1
|
Takenoya F, Shibato J, Yamashita M, Kimura A, Hirako S, Chiba Y, Nonaka N, Shioda S, Rakwal R. Transcriptomic (DNA Microarray) and Metabolome (LC-TOF-MS) Analyses of the Liver in High-Fat Diet Mice after Intranasal Administration of GALP (Galanin-like Peptide). Int J Mol Sci 2023; 24:15825. [PMID: 37958806 PMCID: PMC10648535 DOI: 10.3390/ijms242115825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this research was to test the efficacy and potential clinical application of intranasal administration of galanin-like peptide (GALP) as an anti-obesity treatment under the hypothesis that GALP prevents obesity in mice fed a high-fat diet (HFD). Focusing on the mechanism of regulation of lipid metabolism in peripheral tissues via the autonomic nervous system, we confirmed that, compared with a control (saline), intranasally administered GALP prevented further body weight gain in diet-induced obesity (DIO) mice with continued access to an HFD. Using an omics-based approach, we identified several genes and metabolites in the liver tissue of DIO mice that were altered by the administration of intranasal GALP. We used whole-genome DNA microarray and metabolomics analyses to determine the anti-obesity effects of intranasal GALP in DIO mice fed an HFD. Transcriptomic profiling revealed the upregulation of flavin-containing dimethylaniline monooxygenase 3 (Fmo3), metallothionein 1 and 2 (Mt1 and Mt2, respectively), and the Aldh1a3, Defa3, and Defa20 genes. Analysis using the DAVID tool showed that intranasal GALP enhanced gene expression related to fatty acid elongation and unsaturated fatty acid synthesis and downregulated gene expression related to lipid and cholesterol synthesis, fat absorption, bile uptake, and excretion. Metabolite analysis revealed increased levels of coenzyme Q10 and oleoylethanolamide in the liver tissue, increased levels of deoxycholic acid (DCA) and taurocholic acid (TCA) in the bile acids, increased levels of taurochenodeoxycholic acid (TCDCA), and decreased levels of ursodeoxycholic acid (UDCA). In conclusion, intranasal GALP administration alleviated weight gain in obese mice fed an HFD via mechanisms involving antioxidant, anti-inflammatory, and fatty acid metabolism effects and genetic alterations. The gene expression data are publicly available at NCBI GSE243376.
Collapse
Affiliation(s)
- Fumiko Takenoya
- Department of Sport Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan; (F.T.); (M.Y.); (A.K.)
| | - Junko Shibato
- Department of Functional Morphology, Shonan University of Medical Sciences, Kanagawa 244-0806, Japan; (J.S.); (S.S.)
| | - Michio Yamashita
- Department of Sport Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan; (F.T.); (M.Y.); (A.K.)
| | - Ai Kimura
- Department of Sport Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan; (F.T.); (M.Y.); (A.K.)
| | - Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, Saitama 339-8539, Japan;
| | - Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, School of Pharmacy, Hoshi University, Tokyo 142-8501, Japan;
| | - Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, Tokyo 142-8555, Japan;
| | - Seiji Shioda
- Department of Functional Morphology, Shonan University of Medical Sciences, Kanagawa 244-0806, Japan; (J.S.); (S.S.)
| | - Randeep Rakwal
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8574, Japan
| |
Collapse
|
2
|
Rahman SMK, Uyama T, Hussain Z, Ueda N. Roles of Endocannabinoids and Endocannabinoid-like Molecules in Energy Homeostasis and Metabolic Regulation: A Nutritional Perspective. Annu Rev Nutr 2021; 41:177-202. [PMID: 34115519 DOI: 10.1146/annurev-nutr-043020-090216] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endocannabinoid system is involved in signal transduction in mammals. It comprises principally G protein-coupled cannabinoid receptors and their endogenous agonists, called endocannabinoids, as well as the enzymes and transporters responsible for the metabolism of endocannabinoids. Two arachidonic acid-containing lipid molecules, arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol, function as endocannabinoids. N-acylethanolamines and monoacylglycerols, in which the arachidonic acid chain is replaced with a saturated or monounsaturated fatty acid, are not directly involved in the endocannabinoid system but exhibit agonistic activities for other receptors. These endocannabinoid-like molecules include palmitoylethanolamide, oleoylethanolamide (OEA), and 2-oleoylglycerol. Endocannabinoids stimulate feeding behavior and the anabolism of lipids and glucose, while OEA suppresses appetite. Both central and peripheral systems are included in these nutritional and metabolic contexts. Therefore, they have potential in the treatment and prevention of obesity. We outline the structure, metabolism, and biological activities of endocannabinoids and related molecules, and focus on their involvement in energy homeostasis and metabolic regulation. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- S M Khaledur Rahman
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , , .,Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , ,
| | - Zahir Hussain
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , , .,Department of Pharmaceutical Sciences, School of Pharmacy, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA;
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , ,
| |
Collapse
|
3
|
Tsuboi K, Uyama T, Okamoto Y, Ueda N. Endocannabinoids and related N-acylethanolamines: biological activities and metabolism. Inflamm Regen 2018; 38:28. [PMID: 30288203 PMCID: PMC6166290 DOI: 10.1186/s41232-018-0086-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/05/2018] [Indexed: 12/24/2022] Open
Abstract
The plant Cannabis sativa contains cannabinoids represented by Δ9-tetrahydrocannabinol, which exert psychoactivity and immunomodulation through cannabinoid CB1 and CB2 receptors, respectively, in animal tissues. Arachidonoylethanolamide (also referred to as anandamide) and 2-arachidonoylglycerol (2-AG) are well known as two major endogenous agonists of these receptors (termed "endocannabinoids") and show various cannabimimetic bioactivities. However, only 2-AG is a full agonist for CB1 and CB2 and mediates retrograde signals at the synapse, strongly suggesting that 2-AG is physiologically more important than anandamide. The metabolic pathways of these two endocannabinoids are completely different. 2-AG is mostly produced from inositol phospholipids via diacylglycerol by phospholipase C and diacylglycerol lipase and then degraded by monoacylglycerol lipase. On the other hand, anandamide is concomitantly produced with larger amounts of other N-acylethanolamines via N-acyl-phosphatidylethanolamines (NAPEs). Although this pathway consists of calcium-dependent N-acyltransferase and NAPE-hydrolyzing phospholipase D, recent studies revealed the involvement of several new enzymes. Quantitatively major N-acylethanolamines include palmitoylethanolamide and oleoylethanolamide, which do not bind to cannabinoid receptors but exert anti-inflammatory, analgesic, and anorexic effects through receptors such as peroxisome proliferator-activated receptor α. The biosynthesis of these non-endocannabinoid N-acylethanolamines rather than anandamide may be the primary significance of this pathway. Here, we provide an overview of the biological activities and metabolisms of endocannabinoids (2-AG and anandamide) and non-endocannabinoid N-acylethanolamines.
Collapse
Affiliation(s)
- Kazuhito Tsuboi
- 1Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793 Japan.,2Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192 Japan
| | - Toru Uyama
- 1Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793 Japan
| | - Yasuo Okamoto
- 2Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192 Japan
| | - Natsuo Ueda
- 1Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793 Japan
| |
Collapse
|
4
|
Garcia-Marchena N, Pavon FJ, Pastor A, Araos P, Pedraz M, Romero-Sanchiz P, Calado M, Suarez J, Castilla-Ortega E, Orio L, Boronat A, Torrens M, Rubio G, de la Torre R, Rodriguez de Fonseca F, Serrano A. Plasma concentrations of oleoylethanolamide and other acylethanolamides are altered in alcohol-dependent patients: effect of length of abstinence. Addict Biol 2017; 22:1366-1377. [PMID: 27212249 DOI: 10.1111/adb.12408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/14/2016] [Accepted: 04/06/2016] [Indexed: 10/21/2022]
Abstract
Acylethanolamides are a family of endogenous lipid mediators that are involved in physiological and behavioral processes associated with addiction. Recently, oleoylethanolamide (OEA) has been reported to reduce alcohol intake and relapse in rodents but the contribution of OEA and other acylethanolamides in alcohol addiction in humans is unknown. The present study is aimed to characterize the plasma acylethanolamides in alcohol dependence. Seventy-nine abstinent alcohol-dependent subjects (27 women) recruited from outpatient treatment programs and age-/sex-/body mass-matched healthy volunteers (28 women) were clinically assessed with the diagnostic interview PRISM according to the DSM-IV-TR after blood extraction for quantification of acylethanolamide concentrations in the plasma. Our results indicate that all acylethanolamides were significantly increased in alcohol-dependent patients compared with control subjects (p < 0.001). A logistic model based on these acylethanolamides was developed to distinguish alcohol-dependent patients from controls and included OEA, arachidonoylethanolamide (AEA) and docosatetraenoylethanolamide (DEA), providing a high discriminatory power according to area under the curve [AUC = 0.92 (95%CI: 0.87-0.96), p < 0.001]. Additionally, we found a significant effect of the duration of alcohol abstinence on the concentrations of OEA, AEA and DEA using a regression model (p < 0.05, p < 0.01 and p < 0.001, respectively), which was confirmed by a negative correlation (rho = -0.31, -0.40 and -0.44, respectively). However, acylethanolamides were not influenced by the addiction alcohol severity, duration of problematic alcohol use or diagnosis of psychiatric comorbidity. Our results support the preclinical studies and suggest that OEA, AEA and DEA are altered in alcohol-dependence during abstinence and that might act as potential markers for predicting length of alcohol abstinence.
Collapse
Affiliation(s)
- Nuria Garcia-Marchena
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Francisco J. Pavon
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Antoni Pastor
- Grup de Recerca en Farmacología Integrada i Neurociencia de Sistemes, Programa de Recerca en Neurociencia; IMIM (Hospital del Mar Medical Research Institute); Spain
- Department de Farmacologia, Toxicologia i Terapeutica, Facultat de Medicina; Universitat Autonoma de Barcelona; Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBERObn); ISCIII; Spain
| | - Pedro Araos
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Maria Pedraz
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Pablo Romero-Sanchiz
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Montserrat Calado
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Juan Suarez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Laura Orio
- Departamento de Psicobiología, Facultad de Psicología; Universidad Complutense; Spain
| | - Anna Boronat
- Grup de Recerca en Farmacología Integrada i Neurociencia de Sistemes, Programa de Recerca en Neurociencia; IMIM (Hospital del Mar Medical Research Institute); Spain
- Department de Farmacologia, Toxicologia i Terapeutica, Facultat de Medicina; Universitat Autonoma de Barcelona; Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBERObn); ISCIII; Spain
| | - Marta Torrens
- Institut de Neuropsiquiatria i Adiccions (INAD) del Parc de Salut MAR; Spain
- IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
- Department of Psychiatry; Univ Autonoma de Barcelona; Spain
| | - Gabriel Rubio
- Departamento de Psiquiatria, Facultad de Medicina; Universidad Complutense; Spain
- Instituto de Investigación Hospital 12 de Octubre; Spain
| | - Rafael de la Torre
- Grup de Recerca en Farmacología Integrada i Neurociencia de Sistemes, Programa de Recerca en Neurociencia; IMIM (Hospital del Mar Medical Research Institute); Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBERObn); ISCIII; Spain
- Facultat de Ciencies de la Salut i de la Vida; Universidat Pompeu Fabra (CEXS-UPF); Spain
| | - Fernando Rodriguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| |
Collapse
|
5
|
Han D, Wang B, Jin H, Wang H, Chen M. Design, synthesis and CoMFA studies of OEA derivatives as FAAH inhibitors. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1995-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Hussain Z, Uyama T, Kawai K, Rahman IAS, Tsuboi K, Araki N, Ueda N. Comparative analyses of isoforms of the calcium-independent phosphatidylethanolamine N-acyltransferase PLAAT-1 in humans and mice. J Lipid Res 2016; 57:2051-2060. [PMID: 27623847 DOI: 10.1194/jlr.m071290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Indexed: 01/28/2023] Open
Abstract
N-Acylphosphatidylethanolamines (NAPEs) are a class of glycerophospholipids, which are known as precursors for different bioactive N-acylethanolamines. We previously reported that phospholipase A/acyltransferase-1 (PLAAT-1), which was originally found in mammals as a tumor suppressor, catalyzes N-acylation of phosphatidylethanolamines to form NAPEs. However, recent online database suggested the presence of an uncharacterized isoform of PLAAT-1 with an extra sequence at the N terminus. In the present study, we examined the occurrence, intracellular localization, and catalytic properties of this longer isoform, as well as the original shorter isoform from humans and mice. Our results showed that human tissues express the longer isoform but not the short isoform at all. In contrast, mice expressed both isoforms with different tissue distribution. Unlike the cytoplasmic localization of the shorter isoform, the long isoform was found in both cytoplasm and nucleus, inferring that the extra sequence harbors a nuclear localization signal. As assayed with purified proteins, neither isoform required calcium for full activity. Moreover, the overexpression of each isoform remarkably increased cellular NAPE levels. These results conclude that the new long isoform of PLAAT-1 is a calcium-independent N-acyltransferase existing in both cytoplasm and nucleus and suggest a possible formation of NAPEs in various membrane structures including nuclear membrane. J. Lipid Res 2016. 57: 2051-2060.
Collapse
Affiliation(s)
- Zahir Hussain
- Department of Biochemistry Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan
| | - Toru Uyama
- Department of Biochemistry Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan
| | - Katsuhisa Kawai
- Department of Histology and Cell Biology, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan
| | - Iffat Ara Sonia Rahman
- Department of Biochemistry Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan
| | - Kazuhito Tsuboi
- Department of Biochemistry Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan
| | - Natsuo Ueda
- Department of Biochemistry Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan
| |
Collapse
|
7
|
Tinoco AB, Armirotti A, Isorna E, Delgado MJ, Piomelli D, de Pedro N. Role of oleoylethanolamide as a feeding regulator in goldfish. ACTA ACUST UNITED AC 2014; 217:2761-9. [PMID: 24855680 DOI: 10.1242/jeb.106161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oleoylethanolamide (OEA) is a bioactive lipid mediator, produced in the intestine and other tissues, which is involved in energy balance regulation in mammals, modulating feeding and lipid metabolism. The purpose of the present study was to investigate the presence and possible role of OEA in feeding regulation in goldfish (Carassius auratus). We assessed whether goldfish peripheral tissues and brain contain OEA and their regulation by nutritional status. OEA was detected in all studied tissues (liver, intestinal bulb, proximal intestine, muscle, hypothalamus, telencephalon and brainstem). Food deprivation (48 h) reduced intestinal OEA levels and levels increased upon re-feeding, suggesting that this compound may be involved in the short-term regulation of food intake in goldfish, as a satiety factor. Next, the effects of acute intraperitoneal administration of OEA on feeding, swimming and plasma levels of glucose and triglycerides were analysed. Food intake, swimming activity and circulating triglyceride levels were reduced by OEA 2 h post-injection. Finally, the possible interplay among OEA and other feeding regulators (leptin, cholecystokinin, ghrelin, neuropeptide Y, orexin and monoamines) was investigated. OEA actions on energy homeostasis in goldfish could be mediated, at least in part, through interactions with ghrelin and the serotonergic system, as OEA treatment reduced ghrelin expression in the intestinal bulb, and increased serotonergic activity in the telencephalon. In summary, our results indicate for the first time in fish that OEA could be involved in the regulation of feeding, swimming and lipid metabolism, suggesting a high conservation of OEA actions in energy balance throughout vertebrate evolution.
Collapse
Affiliation(s)
- Ana B Tinoco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Andrea Armirotti
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Esther Isorna
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María J Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Daniele Piomelli
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Nuria de Pedro
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
In vitro duodenal lipolysis of lipid-based drug delivery systems studied by HPLC–UV and HPLC–MS. Int J Pharm 2014; 465:396-404. [DOI: 10.1016/j.ijpharm.2014.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 11/24/2022]
|
9
|
Moreno-Santos I, Pavón FJ, Romero-Cuevas M, Serrano A, Cano C, Suardíaz M, Decara J, Suarez J, de Fonseca FR, Macías-González M. Computational and biological evaluation of N-octadecyl-N'-propylsulfamide, a selective PPARα agonist structurally related to N-acylethanolamines. PLoS One 2014; 9:e92195. [PMID: 24651609 PMCID: PMC3961330 DOI: 10.1371/journal.pone.0092195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/19/2014] [Indexed: 11/19/2022] Open
Abstract
To further understand the pharmacological properties of N-oleoylethanolamine (OEA), a naturally occurring lipid that activates peroxisome proliferator-activated receptor alpha (PPARα), we designed sulfamoyl analogs based on its structure. Among the compounds tested, N-octadecyl-N′-propylsulfamide (CC7) was selected for functional comparison with OEA. The performed studies include the following computational and biological approaches: 1) molecular docking analyses; 2) molecular biology studies with PPARα; 3) pharmacological studies on feeding behavior and visceral analgesia. For the docking studies, we compared OEA and CC7 data with crystallization data obtained with the reference PPARα agonist GW409544. OEA and CC7 interacted with the ligand-binding domain of PPARα in a similar manner to GW409544. Both compounds produced similar transcriptional activation by in vitro assays, including the GST pull-down assay and reporter gene analysis. In addition, CC7 and OEA induced the mRNA expression of CPT1a in HpeG2 cells through PPARα and the induction was avoided with PPARα-specific siRNA. In vivo studies in rats showed that OEA and CC7 had anorectic and antiobesity activity and induced both lipopenia and decreases in hepatic fat content. However, different effects were observed when measuring visceral pain; OEA produced visceral analgesia whereas CC7 showed no effects. These results suggest that OEA activity on the PPARα receptor (e.g., lipid metabolism and feeding behavior) may be dissociated from other actions at alternative targets (e.g., pain) because other non cannabimimetic ligands that interact with PPARα, such as CC7, do not reproduce the full spectrum of the pharmacological activity of OEA. These results provide new opportunities for the development of specific PPARα-activating drugs focused on sulfamide derivatives with a long alkyl chain for the treatment of metabolic dysfunction.
Collapse
Affiliation(s)
- Inmaculada Moreno-Santos
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03), Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - Francisco Javier Pavón
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03), Instituto de Salud Carlos III, Santiago de Compostela, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Instituto IBIMA, Málaga, Spain
| | - Miguel Romero-Cuevas
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Instituto IBIMA, Málaga, Spain
| | - Antonia Serrano
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03), Instituto de Salud Carlos III, Santiago de Compostela, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Instituto IBIMA, Málaga, Spain
| | - Carolina Cano
- Grupo Moduladores de Receptores Cannabinoides y PPARs, Instituto de Química Médica, Centro de Química Orgánica “Manuel Lora-Tamayo” del Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Margarita Suardíaz
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Instituto IBIMA, Málaga, Spain
| | - Juan Decara
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Instituto IBIMA, Málaga, Spain
| | - Juan Suarez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03), Instituto de Salud Carlos III, Santiago de Compostela, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Instituto IBIMA, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03), Instituto de Salud Carlos III, Santiago de Compostela, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Instituto IBIMA, Málaga, Spain
- * E-mail: (MM-G); (FRdF)
| | - Manuel Macías-González
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03), Instituto de Salud Carlos III, Santiago de Compostela, Spain
- * E-mail: (MM-G); (FRdF)
| |
Collapse
|
10
|
The systemic administration of oleoylethanolamide exerts neuroprotection of the nigrostriatal system in experimental Parkinsonism. Int J Neuropsychopharmacol 2014; 17:455-68. [PMID: 24169105 DOI: 10.1017/s1461145713001259] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oleoylethanolamide (OEA) is an agonist of the peroxisome proliferator-activated receptor α (PPARα) and has been described to exhibit neuroprotective properties when administered locally in animal models of several neurological disorder models, including stroke and Parkinson's disease. However, there is little information regarding the effectiveness of systemic administration of OEA on Parkinson's disease. In the present study, OEA-mediated neuroprotection has been tested on in vivo and in vitro models of 6-hydroxydopamine (6-OH-DA)-induced degeneration. The in vivo model was based on the intrastriatal infusion of the neurotoxin 6-OH-DA, which generates Parkinsonian symptoms. Rats were treated 2 h before and after the 6-OH-DA treatment with systemic OEA (0.5, 1, and 5 mg/kg). The Parkinsonian symptoms were evaluated at 1 and 4 wk after the development of lesions. The functional status of the nigrostriatal system was studied through tyrosine-hydroxylase (TH) and hemeoxygenase-1 (HO-1, oxidation marker) immunostaining as well as by monitoring the synaptophysin content. In vitro cell cultures were also treated with OEA and 6-OH-DA. As expected, our results revealed 6-OH-DA induced neurotoxicity and behavioural deficits; however, these alterations were less severe in the animals treated with the highest dose of OEA (5 mg/kg). 6-OH-DA administration significantly reduced the striatal TH-immunoreactivity (ir) density, synaptophysin expression, and the number of nigral TH-ir neurons. Moreover, 6-OH-DA enhanced striatal HO-1 content, which was blocked by OEA (5 mg/kg). In vitro, 0.5 and 1 μM of OEA exerted significant neuroprotection on cultured nigral neurons. These effects were abolished after blocking PPARα with the selective antagonist GW6471. In conclusion, systemic OEA protects the nigrostriatal circuit from 6-OH-DA-induced neurotoxicity through a PPARα-dependent mechanism.
Collapse
|
11
|
Keith JM, Jones WM, Pierce JM, Seierstad M, Palmer JA, Webb M, Karbarz MJ, Scott BP, Wilson SJ, Luo L, Wennerholm ML, Chang L, Brown SM, Rizzolio M, Rynberg R, Chaplan SR, Breitenbucher JG. Heteroarylureas with spirocyclic diamine cores as inhibitors of fatty acid amide hydrolase. Bioorg Med Chem Lett 2014; 24:737-41. [DOI: 10.1016/j.bmcl.2013.12.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/23/2013] [Accepted: 12/27/2013] [Indexed: 10/25/2022]
|
12
|
Pavón FJ, Araos P, Pastor A, Calado M, Pedraz M, Campos-Cloute R, Ruiz JJ, Serrano A, Blanco E, Rivera P, Suárez J, Romero-Cuevas M, Pujadas M, Vergara-Moragues E, Gornemann I, Torrens M, de la Torre R, Rodríguez de Fonseca F. Evaluation of plasma-free endocannabinoids and their congeners in abstinent cocaine addicts seeking outpatient treatment: impact of psychiatric co-morbidity. Addict Biol 2013; 18:955-69. [PMID: 24283982 DOI: 10.1111/adb.12107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cocaine is associated with serious health problems including psychiatric co-morbidity. There is a need for the identification of biomarkers for the stratification of cocaine-addicted subjects. Several studies have evaluated circulating endocannabinoid-related lipids as biomarkers of inflammatory, metabolic and mental disorders. However, little is known in substance use disorders. This study characterizes both free N-acyl-ethanolamines (NAEs) and 2-acyl-glycerols in abstinent cocaine addicts from outpatient treatment programs who were diagnosed with cocaine use disorder (CUD; n = 88), and age-/gender-/body mass-matched healthy control volunteers (n = 46). Substance and mental disorders that commonly occur with substance abuse were assessed by the semi-structured interview 'Psychiatric Research Interview for Substance and Mental Diseases' according to the 'Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision' (DSM-IV-TR) and plasma-free acyl derivatives were quantified by a liquid chromatography-tandem mass spectrometry system. The results indicate that plasma acyl derivatives are altered in abstinent cocaine-addicted subjects with CUD (CUD subjects). While NAEs were found to be increased, 2-acyl-glycerols were decreased in CUD subjects compared with controls. Multivariate predictive models based on these lipids as explanatory variables were developed to distinguish CUD subjects from controls providing high discriminatory power. However, these alterations were not influenced by the DSM-IV-TR criteria for cocaine abuse and dependence as cocaine trait severity measure. In contrast, we observed that some free acyl derivatives in CUD subjects were found to be affected by the diagnosis of some co-morbid psychiatric disorders. Thus, we found that the monounsaturated NAEs were significantly elevated in CUD subjects diagnosed with mood [N-oleoyl-ethanolamine and N-palmitoleoyl-ethanolamine (POEA)] and anxiety (POEA) disorders compared with non-co-morbid CUD subjects. Interestingly, the coexistence of alcohol use disorders did not influence the circulating levels of these free acyl derivatives. In summary, we have identified plasma-free acyl derivatives that might serve as reliable biomarkers for CUD. Furthermore, we found that monounsaturated NAE levels are also enhanced by co-morbid mood and anxiety disorders in cocaine addicts. These findings open the way for the development of new strategies for cocaine addiction diagnosis and treatment.
Collapse
Affiliation(s)
- Francisco Javier Pavón
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Pedro Araos
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Antoni Pastor
- Neurosciences Programme; Institut Hospital del Mar d'Investigacions Mediques (IMIM); Spain
- Facultat de Medicina; Universitat Autonoma de Barcelona; Spain
| | - Montserrat Calado
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - María Pedraz
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | | | | | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Eduardo Blanco
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento; Facultad de Psicología; Universidad de Málaga; Spain
| | - Patricia Rivera
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Miguel Romero-Cuevas
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Mitona Pujadas
- Neurosciences Programme; Institut Hospital del Mar d'Investigacions Mediques (IMIM); Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CB06/03); CIBEROBN; Spain
| | - Esperanza Vergara-Moragues
- Grupo de Investigación de Neuropsicología y Psiconeuroinmunología Clínica; Universidad de Granada; Spain
| | - Isolde Gornemann
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Marta Torrens
- Neurosciences Programme; Institut Hospital del Mar d'Investigacions Mediques (IMIM); Spain
- Facultat de Medicina; Universitat Autonoma de Barcelona; Spain
- Institut de Neuropsiquiatria i Addiccions (INAD) del Parc de Salut MAR; Spain
| | - Rafael de la Torre
- Neurosciences Programme; Institut Hospital del Mar d'Investigacions Mediques (IMIM); Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CB06/03); CIBEROBN; Spain
- Facultat de Ciencies de la Salut i de la Vida; Universitat Pompeu Fabra (CEXS-UPF); Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental; Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CB06/03); CIBEROBN; Spain
| |
Collapse
|
13
|
Vida M, Serrano A, Romero-Cuevas M, Pavón FJ, González-Rodriguez A, Gavito AL, Cuesta AL, Valverde AM, Rodríguez de Fonseca F, Baixeras E. IL-6 cooperates with peroxisome proliferator-activated receptor-α-ligands to induce liver fatty acid binding protein (LFABP) up-regulation. Liver Int 2013; 33:1019-28. [PMID: 23534555 DOI: 10.1111/liv.12156] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/24/2013] [Indexed: 01/12/2023]
Abstract
BACKGROUND LFABP plays a critical role in the uptake and intracellular transport of fatty acids (FA) and other peroxisome proliferator-activated receptor alpha (PPARα) ligands. PPARα activation by PPARα ligands bound to LFABP results in gene expression of FA oxidation enzymes and de novo LFABP. The cytokine IL-6 is involved in regulating liver lipid oxidation. AIMS To study the ability of IL-6 to modulate the expression of the LFABP in hepatocytes. METHODS HepG2 and mouse primary hepatocytes were used to test LFABP mRNA and protein expression after IL-6 and PPARα-ligand treatments. Mice lacking IL-6 and wild-type C57Bl/6 were subjected to a fasting/re-feeding cycle to monitor hepatic LFABP mRNA kinetics after food intake. RESULTS In hepatocyte cultures, IL-6 treatment stimulated a LFABP mRNA sustained expression. Combined treatment of IL-6 plus PPARα ligands further enhanced LFABP gene and protein expression. In contrast, pretreatment with the PPARα-antagonist GW-6471 prevented the up-regulation of LFABP mRNA induced by IL-6 in the late phase of LFABP kinetics. Furthermore, the up-regulation of LFABP mRNA observed in the liver of wild-type mice 8 h after re-feeding was absent in mice lacking IL-6. CONCLUSIONS IL-6 induces LFABP kinetics in hepatocytes and is partially dependent on PPARα. The maximum increase in LFABP expression occurs when the stimulation with IL-6 and PPARα-ligands takes place simultaneously. The in vivo results indicate a postprandial regulation of LFABP that correlates with the presence of IL-6. These effects may have important implications in the postprandial increase in FA uptake and intracellular trafficking in the liver.
Collapse
Affiliation(s)
- Margarita Vida
- Laboratorio de Medicina Regenerativa, IBIMA, Málaga, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ueda N, Tsuboi K, Uyama T. Metabolism of endocannabinoids and related N-acylethanolamines: canonical and alternative pathways. FEBS J 2013; 280:1874-94. [PMID: 23425575 DOI: 10.1111/febs.12152] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/14/2013] [Accepted: 01/23/2013] [Indexed: 12/31/2022]
Abstract
Endocannabinoids are endogenous ligands of the cannabinoid receptors CB1 and CB2. Two arachidonic acid derivatives, arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol, are considered to be physiologically important endocannabinoids. In the known metabolic pathway in mammals, anandamide and other bioactive N-acylethanolamines, such as palmitoylethanolamide and oleoylethanolamide, are biosynthesized from glycerophospholipids by a combination of Ca(2+)-dependent N-acyltransferase and N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D, and are degraded by fatty acid amide hydrolase. However, recent studies have shown the involvement of other enzymes and pathways, which include the members of the tumor suppressor HRASLS family (the phospholipase A/acyltransferase family) functioning as Ca(2+)-independent N-acyltransferases, N-acyl-phosphatidylethanolamine-hydrolyzing phospholipaseD-independent multistep pathways via N-acylated lysophospholipid, and N-acylethanolamine-hydrolyzing acid amidase, a lysosomal enzyme that preferentially hydrolyzes palmitoylethanolamide. Although their physiological significance is poorly understood, these new enzymes/pathways may serve as novel targets for the development of therapeutic drugs. For example, selective N-acylethanolamine-hydrolyzing acid amidase inhibitors are expected to be new anti-inflammatory and analgesic drugs. In this minireview, we focus on advances in the understanding of these enzymes/pathways. In addition, recent findings on 2-arachidonoylglycerol metabolism are described.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan.
| | | | | |
Collapse
|
15
|
Tai T, Tsuboi K, Uyama T, Masuda K, Cravatt BF, Houchi H, Ueda N. Endogenous molecules stimulating N-acylethanolamine-hydrolyzing acid amidase (NAAA). ACS Chem Neurosci 2012; 3:379-85. [PMID: 22860206 DOI: 10.1021/cn300007s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 01/03/2023] Open
Abstract
Fatty acid amide hydrolase (FAAH) plays the central role in the degradation of bioactive N-acylethanolamines such as the endocannabinoid arachidonoylethanolamide (anandamide) in brain and peripheral tissues. A lysosomal enzyme referred to as N-acylethanolamine-hydrolyzing acid amidase (NAAA) catalyzes the same reaction with preference to palmitoylethanolamide, an endogenous analgesic and neuroprotective substance, and is therefore expected as a potential target of therapeutic drugs. In the in vitro assays thus far performed, the maximal activity of NAAA was achieved in the presence of both nonionic detergent (Triton X-100 or Nonidet P-40) and the SH reagent dithiothreitol. However, endogenous molecules that might substitute for these synthetic compounds remain poorly understood. Here, we examined stimulatory effects of endogenous phospholipids and thiol compounds on recombinant NAAA. Among different phospholipids tested, choline- or ethanolamine-containing phospholipids showed potent effects, and 1 mM phosphatidylcholine increased NAAA activity by 6.6-fold. Concerning endogenous thiol compounds, dihydrolipoic acid at 0.1-1 mM was the most active, causing 8.5-9.0-fold stimulation. These results suggest that endogenous phospholipids and dihydrolipoic acid may contribute in keeping NAAA active in lysosomes. Even in the presence of phosphatidylcholine and dihydrolipoic acid, however, the preferential hydrolysis of palmitoylethanolamide was unaltered. We also investigated a possible compensatory induction of NAAA mRNA in brain and other tissues of FAAH-deficient mice. However, NAAA expression levels in all the tissues examined were not significantly altered from those in wild-type mice.
Collapse
Affiliation(s)
- Tatsuya Tai
- Department
of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa
761-0793, Japan
- Department
of Pharmacy, Kagawa University Hospital, Miki, Kagawa 761-0793,
Japan
| | - Kazuhito Tsuboi
- Department
of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa
761-0793, Japan
| | - Toru Uyama
- Department
of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa
761-0793, Japan
| | - Kim Masuda
- Department of Chemical
Physiology, The Scripps Research Institute, La Jolla, California
92037, United States
| | - Benjamin F. Cravatt
- Department of Chemical
Physiology, The Scripps Research Institute, La Jolla, California
92037, United States
| | - Hitoshi Houchi
- Department
of Pharmacy, Kagawa University Hospital, Miki, Kagawa 761-0793,
Japan
| | - Natsuo Ueda
- Department
of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa
761-0793, Japan
| |
Collapse
|
16
|
Effects of the anandamide uptake blocker AM404 on food intake depend on feeding status and route of administration. Pharmacol Biochem Behav 2012; 101:1-7. [DOI: 10.1016/j.pbb.2011.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/01/2011] [Accepted: 11/15/2011] [Indexed: 11/21/2022]
|
17
|
Pérez-Fernández R, Fresno N, Macías-González M, Elguero J, Decara J, Girón R, Rodríguez-Álvarez A, Martín MI, Rodríguez de Fonseca F, Goya P. Discovery of Potent Dual PPARα Agonists/CB1 Ligands. ACS Med Chem Lett 2011; 2:793-7. [PMID: 24936232 DOI: 10.1021/ml200091q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 09/16/2011] [Indexed: 12/15/2022] Open
Abstract
This letter describes the synthesis and in vitro and in vivo evaluation of dual ligands targeting the cannabinoid and peroxisome proliferator-activated receptors (PPAR). These compounds were obtained from fusing the pharmacophores of fibrates and the diarylpyrazole rimonabant, a cannabinoid receptor antagonist. They are the first examples of dual compounds with nanomolar affinity for both PPARα and cannabinoid receptors. Besides, lead compound 2 proved to be CB1 selective. Unexpectedly, the phenol intermediates tested were equipotent (compound 1 as compared to 2) or even more potent (compound 3 as compared with 4). This discovery opens the way to design new dual ligands.
Collapse
Affiliation(s)
- Ruth Pérez-Fernández
- Instituto de Química Médica, IQM-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Nieves Fresno
- Instituto de Química Médica, IQM-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Manuel Macías-González
- Servicio de Endocrinología Nutrición, Hospital Virgen de la Victoria (Fundación IMABIS), Málaga, CIBER Fisiopatología de la Obesidad y Nutrición, CB06/03, Instituto de Salud Carlos III, Spain
| | - José Elguero
- Instituto de Química Médica, IQM-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Juan Decara
- Fundación Hospital Carlos Haya, Avda. Carlos Haya 82, 29010, Málaga, Spain
- CIBER OBN (Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, 28029 Madrid, Spain
| | - Rocío Girón
- Departamento de Farmacología y Nutrición, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. Atenas S/N, 28922 Alcorcón, Madrid, Spain
| | - Ana Rodríguez-Álvarez
- Departamento de Farmacología y Nutrición, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. Atenas S/N, 28922 Alcorcón, Madrid, Spain
| | - María Isabel Martín
- Departamento de Farmacología y Nutrición, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. Atenas S/N, 28922 Alcorcón, Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Fundación Hospital Carlos Haya, Avda. Carlos Haya 82, 29010, Málaga, Spain
- CIBER OBN (Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, 28029 Madrid, Spain
| | - Pilar Goya
- Instituto de Química Médica, IQM-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|