1
|
Rico‐Picó J, Garcia‐de‐Soria Bazan MDC, Conejero Á, Moyano S, Hoyo Á, Ballesteros‐Duperón MDLÁ, Holmboe K, Rueda MR. Oscillatory But Not Aperiodic Frontal Brain Activity Predicts the Development of Executive Control From Infancy to Toddlerhood. Dev Sci 2025; 28:e13613. [PMID: 39923184 PMCID: PMC11807265 DOI: 10.1111/desc.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/22/2024] [Accepted: 01/07/2025] [Indexed: 02/10/2025]
Abstract
Executive control (EC) emerges in the first year of life, with the ability to inhibit prepotent responses (inhibitory control [IC]) and to flexibly readapt (cognitive flexibility [CF]) steadily improving. Simultaneously, electrophysiological brain activity undergoes profound reconfiguration, which has been linked to individual variability in EC. However, most studies exploring this relationship have used relative/absolute power and tasks that combine different executive processes. In addition, brain activity conflates aperiodic and oscillatory activity, which hinders the interpretation of the relationship between power and cognition. In the current study, we used the Early Childhood Inhibitory Touchscreen Task (ECITT) to examine the development of EC skills from 9 to 16 months in a longitudinal sample, and related performance of the task to resting-state EEG (rs-EEG) power, separating oscillatory and aperiodic activity. Our results showed improvement in IC but not in CF with age. In addition, alpha and theta oscillatory activity were concurrent (9-mo.) and longitudinal predictors of CF in toddlerhood, whereas the aperiodic exponent of the EEG signal did not contribute to EC. These findings demonstrate the relevance of oscillatory brain activity for cognitive development and provide an early brain marker for the early development of EC.
Collapse
Affiliation(s)
- Josué Rico‐Picó
- Department of Experimental PsychologyUniversity of GranadaGranadaSpain
- Mind, Brain and Behavior Research Center (CIMCYC)University of GranadaGranadaSpain
| | | | - Ángela Conejero
- Mind, Brain and Behavior Research Center (CIMCYC)University of GranadaGranadaSpain
- Department of Developmental PsychologyUniversity of GranadaGranadaSpain
| | - Sebastián Moyano
- Department of Experimental PsychologyUniversity of GranadaGranadaSpain
- Mind, Brain and Behavior Research Center (CIMCYC)University of GranadaGranadaSpain
| | - Ángela Hoyo
- Department of Experimental PsychologyUniversity of GranadaGranadaSpain
| | | | - Karla Holmboe
- School of Psychological ScienceUniversity of BristolBristolUK
| | - M. Rosario Rueda
- Department of Experimental PsychologyUniversity of GranadaGranadaSpain
- Mind, Brain and Behavior Research Center (CIMCYC)University of GranadaGranadaSpain
| |
Collapse
|
2
|
Lundqvist M, Miller EK, Nordmark J, Liljefors J, Herman P. Beta: bursts of cognition. Trends Cogn Sci 2024; 28:662-676. [PMID: 38658218 DOI: 10.1016/j.tics.2024.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Beta oscillations are linked to the control of goal-directed processing of sensory information and the timing of motor output. Recent evidence demonstrates they are not sustained but organized into intermittent high-power bursts mediating timely functional inhibition. This implies there is a considerable moment-to-moment variation in the neural dynamics supporting cognition. Beta bursts thus offer new opportunities for studying how sensory inputs are selectively processed, reshaped by inhibitory cognitive operations and ultimately result in motor actions. Recent method advances reveal diversity in beta bursts that provide deeper insights into their function and the underlying neural circuit activity motifs. We propose that brain-wide, spatiotemporal patterns of beta bursting reflect various cognitive operations and that their dynamics reveal nonlinear aspects of cortical processing.
Collapse
Affiliation(s)
- Mikael Lundqvist
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden; The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Earl K Miller
- The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonatan Nordmark
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Johan Liljefors
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Pawel Herman
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden; Digital Futures, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
3
|
Rier L, Rhodes N, Pakenham DO, Boto E, Holmes N, Hill RM, Reina Rivero G, Shah V, Doyle C, Osborne J, Bowtell RW, Taylor M, Brookes MJ. Tracking the neurodevelopmental trajectory of beta band oscillations with optically pumped magnetometer-based magnetoencephalography. eLife 2024; 13:RP94561. [PMID: 38831699 PMCID: PMC11149934 DOI: 10.7554/elife.94561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - optically pumped magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.
Collapse
Affiliation(s)
- Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Diagnostic Imaging, The Hospital for Sick ChildrenTorontoCanada
| | - Daisie O Pakenham
- Clinical Neurophysiology, Nottingham University Hospitals NHS Trust, Queens Medical CentreNottinghamUnited States
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Gonzalo Reina Rivero
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | | | | | | | - Richard W Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | - Margot Taylor
- Diagnostic Imaging, The Hospital for Sick ChildrenTorontoCanada
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| |
Collapse
|
4
|
Fatić S, Stanojević N, Jeličić L, Bilibajkić R, Marisavljević M, Maksimović S, Gavrilović A, Subotić M. Beta Spectral Power during Passive Listening in Preschool Children with Specific Language Impairment. Dev Neurosci 2024; 47:98-111. [PMID: 38723615 PMCID: PMC11965842 DOI: 10.1159/000539135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 04/18/2024] [Indexed: 06/19/2024] Open
Abstract
INTRODUCTION Children with specific language impairment (SLI) have difficulties in different speech and language domains. Electrophysiological studies have documented that auditory processing in children with SLI is atypical and probably caused by delayed and abnormal auditory maturation. During the resting state, or different auditory tasks, children with SLI show low or high beta spectral power, which could be a clinical correlate for investigating brain rhythms. METHODS The aim of this study was to examine the electrophysiological cortical activity of the beta rhythm while listening to words and nonwords in children with SLI in comparison to typical development (TD) children. The participants were 50 children with SLI, aged 4 and 5 years, and 50 age matched TD children. The children were divided into two subgroups according to age: (1) children 4 years of age; (2) children 5 years of age. RESULTS The older group differed from the younger group in beta auditory processing, with increased values of beta spectral power in the right frontal, temporal, and parietal regions. In addition, children with SLI have higher beta spectral power than TD children in the bilateral temporal regions. CONCLUSION Complex beta auditory activation in TD and SLI children indicates the presence of early changes in functional brain connectivity. INTRODUCTION Children with specific language impairment (SLI) have difficulties in different speech and language domains. Electrophysiological studies have documented that auditory processing in children with SLI is atypical and probably caused by delayed and abnormal auditory maturation. During the resting state, or different auditory tasks, children with SLI show low or high beta spectral power, which could be a clinical correlate for investigating brain rhythms. METHODS The aim of this study was to examine the electrophysiological cortical activity of the beta rhythm while listening to words and nonwords in children with SLI in comparison to typical development (TD) children. The participants were 50 children with SLI, aged 4 and 5 years, and 50 age matched TD children. The children were divided into two subgroups according to age: (1) children 4 years of age; (2) children 5 years of age. RESULTS The older group differed from the younger group in beta auditory processing, with increased values of beta spectral power in the right frontal, temporal, and parietal regions. In addition, children with SLI have higher beta spectral power than TD children in the bilateral temporal regions. CONCLUSION Complex beta auditory activation in TD and SLI children indicates the presence of early changes in functional brain connectivity.
Collapse
Affiliation(s)
- Saška Fatić
- Cognitive Neuroscience Department, Research and Development Institute “Life Activities Advancement Institute,” Belgrade, Serbia
- Department of Speech, Language, and Hearing Sciences, Institute for Experimental Phonetics and Speech Pathology, Belgrade, Serbia
| | - Nina Stanojević
- Cognitive Neuroscience Department, Research and Development Institute “Life Activities Advancement Institute,” Belgrade, Serbia
- Department of Speech, Language, and Hearing Sciences, Institute for Experimental Phonetics and Speech Pathology, Belgrade, Serbia
| | - Ljiljana Jeličić
- Cognitive Neuroscience Department, Research and Development Institute “Life Activities Advancement Institute,” Belgrade, Serbia
- Department of Speech, Language, and Hearing Sciences, Institute for Experimental Phonetics and Speech Pathology, Belgrade, Serbia
| | - Ružica Bilibajkić
- Cognitive Neuroscience Department, Research and Development Institute “Life Activities Advancement Institute,” Belgrade, Serbia
| | - Maša Marisavljević
- Cognitive Neuroscience Department, Research and Development Institute “Life Activities Advancement Institute,” Belgrade, Serbia
- Department of Speech, Language, and Hearing Sciences, Institute for Experimental Phonetics and Speech Pathology, Belgrade, Serbia
| | - Slavica Maksimović
- Cognitive Neuroscience Department, Research and Development Institute “Life Activities Advancement Institute,” Belgrade, Serbia
- Department of Speech, Language, and Hearing Sciences, Institute for Experimental Phonetics and Speech Pathology, Belgrade, Serbia
| | - Aleksandar Gavrilović
- Faculty of Medical Sciences, Department of Neurology, University of Kragujevac, Kragujevac, Serbia
- Clinic of Neurology, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Miško Subotić
- Cognitive Neuroscience Department, Research and Development Institute “Life Activities Advancement Institute,” Belgrade, Serbia
| |
Collapse
|
5
|
Vitali H, Campus C, De Giorgis V, Signorini S, Morelli F, Fasce M, Gori M. Sensorimotor Oscillations in Human Infants during an Innate Rhythmic Movement. Brain Sci 2024; 14:402. [PMID: 38672051 PMCID: PMC11047852 DOI: 10.3390/brainsci14040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The relationship between cerebral rhythms and early sensorimotor development is not clear. In recent decades, evidence revealed a rhythmic modulation involving sensorimotor processing. A widely corroborated functional role of oscillatory activity is to coordinate the information flow across sensorimotor networks. Their activity is coordinated by event-related synchronisation and desynchronisation in different sensorimotor rhythms, which indicate parallel processes may be occurring in the neuronal network during movement. To date, the dynamics of these brain oscillations and early sensorimotor development are unexplored. Our study investigates the relationship between the cerebral rhythms using EEG and a typical rhythmic movement of infants, the non-nutritive sucking (NNS) behaviour. NNS is an endogenous behaviour that originates from the suck central pattern generator in the brainstem. We find, in 17 infants, that sucking frequency correlates with beta synchronisation within the sensorimotor area in two phases: one strongly anticipating (~3 s) and the other encompassing the start of the motion. These findings suggest that a beta synchronisation of the sensorimotor cortex may influence the sensorimotor dynamics of NNS activity. Our results reveal the importance of rapid brain oscillations in infants and the role of beta synchronisation and their possible role in the communication between cortical and deep generators.
Collapse
Affiliation(s)
- Helene Vitali
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, 16152 Genoa, Italy; (H.V.)
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), University of Genova, 16145 Genoa, Italy
| | - Claudio Campus
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, 16152 Genoa, Italy; (H.V.)
| | - Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.D.G.)
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | - Sabrina Signorini
- Developmental Neuro-Ophthalmology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy (F.M.)
| | - Federica Morelli
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
- Developmental Neuro-Ophthalmology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy (F.M.)
| | - Marco Fasce
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.D.G.)
| | - Monica Gori
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, 16152 Genoa, Italy; (H.V.)
| |
Collapse
|
6
|
Karvat G, Ofir N, Landau AN. Sensory Drive Modifies Brain Dynamics and the Temporal Integration Window. J Cogn Neurosci 2024; 36:614-631. [PMID: 38010294 DOI: 10.1162/jocn_a_02088] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Perception is suggested to occur in discrete temporal windows, clocked by cycles of neural oscillations. An important testable prediction of this theory is that individuals' peak frequencies of oscillations should correlate with their ability to segregate the appearance of two successive stimuli. An influential study tested this prediction and showed that individual peak frequency of spontaneously occurring alpha (8-12 Hz) correlated with the temporal segregation threshold between two successive flashes of light [Samaha, J., & Postle, B. R. The speed of alpha-band oscillations predicts the temporal resolution of visual perception. Current Biology, 25, 2985-2990, 2015]. However, these findings were recently challenged [Buergers, S., & Noppeney, U. The role of alpha oscillations in temporal binding within and across the senses. Nature Human Behaviour, 6, 732-742, 2022]. To advance our understanding of the link between oscillations and temporal segregation, we devised a novel experimental approach. Rather than relying entirely on spontaneous brain dynamics, we presented a visual grating before the flash stimuli that is known to induce continuous oscillations in the gamma band (45-65 Hz). By manipulating the contrast of the grating, we found that high contrast induces a stronger gamma response and a shorter temporal segregation threshold, compared to low-contrast trials. In addition, we used a novel tool to characterize sustained oscillations and found that, for half of the participants, both the low- and high-contrast gratings were accompanied by a sustained and phase-locked alpha oscillation. These participants tended to have longer temporal segregation thresholds. Our results suggest that visual stimulus drive, reflected by oscillations in specific bands, is related to the temporal resolution of visual perception.
Collapse
|
7
|
Rier L, Rhodes N, Pakenham D, Boto E, Holmes N, Hill RM, Rivero GR, Shah V, Doyle C, Osborne J, Bowtell R, Taylor MJ, Brookes MJ. The neurodevelopmental trajectory of beta band oscillations: an OPM-MEG study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.573933. [PMID: 38260246 PMCID: PMC10802362 DOI: 10.1101/2024.01.04.573933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - Optically Pumped Magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.
Collapse
Affiliation(s)
- Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Diagnostic Imaging,The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
| | - Daisie Pakenham
- Clinical Neurophysiology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Rd, Lenton, Nottingham NG7 2UH, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Ryan M. Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Gonzalo Reina Rivero
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Vishal Shah
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Cody Doyle
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - James Osborne
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Margot J. Taylor
- Diagnostic Imaging,The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| |
Collapse
|
8
|
Oppermann H, Thelen A, Haueisen J. Single-trial EEG analysis reveals burst structure during photic driving. Clin Neurophysiol 2024; 159:66-74. [PMID: 38350295 DOI: 10.1016/j.clinph.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/06/2023] [Accepted: 01/20/2024] [Indexed: 02/15/2024]
Abstract
OBJECTIVE Photic driving in the human visual cortex evoked by intermittent photic stimulation is usually characterized in averaged data by an ongoing oscillation showing frequency entrainment and resonance phenomena during the course of stimulation. We challenge this view of an ongoing oscillation by analyzing unaveraged data. METHODS 64-channel EEGs were recorded during visual stimulation with light flashes at eight stimulation frequencies between 7.8 and 23 Hz for fourteen healthy volunteers. Time-frequency analyses were performed in averaged and unaveraged data. RESULTS While we find ongoing oscillations in the averaged data during intermittent photic stimulation, we find transient events (bursts) of activity in the unaveraged data. Both resonance and entrainment occur for the ongoing oscillations in the averaged data and the bursts in the unaveraged data. CONCLUSIONS We argue that the continuous oscillations in the averaged signal may be composed of brief, transient bursts in single trials. Our results can also explain previously observed amplitude fluctuations in averaged photic driving data. SIGNIFICANCE Single-trial analyses might consequently improve our understanding of resonance and entrainment phenomena in the brain.
Collapse
Affiliation(s)
- Hannes Oppermann
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany.
| | - Antonia Thelen
- eemagine Medical Imaging Solutions GmbH, Berlin, Germany.
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany; Department of Neurology, Biomagnetic Center, University Hospital Jena, Jena, Germany.
| |
Collapse
|
9
|
Rayson H, Szul MJ, El-Khoueiry P, Debnath R, Gautier-Martins M, Ferrari PF, Fox N, Bonaiuto JJ. Bursting with Potential: How Sensorimotor Beta Bursts Develop from Infancy to Adulthood. J Neurosci 2023; 43:8487-8503. [PMID: 37833066 PMCID: PMC10711718 DOI: 10.1523/jneurosci.0886-23.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 10/15/2023] Open
Abstract
Beta activity is thought to play a critical role in sensorimotor processes. However, little is known about how activity in this frequency band develops. Here, we investigated the developmental trajectory of sensorimotor beta activity from infancy to adulthood. We recorded EEG from 9-month-old, 12-month-old, and adult humans (male and female) while they observed and executed grasping movements. We analyzed "beta burst" activity using a novel method that combines time-frequency decomposition and principal component analysis. We then examined the changes in burst rate and waveform motifs along the selected principal components. Our results reveal systematic changes in beta activity during action execution across development. We found a decrease in beta burst rate during movement execution in all age groups, with the greatest decrease observed in adults. Additionally, we identified three principal components that defined waveform motifs that systematically changed throughout the trial. We found that bursts with waveform shapes closer to the median waveform were not rate-modulated, whereas those with waveform shapes further from the median were differentially rate-modulated. Interestingly, the decrease in the rate of certain burst motifs occurred earlier during movement and was more lateralized in adults than in infants, suggesting that the rate modulation of specific types of beta bursts becomes increasingly refined with age.SIGNIFICANCE STATEMENT We demonstrate that, like in adults, sensorimotor beta activity in infants during reaching and grasping movements occurs in bursts, not oscillations like thought traditionally. Furthermore, different beta waveform shapes were differentially modulated with age, including more lateralization in adults. Aberrant beta activity characterizes various developmental disorders and motor difficulties linked to early brain injury, so looking at burst waveform shape could provide more sensitivity for early identification and treatment of affected individuals before any behavioral symptoms emerge. More generally, comparison of beta burst activity in typical versus atypical motor development will also be instrumental in teasing apart the mechanistic functional roles of different types of beta bursts.
Collapse
Affiliation(s)
- Holly Rayson
- Institut des Sciences, Cognitives Marc Jeannerod, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5229, Bron, 69500, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, 69100, France
- Inovarion, Paris, 75005, France
| | - Maciej J Szul
- Institut des Sciences, Cognitives Marc Jeannerod, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5229, Bron, 69500, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, 69100, France
| | - Perla El-Khoueiry
- Institut des Sciences, Cognitives Marc Jeannerod, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5229, Bron, 69500, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, 69100, France
| | - Ranjan Debnath
- Center for Psychiatry and Psychotherapy, Justus-Liebig University, Giessen, 35394, Germany
| | - Marine Gautier-Martins
- Institut des Sciences, Cognitives Marc Jeannerod, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5229, Bron, 69500, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, 69100, France
| | - Pier F Ferrari
- Institut des Sciences, Cognitives Marc Jeannerod, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5229, Bron, 69500, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, 69100, France
| | - Nathan Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland, 20742
| | - James J Bonaiuto
- Institut des Sciences, Cognitives Marc Jeannerod, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5229, Bron, 69500, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, 69100, France
| |
Collapse
|
10
|
Rico-Picó J, Moyano S, Conejero Á, Hoyo Á, Ballesteros-Duperón MÁ, Rueda MR. Early development of electrophysiological activity: Contribution of periodic and aperiodic components of the EEG signal. Psychophysiology 2023; 60:e14360. [PMID: 37322838 DOI: 10.1111/psyp.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
Brain function rapidly changes in the first 2 years of life. In the last decades, resting-state EEG has been widely used to explore those changes. Previous studies have focused on the relative power of the signal in established frequency bands (i.e., theta, alpha, and beta). However, EEG power is a mixture of a 1/f-like background power (aperiodic) in combination with narrow peaks that appear over that curve (periodic activity, e.g., alpha peak). Therefore, it is possible that relative power captures both, aperiodic and periodic brain activity, contributing to changes in electrophysiological activity observed in infancy. For this reason, we explored the early developmental trajectory of the relative power in theta, alpha, and beta frequency bands from infancy to toddlerhood and compared it with changes in periodic activity in a longitudinal study with three waves at age 6, 9, and 16 to 18 months. Finally, we tested the contribution of periodic activity and aperiodic components of the EEG to age changes in relative power. We found that relative power and periodic activity trajectories differed in this period in all the frequency bands but alpha. Furthermore, aperiodic EEG activity flattened between 6 and 18 months. More importantly, only alpha relative power was exclusively related to periodic activity, whereas aperiodic components of the signal significantly contributed to the relative power of activity in theta and beta bands. Thus, relative power in these frequencies is influenced by developmental changes of the aperiodic activity, which should be considered for future studies.
Collapse
Affiliation(s)
- Josué Rico-Picó
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
- Department of Experimental Psychology, University of Granada, Granada, Spain
| | - Sebastián Moyano
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
- Department of Experimental Psychology, University of Granada, Granada, Spain
| | - Ángela Conejero
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
- Department of Developmental and Educational Psychology, University of Granada, Granada, Spain
| | - Ángela Hoyo
- Department of Experimental Psychology, University of Granada, Granada, Spain
| | - M Ángeles Ballesteros-Duperón
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
- Department of Psychobiology, University of Granada, Granada, Spain
| | - M Rosario Rueda
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
- Department of Experimental Psychology, University of Granada, Granada, Spain
| |
Collapse
|
11
|
Szul MJ, Papadopoulos S, Alavizadeh S, Daligaut S, Schwartz D, Mattout J, Bonaiuto JJ. Diverse beta burst waveform motifs characterize movement-related cortical dynamics. Prog Neurobiol 2023; 228:102490. [PMID: 37391061 DOI: 10.1016/j.pneurobio.2023.102490] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/03/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Classical analyses of induced, frequency-specific neural activity typically average band-limited power over trials. More recently, it has become widely appreciated that in individual trials, beta band activity occurs as transient bursts rather than amplitude-modulated oscillations. Most studies of beta bursts treat them as unitary, and having a stereotyped waveform. However, we show there is a wide diversity of burst shapes. Using a biophysical model of burst generation, we demonstrate that waveform variability is predicted by variability in the synaptic drives that generate beta bursts. We then use a novel, adaptive burst detection algorithm to identify bursts from human MEG sensor data recorded during a joystick-based reaching task, and apply principal component analysis to burst waveforms to define a set of dimensions, or motifs, that best explain waveform variance. Finally, we show that bursts with a particular range of waveform motifs, ones not fully accounted for by the biophysical model, differentially contribute to movement-related beta dynamics. Sensorimotor beta bursts are therefore not homogeneous events and likely reflect distinct computational processes.
Collapse
Affiliation(s)
- Maciej J Szul
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France.
| | - Sotirios Papadopoulos
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France; Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
| | - Sanaz Alavizadeh
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| | | | - Denis Schwartz
- CERMEP - Imagerie du Vivant, MEG Departement, Lyon, France
| | - Jérémie Mattout
- Université Claude Bernard Lyon 1, Université de Lyon, France; Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
| | - James J Bonaiuto
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| |
Collapse
|
12
|
Power L, Allain C, Moreau T, Gramfort A, Bardouille T. Using convolutional dictionary learning to detect task-related neuromagnetic transients and ageing trends in a large open-access dataset. Neuroimage 2023; 267:119809. [PMID: 36584759 DOI: 10.1016/j.neuroimage.2022.119809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
Human neuromagnetic activity is characterised by a complex combination of transient bursts with varying spatial and temporal characteristics. The characteristics of these transient bursts change during task performance and normal ageing in ways that can inform about underlying cortical sources. Many methods have been proposed to detect transient bursts, with the most successful ones being those that employ multi-channel, data-driven approaches to minimize bias in the detection procedure. There has been little research, however, into the application of these data-driven methods to large datasets for group-level analyses. In the current work, we apply a data-driven convolutional dictionary learning (CDL) approach to detect neuromagnetic transient bursts in a large group of healthy participants from the Cam-CAN dataset. CDL was used to extract repeating spatiotemporal motifs in 538 participants between the ages of 18-88 during a sensorimotor task. Motifs were then clustered across participants based on similarity, and relevant task-related clusters were analysed for age-related trends in their spatiotemporal characteristics. Seven task-related motifs resembling known transient burst types were identified through this analysis, including beta, mu, and alpha type bursts. All burst types showed positive trends in their activation levels with age that could be explained by increasing burst rate with age. This work validated the data-driven CDL approach for transient burst detection on a large dataset and identified robust information about the complex characteristics of human brain signals and how they change with age.
Collapse
Affiliation(s)
- Lindsey Power
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cédric Allain
- Inria, Mind team, Université Paris-Saclay, Saclay, France
| | - Thomas Moreau
- Inria, Mind team, Université Paris-Saclay, Saclay, France
| | | | - Timothy Bardouille
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
13
|
Buzzell GA, Morales S, Valadez EA, Hunnius S, Fox NA. Maximizing the potential of EEG as a developmental neuroscience tool. Dev Cogn Neurosci 2023; 60:101201. [PMID: 36732112 PMCID: PMC10150174 DOI: 10.1016/j.dcn.2023.101201] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- George A Buzzell
- Department of Psychology, Florida International University, USA; Center for Children and Families, Florida International University, USA.
| | - Santiago Morales
- Department of Psychology, University of Southern California, USA
| | - Emilio A Valadez
- Department of Human Development and Quantitative Methodology, University of Maryland - College Park, USA
| | - Sabine Hunnius
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Nathan A Fox
- Department of Human Development and Quantitative Methodology, University of Maryland - College Park, USA
| |
Collapse
|
14
|
Tamburro G, Jansen K, Lemmens K, Dereymaeker A, Naulaers G, De Vos M, Comani S. Automated detection and removal of flat line segments and large amplitude fluctuations in neonatal electroencephalography. PeerJ 2022; 10:e13734. [PMID: 35846889 PMCID: PMC9285485 DOI: 10.7717/peerj.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/24/2022] [Indexed: 01/17/2023] Open
Abstract
Background Artefact removal in neonatal electroencephalography (EEG) by visual inspection generally depends on the expertise of the operator, is time consuming and is not a consistent pre-processing step to the pipeline for the automated EEG analysis. Therefore, there is the need for the automated detection and removal of artefacts in neonatal EEG, especially of distinct and predominant artefacts such as flat line segments (mainly caused by instrumental error where contact between electrodes and head box is lost) and large amplitude fluctuations (related to neonatal movements). Method A threshold-based algorithm for the automated detection and removal of flat line segments and large amplitude fluctuations in neonatal EEG of infants at term-equivalent age is developed. The algorithm applies thresholds to the absolute second difference, absolute amplitude, absolute first difference and the ratio between the frequency content above 50 Hz and the frequency content across all frequencies. Results The algorithm reaches a median accuracy of 0.91, a median hit rate of 0.91 and a median false discovery rate of 0.37. Also, a significant improvement (≈10%) in the performance of a four-stage sleep classifier is observed after artefact removal with the proposed algorithm as compared to before its application. Significance An automated artefact removal method contributes to the pipeline of automated EEG analysis. The proposed algorithm has shown to have good performance and to be effective in neonatal EEG applications.
Collapse
Affiliation(s)
- Gabriella Tamburro
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy,BIND – Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Katrien Jansen
- Department of Development and Regeneration, UZ Leuven, Leuven, Belgium
| | - Katrien Lemmens
- Department of Development and Regeneration, UZ Leuven, Leuven, Belgium
| | | | - Gunnar Naulaers
- Department of Development and Regeneration, UZ Leuven, Leuven, Belgium
| | - Maarten De Vos
- Department of Development and Regeneration, UZ Leuven, Leuven, Belgium,Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Silvia Comani
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy,BIND – Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| |
Collapse
|