1
|
Shen G, Green HL, McNamee M, Franzen RE, DiPiero M, Berman JI, Ku M, Bloy L, Liu S, Airey M, Goldin S, Blaskey L, Kuschner ES, Kim M, Konka K, Miller GA, Edgar JC. White matter microstructure as a potential contributor to differences in resting state alpha activity between neurotypical and autistic children: a longitudinal multimodal imaging study. Mol Autism 2025; 16:19. [PMID: 40069738 PMCID: PMC11895156 DOI: 10.1186/s13229-025-00646-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/02/2025] [Indexed: 03/15/2025] Open
Abstract
We and others have demonstrated the resting-state (RS) peak alpha frequency (PAF) as a potential clinical marker for young children with autism spectrum disorder (ASD), with previous studies observing a higher PAF in school-age children with ASD versus typically developing (TD) children, as well as an association between the RS PAF and measures of processing speed in TD but not ASD. The brain mechanisms associated with these findings are unknown. A few studies have found that in children more mature optic radiation white matter is associated with a higher PAF. Other studies have reported white matter and neural activity associations in TD but not ASD. The present study hypothesized that group differences in the RS PAF are due, in part, to group differences in optic radiation white matter and PAF associations. The maturation of the RS PAF (measured using magnetoencephalography(MEG)), optic radiation white matter (measured using diffusion tensor imaging(DTI)), and associations with processing speed were assessed in a longitudinal cohort of TD and ASD children. Time 1 MEG and DTI measures were obtained at 6-8 years old (59TD and 56ASD) with follow-up brain measures collected ~ 1.5 and ~ 3 years later. The parietal-occipital PAF increased with age in both groups by 0.13 Hz/year, with a main effect of group showing the expected higher PAF in ASD than TD (an average of 0.26 Hz across the 3 time points). Across age, the RS PAF predicted processing speed in TD but not ASD. Finally, more mature optic radiation white matter measures (FA, RD, MD, AD) were associated with a higher PAF in both groups. Present findings provide additional evidence supporting the use of the RS PAF as a brain marker in children with ASD 6-10 years old, and replicate findings of an association between the RS PAF and processing speed in TD but not ASD. The hypothesis that the RS PAF group differences (with ASD leading TD by about 2 years) would be explained by group differences in optic radiation white matter was not supported, with brain structure-function associations indicating that more mature optic radiation white matter is associated with a higher RS PAF in both groups.
Collapse
Affiliation(s)
- Guannan Shen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Heather L Green
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marybeth McNamee
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rose E Franzen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marissa DiPiero
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey I Berman
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Ku
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Megan Airey
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sophia Goldin
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa Blaskey
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Autism Research, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Autism Research, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kimberly Konka
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gregory A Miller
- Department of Psychology, University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Valenzuela CF, Reid NM, Blanco BB, Carlson VL, Do AB. Impact of Developmental Alcohol Exposure on the Thalamus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:67-92. [PMID: 40128475 DOI: 10.1007/978-3-031-81908-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
This chapter comprehensively explores the impact of prenatal alcohol (ethanol) exposure (PAE) on the thalamus, integrating findings from animal models and human studies spanning various developmental stages. Animal model investigations, encompassing first and second trimester-equivalent exposures and the critical third trimester, where the brain growth spurt starts, reveal specific alterations in thalamic structures and circuits, emphasizing the specificity of damage to corticothalamic loops. The ventrobasal thalamic nucleus exhibits a unique response to PAE, involving intricate interactions with postnatal neurogenesis and neurotrophin responsiveness. Third trimester-equivalent exposure consistently induces apoptotic neurodegeneration in various thalamic nuclei, highlighting the heightened susceptibility of the visual thalamus, particularly the lateral geniculate nucleus, during critical developmental periods. The nucleus reuniens, vital for cognitive processes, was shown to be significantly affected by alcohol exposure during this period. Investigations into the trigeminal/somatosensory system activity revealed disruptions in glucose utilization and increased neuronal activity in the thalamus. Research on binge-like alcohol exposure during the brain growth spurt demonstrates lasting modifications in action-potential properties and synaptic currents in thalamic neurons projecting to the retrosplenial cortex. Human studies, employing advanced techniques like super-resolution fetal MRI and functional MRI, underscore the PAE-induced structural and functional consequences in the thalamus and its connections, spanning from fetal development to adulthood. The complex effects of PAE on thalamic structure and function vary across developmental stages, emphasizing the importance of considering factors such as age and concurrent exposures. The development of higher-resolution imaging tools is essential for assessing the impact of PAE on the structure and function of individual thalamic nuclei in humans.
Collapse
Affiliation(s)
- C Fernando Valenzuela
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Natalie M Reid
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Benjamin B Blanco
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Victoria L Carlson
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Alynna B Do
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
3
|
Liang X, Kelly CE, Yeh CH, Dhollander T, Hearps S, Anderson PJ, Thompson DK. Structural brain network organization in children with prenatal alcohol exposure. Neuroimage Clin 2024; 44:103690. [PMID: 39490220 PMCID: PMC11549991 DOI: 10.1016/j.nicl.2024.103690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION There is growing evidence suggesting that children with prenatal alcohol exposure (PAE) struggle with cognitively demanding tasks, such as learning, attention, and language. Complex structural network analyses can provide insight into the neurobiological underpinnings of these functions, as they may be sensitive for characterizing the effects of PAE on the brain. However, investigations on how PAE affects brain networks are limited. We aim to compare diffusion magnetic resonance imaging (MRI) tractography-based structural networks between children with low-to-moderate PAE in trimester 1 only (T1) or throughout all trimesters (T1-T3) with those without alcohol exposure prenatally. METHODS Our cohort included three groups of children aged 6 to 8 years: 1) no PAE (n = 24), 2) low-to-moderate PAE during T1 only (n = 30), 3) low-to-moderate PAE throughout T1-T3 (n = 36). Structural networks were constructed using the multi-shell multi-tissue constrained spherical deconvolution tractography technique. Quantitative group-wise analyses were conducted at three levels: (a) at the whole-brain network level, using both network-based statistical analyses and network centrality; and then using network centrality at (b) the modular level, and (c) per-region level, including the regions identified as brain hubs. RESULTS Compared with the no PAE group, widespread brain network alterations were observed in the PAE T1-T3 group using network-based statistics, but no alterations were observed for the PAE T1 group. Network alterations were also detected at the module level in the PAE T1-T3 compared with the no PAE group, with lower eigenvector centrality in the module that closely represented the right cortico-basal ganglia-thalamo-cortical network. No significant group differences were found in network centrality at the per-region level, including the hub regions. CONCLUSIONS This study demonstrated that low-to-moderate PAE throughout pregnancy may alter brain structural connectivity, which may explain the neurodevelopmental deficits associated with PAE. It is possible that timing and duration of alcohol exposure are crucial, as PAE in T1 only did not appear to alter brain structural connectivity.
Collapse
Affiliation(s)
- Xiaoyun Liang
- Murdoch Children's Research Institute, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Claire E Kelly
- Murdoch Children's Research Institute, Melbourne, Australia; Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Chun-Hung Yeh
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | | | - Stephen Hearps
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Peter J Anderson
- Murdoch Children's Research Institute, Melbourne, Australia; Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Deanne K Thompson
- Murdoch Children's Research Institute, Melbourne, Australia; Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Candelaria-Cook FT, Schendel ME, Romero LL, Cerros C, Hill DE, Stephen JM. Sex-specific Differences in Resting Oscillatory Dynamics in Children with Prenatal Alcohol Exposure. Neuroscience 2024; 543:121-136. [PMID: 38387734 PMCID: PMC10954390 DOI: 10.1016/j.neuroscience.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
At rest children with prenatal alcohol exposure (PAE) exhibit impaired static and dynamic functional connectivity, along with decreased alpha oscillations. Sex-specific information regarding the impact of PAE on whole-brain resting-state gamma spectral power remains unknown. Eyes-closed and eyes-open MEG resting-state data were examined in 83 children, ages 6-13 years of age. Using a matched design, the sample consisted of 42 typically developing children (TDC) (22 males/20 females) and 41 children with PAE and/or a fetal alcohol spectrum disorders (FASD) diagnosis (21 males/20 females). Whole-brain source resting-state spectral power was examined to determine group and sex specific relationships. Within gamma, we found sex and group specific changes such that female participants with PAE/FASD had increased gamma power when compared to female TDC and male participants with PAE/FASD. These differences were detected in most source regions analyzed during both resting-states, and were observed across the age spectrum examined. Within delta, we found sex and group specific changes such that female participants with PAE/FASD had decreased delta power when compared to female TDC and male participants with PAE/FASD. The reduced delta oscillations in female participants with PAE/FASD were detected in several source regions during eyes-closed rest and were evident at younger ages. These results indicate PAE alters neural oscillations during rest in a sex-specific manner, with females with PAE/FASD showing the largest perturbations. These results further demonstrate PAE has global effects on resting-state spectral power and connectivity, creating long-term consequences by potentially disrupting the excitation/inhibition balance in the brain, interrupting normative neurodevelopment.
Collapse
Affiliation(s)
| | - Megan E Schendel
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Lucinda L Romero
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Cassandra Cerros
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Dina E Hill
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Julia M Stephen
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
5
|
Thompson DK, Kelly CE, Dhollander T, Muggli E, Hearps S, Lewis S, Nguyen TNN, Spittle A, Elliott EJ, Penington A, Halliday J, Anderson PJ. Associations between low-moderate prenatal alcohol exposure and brain development in childhood. Neuroimage Clin 2024; 42:103595. [PMID: 38555806 PMCID: PMC10998198 DOI: 10.1016/j.nicl.2024.103595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND The effects of low-moderate prenatal alcohol exposure (PAE) on brain development have been infrequently studied. AIM To compare cortical and white matter structure between children aged 6 to 8 years with low-moderate PAE in trimester 1 only, low-moderate PAE throughout gestation, or no PAE. METHODS Women reported quantity and frequency of alcohol consumption before and during pregnancy. Magnetic resonance imaging was undertaken for 143 children aged 6 to 8 years with PAE during trimester 1 only (n = 44), PAE throughout gestation (n = 58), and no PAE (n = 41). T1-weighted images were processed using FreeSurfer, obtaining brain volume, area, and thickness of 34 cortical regions per hemisphere. Fibre density (FD), fibre cross-section (FC) and fibre density and cross-section (FDC) metrics were computed for diffusion images. Brain measures were compared between PAE groups adjusted for age and sex, then additionally for intracranial volume. RESULTS After adjustments, the right caudal anterior cingulate cortex volume (pFDR = 0.045) and area (pFDR = 0.008), and right cingulum tract cross-sectional area (pFWE < 0.05) were smaller in children exposed to alcohol throughout gestation compared with no PAE. CONCLUSION This study reports a relationship between low-moderate PAE throughout gestation and cingulate cortex and cingulum tract alterations, suggesting a teratogenic vulnerability. Further investigation is warranted.
Collapse
Affiliation(s)
- Deanne K Thompson
- Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia; Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Claire E Kelly
- Murdoch Children's Research Institute, Parkville, Victoria, Australia; Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Thijs Dhollander
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Evelyne Muggli
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Stephen Hearps
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Sharon Lewis
- Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | | | - Alicia Spittle
- Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Physiotherapy, The University of Melbourne, Victoria, Australia
| | - Elizabeth J Elliott
- The University of Sydney, Specialty of Child and Adolescent Health, Faculty of Medicine and Health, Sydney, New South Wales, Australia; Kids Research, Children's Hospitals Network, Westmead, Sydney, New South Wales, Australia
| | - Anthony Penington
- Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia; Royal Children's Hospital, Parkville, Victoria, Australia
| | - Jane Halliday
- Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | - Peter J Anderson
- Murdoch Children's Research Institute, Parkville, Victoria, Australia; Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
6
|
Candelaria-Cook FT, Schendel ME, Flynn L, Cerros C, Hill DE, Stephen JM. Disrupted dynamic functional network connectivity in fetal alcohol spectrum disorders. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:687-703. [PMID: 36880528 PMCID: PMC10281251 DOI: 10.1111/acer.15046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/30/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) can result in harmful and long-lasting neurodevelopmental changes. Children with PAE or a fetal alcohol spectrum disorder (FASD) have decreased white matter volume and resting-state spectral power compared to typically developing controls (TDC) and impaired resting-state static functional connectivity. The impact of PAE on resting-state dynamic functional network connectivity (dFNC) is unknown. METHODS Using eyes-closed and eyes-open magnetoencephalography (MEG) resting-state data, global dFNC statistics and meta-states were examined in 89 children aged 6-16 years (51 TDC, 38 with FASD). Source analyzed MEG data were used as input to group spatial independent component analysis to derive functional networks from which the dFNC was calculated. RESULTS During eyes-closed, relative to TDC, participants with FASD spent a significantly longer time in state 2, typified by anticorrelation (i.e., decreased connectivity) within and between default mode network (DMN) and visual network (VN), and state 4, typified by stronger internetwork correlation. The FASD group exhibited greater dynamic fluidity and dynamic range (i.e., entered more states, changed from one meta-state to another more often, and traveled greater distances) than TDC. During eyes-open, TDC spent significantly more time in state 1, typified by positive intra- and interdomain connectivity with modest correlation within the frontal network (FN), while participants with FASD spent a larger fraction of time in state 2, typified by anticorrelation within and between DMN and VN and strong correlation within and between FN, attention network, and sensorimotor network. CONCLUSIONS There are important resting-state dFNC differences between children with FASD and TDC. Participants with FASD exhibited greater dynamic fluidity and dynamic range and spent more time in states typified by anticorrelation within and between DMN and VN, and more time in a state typified by high internetwork connectivity. Taken together, these network aberrations indicate that prenatal alcohol exposure has a global effect on resting-state connectivity.
Collapse
Affiliation(s)
| | - Megan E. Schendel
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Lucinda Flynn
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Cassandra Cerros
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Dina E. Hill
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Julia M. Stephen
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| |
Collapse
|
7
|
Popova S, Charness ME, Burd L, Crawford A, Hoyme HE, Mukherjee RAS, Riley EP, Elliott EJ. Fetal alcohol spectrum disorders. Nat Rev Dis Primers 2023; 9:11. [PMID: 36823161 DOI: 10.1038/s41572-023-00420-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/25/2023]
Abstract
Alcohol readily crosses the placenta and may disrupt fetal development. Harm from prenatal alcohol exposure (PAE) is determined by the dose, pattern, timing and duration of exposure, fetal and maternal genetics, maternal nutrition, concurrent substance use, and epigenetic responses. A safe dose of alcohol use during pregnancy has not been established. PAE can cause fetal alcohol spectrum disorders (FASD), which are characterized by neurodevelopmental impairment with or without facial dysmorphology, congenital anomalies and poor growth. FASD are a leading preventable cause of birth defects and developmental disability. The prevalence of FASD in 76 countries is >1% and is high in individuals living in out-of-home care or engaged in justice and mental health systems. The social and economic effects of FASD are profound, but the diagnosis is often missed or delayed and receives little public recognition. Future research should be informed by people living with FASD and be guided by cultural context, seek consensus on diagnostic criteria and evidence-based treatments, and describe the pathophysiology and lifelong effects of FASD. Imperatives include reducing stigma, equitable access to services, improved quality of life for people with FASD and FASD prevention in future generations.
Collapse
Affiliation(s)
- Svetlana Popova
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada.
| | - Michael E Charness
- VA Boston Healthcare System, West Roxbury, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.,Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Larry Burd
- North Dakota Fetal Alcohol Syndrome Center, Department of Pediatrics, University of North Dakota School of Medicine and Health Sciences, Pediatric Therapy Services, Altru Health System, Grand Forks, ND, USA
| | - Andi Crawford
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - H Eugene Hoyme
- Sanford Children's Genomic Medicine Consortium, Sanford Health, and University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA
| | - Raja A S Mukherjee
- National UK FASD Clinic, Surrey and Borders Partnership NHS Foundation Trust, Redhill, Surrey, UK
| | - Edward P Riley
- Center for Behavioral Teratology, San Diego State University, San Diego, CA, USA
| | - Elizabeth J Elliott
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,New South Wales FASD Assessment Service, CICADA Centre for Care and Intervention for Children and Adolescents affected by Drugs and Alcohol, Sydney Children's Hospitals Network, Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Candelaria-Cook FT, Schendel ME, Flynn L, Cerros C, Kodituwakku P, Bakhireva LN, Hill DE, Stephen JM. Decreased resting-state alpha peak frequency in children and adolescents with fetal alcohol spectrum disorders or prenatal alcohol exposure. Dev Cogn Neurosci 2022; 57:101137. [PMID: 35878441 PMCID: PMC9310113 DOI: 10.1016/j.dcn.2022.101137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/23/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Prenatal alcohol exposure (PAE) can result in long-lasting changes to physical, behavioral, and cognitive functioning in children. PAE might result in decreased white matter integrity, corticothalamic tract integrity, and alpha cortical oscillations. Previous investigations of alpha oscillations in PAE/fetal alcohol spectrum disorder (FASD) have focused on average spectral power at specific ages; therefore, little is known about alpha peak frequency (APF) or its developmental trajectory making this research novel. Using resting-state MEG data, APF was determined from parietal/occipital regions in participants with PAE/FASD or typically developing controls (TDC). In total, MEG data from 157 infants, children, and adolescents ranging in age from 6 months to 17 years were used, including 17 individuals with PAE, 61 individuals with an FASD and 84 TDC. In line with our hypothesis, we found that individuals with PAE/FASD had significantly reduced APF relative to TDC. Both age and group were significantly related to APF with differences between TDC and PAE/FASD persisting throughout development. We did not find evidence that sex or socioeconomic status had additional impact on APF. Reduced APF in individuals with an FASD/PAE may represent a long-term deficit and demonstrates the detrimental impact prenatal alcohol exposure can have on neurophysiological processes.
Collapse
Affiliation(s)
| | - Megan E Schendel
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Lucinda Flynn
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Cassandra Cerros
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Piyadasa Kodituwakku
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ludmila N Bakhireva
- Substance Use Research and Education Center, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Dina E Hill
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Julia M Stephen
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
9
|
Vishnubhotla RV, Zhao Y, Wen Q, Dietrich J, Sokol GM, Sadhasivam S, Radhakrishnan R. Brain structural connectome in neonates with prenatal opioid exposure. Front Neurosci 2022; 16:952322. [PMID: 36188457 PMCID: PMC9523134 DOI: 10.3389/fnins.2022.952322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionInfants with prenatal opioid exposure (POE) are shown to be at risk for poor long-term neurobehavioral and cognitive outcomes. Early detection of brain developmental alterations on neuroimaging could help in understanding the effect of opioids on the developing brain. Recent studies have shown altered brain functional network connectivity through the application of graph theoretical modeling, in infants with POE. In this study, we assess global brain structural connectivity through diffusion tensor imaging (DTI) metrics and apply graph theoretical modeling to brain structural connectivity in infants with POE.MethodsIn this prospective observational study in infants with POE and control infants, brain MRI including DTI was performed before completion of 3 months corrected postmenstrual age. Tractography was performed on the whole brain using a deterministic fiber tracking algorithm. Pairwise connectivity and network measure were calculated based on fiber count and fractional anisotropy (FA) values. Graph theoretical metrics were also derived.ResultsThere were 11 POE and 18 unexposed infants included in the analysis. Pairwise connectivity based on fiber count showed alterations in 32 connections. Pairwise connectivity based on FA values showed alterations in 24 connections. Connections between the right superior frontal gyrus and right paracentral lobule and between the right superior occipital gyrus and right fusiform gyrus were significantly different after adjusting for multiple comparisons between POE infants and unexposed controls. Additionally, alterations in graph theoretical network metrics were identified with fiber count and FA value derived tracts.ConclusionComparisons show significant differences in fiber count in two structural connections. The long-term clinical outcomes related to these findings may be assessed in longitudinal follow-up studies.
Collapse
Affiliation(s)
- Ramana V. Vishnubhotla
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jonathan Dietrich
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Gregory M. Sokol
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Senthilkumar Sadhasivam
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Rupa Radhakrishnan,
| |
Collapse
|