. The evidence to date indicates that fenofibrate could improve NAFLD. While PPARα is considered to be the main target of fenofibrate, fenofibrate may exert its effect through impact on other genes and pathways thereby alleviating, and possibly reversing, NAFLD. In this study, using bioinformatics tools and gene-drug, gene-diseases databases, we sought to explore possible targets, interactions, and pathways involved in fenofibrate and NAFLD. METHODS We first determined significant protein interactions with fenofibrate in the STITCH database with high confidence (0.7). Next, we investigated the identified proteins on curated targets in two databases, including the DisGeNET and DISEASES databases, to determine their association with NAFLD. We finally constructed a Venn diagram for these two collections (curated genes-NAFLD and fenofibrate-STITCH) to uncover possible primary targets of fenofibrate. Then, Gene Ontology (GO) and KEGG were analyzed to detect the significantly involved targets in molecular function, biological process, cellular component, and biological pathways. A P value < 0.01 was considered the cut-off criterion. We also estimated the specificity of targets with NAFLD by investigating them in disease-gene associations (STRING) and EnrichR (DisGeNET). Finally, we verified our findings in the scientific literature. RESULTS We constructed two collections, one with 80 protein-drug interactions and the other with 95 genes associated with NAFLD. Using the Venn diagram, we identified 11 significant targets including LEP, SIRT1, ADIPOQ, PPARA, SREBF1, LDLR, GSTP1, VLDLR, SCARB1, MMP1, and APOC3 and then evaluated their biological pathways. Based on Gene Ontology, most of the targets are involved in lipid metabolism, and KEGG enrichment pathways showed the PPAR signaling pathway, AMPK signaling pathway, and NAFLD as the most significant pathways. The interrogation of those targets on authentic disease databases showed they were more specific to both steatosis and steatohepatitis liver injury than to any other diseases in these databases. Finally, we identified three significant genes, APOC3, PPARA, and SREBF1, that showed robust drug interaction with fenofibrate. CONCLUSION Fenofibrate may exert its effect directly or indirectly, via modulation of several key targets and pathways, in the treatment of NAFLD.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | | | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Hepatic Glucose Metabolism and Its Disorders in Fish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:207-236. [PMID: 34807444 DOI: 10.1007/978-3-030-85686-1_11] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbohydrate, which is the most abundant nutrient in plant-sourced feedstuffs, is an economically indispensable component in commercial compound feeds for fish. This nutrient can enhance the physical quality of diets and allow for pellet expansion during extrusion. There is compelling evidence that an excess dietary intake of starch causes hepatic disorders, thereby further reducing the overall food consumption and growth performance of fish species. Among the severe metabolic disturbances are glycogenic hepatopathy (hepatomegaly caused by the excessive accumulation of glycogen in hepatocytes) and hepatic steatosis (the accumulation of large vacuoles of triacylglycerols in hepatocytes). The development of those disorders is mainly due to the limited ability of fish to oxidize glucose and control blood glucose concentration. The prolonged elevations of blood glucose increase glucose intake by the liver, and excess glucose is stored either as glycogen through glycogenesis in hepatocytes or as triglycerides via lipogenesis in tissues, depending on the species. In some fish species (e.g., largemouth bass), the liver has a low ability to regulate glycolysis, gluconeogenesis, and glycogen breakdown in response to high starch intake. For most species of fish, the liver size increases with lipid or glycogen accumulation when they have a high starch intake. It is a challenge to develop the same set of diagnostic criteria for all fish species as their physiology or metabolic patterns differ. Although glycogenic hepatopathy appears to be a common disease in carnivorous fish, it has been under-recognized in many studies. As a result, understanding these diseases and their pathogeneses in different fish species is crucial for manufacturing cost-effective pellet diets to promote the health, growth, survival, and feed efficiency of fish in future.
Collapse
|