1
|
Wu N, Li J, Li X, Wang R, Zhang L, Liu Z, Jiao T. 3D printed biopolymer/black phosphorus nanoscaffolds for bone implants: A review. Int J Biol Macromol 2024; 279:135227. [PMID: 39218178 DOI: 10.1016/j.ijbiomac.2024.135227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Bone implantation is one of the recognized and effective means of treating bone defects, but osteoporosis and bone tumor-related bone abnormalities have a series of problems such as susceptibility to infection, difficulty in healing, and poor therapeutic effect, which poses a great challenge to clinical medicine. Three-dimensional things may be printed using 3D printing. Researchers can feed materials through the printer layer by layer to create the desired shape for a 3D structure. It is widely employed in the healing of bone defects, and it is an improved form of additive manufacturing technology with prospective future applications. This review's objective is to provide an overview of the findings reports pertaining to 3D printing biopolymers in recent years, provide an overview of biopolymer materials and their composites with black phosphorus for 3D printing bone implants, and the characterization methods of composite materials are also summarized. In addition, summarizes 3D printing methods based on ink printing and laser printing, pointing out their special features and advantages, and provide a combination strategy of photothermal therapy and bone regeneration materials for black phosphorus-based materials. Finally, the associations between bone implant materials and immune cells, the bio-environment, as well as the 3D printing bone implants prospects are outlined.
Collapse
Affiliation(s)
- Nannan Wu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Jinghong Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| | - Xinyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Ran Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Lexin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Zhiwei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
2
|
Rath PP, Makkar H, Agarwalla SV, Sriram G, Rosa V. Stearic acid nanoparticles increase acyclovir absorption by oral epithelial cells. Dent Mater 2024; 40:1703-1709. [PMID: 39112293 DOI: 10.1016/j.dental.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Acyclovir (ACY) is used to treat oral viral herpes but has low solubility and bioavailability. Stearic acid (SA) is lipophilic and can be combined with drugs. Therefore, this study aimed to characterize the properties of SA nanoparticles in increasing the cellular uptake of ACY by oral epithelial cells. The hypothesis was that SA nanoparticles increase sustained ACY release, are stable, and increase drug uptake. METHODS The production parameters (duration and amplitude of sonication) were optimized to produce solid lipid nanoparticles (SLN) of SA-containing ACY. Particle stability was characterized under different storage conditions (4 °C and 37 °C for 1, 15, and 45 days). SLN were further characterized for their pharmacokinetic profile, cytotoxicity, in vitro permeability, and ability to modulate gene expression and promote ACY uptake by oral epithelial cells. RESULTS Pharmacokinetic studies revealed sustained and diffusional release of ACY from the SLN, with an initial burst release of 15 min. After 45 d of storage, SLN kept at both 4 °C and 37 °C showed a maximum release of > 90 % of the drug at 120 min. Cells treated with SLN presented a significantly higher intracellular drug content than those treated with ACY and significantly increased the genetic expression of TJP-1, OCLN, and ECAD. SIGNIFICANCE The hypothesis was accepted as SA nanoparticles containing ACY can sustain drug delivery and enhance its absorption into epithelial cells. Therefore, SA nanoparticles are promising for improving ACY uptake in treating oral herpes and other infections caused by HSV-1.
Collapse
Affiliation(s)
- Priti P Rath
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore; Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, USA.
| | | | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| |
Collapse
|
3
|
Petousis M, Michailidis N, Korlos A, Papadakis V, David C, Sagris D, Mountakis N, Argyros A, Valsamos J, Vidakis N. Biomedical Composites of Polycaprolactone/Hydroxyapatite for Bioplotting: Comprehensive Interpretation of the Reinforcement Course. Polymers (Basel) 2024; 16:2400. [PMID: 39274033 PMCID: PMC11396925 DOI: 10.3390/polym16172400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Robust materials in medical applications are sought after and researched, especially for 3D printing in bone tissue engineering. Poly[ε-caprolactone] (PCL) is a commonly used polymer for scaffolding and other medical uses. Its strength is a drawback compared to other polymers. Herein, PCL was mixed with hydroxyapatite (HAp). Composites were developed at various concentrations (0.0-8.0 wt. %, 2.0 step), aiming to enhance the strength of PCL with a biocompatible additive in bioplotting. Initially, pellets were derived from the shredding of filaments extruded after mixing PCL and HAp at predetermined quantities for each composite. Specimens were then manufactured by bioplotting 3D printing. The samples were tested for their thermal and rheological properties and were also mechanically, morphologically, and chemically examined. The mechanical properties included tensile and flexural investigations, while morphological and chemical examinations were carried out employing scanning electron microscopy and energy dispersive spectroscopy, respectively. The structure of the manufactured specimens was analyzed using micro-computed tomography with regard to both their dimensional deviations and voids. PCL/HAp 6.0 wt. % was the composite that showed the most enhanced mechanical (14.6% strength improvement) and structural properties, proving the efficiency of HAp as a reinforcement filler in medical applications.
Collapse
Affiliation(s)
- Markos Petousis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Nikolaos Michailidis
- Physical Metallurgy Laboratory, Mechanical Engineering Department, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Centre for Research & Development of Advanced Materials (CERDAM), Center for Interdisciplinary Research and Innovation, Balkan Centre, Building B', 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - Apostolos Korlos
- Department of Industrial Engineering and Management, International Hellenic University, 14th km Thessaloniki-N. Moudania, Thermi, 57001 Thessaloniki, Greece
| | - Vassilis Papadakis
- Department of Industrial Design and Production Engineering, University of West Attica, 12243 Athens, Greece
- Foundation for Research and Technology Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), 70013 Heraklion, Greece
| | - Constantine David
- Department of Mechanical Engineering, International Hellenic University, Serres Campus, 62124 Serres, Greece
| | - Dimitrios Sagris
- Department of Mechanical Engineering, International Hellenic University, Serres Campus, 62124 Serres, Greece
| | - Nikolaos Mountakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Apostolos Argyros
- Physical Metallurgy Laboratory, Mechanical Engineering Department, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Centre for Research & Development of Advanced Materials (CERDAM), Center for Interdisciplinary Research and Innovation, Balkan Centre, Building B', 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - John Valsamos
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Nectarios Vidakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| |
Collapse
|
4
|
Chen J, Zhou H, Fan Y, Gao G, Ying Y, Li J. 3D printing for bone repair: Coupling infection therapy and defect regeneration. CHEMICAL ENGINEERING JOURNAL 2023; 471:144537. [DOI: 10.1016/j.cej.2023.144537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
|
5
|
Kaya D, Abdelmoula M, Küçüktürk G, Grossin D, Stamboulis A. A Novel Approach for Powder Bed Fusion of Ceramics Using Two Laser Systems. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2507. [PMID: 36984387 PMCID: PMC10056865 DOI: 10.3390/ma16062507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The one-step AM process is considered the goal many researchers seek in the field of Additive Manufacturing (AM) of high-technology ceramics. Among the several AM techniques, only Powder Bed Fusion (PBF) can directly print high-technology ceramics using one step. However, the PBF technique faces numerous challenges to efficiently be employed in the PBF of ceramics. These challenges include the formation of cracks, generated thermal stress, effective laser-powder interaction, and low acquired relative density. This study developed a new preheating mechanism for ceramic materials using two laser systems to surpass beyond these challenges and successfully print ceramics with a single-step AM method. One laser is used to preheat the powder particles before the second laser is utilised to complete the melting/sintering process. Both lasers travel along the same scanning path. There is a slight delay (0.0001 s) between the preheating laser and the melting/sintering laser to guarantee that the melting/sintering laser scans a properly preheated powder. To further facilitate testing of the preheating system, a numerical model has been developed to simulate the preheating and melting process and to acquire proper process parameters. The developed numerical model was shown to determine the correct process parameters without needing costly and time-consuming experiments. Alumina samples (10 × 10 × 6 mm3) were successfully printed using alumina powder as feedstock. The surface of the samples was nearly defect-free. The samples' relative densities exceeded 80%, the highest reported relative density for alumina produced by a single-step AM method. This discovery can significantly accelerate the transition to a one-step AM process of ceramics.
Collapse
Affiliation(s)
- Duran Kaya
- Department of Mechanical Engineering, Graduate School of Natural and Applied Sciences, Gazi University, Ankara 06570, Turkey
| | - Mohamed Abdelmoula
- Department of Mechanical Engineering, Graduate School of Natural and Applied Sciences, Gazi University, Ankara 06570, Turkey
- School of Engineering and Applied Science, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Gökhan Küçüktürk
- Department of Mechanical Engineering, Gazi University, Ankara 06500, Turkey
| | - David Grossin
- Centre Inter-Universitaire de Recherche et d’Ingénierie des Matériaux, Université de Toulouse, CNRS, INP- ENSIACET, 4 Allée Émile Monso, CEDEX 4, 31432 Toulouse, France
| | - Artemis Stamboulis
- School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
6
|
Thangavel M, Elsen Selvam R. Review of Physical, Mechanical, and Biological Characteristics of 3D-Printed Bioceramic Scaffolds for Bone Tissue Engineering Applications. ACS Biomater Sci Eng 2022; 8:5060-5093. [PMID: 36415173 DOI: 10.1021/acsbiomaterials.2c00793] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review focuses on the advancements in additive manufacturing techniques that are utilized for fabricating bioceramic scaffolds and their characterizations leading to bone tissue regeneration. Bioscaffolds are made by mimicking the human bone structure, material composition, and properties. Calcium phosphate apatite materials are the most commonly used scaffold materials as they closely resemble live bone in their inorganic composition. The functionally graded scaffolds are fabricated by utilizing the right choice of the 3D printing method and material combinations to achieve the requirement of the bioscaffold. To tailor the physical, mechanical, and biological properties of the scaffold, certain materials are reinforced, doped, or coated to incorporate the functionality. The biomechanical loading conditions that involve flexion, torsion, and tension exerted on the implanted scaffold are discussed. The finite element analysis (FEA) technique is used to investigate the mechanical property of the scaffold before fabrication. This helps in reducing the actual number of samples used for testing. The FEA simulated results and the experimental result are compared. This review also highlights some of the challenges associated while processing the scaffold such as shrinkage, mechanical instability, cytotoxicity, and printability. In the end, the new materials that are evolved for tissue engineering applications are compiled and discussed.
Collapse
Affiliation(s)
- Mahendran Thangavel
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen Selvam
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
7
|
Walther AR, Ditzel N, Kassem M, Andersen MØ, Hedegaard MAB. In vivo non-invasive monitoring of tissue development in 3D printed subcutaneous bone scaffolds using fibre-optic Raman spectroscopy. BIOMATERIALS AND BIOSYSTEMS 2022; 7:100059. [PMID: 36824488 PMCID: PMC9934492 DOI: 10.1016/j.bbiosy.2022.100059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022] Open
Abstract
The development of novel biomaterials for regenerative therapy relies on the ability to assess tissue development, quality, and similarity with native tissue types in in vivo experiments. Non-invasive imaging modalities such as X-ray computed tomography offer high spatial resolution but limited biochemical information while histology and biochemical assays are destructive. Raman spectroscopy is a non-invasive, label-free and non-destructive technique widely applied for biochemical characterization. Here we demonstrate the use of fibre-optic Raman spectroscopy for in vivo quantitative monitoring of tissue development in subcutaneous calcium phosphate scaffolds in mice over 16 weeks. Raman spectroscopy was able to quantify the time dependency of different tissue components related to the presence, absence, and quantity of mesenchymal stem cells. Scaffolds seeded with stem cells produced 3-5 times higher amount of collagen-rich extracellular matrix after 16 weeks implantation compared to scaffolds without. These however, showed a 2.5 times higher amount of lipid-rich tissue compared to implants with stem cells. Ex vivo micro-computed tomography and histology showed stem cell mediated collagen and bone development. Histological measures of collagen correlated well with Raman derived quantifications (correlation coefficient in vivo 0.74, ex vivo 0.93). In the absence of stem cells, the scaffolds were largely occupied by adipocytes. The technique developed here could potentially be adapted for a range of small animal experiments for assessing tissue engineering strategies at the biochemical level.
Collapse
Affiliation(s)
- Anders Runge Walther
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Nicholas Ditzel
- Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark
| | - Moustapha Kassem
- Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark
| | - Morten Østergaard Andersen
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Martin Aage Barsøe Hedegaard
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
8
|
Bohara S, Suthakorn J. Surface coating of orthopedic implant to enhance the osseointegration and reduction of bacterial colonization: a review. Biomater Res 2022; 26:26. [PMID: 35725501 PMCID: PMC9208209 DOI: 10.1186/s40824-022-00269-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 12/11/2022] Open
Abstract
The use of orthopedic implants in surgical technology has fostered restoration of physiological functions. Along with successful treatment, orthopedic implants suffer from various complications and fail to offer functions correspondent to native physiology. The major problems include aseptic and septic loosening due to bone nonunion and implant site infection due to bacterial colonization. Crucial advances in material selection in the design and development of coating matrixes an opportunity for the prevention of implant failure. However, many coating materials are limited in in-vitro testing and few of them thrive in clinical tests. The rate of implant failure has surged with the increasing rates of revision surgery creating physical and sensitive discomfort as well as economic burdens. To overcome critical pathogenic activities several systematic coating techniques have been developed offering excellent results that combat infection and enhance bone integration. This review article includes some more common implant coating matrixes with excellent in vitro and in vivo results focusing on infection rates, causes, complications, coating materials, host immune responses and significant research gaps. This study provides a comprehensive overview of potential coating technology, with functional combination coatings which are focused on ultimate clinical practice with substantial improvement on in-vivo tests. This includes the development of rapidly growing hydrogel coating techniques with the potential to generate several accurate and precise coating procedures.
Collapse
Affiliation(s)
- Smriti Bohara
- Department of Biomedical Engineering, Center for Biomedical and Robotics Technology (BART LAB), Faculty of Engineering, Mahidol University, Salaya, Thailand
| | - Jackrit Suthakorn
- Department of Biomedical Engineering, Center for Biomedical and Robotics Technology (BART LAB), Faculty of Engineering, Mahidol University, Salaya, Thailand
| |
Collapse
|
9
|
Thygesen T, Slots C, Jensen MB, Ditzel N, Kassem M, Langhorn L, Andersen MØ. Comparison of off-the-shelf β-tricalcium phosphate implants with novel resorbable 3D printed implants in mandible ramus of pigs. Bone 2022; 159:116370. [PMID: 35183809 DOI: 10.1016/j.bone.2022.116370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/16/2021] [Accepted: 02/12/2022] [Indexed: 11/24/2022]
Abstract
Facial reconstructive surgery has already implemented the use of 3D printed Patient Specific Implants derived from CAD/CAM-based technologies as an alternative to preformed bone graft substitutes. 3D-printed patient-specific implants derived from CAD/CAM-based technologies are used in facial reconstructive surgery as an alternative to preformed bone graft substitutes. However, to minimize the invasiveness and long-term adverse effects of surgical interventions, the implant needs to exhibit exact fitting, porosity, density, and volume and be made from resorbable materials that allow ingrowth and formation of new bone tissue. Therefore, we present this pilot study using 3D-printed implants consisting of pure β-TCP, produced using a novel technique that assures these properties. Eight pigs received 3D-printed truncated porous cone bone implants paired with either an off-the-shelve a chronOS (DePuy Synthes chronOS Vivify Preforms) preformed block (n = 4) or a no-implant void (n = 4) in a surgically created defect on each side of the angle of the mandible. After 6 months, CT data showed that all 3D-printed implants performed as well as did the off-the-shelve implants, with predicted osteointegration medially and laterally and with minimal gapping between the implants and native bone. The CT findings were confirmed by histological analysis that revealed that the 3D-printed implants together with the off-the-shelve implants were almost complete resorbed. Much of the resorbed volume had been replaced by vascularized compact bone, and fusion between newly formed bone and native bone was observed in all implants, further indicating that the 3D-printed implants and off-the-shelve implants performed equally well. Only soft tissue developed in the void control sites. Further studies are needed to confirm these initial findings.
Collapse
Affiliation(s)
- T Thygesen
- Clinic for Oral and Maxillofacial Surgery, Vestre Stationsvej 15, 5000 Odense C, Denmark
| | - C Slots
- Ossiform ApS, Oslogade 1, 5000 Odense C, Denmark
| | - M B Jensen
- Ossiform ApS, Oslogade 1, 5000 Odense C, Denmark.
| | - N Ditzel
- Clinical Institute, Molecular Endocrinology Laboratory, J. B. Winsløws Vej 25, 2nd floor, 5000 Odense C, Denmark
| | - M Kassem
- Clinical Institute, Molecular Endocrinology Laboratory, J. B. Winsløws Vej 25, 2nd floor, 5000 Odense C, Denmark
| | - L Langhorn
- Biomedical Laboratory, University of Southern Denmark, J. B. Winsløwsvej 25, 5000 Odense C, Denmark
| | - M Ø Andersen
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
10
|
Abdelmoula M, Küçüktürk G. Multi-Layer Simulation of the Powder Bed Selective Laser Processing of Alumina for Residual Stress and Distortion Evaluation. MATERIALS 2022; 15:ma15103498. [PMID: 35629525 PMCID: PMC9145130 DOI: 10.3390/ma15103498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 02/04/2023]
Abstract
A numerical model was developed to simulate the real process of alumina powder bed selective laser processing (PBSLP) to thoroughly investigate the residual stress and distortion experienced in printed parts when multi-layer scanning with a CO2 laser source is considered. The model contains a user-defined function (UDF) for the laser source, temperature-dependent material properties, scanning strategies, and build orientations, and it is solved using ANSYS 2020R2. In addition, the model’s validation was confirmed with experimental results. The results revealed that a high scanning speed (up to 1200 mm/s) and low laser power are effective for the PBSLP of alumina, owing to alumina’s high absorptivity for CO2 lasers, and a high manufacturing rate can be achieved. During the multi-layer printing simulation, the accumulated heat inside the part increased gradually with an increased number of printed layers. Additionally, the calculated residual stress exceeded the yield limit for all the studied build orientations due to the printed part’s high-temperature difference. When preheating was applied, the residual stress decreased by 23% and the distortion decreased by 54%. For the successful PBSLP of ceramics, commercial printers cannot be used effectively. A particular printer equipped with a temperature controller and a preheating system is required for ceramics.
Collapse
|
11
|
Lakhdar Y, Tuck C, Terry A, Spadaccini C, Goodridge R. Direct ink writing of boron carbide monoliths. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2021.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Huang KH, Wang CY, Chen CY, Hsu TT, Lin CP. Incorporation of Calcium Sulfate Dihydrate into a Mesoporous Calcium Silicate/Poly-ε-Caprolactone Scaffold to Regulate the Release of Bone Morphogenetic Protein-2 and Accelerate Bone Regeneration. Biomedicines 2021; 9:biomedicines9020128. [PMID: 33572786 PMCID: PMC7911692 DOI: 10.3390/biomedicines9020128] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering and scaffolds play an important role in tissue regeneration by supporting cell adhesion, proliferation, and differentiation. The design of a scaffold is critical in determining its feasibility, and it is critical to note that each tissue is unique in terms of its morphology and composition. However, calcium-silicate-based scaffolds are undegradable, which severely limits their application in bone regeneration. In this study, we developed a biodegradable mesoporous calcium silicate (MS)/calcium sulfate (CS)/poly-ε-caprolactone (PCL) composite and fabricated a composite scaffold with 3D printing technologies. In addition, we were able to load bone morphogenetic protein-2 (BMP-2) into MS powder via a one-step immersion procedure. The results demonstrated that the MS/CS scaffold gradually degraded within 3 months. More importantly, the scaffold exhibited a gradual release of BMP-2 throughout the test period. The adhesion and proliferation of human dental pulp stem cells on the MS/CS/BMP-2 (MS/CS/B) scaffold were significantly greater than that on the MS/CS scaffold. It was also found that cells cultured on the MS/CS/B scaffold had significantly higher levels of alkaline phosphatase activity and angiogenic-related protein expression. The MS/CS/B scaffold promoted the growth of new blood vessels and bone regeneration within 4 weeks of implantation in rabbits with induced critical-sized femoral defects. Therefore, it is hypothesized that the 3D-printed MS/CS/B scaffold can act both as a conventional BMP-2 delivery system and as an ideal osteoinductive biomaterial for bone regeneration.
Collapse
Affiliation(s)
- Kuo-Hao Huang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 106319, Taiwan; (K.-H.H.); (C.-Y.W.); (C.-Y.C.)
- Department of Dentistry, National Taiwan University Hospital, Taipei 100229, Taiwan
| | - Chen-Ying Wang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 106319, Taiwan; (K.-H.H.); (C.-Y.W.); (C.-Y.C.)
- Department of Dentistry, National Taiwan University Hospital, Taipei 100229, Taiwan
| | - Cheng-Yu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 106319, Taiwan; (K.-H.H.); (C.-Y.W.); (C.-Y.C.)
| | - Tuan-Ti Hsu
- X-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan
- Correspondence: (T.-T.H.); (C.-P.L.); Tel.: +886-4-22967979 (ext. 3703) (T.-T.H.); +886-2-2312-3456 (ext. 67980) or +886-2-2312-3456 (ext. 67221) (C.-P.L.)
| | - Chun-Pin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 106319, Taiwan; (K.-H.H.); (C.-Y.W.); (C.-Y.C.)
- Department of Dentistry, National Taiwan University Hospital, Taipei 100229, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence: (T.-T.H.); (C.-P.L.); Tel.: +886-4-22967979 (ext. 3703) (T.-T.H.); +886-2-2312-3456 (ext. 67980) or +886-2-2312-3456 (ext. 67221) (C.-P.L.)
| |
Collapse
|
13
|
Jensen MB, Slots C, Ditzel N, Kolstrup S, Kassem M, Thygesen T, Andersen MØ. Treating mouse skull defects with 3D-printed fatty acid and tricalcium phosphate implants. J Tissue Eng Regen Med 2020; 14:1858-1868. [PMID: 33098263 DOI: 10.1002/term.3146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 11/09/2022]
Abstract
Skull surgery, also known as craniectomy, is done to treat trauma or brain diseases and may require the use of an implant to reestablish skull integrity. This study investigates the performance of 3D printed bone implants in a mouse model of craniectomy with the aim of making biodegradable porous implants that can ultimately be fitted to a patient's anatomy. A nonpolymeric thermoplastic bioink composed of fatty acids and β-tricalcium phosphate was used to 3D print the skull implants. Some of these were sintered to yield pure β-tricalcium phosphate implants. The performance of nonsintered and sintered implants was then compared in two semi-quantitative murine calvarial defect models using computed tomography, histology, and luciferase activity. Both types of implants were biocompatible, but only sintered implants promoted defect healing, with osseointegration to adjacent bone and the formation of new bone and bone marrow tissue in the implant pores. Luciferase scanning and histology showed that mesenchymal stem cells seeded onto the implants engraft and proliferate on the implants after implantation and contribute to forming bone. The experiments indicate that fatty acid-based 3D printing enables the creation of biocompatible and bone-forming β-tricalcium phosphate implants.
Collapse
Affiliation(s)
- Martin Bonde Jensen
- Section for Biotechnology (SDU Biotechnology), Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark.,Particle3D ApS, Odense, Denmark
| | - Casper Slots
- Section for Biotechnology (SDU Biotechnology), Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark.,Particle3D ApS, Odense, Denmark
| | - Nicholas Ditzel
- Department of Endocrinology and Metabolism, Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Stefanie Kolstrup
- The Biomedical Laboratory, University of Southern Denmark, Odense, Denmark
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Torben Thygesen
- Department of Oral and Maxillofacial Surgery, Odense University Hospital, Odense, Denmark
| | - Morten Østergaard Andersen
- Section for Biotechnology (SDU Biotechnology), Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Andersen M, Moreira-Grez B, Andersen MJ, Whiteley A. The Application of 3D Printing and Nutrient/Biomaterial Microhabitats for In Situ Enrichment of Microbial Cultures. FASEB J 2020. [DOI: 10.1096/fasebj.2020.34.s1.09053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Morten Andersen
- University of Southern Denmark
- University of Western Australia
| | | | | | | |
Collapse
|
15
|
Liu Y, Rath B, Tingart M, Eschweiler J. Role of implants surface modification in osseointegration: A systematic review. J Biomed Mater Res A 2019; 108:470-484. [DOI: 10.1002/jbm.a.36829] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yu Liu
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Björn Rath
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Markus Tingart
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Jörg Eschweiler
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| |
Collapse
|
16
|
Schmidleithner C, Malferrari S, Palgrave R, Bomze D, Schwentenwein M, Kalaskar DM. Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration. Biomed Mater 2019; 14:045018. [PMID: 31170697 DOI: 10.1088/1748-605x/ab279d] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone regeneration requires porous and mechanically stable scaffolds to support tissue integration and angiogenesis, which is essential for bone tissue regeneration. With the advent of additive manufacturing processes, production of complex porous architectures has become feasible. However, a balance has to be sorted between the porous architecture and mechanical stability, which facilitates bone regeneration for load bearing applications. The current study evaluates the use of high resolution digital light processing (DLP) -based additive manufacturing to produce complex but mechanical stable scaffolds based on β-tricalcium phosphate (β-TCP) for bone regeneration. Four different geometries: a rectilinear Grid, a hexagonal Kagome, a Schwarz primitive, and a hollow Schwarz architecture are designed with 400 μm pores and 75 or 50 vol% porosity. However, after initial screening for design stability and mechanical properties, only the rectilinear Grid structure, and the hexagonal Kagome structure are found to be reproducible and showed higher mechanical properties. Micro computed tomography (μ-CT) analysis shows <2 vol% error in porosity and <6% relative deviation of average pore sizes for the Grid structures. At 50 vol% porosity, this architecture also has the highest compressive strength of 44.7 MPa (Weibull modulus is 5.28), while bulk specimens reach 235 ± 37 MPa. To evaluate suitability of 3D scaffolds produced by DLP methods for bone regeneration, scaffolds were cultured with murine preosteoblastic MC3T3-E1 cells. Short term study showed cell growth over 14 d, with more than two-fold increase of alkaline phosphatase (ALP) activity compared to cells on 2D tissue culture plastic. Collagen deposition was increased by a factor of 1.5-2 when compared to the 2D controls. This confirms retention of biocompatible and osteo-inductive properties of β-TCP following the DLP process. This study has implications for designing of the high resolution porous scaffolds for bone regenerative applications and contributes to understanding of DLP based additive manufacturing process for medical applications.
Collapse
|
17
|
Galante R, Figueiredo-Pina CG, Serro AP. Additive manufacturing of ceramics for dental applications: A review. Dent Mater 2019; 35:825-846. [PMID: 30948230 DOI: 10.1016/j.dental.2019.02.026] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/15/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The main goal of this review is to provide a detailed and comprehensive description of the published work from the past decade regarding AM of ceramic materials with possible applications in dentistry. The main printable materials and most common technologies are also addressed, underlining their advantages and main drawbacks. METHODS Online databases (Web of knowledge, Science Direct, PubMed) were consulted on this topic. Published work from 2008 to 2018 was collected, analyzed and the relevant papers were selected for inclusion on this review. RESULTS Ceramic materials are broadly used in dentistry to restore/replace damaged or missing teeth, due to their biocompatibility, chemical stability and mechanical and aesthetic properties. However, there are several unmet challenges regarding their processing and performance. Due to their brittleness nature, a very tight control of the manufacturing process is needed to obtain dental pieces with adequate mechanical properties. Additive manufacturing (AM) is an emerging technology that constitutes an interesting and viable manufacturing alternative to the conventional subtractive methods. AM enables the production of customized complex 3D parts in a more sustainable and less expensive way. AM of ceramics can be achieved with an extensive variety of methods. SIGNIFICANCE There is no perfect technology for all materials/applications, capable alone of fulfilling all the specificities and necessities of every patient. Although very promising, AM of ceramic dental materials remains understudied and further work is required to make it a widespread technology in dentistry.
Collapse
|
18
|
Abdullah AM, Rahim TNAT, Hamad WNFW, Mohamad D, Akil HM, Rajion ZA. Mechanical and cytotoxicity properties of hybrid ceramics filled polyamide 12 filament feedstock for craniofacial bone reconstruction via fused deposition modelling. Dent Mater 2018; 34:e309-e316. [DOI: 10.1016/j.dental.2018.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/21/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022]
|
19
|
Jensen MB, Slots C, Ditzel N, Albrektsen O, Borg S, Thygesen T, Kassem M, Andersen MØ. Composites of fatty acids and ceramic powders are versatile biomaterials for personalized implants and controlled release of pharmaceuticals. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bprint.2018.e00027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Wen Y, Xun S, Haoye M, Baichuan S, Peng C, Xuejian L, Kaihong Z, Xuan Y, Jiang P, Shibi L. 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Sci 2018; 5:1690-1698. [PMID: 28686244 DOI: 10.1039/c7bm00315c] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study summarizes the recent research status and development of three-dimensional (3D)-printed porous ceramic scaffolds in bone tissue engineering. Recent literature on 3D-printed porous ceramic scaffolds was reviewed. Compared with traditional processing and manufacturing technologies, 3D-printed porous ceramic scaffolds have obvious advantages, such as enhancement of the controllability of the structure or improvement of the production efficiency. More sophisticated scaffolds were fabricated by 3D printing technology. 3D printed bioceramics have broad application prospects in bone tissue engineering. Through understanding the advantages and limitations of different 3D-printing approaches, new classes of bone graft substitutes can be developed.
Collapse
Affiliation(s)
- Yu Wen
- Orthopedics Research Institute of Chinese PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, General Hospital of Chinese PLA, Fuxing Road 28, Haidian District, Beijing 100853, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|