1
|
Dos Santos Vilela H, Vaz Marcolino Alves T, Campos AL, Trinca RB, Braga RR. Degradation of experimental composites containing calcium orthophosphate particles in different immersion media. J Mech Behav Biomed Mater 2025; 168:107009. [PMID: 40306023 DOI: 10.1016/j.jmbbm.2025.107009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025]
Abstract
The aim of the present study was to evaluate the effect of prolonged immersion in different media on the mechanical properties of composites containing dicalcium phosphate dihydrate particles (DCPD, CaHPO4.2H2O). Three formulations with the same resin phase (BisGMA/TEGMA, 1:1 in moles) were prepared. The total inorganic content was 50 vol%, consisting of barium glass (BG) or a mixture of BG and DCPD (15:35 or 35:15 vol%). The degree of conversion (DC) of the composites was determined using FTIR spectroscopy (n = 3). Biaxial flexural strength (BFS) and flexural modulus (FM) were determined using the "piston-on-three-spheres" method (n = 13) after 24 h and 6 months in deionized water (DW), citric acid (CA, pH 5) or 75 % ethanol solution (EtOH). Knoop microhardness (KHN, n = 6) was determined in fragments of the flexural test specimens. Data were analysed using ANOVA/Tukey's test (alpha: 5 %). DC was statistically higher for the 35 % DCPD composite (p < 0.001). Overall, mechanical properties were inversely related to DCPD fraction in all three media and both storage times. The 15 % DCPD composite had BFS statistically similar to the control in most of the tested conditions, and similar FM after 24h in all media. However, CA had a severe negative effect on the KHN of composites containing DCPD both after 24h and 6 months, while EtOH caused the highest reduction in KHN for the control, in comparison to DW. Based on these results, it is concluded that composites containing DCPD presented higher surface degradation than the control, which may limit their use as bulk restoratives.
Collapse
Affiliation(s)
- Handially Dos Santos Vilela
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Tarsila Vaz Marcolino Alves
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Amanda Lopes Campos
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Rafael Bergamo Trinca
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Roberto Ruggiero Braga
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Campos AL, Chiari MDESDC, Vela BF, Trinca RB, de Souza Balbinot G, Collares FM, Braga RR. Dentin remineralization induced by experimental composites containing calcium orthophosphate particles. Dent Mater 2025; 41:265-271. [PMID: 39732611 DOI: 10.1016/j.dental.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024]
Abstract
OBJECTIVES This study aimed to verify if composites containing dicalcium phosphate dihydrate particles (DCPD) are able to induce dentin remineralization in vitro. Additionally, the mechanical properties of the materials were tested. METHODS Four composites with 50 vol% inorganic content and 1 BisGMA: 1 TEGDMA (mols) were prepared, with different DCPD:glass ratios (50:0, 40:10, 30:20 and 0:50). Ca2 + release in water was monitored for 8 weeks using inductively coupled plasma optical emission spectrometry (n = 3). Composites were applied to artificial lesions (180 μm in depth) prepared in dentin discs and the specimens were kept in simulated body fluid for 8 weeks (n = 8-10). Dentin elastic modulus (EM) and hardness (H) across the lesion were determined by nanoindentation (5 mN, 5 s). Mineral density was determined by microCT. Composite degree of conversion (DC) was determined by near-FTIR spectroscopy (n = 3). Fracture strength and elastic modulus were determined using biaxial flexural test (n = 10). Data were analysed by ANOVA/Tukey test, except for mineral density (Kruskal-Wallis, alpha:0.05). RESULTS Ca2+ release increase linearly with DCPD fraction in the composite (p < 0.001). Lesions kept in contact with composites containing 40 % and 50 % DCPD presented significant increases in EM and H in the outer region (0-90 μm) and in EM in the inner region (90-180 μm) compared to the negative control. MicroCT was not able to differentiate among treatments. DCPD-containing composites presented DC higher than the control (p < 0.01). Flexural strength and modulus were inversely related to DCPD content (p < 0.001). SIGNIFICANCE The composite containing 40 vol% DCPD presented the best compromise between mechanical properties and remineralization potential.
Collapse
Affiliation(s)
- Amanda Lopes Campos
- University of São Paulo School of Dentistry, Department of Biomaterials and Oral Biology, Av. Prof. Lineu Prestes, 2227, São Paulo, SP 05508-000, Brazil.
| | | | - Beatriz Fonseca Vela
- University of São Paulo School of Dentistry, Department of Biomaterials and Oral Biology, Av. Prof. Lineu Prestes, 2227, São Paulo, SP 05508-000, Brazil.
| | - Rafael Bergamo Trinca
- University of São Paulo School of Dentistry, Department of Biomaterials and Oral Biology, Av. Prof. Lineu Prestes, 2227, São Paulo, SP 05508-000, Brazil.
| | - Gabriela de Souza Balbinot
- Universidade Federal do Rio Grande do Sul. Department of Dental Materials, Rua Ramiro Barcelos, 2492, Porto Alegre, RS 90035-003, Brazil.
| | - Fabrício Mezzomo Collares
- Universidade Federal do Rio Grande do Sul. Department of Dental Materials, Rua Ramiro Barcelos, 2492, Porto Alegre, RS 90035-003, Brazil.
| | - Roberto Ruggiero Braga
- University of São Paulo School of Dentistry, Department of Biomaterials and Oral Biology, Av. Prof. Lineu Prestes, 2227, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
3
|
Obeid AT, Nascimento TRDL, Ramos CAS, Mondelli RFL, Rastelli ANDS, Alhotan A, Velo MMDAC, Bombonatti JFS. Physical-Mechanical Properties and Mineral Deposition of a Pit-and-Fissure Sealant Containing Niobium-Fluoride Nanoparticles-An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5378. [PMID: 39517652 PMCID: PMC11547953 DOI: 10.3390/ma17215378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
This study investigated the combined effects of adding niobium-fluoride (NbF5) nanoparticles to a pit-and-fissure sealant. One resin sealant was reinforced with varying amounts of nanoparticles (0.3, 0.6, and 0.9 wt%). The surface hardness (SH), energy-dispersive X-ray spectroscopy (EDX), surface roughness (Ra), color change (ΔE), and mineral deposition were assessed. Bovine enamel blocks were subjected to demineralization and pH-cycling for SH. The elemental composition and Ca/P ratio were evaluated using EDX, while the mineral deposition was measured using Fourier transform infrared spectroscopy (FTIR). Data were analyzed using ANOVA and Tukey's test for the SH and EDX, ΔE, and Kruskal-Wallis for the Ra. The NbF5 modification increased the SH, with the 0.9 wt% sealant exhibiting higher SH values, and the 0.3 wt% one exhibiting significant differences compared to the control and the 0.9 wt% (p = 0.00) samples, even after pH-cycling. For the EDX analysis, the 0.3 and 0.6 wt% samples exhibited higher Ca/P ratios, with the 0.3% one showing evidence of P-O crystal formation. There was no significant difference in the Ra (p = 0.458), and the 0.6 and 0.9 wt% ones showed lower ΔE values compared to the control. The 0.3 wt% NbF5 demonstrated improved overall properties, making these results particularly promising for preventing tooth decay, reducing demineralization through increased ions release and promoting remineralization in posterior teeth.
Collapse
Affiliation(s)
- Alyssa Teixeira Obeid
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, SP, Brazil; (A.T.O.); (T.R.d.L.N.); (R.F.L.M.); (J.F.S.B.)
| | - Tatiana Rita de Lima Nascimento
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, SP, Brazil; (A.T.O.); (T.R.d.L.N.); (R.F.L.M.); (J.F.S.B.)
- Leibniz Institute for Solid State and Materials Research, IFW-Dresden e.V., Helmholtzstraße 20, 01069 Dresden, Germany
| | | | - Rafael Francisco Lia Mondelli
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, SP, Brazil; (A.T.O.); (T.R.d.L.N.); (R.F.L.M.); (J.F.S.B.)
| | - Alessandra Nara de Souza Rastelli
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University—UNESP, 1680 Humaitá Street–3rd floor, Araraquara 14801-903, SP, Brazil;
| | - Abdulaziz Alhotan
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 12372, Saudi Arabia
| | - Marilia Mattar de Amoêdo Campos Velo
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University—UNESP, 1680 Humaitá Street–3rd floor, Araraquara 14801-903, SP, Brazil;
| | - Juliana Fraga Soares Bombonatti
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, SP, Brazil; (A.T.O.); (T.R.d.L.N.); (R.F.L.M.); (J.F.S.B.)
| |
Collapse
|
4
|
Obeid AT, Nascimento TRDL, Agassi AC, Almeida AZF, Guedes APDMA, Alves JM, Bombonatti JFS, Velo MMDAC. Niobium oxyhydroxide as a bioactive agent and reinforcement to a high-viscosity bulk-fill resin composite. J Appl Oral Sci 2024; 32:e20230278. [PMID: 38537028 PMCID: PMC11018299 DOI: 10.1590/1678-7757-2023-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/10/2023] [Accepted: 01/17/2024] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVE The present in vitro study incorporated niobium oxyhydroxide fillers into an experimental high-viscosity bulk-fill resin composite to improve its mechanical performance and provide it a bioactive potential. METHODOLOGY Scanning electron microscopy synthesized and characterized 0.5% niobium oxyhydroxide fillers, demonstrating a homogeneous morphology that represented a reinforcement for the feature. Fillers were weighed, gradually added to the experimental resin composite, and homogenized for one minute, forming three groups: BF (experimental high-viscosity bulk-fill resin composite; control), BF0.5 (experimental high-viscosity bulk-fill resin composite modified with 0.5% niobium oxyhydroxide fillers), and BFC (commercial bulk-fill resin composite Beautifil Bulk U, Shofu; positive control). In total, 10 specimens/groups (8 × 2 × 2 mm) underwent flexural strength (FS) tests in a universal testing machine (Instron) (500N). Resin composites were also assessed for Knoop hardness (KH), depth of cure (DoC), degree of conversion (DC), elastic modulus (E), and degree of color change (ΔE). The bioactive potential of the developed resin composite was evaluated after immersing the specimens into a simulated body fluid in vitro solution and assessing them using a Fourier-transformed infrared spectroscope with an attenuated total reflectance accessory. One-way ANOVA, followed by the Tukey's test (p<0.05), determined FS, DC, KH, and ΔE. For DoC, ANOVA was performed, which demonstrated no significant difference between groups (p<0.05). CONCLUSIONS The high-viscosity bulk-fill resin composite with 0.5% niobium oxyhydroxide fillers showed promising outcomes as reinforcement agents and performed well for bioactive potential, although less predictable than the commercial resin composite with Giomer technology.
Collapse
Affiliation(s)
- Alyssa Teixeira Obeid
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais odontológicos, Bauru, Brasil
| | - Tatiana Rita de Lima Nascimento
- Universidade Federal da Paraíba, Cidade Universitária, Departamento de Química, Centro de Pesquisa de Combustíveis e Materiais (NPE-LACOM), João Pessoa, Brasil
| | - Ana Carolina Agassi
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais odontológicos, Bauru, Brasil
| | - Ana Zélia Falcão Almeida
- Universidade Federal da Paraíba, Cidade Universitária, Departamento de Química, Centro de Pesquisa de Combustíveis e Materiais (NPE-LACOM), João Pessoa, Brasil
| | - Ana Paula de Melo Alves Guedes
- Universidade Federal da Paraíba, Cidade Universitária, Departamento de Química, Centro de Pesquisa de Combustíveis e Materiais (NPE-LACOM), João Pessoa, Brasil
| | - João Marco Alves
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais odontológicos, Bauru, Brasil
| | - Juliana Fraga Soares Bombonatti
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais odontológicos, Bauru, Brasil
| | | |
Collapse
|
5
|
Campos AL, Vela BF, Pires Silva Borges L, Trinca RB, Pfeifer CS, Braga RR. Compositional boundaries for functional dental composites containing calcium orthophosphate particles. J Mech Behav Biomed Mater 2023; 144:105928. [PMID: 37302206 PMCID: PMC10330647 DOI: 10.1016/j.jmbbm.2023.105928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To investigate the interrelationships among handling, degree of conversion (DC), mechanical behavior and Ca2+ release of composites containing dicalcium phosphate dihydrate (DCPD, CaHPO4.2H2O), as a function of total inorganic content and DCPD: glass ratio. METHODS Twenty-one formulations (1 BisGMA: 1 TEGDMA, in mols) with inorganic fractions ranging from zero to 50 vol% and different DCPD: glass ratios were evaluated for viscosity (parallel plate rheometer, n = 3), DC (near-FTIR spectroscopy, n = 3), fracture toughness/K1C (single-edge notched beam, n = 7-11) and 14-day Ca2+ release (inductively coupled plasma optical emission spectroscopy, n = 3). Data were analyzed by ANOVA/Tukey test (except viscosity, where Kruskal-Wallis/Dunn tests were used, α: 0.05). RESULTS Viscosity and DC increased with DCPD: glass ratio among composites with the same inorganic content (p < 0.001). At inorganic fractions of 40 vol% and 50 vol%, keeping DCPD content at a maximum of 30 vol% did not compromise K1C. Ca2+ release showed an exponential relationship with DCPD mass fraction in the formulation (R2 = 0.986). After 14 days, a maximum of 3.8% of the Ca2+ mass in the specimen was released. CONCLUSION Formulations containing 30 vol% DCPD and 10-20 vol% glass represent the best compromise between viscosity, K1C and Ca2+ release. Materials with 40 vol% DCPD should not be disregarded, bearing in mind that Ca2+ release will be maximized at the expense of K1C.
Collapse
Affiliation(s)
- Amanda Lopes Campos
- University of São Paulo School of Dentistry, Department of Biomaterials and Oral Biology, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, 05508-000, Brazil.
| | - Beatriz Fonseca Vela
- University of São Paulo School of Dentistry, Department of Biomaterials and Oral Biology, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, 05508-000, Brazil.
| | - Lincoln Pires Silva Borges
- Oregon Health & Science University School of Dentistry, Department of Oral Rehabilitation and Integrative Biosciences, Division of Biomaterials and Biomedical Sciences, 2730 S Moody Ave, Portland, OR, 97201, USA.
| | - Rafael Bergamo Trinca
- University of São Paulo School of Dentistry, Department of Biomaterials and Oral Biology, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, 05508-000, Brazil.
| | - Carmem Silvia Pfeifer
- Oregon Health & Science University School of Dentistry, Department of Oral Rehabilitation and Integrative Biosciences, Division of Biomaterials and Biomedical Sciences, 2730 S Moody Ave, Portland, OR, 97201, USA.
| | - Roberto Ruggiero Braga
- University of São Paulo School of Dentistry, Department of Biomaterials and Oral Biology, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
6
|
Campos AL, Fronza BM, Rodrigues MC, Souza Chiari MDE, Braga RR. Influence of the calcium orthophosphate:glass ratio and calcium orthophosphate functionalization on the degree of conversion and mechanical properties of resin-based composites. J Biomed Mater Res B Appl Biomater 2023; 111:95-102. [PMID: 35851987 DOI: 10.1002/jbm.b.35136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 11/07/2022]
Abstract
The study verified the influence of calcium orthophosphate (CaP):glass ratio on the degree of conversion and mechanical properties of resin-based composites containing either TEGDMA-functionalized dicalcium phosphate anhydrous (DCPA) or non-functionalized DCPA particles. The null hypotheses were that the evaluated variables are not affected by (1) CaP:glass ratio or (2) DCPA functionalization. DCPA particles were synthesized and half of them were functionalized with TEGDMA. Particle characterization included x-ray diffraction, elemental analysis, laser scattering, helium picnometry and scanning electron microscopy. Two series of composites were prepared containing either DCPA-NF (non-functionalized) or DCPA-F (functionalized), with total inorganic content of 50 vol % and DCPA:silanized barium glass (BG) ratios from 10:40 to 50:0. A composite containing 50 vol % BG was tested as control. DC was determined using FTIR spectroscopy. Biaxial flexural strength and modulus were tested after 24 h in water. Data were analyzed using Kruskal-Wallis/Dunn (flexural properties) or analysis of variance/Tukey tests (DC). Materials with similar actual DCPA contents were compared using Student's t test (alpha: 0.05). DC was higher for materials with DCPA-F, except for the 10:40 ratio. DCPA-F resulted in higher strength than DCPA-NF only at 40:10 ratio. Modulus was not affected by functionalization. Materials with similar actual DCPA contents showed differences in DC (F > NF), while no difference in flexural properties was observed between materials with 28%-30% DCPA. Both null hypotheses were rejected.
Collapse
Affiliation(s)
- Amanda Lopes Campos
- Department of Biomaterials and Oral Biology, University of São Paulo, School of Dentistry, São Paulo, Brazil
| | - Bruna Marin Fronza
- Department of Biomaterials and Oral Biology, University of São Paulo, School of Dentistry, São Paulo, Brazil
| | | | | | - Roberto Ruggiero Braga
- Department of Biomaterials and Oral Biology, University of São Paulo, School of Dentistry, São Paulo, Brazil
| |
Collapse
|
7
|
Tang Y, Lei L, Yang D, Zheng J, Zeng Q, Xiao H, Zhou Z. Calcium release-mediated adsorption and lubrication of salivary proteins on resin-based dental composites. J Mech Behav Biomed Mater 2022; 135:105437. [DOI: 10.1016/j.jmbbm.2022.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
|
8
|
Kim DH, Bae J, Heo JH, Park CH, Kim EB, Lee JH. Nanoparticles as Next-Generation Tooth-Whitening Agents: Progress and Perspectives. ACS NANO 2022; 16:10042-10065. [PMID: 35704786 DOI: 10.1021/acsnano.2c01412] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Whitening agents, such as hydrogen peroxide and carbamide peroxide, are currently used in clinical applications for dental esthetic and dental care. However, the free radicals generated by whitening agents cause pathological damage; therefore, their safety issues remain controversial. Furthermore, whitening agents are known to be unstable and short-lived. Since 2001, nanoparticles (NPs) have been researched for use in tooth whitening. Importantly, nanoparticles not only function as abrasives but also release reactive oxygen species and help remineralization. This review outlines the historical development of several NPs based on their whitening effects and side effects. NPs can be categorized into metals or metal oxides, ceramic particles, graphene oxide, and piezoelectric particles. Moreover, the status quo and future prospects are discussed, and recent progress in the development of NPs and their applications in various fields requiring tooth whitening is examined. This review promotes the research and development of next-generation NPs for use in tooth whitening.
Collapse
Affiliation(s)
- Dai-Hwan Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jina Bae
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jun Hyuk Heo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Advanced Materials Technology Research Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Cheol Hyun Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Eun Bi Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Advanced Materials Technology Research Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Velo MMDAC, Filho FGN, de Lima Nascimento TR, Obeid AT, Castellano LC, Costa RM, Brondino NCM, Fonseca MG, Silikas N, Mondelli RFL. Enhancing the mechanical properties and providing bioactive potential for graphene oxide/montmorillonite hybrid dental resin composites. Sci Rep 2022; 12:10259. [PMID: 35715426 PMCID: PMC9205868 DOI: 10.1038/s41598-022-13766-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
This in vitro study synthetized hybrid composite nanoparticles of graphene oxide (GO) and montmorillonite MMt (GO-MMt) by ultrasound treatments. Samples were characterized by X-ray diffraction, FT-Raman, FTIR, TEM and SEM. The effect of their incorporation (0.3% and 0.5%) on the mechanical properties in a resin-based composite (RBC) and their bioactivity potential were evaluated. The specimens were characterized by evaluating their 3-point flexural strength (n = 6), modulus of elasticity (n = 6), degree of conversion (n = 6), microhardness (n = 6), contact angle (n = 3) and SEM analysis (n = 3). In vitro test in SBF were conducted in the RBCs modified by the hybrid. Overall, the synthetized hybrid composite demonstrated that GO was intercalated with MMt, showing a more stable compound. ANOVA and Tukey test showed that RBC + 0.3% GO-MMt demonstrated superior values of flexural strength, followed by RBC + 0.5% GO-MMt (p < 0.05) and both materials showed higher values of microhardness. All groups presented a contact angle below 90°, characterizing hydrophilic materials. RBCs modified by the hybrid showed Ca and P deposition after 14 days in SBF. In conclusion, RBCs composed by the hybrid showed promising results in terms of mechanical properties and bioactive potential, extending the application of GO in dental materials.
Collapse
Affiliation(s)
- Marilia Mattar de Amôedo Campos Velo
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Al. Dr Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil.
| | - Francisco Gilmário Nunes Filho
- Department of Chemistry, Research and Extension Center for Fuels and Materials Laboratory (NPELACOM), Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Tatiana Rita de Lima Nascimento
- Department of Chemistry, Research and Extension Center for Fuels and Materials Laboratory (NPELACOM), Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Alyssa Teixeira Obeid
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Al. Dr Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | - Lúcio Cançado Castellano
- Human Immunology Research and Education Group (GEPIH), UFPB Technical School of Health, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Reginaldo Mendonça Costa
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Al. Dr Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | | | - Maria Gardennia Fonseca
- Department of Chemistry, Research and Extension Center for Fuels and Materials Laboratory (NPELACOM), Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Nikolaos Silikas
- Dentistry, School of Medical Sciences, The University of Manchester, Manchester, M13 9PL, UK
| | - Rafael Francisco Lia Mondelli
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Al. Dr Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| |
Collapse
|
10
|
Effects of hybrid inorganic-organic nanofibers on the properties of enamel resin infiltrants - An in vitro study. J Mech Behav Biomed Mater 2022; 126:105067. [PMID: 35026564 DOI: 10.1016/j.jmbbm.2021.105067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/20/2022]
Abstract
This in vitro study aimed to evaluate the overall mechanical properties of resin infiltrants doped with bioactive nanofibers and their ability in inhibiting enamel demineralization or achieving remineralization of the adjacent enamel to white spots. A commercial resin infiltrant (ICON, DMG) was doped with hybrid inorganic-organic nanofibers and analyzed for degree of conversion (DC, n = 3) and surface hardness (SH, n = 6). Subsequently, enamel specimens (6 × 4 × 2 mm3) were prepared and submitted to a demineralizing/remineralizing process to produce a subsurface caries-like lesion. The specimens were treated with one of the following materials: ICON infiltrant, DMG (control); ICON + nanofibers of poly-lactic acid (PLA)-filled with silica (PLA-SiO2); ICON + nanofibers of (PLA)-filled with calcium incorporated into a silica network (SiO2-CaP). Then, the specimens were subjected to a pH-cycling demineralizing/remineralizing model for 7 days at 37 °C. The %ΔSH change (after treatment), %SH loss and %SH recovery (after pH-cycling regimen) were calculated after SH evaluation (n = 9/group). The Ca/P weight ratio before and after pH-cycling regimen was evaluated through SEM/EDX. The results of DC were analyzed through the T-test (p < 0.05). ANOVA followed by Tukey's test (p < 0.05) was performed for hardness and EDX. A significant SH increase was observed in the ICON/SiO2CaP group (p < 0.05). The ICON/PLA-SiO2 presented higher DC values than the control group (p = 0.043). All groups presented significant difference in %ΔSH (p < 0.05), although the specimens treated with ICON/SiO2CaP presented greater values. Regarding the %SHL and %SHR, the ICON/SiO2CaP and ICON/PLA-SiO2 were significantly different compared to the control group (p < 0.001). However, no difference was observed between the ICON/SiO2CaP and ICON/PLA-SiO2. The Ca/P ratio showed that the ICON/SiO2CaP and ICON/PLA-SiO2 after the pH-cycling regimen differed from sound enamel and modified infiltrants before pH-cycling. In conclusion, tailored hybrid nanofibers may be incorporated into enamel resin infiltrants without compromise the mechanical properties of such experimental materials. These latter can inhibit the demineralization of enamel and increase its hardness during pH-clycling challange.
Collapse
|
11
|
Experimental Dental Composites Containing a Novel Methacrylate-Functionalized Calcium Phosphate Component: Evaluation of Bioactivity and Physical Properties. Polymers (Basel) 2021; 13:polym13132095. [PMID: 34202144 PMCID: PMC8271644 DOI: 10.3390/polym13132095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to synthesize and characterize a novel methacrylate-functionalized calcium phosphate (MCP) to be used as a bioactive compound for innovative dental composites. The characterization was accomplished by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The incorporation of MCP as a bioactive filler in esthetic dental composite formulations and the ability of MCP containing dental composites to promote the precipitation of hydroxyapatite (HAp) on the surfaces of those dental composites was explored. The translucency parameter, depth of cure, degree of conversion, ion release profile, and other physical properties of the composites were studied with respect to the amount of MCP added to the composites. Composite with 3 wt.% MCP showed the highest flexural strength and translucency compared to the control composite and composites with 6 wt.% and 20 wt.% MCP. The progress of the surface precipitation of hydroxyapatite on the MCP containing dental composites was studied by systematically increasing the MCP content in the composite and the time of specimen storage in Dulbecco's phosphate-buffered solution with calcium and magnesium. The results suggested that good bioactivity properties are exhibited by MCP containing composites. A direct correlation between the percentage of MCP in a composite formulation, the amount of time the specimen was stored in PBS, and the deposition of hydroxyapatite on the composite's surface was observed.
Collapse
|
12
|
da Silva Meirelles Dória Maia JN, Portela MB, Sanchez Candela DR, Neves ADA, Noronha-Filho JD, Mendes ADO, Barros MA, Moreira da Silva E. Fabrication and characterization of remineralizing dental composites containing calcium type pre-reacted glass-ionomer (PRG-Ca) fillers. Dent Mater 2021; 37:1325-1336. [PMID: 33962791 DOI: 10.1016/j.dental.2021.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 04/09/2021] [Accepted: 04/24/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To fabricate and characterize dental composites with calcium type pre-reacted glass-ionomer (PRG-Ca) fillers. METHODS PRG-Ca fillers were prepared by the reaction of calcium fluoroaluminosilicate glass with polyacrylic acid. Seven dental composites were produced from the same organic matrix (70/30wt% Bis-GMA/TEGDMA), with partial replacement of barium borosilicate (BaBSi) fillers (60wt%) by PRG-Ca fillers (wt%): E0 (0) - control, E1 (10), E2 (20), E3 (30), E4 (40), E5 (50) and E6 (60). Enamel remineralization was evaluated in caries-like enamel lesions induced by S. mutans biofilm using micro-CT. The following properties were characterized: degree of conversion (DC%), roughness (Ra), Knoop hardness (KHN), flexural strength (FS), flexural modulus (FM), water sorption (Wsp), water solubility (Wsl), and translucency (TP). Data were analyzed to one-way ANOVA and Tukey's HSD test (α=0.05). RESULTS All composites with PRG-Ca induced enamel remineralization. E0 and E1 presented similar and highest DC% than E2=E3=E4=E5=E6. Ra and KHN were not influenced by PRG-Ca fillers (p<0.05). The higher the content of PRG-Ca, the lower FS, FM and TP (p<0.05). Wsp increased linearly with the content of PRG-Ca fillers (p<0.05). E6 presented the highest Wsl (p<0.05), while the Wsl of the other composites were not different from each other (p>0.05). SIGNIFICANCE Incorporation of 10-40wt.% of PRG-Ca fillers endowed remineralizing potential to dental composites without jeopardizing the overall behavior of their physicochemical properties. Dental composites with PRG-Ca fillers seems to be a good alternative for reinforcing the enamel against caries development.
Collapse
Affiliation(s)
| | - Maristela Barbosa Portela
- Odontopediatric Division, School of Dentistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | | | - Aline de Almeida Neves
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Brazil; Department of Paediatric Dentistry, King's College London, London, UK
| | - Jaime Dutra Noronha-Filho
- Analitical Laboratory of Restorative Biomaterials - LABiom-R, School of Dentistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Amanda de Oliveira Mendes
- Analitical Laboratory of Restorative Biomaterials - LABiom-R, School of Dentistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Mariana Araújo Barros
- Analitical Laboratory of Restorative Biomaterials - LABiom-R, School of Dentistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Eduardo Moreira da Silva
- Analitical Laboratory of Restorative Biomaterials - LABiom-R, School of Dentistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Wang Y, Zhu M, Zhu XX. Functional fillers for dental resin composites. Acta Biomater 2021; 122:50-65. [PMID: 33290913 DOI: 10.1016/j.actbio.2020.12.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Dental resin composites (DRCs) are popular materials to repair caries. Although various types of DRCs with different characteristics have been developed, restoration failures still exist. Bulk fracture and secondary caries have been considered as main causes for the failure of composites restoration. To address these problems, various fillers with specific functions have been introduced and studied. Some fillers with specific morphologies such as whisker, fiber, and nanotube, have been used to increase the mechanical properties of DRCs, and other fillers releasing ions such as Ag+, Ca2+, and F-, have been used to inhibit the secondary caries. These functional fillers are helpful to improve the performances and lifespan of DRCs. In this article, we firstly introduce the composition and development of DRCs, then review and discuss the functional fillers classified according to their roles in the DRCs, finally give a summary on the current research and predict the trend of future development.
Collapse
Affiliation(s)
- Yazi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - X X Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
14
|
Pfeifer CS, Kreth J, Koley D, Ferracane JL. Considerations for Designing Next-Generation Composite Dental Materials. ORAL BIOFILMS AND MODERN DENTAL MATERIALS 2021:99-114. [DOI: 10.1007/978-3-030-67388-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Memarpour M, Afzali Baghdadabadi N, Rafiee A, Vossoughi M. Ion release and recharge from a fissure sealant containing amorphous calcium phosphate. PLoS One 2020; 15:e0241272. [PMID: 33151995 PMCID: PMC7643944 DOI: 10.1371/journal.pone.0241272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 10/13/2020] [Indexed: 11/19/2022] Open
Abstract
To assess- the release of calcium and phosphate ions from a fissure sealant containing amorphous calcium phosphate (ACP), and to determine the re-release capacity of these ions when charged with a solution containing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). Nine blocks of ACP resin-based sealant were prepared and immersed in three solutions at different pH (4.0, 5.5, 7.0), and calcium and phosphate ion release was measured with ion chromatography at 1, 3, 5, 7, 14, 21 and 28 days after immersion. Sixty days after immersion, each block was charged with CPP-ACP solution in three 7-day cycles to investigate the re-release of these ions, which was measured on days 1, 3, and 7. No difference was observed in initial calcium ion release at pH 4.0 and pH 5.5. At both values, ion release was significantly higher than at pH 7.0 (p<0.001). Initial phosphate release was significantly different among the three pH values (p<0.001). After re-charging the specimens, calcium ion re-release was greater than phosphate ion release. Initial ion release from ACP resin-based sealant was greatest at the lowest pH. Ion release decreased with time. As the number of recharge cycles increased, ion re-release also improved. Phosphate ion re-release required more recharge cycles than calcium ion re-release.
Collapse
Affiliation(s)
- Mahtab Memarpour
- Oral and Dental Disease Research Center, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Afzali Baghdadabadi
- Oral and Dental Disease Research Center, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azade Rafiee
- Oral and Dental Disease Research Center, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Vossoughi
- Oral and Dental Disease Research Center, Department of Dental Public Health, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Vilela MS, Bernal VL, Chagas LLC, Vichi FM, Aranha ACC, Arana-Chavez VE, Braga RR, Rodrigues MC. Mechanical properties and surface roughness of polymer-based materials containing DCPD particles. Braz Oral Res 2020; 34:e095. [PMID: 32901725 DOI: 10.1590/1807-3107bor-2020.vol34.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/17/2020] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to synthesize dicalcium phosphate dihydrate (DCPD) particles functionalized with triethylene glycol dimethacrylate (TEGDMA) through different routes by varying the receptor solution: ammonium phosphate (AP groups) or calcium nitrate (CN groups) and the moment in which TEGDMA was incorporated: ab initio (ab) or at the end of dripping the solution (ap). Two syntheses were performed without adding TEGDMA (nf). The particles were characterized by X-ray diffractometry, true density (using a helium pycnometer), surface area, and scanning electron microscopy. A 20 vol% of DCPD particles from the D, E, and F groups was added to the resin matrix to determine the degree of conversion (DC), biaxial flexural strength (BFS), the flexural modulus (FM), and surface roughness after an abrasive challenge (RA). A group with silanized barium glass particles was tested as a control. The data were submitted to ANOVA/Tukey's test (DC, BFS, and RA), and the Kruskal-Wallis test (FM) (alpha = 0.05). BFS values varied between 83 and 142 MPa, and the CN_ab group presented a similar value (123 MPa) to the control group. FM values varied between 3.6 and 8.7 GPa (CN_ab and CN_nf groups, respectively), with a significant difference found only between these groups. RA did not result in significant differences. The use of calcium nitrate solution as a receptor, together with ab initio functionalization formed particles with larger surface areas. Higher BFS values were observed for the material containing DCPD particles with a higher surface area. In general, the DC, FM, and RA values were not affected by the variables studied.
Collapse
Affiliation(s)
- Mateus Silva Vilela
- Universidade Cruzeiro do Sul, Graduate Program in Dentistry, São Paulo, SP, Brazil
| | - Vitória Leão Bernal
- Universidade Cruzeiro do Sul, Graduate Program in Dentistry, São Paulo, SP, Brazil
| | | | - Flávio Maron Vichi
- Universidade de São Paulo - USP, Institute of Chemistry, Department of Fundamental Chemistry, São Paulo, SP, Brazil
| | - Ana Cecília Corrêa Aranha
- Universidade de São Paulo - USP, School of Dentistry, Department of Operative Dentistry, São Paulo, SP, Brazil
| | - Victor Elias Arana-Chavez
- Universidade de São Paulo - USP, School of Dentistry, Department of Biometarials and Oral Biology, São Paulo, SP, Brazil
| | - Roberto Ruggiero Braga
- Universidade de São Paulo - USP, School of Dentistry, Department of Biometarials and Oral Biology, São Paulo, SP, Brazil
| | | |
Collapse
|
17
|
Balbinot GS, Leitune VCB, Ogliari FA, Collares FM. Niobium silicate particles promote in vitro mineral deposition on dental adhesive resins. J Dent 2020; 101:103449. [PMID: 32777240 DOI: 10.1016/j.jdent.2020.103449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE This study aims to analyze the addition of niobium silicate particles to dental adhesive resins and evaluate its physicomechanical and biological properties. METHODS The SiNb particles were produced by the sol-gel route and presented a mean particle size of 2.1 μm and a specific surface area of 616,96m2/g. An experimental adhesive resin was formulated with 66 wt% Bisphenol A-Glycidyl Methacrylate and 33 wt% Hydroxyethyl methacrylate with diphenyl(2,4,6-trimethyl benzoyl)phosphine oxide as the photoinitiator. The SiNb particles were incorporated into the adhesive resins in 1 wt% (SiNb1%) and 2 wt% (SiNb2%) concentration. A control group (SiNb0%) without the addition of particles was used. The developed adhesives were evaluated by their polymerization kinetics, refractive index, softening in solvent, cytotoxicity, mineral deposition, ultimate tensile strength, and micro shear bond strength. RESULTS The refractive index range was increased by the addition of niobium silicate particles. No statistically significant difference was found between groups in the degree of conversion,.softening in solvent analysis, cytotoxicity and ultimate tensile strength. The deposition of minerals increased after immersion of specimens in SBF after 14 days on the SiNb2%. The SiNb2% group showed high micro shear bond strength values, reaching 33.87 MPa. CONCLUSION In the present study, the addition of 2 wt% of niobium silicate into dental adhesive resins promoted the mineral deposition with increased bond strength without affecting other material properties. CLINICAL SIGNIFICANCE Bioactive fillers must maintain the physical-chemical properties of dental adhesives, guaranteeing their clinical performance. Niobium silicate particles could promote the remineralization of dentin hard tissues without compromising the physico-mechanical properties on these materials.
Collapse
Affiliation(s)
- G S Balbinot
- Department of Dental Materials, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - V C B Leitune
- Yller Biomaterials SA- Straumann Group, Pelotas, RS, Brazil.
| | - F A Ogliari
- Yller Biomaterials SA- Straumann Group, Pelotas, RS, Brazil.
| | - F M Collares
- Department of Dental Materials, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
Development of brushite particles synthesized in the presence of acidic monomers for dental applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111178. [PMID: 32806326 DOI: 10.1016/j.msec.2020.111178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To synthesize and characterize brushite particles in the presence of acidic monomers (acrylic acid/AA, citric acid/CA, and methacryloyloxyethyl phosphate/MOEP) and evaluate the effect of these particles on degree of conversion (DC), flexural strength/modulus (FS/FM) and ion release of experimental composites. METHODS Particles were synthesized by co-precipitation with monomers added to the phosphate precursor solution and characterized for monomer content, size and morphology. Composites containing 20 vol% brushite and 40 vol% reinforcing glass were tested for DC, FS and FM (after 24 h and 60 d in water), and 60-day ion release. Data were subjected to ANOVA/Tukey tests (DC) or Kruskal-Wallis/Dunn tests (FS and FM, alpha: 5%). RESULTS The presence of acidic monomers affected particle morphology. Monomer content on the particles was low (0.1-1.4% by mass). Composites presented similar DC. For FS/24 h, only the composite containing DCPD_AA was statistically similar to the composite containing 60 vol% of reinforcing glass (without brushite, "control"). After 60 days, all brushite-containing materials showed similar FS, statistically lower than the control composite (p<0.01). Composites containing DCPD_AA, DCPD_MOEP or DCPD_U ("unmodified") showed statistically similar FM/24 h, higher than the control composite. After prolonged immersion, all composites were similar to the control composite, except DCPD_AA. Cumulative ion release ranged from 21 ppm to 28 ppm (calcium) and 9 ppm to 17 ppm (phosphate). Statistically significant reductions in ion release between 15 and 60 days were detected only for the composite containing DCPD_MOEP. SIGNIFICANCE Acidic monomers added to the synthesis affected brushite particle morphology. After 60-day storage in water, composite strength was similar among all brushite-containing composites. Ion release was sustained for 60 days and it was not affected by particle morphology.
Collapse
|
19
|
Jardim RN, Rocha AA, Rossi AM, de Almeida Neves A, Portela MB, Lopes RT, Pires Dos Santos TM, Xing Y, Moreira da Silva E. Fabrication and characterization of remineralizing dental composites containing hydroxyapatite nanoparticles. J Mech Behav Biomed Mater 2020; 109:103817. [PMID: 32543392 DOI: 10.1016/j.jmbbm.2020.103817] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 11/25/2022]
Abstract
The aim of this study was to fabricate and characterize dental composites containing hydroxyapatite nanoparticles (HApNPs). Four dental composites were produced from the same organic matrix (70 wt% Bis-GMA and 30 wt% TEGDMA), with partial replacement of BaBSi particles (65 wt%) by HApNPs in the following concentrations (wt%): E0 (0) - control, E10 (10), E20 (20) and E30 (30). Ca2+ and PO43- release was evaluated in solutions with different pHs (4, 5.5, and 7) using atomic emission spectroscopy with microwave-induced nitrogen plasma while the enamel remineralization potential was evaluated in caries-like enamel lesions induced by S. mutans biofilm using micro-CT. The following properties were characterized: degree of conversion (DC%), microhardness (KHN), flexural strength (FS), elastic modulus (EM) and translucency (TP). The higher the HApNPs content, the higher the Ca2+ and PO43- release. The ions release was influenced by pH (4 > 5.5 > 7) (p < 0.05). All composites loaded with HApNPs were able to remineralize the enamel (E30 = E20 > E10) (p < 0.05). Contrarily, E0 was not able of recovering the enamel mineral loss. E0 and E10 presented highest DC%, while E20 and E30 showed similar and lowest DC%. KHN and FS were decreased with the addition of HApNPs, while EM was not influenced by the incorporation of HApNPs. E10 presented statistically similar TP to E0, while this property decreased for E20 and E30 (p < 0.05). Incorporation of HApNPs into dental composites promoted enamel remineralization, mainly at potentially cariogenic pH (= 4), while maintained their overall performance in terms of physicomechanical properties.
Collapse
Affiliation(s)
- Renata Nunes Jardim
- Analytical Laboratory of Restorative Biomaterials - LABiom-R, School of Dentistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Anderson Araújo Rocha
- Department of Analytical Chemistry and NAB - Nucleus of Biomass Studies and Water Management - Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | | | - Aline de Almeida Neves
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Paediatric Dentistry, King's College London, London, UK
| | - Maristela Barbosa Portela
- Odontopediatric Division, School of Dentistry, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Ricardo Tadeu Lopes
- Laboratory for Nuclear Instrumentation, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Yutao Xing
- High-resolution Electron Microscopy Lab, Advanced Characterization Center for Petroleum Industry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Eduardo Moreira da Silva
- Analytical Laboratory of Restorative Biomaterials - LABiom-R, School of Dentistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
Foong LK, Foroughi MM, Mirhosseini AF, Safaei M, Jahani S, Mostafavi M, Ebrahimpoor N, Sharifi M, Varma RS, Khatami M. Applications of nano-materials in diverse dentistry regimes. RSC Adv 2020; 10:15430-15460. [PMID: 35495474 PMCID: PMC9052824 DOI: 10.1039/d0ra00762e] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Research and development in the applied sciences at the atomic or molecular level is the order of the day under the domain of nanotechnology or nano-science with enormous influence on nearly all areas of human health and activities comprising diverse medical fields such as pharmacological studies, clinical diagnoses, and supplementary immune system. The field of nano-dentistry has emerged due to the assorted dental applications of nano-technology. This review provides a brief introduction to the general nanotechnology field and a comprehensive overview of the synthesis features and dental uses of nano-materials including current innovations and future expectations with general comments on the latest advancements in the mechanisms and the most significant toxicological dimensions.
Collapse
Affiliation(s)
- Loke Kok Foong
- Institute of Research and Development, Duy Tan University Da Nang 550000 Viet Nam
| | | | - Armita Forutan Mirhosseini
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 3433210051 +98 34331321750
| | - Mohadeseh Safaei
- Student Research Committee, School of Public Health, Bam University of Medical Sciences Bam Iran
| | - Shohreh Jahani
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 3433210051 +98 34331321750
- Student Research Committee, School of Public Health, Bam University of Medical Sciences Bam Iran
| | - Maryam Mostafavi
- Tehran Dental Branch, Islamic Azad University Tehran Iran
- Craniomaxilofacial Resarch Center, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Nasser Ebrahimpoor
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences Kerman Iran
| | - Maryam Sharifi
- Department of Pediatric Dentistry, School of Dentistry, Kerman University of Medical Sciences Kerman Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Mehrdad Khatami
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 3433210051 +98 34331321750
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences Kerman Iran
| |
Collapse
|
21
|
Vilela HS, Campos AL, Cabral C, Chiari MD, Vieira DN, Braga RR. Effect of calcium orthophosphate: Reinforcing glass ratio and prolonged water storage on flexural properties of remineralizing composites. J Mech Behav Biomed Mater 2020; 104:103637. [DOI: 10.1016/j.jmbbm.2020.103637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/31/2019] [Accepted: 01/11/2020] [Indexed: 11/27/2022]
|
22
|
van Dijken JWV, Pallesen U, Benetti A. A randomized controlled evaluation of posterior resin restorations of an altered resin modified glass-ionomer cement with claimed bioactivity. Dent Mater 2018; 35:335-343. [PMID: 30527586 DOI: 10.1016/j.dental.2018.11.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/21/2018] [Accepted: 11/23/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The objective of this randomized controlled prospective clinical trial was to evaluate the short time clinical behaviour of an altered resin modified glass-ionomer cement (RMGIC), which is claimed to possess bioactivity, in posterior restorations and to compare it intraindividually with a nanofilled resin composite. METHODS Totally 78 pairs Class II and 4 pairs Class I restorations were placed in 29 female and 38 male participants with a mean age of 58.3 years (range 37-86). Each patient received at random at least one pair of, as similar as possible, Class II or Class I restorations. In the first cavity of each pair, the modified flowable RMGIC (ACTIVA Bioactive; AB) was placed after phosphoric acid etching of the cavity and without adhesive, according to the instructions of the manufacturer. In the other cavity a well established nanofilled resin composite (CeramX; RC) with a single step self-etch adhesive (Xeno Select) was placed. The restorations were evaluated using slightly modified USPHS criteria at baseline, 6 and 12 months. Caries risk and parafunctional habits of the participants were estimated. RESULTS 158 restorations, 8 Class I and 150 Class II, were evaluated at the one year recalls. At baseline two failed restorations were observed (2AB), at 6 months six failures (5AB, 1RC) and at 12 months another thirteen failed restorations were observed (12AB, 1RC). This resulted in annual failure rates of 24.1% for the AB and 2.5% for RC (p<0.0001). The main reasons for failure for AB were lost restorations (5), postoperative symptoms (4) and secondary caries (3). Do to the unacceptable very high one-year failure frequency, the clinical study was stopped and no further evaluation will be performed. SIGNIFICANCE The use of the AB restorative in Class II cavities, applied as instructed by the manufacturer after a short phosphoric acid pretreatment but without adhesive system, resulted in a non-acceptable very high failure frequency after a one year period. Further studies should be conducted using a bonding agent.
Collapse
Affiliation(s)
| | - Ulla Pallesen
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Ana Benetti
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
23
|
Braga RR. Calcium phosphates as ion-releasing fillers in restorative resin-based materials. Dent Mater 2018; 35:3-14. [PMID: 30139530 DOI: 10.1016/j.dental.2018.08.288] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 01/30/2023]
Abstract
Calcium phosphates (CaP) are the main constituents of the mineral phase in bones and teeth and, along with calcium silicates and bioactive glasses, have been extensively investigated in remineralization of enamel and dentin. When used as ion-releasing fillers in resin-based materials, they could contribute to extend the service life of adhesive restorations, remineralize caries-affected dentin or prevent caries lesions under sealants and orthodontic brackets. However, the development of resin-based bioactive materials is not straightforward because of the several compositional variables involved in ion release. Also, CaP particles do not reinforce the material; therefore, if high mechanical properties are required, the ratio between CaP particles and reinforcing fillers must be observed. Several research groups have investigated how CaP phase, particle size and content, as well as resin matrix formulation affect remineralization, ion release kinetics and mechanical properties of these materials. This review presents an overview of the main findings reported in the literature.
Collapse
Affiliation(s)
- Roberto Ruggiero Braga
- Department of Biomaterials and Oral Biology, University of São Paulo School of Dentistry, Av. Prof. Lineu Prestes, 2227 São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
24
|
Natale LC, Rodrigues MC, Alania Y, Chiari MD, Boaro LC, Cotrim M, Vega O, Braga RR. Mechanical characterization and ion release of bioactive dental composites containing calcium phosphate particles. J Mech Behav Biomed Mater 2018; 84:161-167. [DOI: 10.1016/j.jmbbm.2018.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 01/13/2023]
|