1
|
Mada DC, Gasparik C, Irimie AI, Mada MD, Dudea D, Campian RS. Evaluation of chromatic changes of a nanocomposite resin using the new whitness index. Med Pharm Rep 2018; 91:222-228. [PMID: 29785162 PMCID: PMC5958989 DOI: 10.15386/cjmed-893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/06/2017] [Indexed: 11/23/2022] Open
Abstract
Background and aims To evaluate the staining effects of two brands of coffee and the bleaching efficiency of two in-office bleaching methods, upon different opacities of a commercial nanocomposite. Methods Twenty four specimens of each opacity, A3 Dentin, A3 Body and A3 Enamel, were fabricated from Filtek Supreme (3MEspe). The specimens were further divided into two groups (n=12) and were immersed in two coffee solutions (Bio Organic Coffee Bellarom, 100% Arabica, and Iulius Meinl Coffee), for 24 hours. Between the staining sessions, the specimens were stored in sterile water, at 37°C. Each group was further divided into three (n=4), in order to be bleached, as follows: Group 1 - Beyond 35% in office, for 4 applications of 15 minutes each, Group 2 – Zoom Day White 6% in office, for 4 applications of 15 minutes each, Group 3 – Control Group, stored in sterile water. Color values were measured with a dental spectrophotometer Vita EasyShade 4.0 and five measurements were recorded for each sample at a time. Lightness L*, color coordinates a* and b* were recorded, at baseline, after staining in coffee and after bleaching. Whiteness index (WID) of the three composite resins (A3D, A3B, A3E) in the three moments were calculated, as well as the color difference Delta E* correspondent to the staining and bleaching process. Data were analyzed using one-way repeated measures ANOVA and the WID index was calculated WID (p<0.05). Univariate analysis of variance was performed for assessing the influence of staining solution upon composite resins, as well as for testing the effect of bleaching agents. The significance level was set at α=0.05 and pairwise comparisons were adjusted by the Least Significant Difference method. Results The pairwise comparisons showed no significant difference between the effects of the two bleaching agents upon the WID, meaning that they induce almost similar color changes. The results of the univariate ANOVA test indicated a significant effect of the composite resin and the staining solution upon the WID (p<0.05). However, no significant interaction effect was found between the composite resin and the staining solution (p=0.095). There was a significant difference in the staining effect of the two coffee solutions only for A3B and A3E composite resins (p<0.05). Conclusions The chromatic changes of the nanocomposite resin could be evaluated by the variation of the whiteness index. The staining effect induced by the two types of coffee was similar. The most effective protocol was the in-office bleaching method based on Beyond 35%.
Collapse
Affiliation(s)
- Diana Carla Mada
- Dental Propedeutics and Esthetics Department, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Gasparik
- Dental Propedeutics and Esthetics Department, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandra Iulia Irimie
- Dental Propedeutics and Esthetics Department, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marius Dan Mada
- Dental Propedeutics and Esthetics Department, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Dudea
- Dental Propedeutics and Esthetics Department, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu Septimiu Campian
- Oral Rehabilitation Department, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Wu G, Cho H, Wood DA, Dinsmore AD, Yang S. Confined Assemblies of Colloidal Particles with Soft Repulsive Interactions. J Am Chem Soc 2017; 139:5095-5101. [DOI: 10.1021/jacs.6b12975] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gaoxiang Wu
- Department
of Materials Science and Engineering, University of Pennsylvania, 3231
Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Hyesung Cho
- Department
of Materials Science and Engineering, University of Pennsylvania, 3231
Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Derek A. Wood
- Department
of Physics, University of Massachusetts Amherst, Hasbrouck Lab,
666 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Anthony D. Dinsmore
- Department
of Physics, University of Massachusetts Amherst, Hasbrouck Lab,
666 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Shu Yang
- Department
of Materials Science and Engineering, University of Pennsylvania, 3231
Walnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Xie X, Wang L, Xing D, Arola DD, Weir MD, Bai Y, Xu HH. Protein-repellent and antibacterial functions of a calcium phosphate rechargeable nanocomposite. J Dent 2016; 52:15-22. [DOI: 10.1016/j.jdent.2016.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022] Open
|
4
|
Zhang N, Chen C, Melo MA, Bai YX, Cheng L, Xu HH. A novel protein-repellent dental composite containing 2-methacryloyloxyethyl phosphorylcholine. Int J Oral Sci 2015; 7:103-9. [PMID: 25655010 PMCID: PMC4817550 DOI: 10.1038/ijos.2014.77] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2014] [Indexed: 02/05/2023] Open
Abstract
Secondary caries due to biofilm acids is a primary cause of dental composite restoration failure. To date, there have been no reports of dental composites that can repel protein adsorption and inhibit bacteria attachment. The objectives of this study were to develop a protein-repellent dental composite by incorporating 2-methacryloyloxyethyl phosphorylcholine (MPC) and to investigate for the first time the effects of MPC mass fraction on protein adsorption, bacteria attachment, biofilm growth, and mechanical properties. Composites were synthesized with 0 (control), 0.75%, 1.5%, 2.25%, 3%, 4.5% and 6% of MPC by mass. A commercial composite was also tested as a control. Mechanical properties were measured in three-point flexure. Protein adsorption onto the composite was determined by the microbicinchoninic acid method. A human saliva microcosm biofilm model was used. Early attachment at 4 h, biofilm at 2 days, live/dead staining and colony-forming units (CFUs) of biofilms grown on the composites were investigated. Composites with MPC of up to 3% had mechanical properties similar to those without MPC and those of the commercial control, whereas 4.5% and 6% MPC decreased the mechanical properties (P<0.05). Increasing MPC from 0 to 3% reduced the protein adsorption on composites (P<0.05). The composite with 3% MPC had protein adsorption that was 1/12 that of the control (P<0.05). Oral bacteria early attachment and biofilm growth were also greatly reduced on the composite with 3% MPC, compared to the control (P<0.05). In conclusion, incorporation of MPC into composites at 3% greatly reduced protein adsorption, bacteria attachment and biofilm CFUs, without compromising mechanical properties. Protein-repellent composites could help to repel bacteria attachment and plaque build-up to reduce secondary caries. The protein-repellent method might be applicable to other dental materials.
Collapse
Affiliation(s)
- Ning Zhang
- 1] Biomaterials and Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, USA [2] Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Chen Chen
- 1] Biomaterials and Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, USA [2] State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mary As Melo
- Biomaterials and Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, USA
| | - Yu-Xing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hockin Hk Xu
- 1] Biomaterials and Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, USA [2] Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, USA [3] Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, USA [4] Department of Mechanical Engineering, University of Maryland, Baltimore County, USA
| |
Collapse
|
5
|
Zhang N, Weir MD, Romberg E, Bai Y, Xu HHK. Development of novel dental adhesive with double benefits of protein-repellent and antibacterial capabilities. Dent Mater 2015; 31:845-54. [PMID: 25990262 DOI: 10.1016/j.dental.2015.04.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 01/15/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Secondary caries at the tooth-restoration margins remains a main reason for restoration failure. The objectives of this study were to: (1) combine protein-repellent 2-methacryloyloxyethyl phosphorylcholine (MPC) with quaternary ammonium dimethylaminohexadecyl methacrylate (DMAHDM) to develop a new dental adhesive with double benefits of protein-repellent and antibacterial capabilities for the first time; and (2) investigate the effects on protein adsorption, anti-biofilm activity, and dentin bond strength. METHODS MPC and DMAHDM were incorporated into Scotchbond Multi-Purpose (SBMP) primer and adhesive. Dentin shear bond strengths were measured using extracted human molars. Protein adsorption onto the adhesive resin surfaces was determined by the micro bicinchoninic acid (BCA) method. A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, lactic acid production and live/dead staining of biofilms on resins. RESULTS Incorporation of 7.5% MPC and 5% DMAHDM into primer and adhesive did not adversely affect the dentin shear bond strength (p>0.1). The resin with 7.5% MPC+5% DMAHDM had protein adsorption that was nearly 20-fold less than SBMP control (p<0.05). The resin with 7.5% MPC+5% DMAHDM had much stronger antibacterial effects than using MPC or DMAHDM alone (p<0.05). Biofilm CFU counts on the resin with 7.5% MPC+5% DMAHDM were reduced by more than 4 orders of magnitude, compared to SBMP control. SIGNIFICANCE The use of double agents (protein-repellent MPC+antibacterial DMAHDM) in dental adhesive achieved much stronger inhibition of biofilms than using each agent alone. The novel protein-repellent and antibacterial bonding agent is promising to reduce biofilm/plaque buildup and reduce recurrent caries at the tooth-restoration margins.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China; Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Elaine Romberg
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China.
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Mechanical Engineering, University of Maryland, Baltimore County, MD 21250, USA.
| |
Collapse
|
6
|
Zhang N, Ma J, Melo MAS, Weir MD, Bai Y, Xu HHK. Protein-repellent and antibacterial dental composite to inhibit biofilms and caries. J Dent 2014; 43:225-34. [PMID: 25478889 DOI: 10.1016/j.jdent.2014.11.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/24/2014] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Biofilm acids contribute to secondary caries, which is a main reason for dental restoration failures. The objectives of this study were to: (1) develop a protein-repellent and antibacterial composite, and (2) investigate the effects of combining 2-methacryloyloxyethyl phosphorylcholine (MPC) with quaternary ammonium dimethylaminohexadecyl methacrylate (DMAHDM) on composite mechanical properties and biofilm response for the first time. METHODS MPC, DMAHDM and glass particles were mixed into a dental resin composite. Mechanical properties were measured in three-point flexure. Protein adsorption onto the composites was measured by a micro bicinchoninic acid method. A human saliva microcosm model was used to grow biofilms on composites. Colony-forming unit (CFU) counts, live/dead assay, metabolic activity, and lactic acid production of biofilms were determined. RESULTS Incorporation of 3% MPC and 1.5% DMAHDM into composite achieved protein-repellent and antibacterial capabilities without compromising the mechanical properties. Composite with 3% MPC+1.5% DMAHDM had protein adsorption that was 1/10 that of a commercial composite (p<0.05). The composite with 3% MPC+1.5% DMAHDM had much greater reduction in biofilm growth than using MPC or DMAHDM alone (p<0.05). Biofilm CFU counts on composite with 3% MPC+1.5% DMAHDM were more than three orders of magnitude lower than that of commercial control. CONCLUSIONS Dental composite with a combination of strong protein-repellent and antibacterial capabilities was developed for the first time. Composite containing MPC and DMAHDM greatly reduced biofilm growth and lactic acid production, without compromising mechanical properties of the composite. CLINICAL SIGNIFICANCE Novel composite with MPC and DMAHDM greatly reduced biofilm activity and is promising to inhibit secondary caries. The dual agents of MPC plus DMAHDM may have wide applicability to other dental materials.
Collapse
Affiliation(s)
- Ning Zhang
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Jianfeng Ma
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mary A S Melo
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Mechanical Engineering, University of Maryland, Baltimore County, MD 21250, USA.
| |
Collapse
|
7
|
Thomaidis S, Kakaboura A, Mueller WD, Zinelis S. Mechanical properties of contemporary composite resins and their interrelations. Dent Mater 2013; 29:e132-41. [DOI: 10.1016/j.dental.2013.04.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/31/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
|
8
|
Zhang K, Cheng L, Wu EJ, Weir MD, Bai Y, Xu HHK. Effect of water-ageing on dentine bond strength and anti-biofilm activity of bonding agent containing new monomer dimethylaminododecyl methacrylate. J Dent 2013; 41:504-13. [PMID: 23583528 DOI: 10.1016/j.jdent.2013.03.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVES The objectives of this study were to develop bonding agent containing a new antibacterial monomer dimethylaminododecyl methacrylate (DMADDM) as well as nanoparticles of silver (NAg) and nanoparticles of amorphous calcium phosphate (NACP), and to investigate the effects of water-ageing for 6 months on dentine bond strength and anti-biofilm properties for the first time. METHODS Four bonding agents were tested: Scotchbond Multi-Purpose (SBMP) Primer and Adhesive control; SBMP+5% DMADDM; SBMP+5% DMADDM+0.1% NAg; and SBMP+5% DMADDM+0.1% NAg with 20% NACP in adhesive. Specimens were water-aged for 1d and 6 months at 37°C. Then the dentine shear bond strengths were measured. A dental plaque microcosm biofilm model was used to inoculate bacteria on water-aged specimens and to measure metabolic activity, colony-forming units (CFUs), and lactic acid production. RESULTS Dentine bond strength showed a 35% loss in 6 months of water-ageing for SBMP control (mean±sd; n=10); in contrast, the new antibacterial bonding agents showed no strength loss. The DMADDM-NAg-NACP containing bonding agent imparted a strong antibacterial effect by greatly reducing biofilm viability, metabolic activity and acid production. The biofilm CFU was reduced by more than two orders of magnitude, compared to SBMP control. Furthermore, the DMADDM-NAg-NACP bonding agent exhibited a long-term antibacterial performance, with no significant difference between 1d and 6 months (p>0.1). CONCLUSIONS Incorporating DMADDM-NAg-NACP in bonding agent yielded potent and long-lasting antibacterial properties, and much stronger bond strength after 6 months of water-ageing than a commercial control. The new antibacterial bonding agent is promising to inhibit biofilms and caries at the margins. The method of DMADDM-NAg-NACP incorporation may have a wide applicability to other adhesives, cements and composites.
Collapse
Affiliation(s)
- Ke Zhang
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
9
|
Melo MAS, Weir MD, Rodrigues LKA, Xu HHK. Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model. Dent Mater 2013; 29:231-40. [PMID: 23140916 PMCID: PMC3561736 DOI: 10.1016/j.dental.2012.10.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 10/12/2012] [Accepted: 10/16/2012] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Secondary caries at the restoration margins remains the main reason for failure. Although calcium phosphate (CaP) composites are promising for caries inhibition, there has been no report of CaP composite to inhibit caries in situ. The objectives of this study were to investigate the caries-inhibition effect of nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) in a human in situ model for the first time, and to determine colony-forming units (CFU) and Ca and P ion concentrations of biofilms on the composite restorations. METHODS NACP with a mean particle size of 116 nm were synthesized via a spray-drying technique. Two composites were fabricated: NACP nanocomposite, and control composite filled with glass particles. Twenty-five volunteers wore palatal devices containing bovine enamel slabs with cavities restored with NACP or control composite. After 14 days, the adherent biofilms were collected for analyses. Transverse microradiography determined the enamel mineral profiles at the margins, and the enamel mineral loss ΔZ was measured. RESULTS NACP nanocomposite released Ca and P ions and the release significantly increased at cariogenic low pH (p<0.05). Biofilms on NACP nanocomposite contained higher Ca (p=0.007) and P ions (p=0.005) than those of control (n=25). There was no significant difference in biofilm CFU between the two composites (p>0.1). Microradiographs showed typical subsurface lesions in enamel next to control composite, but much less lesion around NACP nanocomposite. Enamel mineral loss ΔZ (mean±sd; n=25) around NACP nanocomposite was 13.8±9.3 μm, much less than 33.5±19.0 μm of the control (p=0.001). SIGNIFICANCE Novel NACP nanocomposite substantially reduced caries formation in a human in situ model for the first time. Enamel mineral loss at the margins around NACP nanocomposite was less than half of the mineral loss around control composite. Therefore, the Ca and P ion-releasing NACP nanocomposite is promising for caries-inhibiting restorations.
Collapse
Affiliation(s)
- Mary Anne S Melo
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
10
|
Miao X, Li Y, Zhang Q, Zhu M, Wang H. Low shrinkage light curable dental nanocomposites using SiO2 microspheres as fillers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 32:2115-2121. [DOI: 10.1016/j.msec.2012.05.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 05/27/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
|
11
|
Zhang K, Melo MAS, Cheng L, Weir MD, Bai Y, Xu HHK. Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms. Dent Mater 2012; 28:842-52. [PMID: 22592165 PMCID: PMC3393841 DOI: 10.1016/j.dental.2012.04.027] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/13/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Antibacterial bonding agents are promising to hinder the residual and invading bacteria at the tooth-restoration interfaces. The objectives of this study were to develop an antibacterial bonding agent by incorporation of quaternary ammonium dimethacrylate (QADM) and nanoparticles of silver (NAg), and to investigate the effect of QADM-NAg adhesive and primer on dentin bond strength and plaque microcosm biofilm response for the first time. METHODS Scotchbond Multi-Purpose adhesive and primer were used as control. Experimental adhesive and primer were made by adding QADM and NAg into control adhesive and primer. Human dentin shear bond strengths were measured (n = 10). A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, lactic acid production, and live/dead staining assay (n = 6). RESULTS Adding QADM and NAg into adhesive and primer did not compromise the dentin shear bond strength which ranged from 30 to 35MPa (p>0.1). Scanning electron microscopy (SEM) examinations revealed numerous resin tags, which were similar for the control and the QADM and NAg groups. Adding QADM or NAg markedly reduced the biofilm viability, compared to adhesive control. QADM and NAg together in the adhesive had a much stronger antibacterial effect than using each agent alone (p<0.05). Adding QADM and NAg in both adhesive and primer had the strongest antibacterial activity, reducing metabolic activity, CFU, and lactic acid by an order of magnitude, compared to control. SIGNIFICANCE Without compromising dentin bond strength and resin tag formation, the QADM and NAg containing adhesive and primer achieved strong antibacterial effects against microcosm biofilms for the first time. QADM-NAg adhesive and primer are promising to combat residual bacteria in tooth cavity and invading bacteria at the margins, thereby to inhibit secondary caries. QADM and NAg incorporation may have a wide applicability to other dental bonding systems.
Collapse
Affiliation(s)
- Ke Zhang
- Biomaterials & Tissue Engineering Division, Dept. of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
- Dept. of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Mary Anne S. Melo
- Biomaterials & Tissue Engineering Division, Dept. of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
- Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Lei Cheng
- Biomaterials & Tissue Engineering Division, Dept. of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Michael D. Weir
- Biomaterials & Tissue Engineering Division, Dept. of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Yuxing Bai
- Dept. of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Hockin H. K. Xu
- Biomaterials & Tissue Engineering Division, Dept. of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Dept. of Mechanical Engineering, Univ. of Maryland, Baltimore County, MD 21250, USA
| |
Collapse
|
12
|
Moreau JL, Weir MD, Giuseppetti AA, Chow LC, Antonucci JM, Xu HHK. Long-term mechanical durability of dental nanocomposites containing amorphous calcium phosphate nanoparticles. J Biomed Mater Res B Appl Biomater 2012; 100:1264-73. [PMID: 22514160 PMCID: PMC3373274 DOI: 10.1002/jbm.b.32691] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 01/04/2012] [Accepted: 01/09/2012] [Indexed: 11/09/2022]
Abstract
Half of all dental restorations fail within 10 years, with secondary caries and restoration fracture being the main reasons. Calcium phosphate (CaP) composites can release Ca and PO(4) ions and remineralize tooth lesions. However, there has been no report on their long-term mechanical durability. The objective of this study was to investigate the wear, thermal-cycling, and water-aging of composites containing amorphous calcium phosphate nanoparticles (NACP). NACP of 112-nm and glass particles were used to fabricate four composites: (1) 0% NACP+75% glass; (2) 10% NACP+65% glass; (3) 15% NACP+60% glass; and (4) 20% NACP+50% glass. Flexural strength and elastic modulus of NACP nanocomposites were not degraded by thermal-cycling. Wear depth increased with increasing NACP filler level. Wear depths of NACP nanocomposites after 4 × 10(5) cycles were within the range for commercial controls. Mechanical properties of all the tested materials decreased with water-aging time. After 2 years, the strengths of NACP nanocomposites were moderately higher than the control composite, and much higher than the resin-modified glass ionomers. The mechanism of strength loss for resin-modified glass ionomer was identified as microcracking and air-bubbles. NACP nanocomposites and control composite were generally free of microcracks and air-bubbles. In conclusion, combining NACP nanoparticles with reinforcement glass particles resulted in novel nanocomposites with long-term mechanical properties higher than those of commercial controls, and wear within the range of commercial controls. These strong long-term properties, plus the Ca-PO(4) ion release and acid-neutralization capability reported earlier, suggest that the new NACP nanocomposites may be promising for stress-bearing and caries-inhibiting restorations.
Collapse
Affiliation(s)
- Jennifer L Moreau
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
13
|
Cheng L, Weir MD, Xu HHK, Kraigsley AM, Lin NJ, Lin-Gibson S, Zhou X. Antibacterial and physical properties of calcium-phosphate and calcium-fluoride nanocomposites with chlorhexidine. Dent Mater 2012; 28:573-83. [PMID: 22317794 DOI: 10.1016/j.dental.2012.01.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/23/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
OBJECTIVES Previous studies have developed calcium phosphate and fluoride releasing composites. Other studies have incorporated chlorhexidine (CHX) particles into dental composites. However, CHX has not been incorporated in calcium phosphate and fluoride composites. The objectives of this study were to develop nanocomposites containing amorphous calcium phosphate (ACP) or calcium fluoride (CaF(2)) nanoparticles and CHX particles, and investigate Streptococcus mutans biofilm formation and lactic acid production for the first time. METHODS Chlorhexidine was frozen via liquid nitrogen and ground to obtain a particle size of 0.62 μm. Four nanocomposites were fabricated with fillers of: nano ACP; nano ACP+10% CHX; nano CaF(2); nano CaF(2)+10% CHX. Three commercial materials were tested as controls: a resin-modified glass ionomer, and two composites. S. mutans live/dead assay, colony-forming unit (CFU) counts, biofilm metabolic activity, and lactic acid were measured. RESULTS Adding CHX fillers to ACP and CaF(2) nanocomposites greatly increased their antimicrobial capability. ACP and CaF(2) nanocomposites with CHX that were inoculated with S. mutans had a growth medium pH>6.5 after 3 d, while the control commercial composites had a cariogenic pH of 4.2. Nanocomposites with CHX reduced the biofilm metabolic activity by 10-20 folds and reduced the acid production, compared to the controls. CFU on nanocomposites with CHX were three orders of magnitude less than that on commercial composite. Mechanical properties of nanocomposites with CHX matched a commercial composite without fluoride. SIGNIFICANCE The novel calcium phosphate and fluoride nanocomposites could be rendered antibacterial with CHX to greatly reduce biofilm formation, acid production, CFU and metabolic activity. The antimicrobial and remineralizing nanocomposites with good mechanical properties may be promising for a wide range of tooth restorations with anti-caries capabilities.
Collapse
Affiliation(s)
- Lei Cheng
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, 21201, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Cramer N, Stansbury J, Bowman C. Recent advances and developments in composite dental restorative materials. J Dent Res 2011; 90:402-16. [PMID: 20924063 PMCID: PMC3144137 DOI: 10.1177/0022034510381263] [Citation(s) in RCA: 381] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 07/01/2010] [Accepted: 07/15/2010] [Indexed: 11/16/2022] Open
Abstract
Composite dental restorations represent a unique class of biomaterials with severe restrictions on biocompatibility, curing behavior, esthetics, and ultimate material properties. These materials are presently limited by shrinkage and polymerization-induced shrinkage stress, limited toughness, the presence of unreacted monomer that remains following the polymerization, and several other factors. Fortunately, these materials have been the focus of a great deal of research in recent years with the goal of improving restoration performance by changing the initiation system, monomers, and fillers and their coupling agents, and by developing novel polymerization strategies. Here, we review the general characteristics of the polymerization reaction and recent approaches that have been taken to improve composite restorative performance.
Collapse
Affiliation(s)
- N.B. Cramer
- Dept. of Chemical & Biological Engineering, University of Colorado, UCB 424, Boulder, CO 80309, USA
| | - J.W. Stansbury
- Dept. of Chemical & Biological Engineering, University of Colorado, UCB 424, Boulder, CO 80309, USA
- Dept. of Craniofacial Biology, School of Dental Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - C.N. Bowman
- Dept. of Chemical & Biological Engineering, University of Colorado, UCB 424, Boulder, CO 80309, USA
- Dept. of Craniofacial Biology, School of Dental Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Xu HHK, Moreau JL. Dental glass-reinforced composite for caries inhibition: calcium phosphate ion release and mechanical properties. J Biomed Mater Res B Appl Biomater 2010; 92:332-40. [PMID: 19810118 PMCID: PMC2941894 DOI: 10.1002/jbm.b.31519] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The two main challenges facing dental composite restorations are secondary caries and bulk fracture. Previous studies developed whisker-reinforced Ca-PO(4) composites that were relatively opaque. The objective of this study was to develop an esthetic glass particle-reinforced, photo-cured calcium phosphate composite. Tetracalcium phosphate (TTCP) particles were incorporated into a resin for Ca and PO(4) release, while glass particles provided reinforcement. Ion release and mechanical properties were measured after immersion in solutions with pH of 7, 5.5, and 4. For the composite containing 40% mass fraction of TTCP, incorporating glass fillers increased the strength (p < 0.05). Flexural strength (Mean +/- SD; n = 6) at 30% glass was 99 +/- 18 MPa, higher than 54 +/- 20 MPa at 0% glass (p < 0.05). Elastic modulus was 11 GPa at 30% glass, compared to 2 GPa without glass. At 28 days, the released Ca ion concentration was 4.61 +/- 0.18 mmol/L at pH of 4, much higher than 1.14 +/- 0.07 at pH of 5.5, and 0.27 +/- 0.01 at pH of 7 (p < 0.05). PO(4) release was also dramatically increased at cariogenic, acidic pH. The TTCP-glass composite had strength 2-3 fold that of a resin-modified glass ionomer control. In conclusion, the photo-cured TTCP-glass composite was "smart" and substantially increased the Ca and PO(4) release when the pH was reduced from neutral to a cariogenic pH of 4, when these ions are most needed to inhibit tooth caries. Its mechanical properties were significantly higher than previous Ca, PO(4), and fluoride releasing restoratives. Hence, the photo-cured TTCP-glass composite may have potential to provide the necessary combination of load-bearing and caries-inhibiting capabilities.
Collapse
Affiliation(s)
- Hockin H K Xu
- Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
16
|
Xu HHK, Weir MD, Sun L, Moreau JL, Takagi S, Chow LC, Antonucci JM. Strong nanocomposites with Ca, PO(4), and F release for caries inhibition. J Dent Res 2010; 89:19-28. [PMID: 19948941 DOI: 10.1177/0022034509351969] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This article reviews recent studies on: (1) the synthesis of novel calcium phosphate and calcium fluoride nanoparticles and their incorporation into dental resins to develop nanocomposites; (2) the effects of key microstructural parameters on Ca, PO(4), and F ion release from nanocomposites, including the effects of nanofiller volume fraction, particle size, and silanization; and (3) mechanical properties of nanocomposites, including water-aging effects, flexural strength, fracture toughness, and three-body wear. This article demonstrates that a major advantage of using the new nanoparticles is that high levels of Ca, PO(4), and F release can be achieved at low filler levels in the resin, because of the high surface areas of the nanoparticles. This leaves room in the resin for substantial reinforcement fillers. The combination of releasing nanofillers with stable and strong reinforcing fillers is promising to yield a nanocomposite with both stress-bearing and caries-inhibiting capabilities, a combination not yet available in current materials.
Collapse
Affiliation(s)
- H H K Xu
- Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, 650 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Wan Q, Ramsey C, Baran G. Thermal pretreatment of silica composite filler materials. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2010; 99:237-243. [PMID: 20445821 PMCID: PMC2863149 DOI: 10.1007/s10973-009-0139-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Three different silica filler materials were thermally treated in order to effect dehydration, dehydroxylation, and rehydroxylation. Samples were characterized by thermogravimetry (TG), pycnometry, elemental analysis, and scanning electron microscopy (SEM). For all fillers, our results indicate incremental removal of silanol groups at higher heating temperatures and irreversible dehydroxylation at over 673 K. To remove the organic content and maintain adequate silanol density for subsequent silanization on Stöber-type silica, we suggest heating at 673 K followed by overnight boiling in water.
Collapse
|