1
|
Xie Y, Chen R, Yao W, Ma L, Li B. Synergistic effect of ion-releasing fillers on the remineralization and mechanical properties of resin-dentin bonding interfaces. Biomed Phys Eng Express 2023; 9:062001. [PMID: 37832527 DOI: 10.1088/2057-1976/ad0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
In modern restorative dentistry, adhesive resin materials are vital for achieving minimally invasive, esthetic, and tooth-preserving restorations. However, exposed collagen fibers are found in the hybrid layer of the resin-dentin bonding interface due to incomplete resin penetration. As a result, the hybrid layer is susceptible to attack by internal and external factors such as hydrolysis and enzymatic degradation, and the durability of dentin bonding remains limited. Therefore, efforts have been made to improve the stability of the resin-dentin interface and achieve long-term clinical success. New ion-releasing adhesive resin materials are synthesized by introducing remineralizing ions such as calcium and phosphorus, which continuously release mineral ions into the bonding interface in resin-bonded restorations to achieve dentin biomimetic remineralization and improve bond durability. As an adhesive resin material capable of biomimetic mineralization, maintaining excellent bond strength and restoring the mechanical properties of demineralized dentin is the key to its function. This paper reviews whether ion-releasing dental adhesive materials can maintain the mechanical properties of the resin-dentin bonding interface by supplementing the various active ingredients required for dentin remineralization from three aspects: phosphate, silicate, and bioactive glass.
Collapse
Affiliation(s)
- Yimeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Ruhua Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Wei Yao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Liang Ma
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| |
Collapse
|
2
|
Asokan V, Yelleti G, Bhat C, Bajaj M, Banerjee P. A novel peptide isolated from Catla skin collagen acts as a self-assembling scaffold promoting nucleation of calcium-deficient hydroxyapatite nanocrystals. J Biochem 2023; 173:197-224. [PMID: 36494197 DOI: 10.1093/jb/mvac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Catla collagen hydrolysate (CH) was fractionated by chromatography and each fraction was subjected to HA nucleation, with the resultant HA-fraction composites being scored based on the structural and functional group of the HA formed. The process was repeated till a single peptide with augmented HA nucleation capacity was obtained. The peptide (4.6 kDa), exhibited high solubility, existed in polyproline-II conformation and displayed a dynamic yet stable hierarchical self-assembling property. The 3D modelling of the peptide revealed multiple calcium and phosphate binding sites and a high propensity to self-assemble. Structural analysis of the peptide-HA crystals revealed characteristic diffraction planes of HA with mineralization following the (002) plane, retention of the self-assembled hierarchy of the peptide and intense ionic interactions between carboxyl groups and calcium. The peptide-HA composite crystals were mostly of 25-40 nm dimensions and displayed 79% mineralization, 92% crystallinity, 39.25% porosity, 12GPa Young's modulus and enhanced stability in physiological pH. Cells grown on peptide-HA depicted faster proliferation rates and higher levels of osteogenic markers. It was concluded that the prerequisite for HA nucleation by a peptide included: a conserved sequence with a unique charge topology allowing calcium chelation and its ability to form a dynamic self-assembled hierarchy for crystal propagation.
Collapse
Affiliation(s)
- Vishwadeep Asokan
- Department of Biochemistry, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka 560078, India
| | - Geethika Yelleti
- Department of Biochemistry, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka 560078, India
| | - Chetna Bhat
- Department of Biochemistry, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka 560078, India
| | - Mayur Bajaj
- School of Biological Sciences, Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh 517507, India
| | - Pradipta Banerjee
- Department of Biochemistry, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka 560078, India
| |
Collapse
|
3
|
Dexamethasone and zinc loaded polymeric nanoparticles reinforce and remineralize coronal dentin. A morpho-histological and dynamic-biomechanical study. Dent Mater 2023; 39:41-56. [PMID: 36460577 DOI: 10.1016/j.dental.2022.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the effect of novel polymeric nanoparticles (NPs) doped with dexamethasone (Dex) on viscoelasticity, crystallinity and ultra-nanostructure of the formed hydroxyapatite after NPs dentin infiltration. METHODS Undoped-NPs, Dex-doped NPs (Dex-NPs) and zinc-doped-Dex-NPs (Zn-Dex-NPs) were tested at dentin, after 24 h and 21 d. A control group without NPs was included. Coronal dentin surfaces were studied by nano-dynamic mechanical analysis measurements, atomic force microscopy, X-ray diffraction and transmission electron microscopy. Mean and standard deviation were analyzed by ANOVA and Student-Newman-Keuls multiple comparisons (p < 0.05). RESULTS At 21 d of storage time, both groups doped with Dex exhibited the highest complex, storage and loss moduli among groups. Zn-Dex-NPs and Dex-NPs promoted the highest and lowest tan delta values, respectively. Dex-NPs contributed to increase the fibril diameters of dentin collagen over time. Dentin surfaces treated with Zn-Dex-NPs attained the lowest nano-roughness values, provoked the highest crystallinity, and produced the longest and shortest crystallite and grain size. These new crystals organized with randomly oriented lattices. Dex-NPs induced the highest microstrain. Crystalline and amorphous matter was present in the mineral precipitates of all groups, but Zn and Dex loaded NPs helped to increase crystallinity. SIGNIFICANCE Dentin treated with Zn-Dex-NPs improved crystallographic and atomic order, providing structural stability, high mechanical performance and tissue maturation. Amorphous content was also present, so high hydroxyapatite solubility, bioactivity and remineralizing activity due to the high ion-rich environment took place in the infiltrated dentin.
Collapse
|
4
|
Chen Y, Wu R, Shen L, Yang Y, Wang G, Yang B. The multi-scale meso-mechanics model of viscoelastic dentin. J Mech Behav Biomed Mater 2022; 136:105525. [PMID: 36302275 DOI: 10.1016/j.jmbbm.2022.105525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Human dentin is a hierarchical material with multi-level micro-/nano-structures, consisting of tubule, perti-tubular dentin (PTD) and intertubular dentin (ITD) as the major constituents at microscale; and the PTD and ITD are further composed of collagen and hydroxyapatite (HAp) crystals with different volume fractions at nanoscale. In most cases, the HAp is considered as elastic while the collagen as viscoelastic material. It is of great significance to study the hierarchical structure and viscoelasticity of human dentin to understand the mechanical properties of dentin for further development of restorative materials. Based on this, this paper focuses on multiscale modeling of the elastic properties and dynamic viscoelastic response of dentin and establishes a bottom-up micromechanics model from nano-to macro-scale. In order to study the nanostructural effect on the viscoelastic behavior of hierarchical structures, the homogenization theories of random platelets composites (HTRPC) and the locally-exact homogenization theory (LEHT) are introduced for the homogenization of heterogeneous materials of microstructures at different levels. The HTRPC, based on Eshelby Inclusion theory, is used to predict the effective modulus of PTD and ITD. The LEHT is a method for homogenizing multiphase dentin characterized by repeated unit cells (RUCs). The resulting predictions are in very good agreement with several experimental data from the literature. In addition, the results of nanostructrual effect on dentin show that the viscoelasticity of dentin is majorly contributed by collagen and the HAp greatly provide the strength and hardness of dentin. Furthermore, the ageing effect on dentin's viscoelasticity is considered from the proposed multiscale micromechanics model. It is demonstrated that the ageing effect is much more influential in affecting the loss moduli of dentin than the storage.
Collapse
Affiliation(s)
- Yusen Chen
- Department of Civil Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rui Wu
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Center for Balance Architecture, Zhejiang University, Hangzhou, 310007, China
| | - Lulu Shen
- Department of Civil Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yabin Yang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guannan Wang
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Center for Balance Architecture, Zhejiang University, Hangzhou, 310007, China.
| | - Bo Yang
- Department of Civil Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
5
|
Akartasse N, Azzaoui K, Mejdoubi E, Hanbali G, Elansari LL, Jodeh S, Hammouti B, Jodeh W, Lamhamdi A. Study and Optimization of the Synthesis of Apatitic Nanoparticles by the Dissolution/Precipitation Method. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06283-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Saghiri MA, Vakhnovetsky J, Vakhnovetsky A, Ghobrial M, Nath D, Morgano SM. Functional role of inorganic trace elements in dentin apatite tissue-Part 1: Mg, Sr, Zn, and Fe. J Trace Elem Med Biol 2022; 71:126932. [PMID: 35101699 DOI: 10.1016/j.jtemb.2022.126932] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 01/14/2022] [Indexed: 12/19/2022]
Abstract
Many essential elements exist in nature with significant influence on dentin and bone apatite tissue. Hydroxyapatite (HAp) is the major inorganic crystalline structure of dentin that provides a site for various physiological functions such as surface layer ion exchange. Decades of apatite research have shown that enamel is a high-substituted crystalline apatite, but recent findings suggest that dentin apatite may play a more important role in regulating ion exchange as well as mineral crystallinity. This article is the first part of a review series on the functional role of inorganic trace elements including magnesium, strontium, zinc, and iron in dentin hydroxyapatite. The morphology, physiology, crystallinity, and solubility of these elements as they get substituted into the HAp lattice are extensively discussed. An electronic search was performed on the role of these elements in dentin apatite from January 2007 to September 2021. The relationship between different elements and their role in the mineral upkeep of dentin apatite was evaluated. Several studies recognized the role of these elements in dentinal apatite composition and its subsequent effects on morphology, crystallinity, and solubility. These elements are of great importance in physiological processes and an essential part of living organisms. Magnesium and strontium stimulate osteoblast activity, while zinc can improve overall bone quality with its antibacterial properties. Iron nanoparticles are also vital in promoting bone tissue growth as they donate or accept electrons in redox reactions. Thus, understanding how these elements impact dentin apatite structure is of great clinical significance.
Collapse
Affiliation(s)
- Mohammad Ali Saghiri
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, United States; Department of Endodontics, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, United States.
| | - Julia Vakhnovetsky
- Sector of Angiogenesis Regenerative Medicine, Dr. Hajar Afsar Lajevardi Research Cluster (DHAL), Hackensack, NJ, United States; Rutgers School of Dental Medicine, Newark, NJ, United States
| | | | - Marina Ghobrial
- New Jersey Institute of Technology, Newark, NJ, United States
| | - Devyani Nath
- Biomaterial and Prosthodontics Laboratory, Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Steven M Morgano
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, United States
| |
Collapse
|
7
|
Choe YE, Kim YJ, Jeon SJ, Ahn JY, Park JH, Dashnyam K, Mandakhbayar N, Knowles JC, Kim HW, Jun SK, Lee JH, Lee HH. Investigating the mechanophysical and biological characteristics of therapeutic dental cement incorporating copper doped bioglass nanoparticles. Dent Mater 2021; 38:363-375. [PMID: 34933758 DOI: 10.1016/j.dental.2021.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study was investigated the mechanophysical properties of zinc phosphate cement (ZPC) with or without the copper doped bioglass nanoparticles (Cu-BGn) and their biological effect on dental pulp human cells and bacteria. MATERIALS AND METHODS Cu-BGn were synthesized and characterized firstly and then, the experimental (Cu-ZPC) and control (ZPC) samples were fabricated with similar sizes and/or dimensions (diameter: 4 mm and height: 6 mm) based on the International Organization of Standards (ISO). Specifically, various concentrations of Cu-BGn were tested, and Cu-BGn concentration was optimized at 2.5 wt% based on the film thickness and overall setting time. Next, we evaluated the mechanophysical properties such as compressive strength, elastic modulus, hardness, and surface roughness. Furthermore, the biological behaviors including cell viability and odontoblastic differentiation by using dental pulp human cells as well as antibacterial properties were investigated on the Cu-ZPC. All data were analyzed statistically using SPSS® Statistics 20 (IBM®, USA). p < 0.05 (*) was considered significant, and 'NS' represents nonsignificant. RESULTS Cu-BGn was obtained via a sol-gel method and added onto the ZPC for fabricating a Cu-ZPC composite and for comparison, the Cu-free-ZPC was used as a control. The film thickness (≤ 25 µm) and overall setting time (2.5-8 min) were investigated and the mechanophysical properties showed no significance ('NS') between Cu-ZPC and bare ZPC. However, cell viability and odontoblastic differentiation, alkaline phosphate (ALP) activity and alizarin red S (ARS) staining were highly stimulated in the extracts from the Cu-ZPC group compared to the ZPC group. Additionally, the antibacterial test showed that the Cu-ZPC extracts were more effective than the ZPC extracts (p < 0.05). SIGNIFICANCE Cu-ZPC showed adequate mechanophysical properties (compressive strength, hardness, and surface roughness) and enhanced odontoblastic differentiation as well as antibacterial properties compared to the ZPC-only group. Based on the findings, the fabricated Cu-ZPC might have the potential for use in the field of dental medicine and clinical applications.
Collapse
Affiliation(s)
- Young-Eun Choe
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Yu-Jin Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Se-Jeong Jeon
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Jun-Yong Ahn
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Drug Research Institute, Mongolian Pharmaceutical University & Monos group, Ulaanbaatar 14250, Mongolia.
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea; Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK; The Discoveries Centre for Regenerative and Precision Medicine, Eastman Dental Institute, University College London, London, UK.
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea.
| | - Soo-Kyung Jun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Dental Hygiene, Hanseo University, 46 Hanseo 1-ro, Seosan, Chungcheongnam-do 31962, Republic of Korea.
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea.
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| |
Collapse
|
8
|
An Occam’s razor: Synthesis of osteoinductive nanocrystalline implant coatings on hierarchical superstructures formed by Mugil cephalus skin hydrolysate. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
The Application of Chitosan Nanostructures in Stomatology. Molecules 2021; 26:molecules26206315. [PMID: 34684896 PMCID: PMC8541323 DOI: 10.3390/molecules26206315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan (CS) is a natural polymer with a positive charge, a deacetylated derivative of chitin. Chitosan nanostructures (nano-CS) have received increasing interest due to their potential applications and remarkable properties. They offer advantages in stomatology due to their excellent biocompatibility, their antibacterial properties, and their biodegradability. Nano-CSs can be applied as drug carriers for soft tissue diseases, bone tissue engineering and dental hard tissue remineralization; furthermore, they have been used in endodontics due to their antibacterial properties; and, finally, nano-CS can improve the adhesion and mechanical properties of dental-restorative materials due to their physical blend and chemical combinations. In this review, recent developments in the application of nano-CS for stomatology are summarized, with an emphasis on nano-CS’s performance characteristics in different application fields. Moreover, the challenges posed by and the future trends in its application are assessed.
Collapse
|
10
|
Toledano-Osorio M, Aguilera FS, Muñoz-Soto E, Osorio E, Toledano M, Escames G, Medina-Castillo AL, Osorio MT, López-López MT, Vallecillo-Rivas M, Osorio R. Melatonin-doped polymeric nanoparticles induce high crystalline apatite formation in root dentin. Dent Mater 2021; 37:1698-1713. [PMID: 34544591 DOI: 10.1016/j.dental.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/04/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the effect of novel polymeric nanoparticles (NPs) doped with melatonin (ML) on nano-hardness, crystallinity and ultrastructure of the formed hydroxyapatite after endodontic treatment. METHODS Undoped-NPs and ML-doped NPs (ML-NPs) were tested at radicular dentin, after 24 h and 6 m. A control group without NPs was included. Radicular cervical and apical dentin surfaces were studied by nano-hardness measurements, X-ray diffraction and transmission electron microscopy. Mean and standard deviation were analyzed by ANOVA and Student-Newman-Keuls multiple comparisons (p < 0.05). RESULTS Cervical dentin treated with undoped NPs maintained its nano-hardness values after 6 m of storage being [24 h: 0.29 (0.01); 6 m: 0.30 (0.02) GPa], but it decreased at apical dentin [24 h: 0.36 (0.01); 6 m: 0.28 (0.02) GPa]. When ML-NPs were used, nano-hardness was similar over time [24h: 0.31 (0.02); 6 m: 0.28 (0.03) GPa], at apical dentin. Root dentin treated with ML-NPs produced, in general, high crystallinity of new minerals and thicker crystals than those produced in the rest of the groups. After 6 m, crystals became organized in randomly oriented polyhedral, square polygonal block-like apatite or drop-like apatite polycrystalline lattices when ML-NPs were used. Undoped NPs generated poor crystallinity, with preferred orientation of small crystallite and increased microstrain. SIGNIFICANCE New polycrystalline formations encountered in dentin treated with ML-NPs may produce structural dentin stability and high mechanical performance at the root. The decrease of mechanical properties over time in dentin treated without NPs indicates scarce remineralization potential, dentin demineralization and further potential degradation. The amorphous stage may provide high hydroxyapatite solubility and remineralizing activity.
Collapse
Affiliation(s)
- Manuel Toledano-Osorio
- University of Granada, Department of Stomatology, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Fátima S Aguilera
- University of Granada, Department of Stomatology, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Esther Muñoz-Soto
- University of Granada, Department of Stomatology, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Estrella Osorio
- University of Granada, Department of Stomatology, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Manuel Toledano
- University of Granada, Department of Stomatology, Colegio Máximo de Cartuja s/n, Granada 18071, Spain.
| | - Germaine Escames
- Faculty of Medicine, Department of Physiology, Biomedical Research Center, CIBERFES, Ibs. San Cecilio University Hospital, University of Granada, Granada, Spain
| | - Antonio L Medina-Castillo
- University of Granada, NanoMyP, Spin-Off Enterprise, Edificio BIC-Granada, Av. Innovación 1, 18016, Armilla, Granada, Spain
| | | | - Modesto T López-López
- University of Granada, Faculty of Science, Applied Physics Department, Av. Fuente Nueva s/n, 18071 Granada, Spain
| | - Marta Vallecillo-Rivas
- University of Granada, Department of Stomatology, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Raquel Osorio
- University of Granada, Department of Stomatology, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| |
Collapse
|
11
|
Khan AS, AlMaimouni YK, Benrashed MA, Alyousef NI, Siddiqui U, Ahmad N, Ateeq IS, Hakeem AS. A laboratory study to assess the physical, mechanical, and 3-D structural properties of nano-apatite grafted glass fibre-based endodontic posts. Int Endod J 2021; 54:2307-2320. [PMID: 34496045 DOI: 10.1111/iej.13630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023]
Abstract
AIM To fabricate and characterize nano-hydroxyapatite (nHA) grafted and non-grafted glass fibre-based endodontic posts. METHODOLOGY Experimental glass fibre posts were fabricated using silanized nHA grafted (ex-HA) and non-grafted glass fibre (ex-P) reinforced resins. The structural analysis and morphological patterns were analysed with Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. EverStick® glass fibre posts (eS) were used as a control group. The degree of conversion, flexural strength, and flexural modulus was investigated and the fractured structure was evaluated with a scanning electron microscope. Root canals were prepared in human extracted teeth restored with experimental and control posts. The push-out bond strength was evaluated with radicular dentine at days 7, 30, and 90, and the presence of voids at the interface were measured at day 1, 7, 30, and 90 with micro-computed tomography. The Shapiro-Wilk test and one-way ANOVA post-hoc Tukey's test were performed. The level of significance was set at 0.05. RESULTS The SEM and FTIR confirmed the presence of a silane-coupling agent on the glass fibres. The ex-HA post had a significantly lower degree of conversion compared to the ex-P post (p = .0008), but a significantly higher conversion than the eS post (p = .0014). The maximum flexural strength value was obtained with the ex-HA post with an insignificant difference (p = .366) compared to ex-P post and a significant difference (p = .029) compared to the eS post. The flexural modulus of ex-HA, ex-P, and eS posts were significantly different (p = .037). Similarly, the ex-HA post had a significantly higher push-out bond strength at days 7 and 30 (p = .037) compared to the ex-P and eS posts. The volume of voids had a nonlinear behaviour amongst the groups with no significant difference between the posts. CONCLUSION The fabrication of the experimental posts was successful and the ex-HA post had greater flexural strength and push-out bond strength compared to the ex-P post. The degree of conversion of the ex-HA post was lower than the ex-P and eS posts. The volume of voids of ex-HA and ex-P posts was lower than that of eS posts.
Collapse
Affiliation(s)
- Abdul S Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Yara K AlMaimouni
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mashael A Benrashed
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nujood I Alyousef
- Dental Department, Marat General Hospital, Ministry of Health, Riyadh, Saudi Arabia
| | - Usama Siddiqui
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.,Department of Dental Materials, Rehman College of Dentistry, Peshawar, Pakistan
| | - Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ijlal S Ateeq
- Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abbas S Hakeem
- Interdisciplinary Research Center for Hydrogen & Energy Storage (IRC-HES), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
12
|
Melatonin-doped polymeric nanoparticles reinforce and remineralize radicular dentin: Morpho-histological, chemical and biomechanical studies. Dent Mater 2021; 37:1107-1120. [PMID: 33846017 DOI: 10.1016/j.dental.2021.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/15/2021] [Accepted: 03/28/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To investigate the effectiveness of novel polymeric nanoparticles (NPs) doped with melatonin (ML) in reducing dentin permeability and facilitating dentin remineralization after endodontic treatment. METHODS The effect of undoped NPs and ML-doped NPs (ML-NPs) was tested in radicular dentin, at 24 h and 6 m. A control group without NPs was included. ML liberation was measured. Radicular dentin was assessed for fluid filtration. Dentin remineralization was analyzed by scanning electron microscopy, AFM, Young's modulus (Ei), Nano DMA-tan delta, and Raman analysis. RESULTS ML release ranged from 1.85 mg/mL at 24 h to 0.033 mg/mL at 28 d. Both undoped NPs and ML-NPs treated dentin exhibited the lowest microleakage, but samples treated with ML-NPs exhibited hermetically sealed dentinal tubules and extended mineral deposits onto dentin. ML-NPs promoted higher and durable Ei, and functional remineralization at root dentin, generating differences between the values of tan delta among groups and creating zones of stress concentration. Undoped-NPs produced closure of some tubules and porosities at the expense of a relative mineral amorphization. Chemical remineralization based on mineral and organic assessments was higher in samples treated with ML-NPs. When using undoped NPs, precipitation of minerals occurred; however, radicular dentin was not mechanically reinforced but weakened over time. SIGNIFICANCE Application of ML-NPs in endodontically treated teeth, previous to the canal filling step, is encouraged due to occlusion of dentinal tubules and the reinforcement of the radicular dentin structure.
Collapse
|
13
|
Yedekçi B, Tezcaner A, Alshemary AZ, Yılmaz B, Demir T, Evis Z. Synthesis and sintering of B, Sr, Mg multi-doped hydroxyapatites: Structural, mechanical and biological characterization. J Mech Behav Biomed Mater 2021; 115:104230. [DOI: 10.1016/j.jmbbm.2020.104230] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022]
|
14
|
Zn-doping of silicate and hydroxyapatite-based cements: Dentin mechanobiology and bioactivity. J Mech Behav Biomed Mater 2020; 114:104232. [PMID: 33290910 DOI: 10.1016/j.jmbbm.2020.104232] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
The objective was to state zinc contribution in the effectiveness of novel zinc-doped dentin cements to achieve dentin remineralization, throughout a literature or narrative exploratory review. Literature search was conducted using electronic databases, such as PubMed, MEDLINE, DIMDI, Embase, Scopus and Web of Science. Both zinc-doping silicate and hydroxyapatite-based cements provoked an increase of both bioactivity and intrafibrillar mineralization of dentin. Zinc-doped hydroxyapatite-based cements (oxipatite) also induced an increase in values of dentin nano-hardness, Young's modulus and dentin resistance to deformation. From Raman analyses, it was stated higher intensity of phosphate peaks and crystallinity as markers of dentin calcification, in the presence of zinc. Zinc-based salt formations produced low microleakage and permeability values with hermetically sealed tubules at radicular dentin. Dentin treated with oxipatite attained preferred crystal grain orientation with polycrystalline lattices. Thereby, oxipatite mechanically reinforced dentin structure, by remineralization. Dentin treated with oxipatite produced immature crystallites formations, accounting for high hydroxyapatite solubility, instability and enhanced remineralizing activity.
Collapse
|
15
|
Arias-Moliz MT, Baca P, Solana C, Toledano M, Medina-Castillo AL, Toledano-Osorio M, Osorio R. Doxycycline-functionalized polymeric nanoparticles inhibit Enterococcus faecalis biofilm formation on dentine. Int Endod J 2020; 54:413-426. [PMID: 33107032 DOI: 10.1111/iej.13436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022]
Abstract
AIM To evaluate in a laboratory setting the antimicrobial properties and the potential to inhibit biofilm formation of novel remineralizing polymeric nanoparticles (NPs) when applied to dentine surfaces and to ascertain the effect of the functionalization of these NPs with zinc, calcium or doxycycline. METHODOLOGY The antimicrobial activity and inhibition of biofilm formation of polymeric NPs were analysed on human dentine blocks that were infected with Enterococcus faecalis before or after application of NPs. LIVE/DEAD ® testing under Confocal Laser Scanning Microscopy and bacterial culturing were employed to analyse biofilm biovolume and bacterial viability. Field Emission Scanning Electron Microscopy was also employed to assess biofilm morphology. One-way anova with Welch's correction and post hoc comparison by the Games-Howell test were performed for comparisons between groups. RESULTS The un-functionalized NPs displayed the greatest antimicrobial activity against E. faecalis biofilms as they provided the lowest biovolume (3865.7 ± 2926.97 µm3 ; P < 0.001) and the highest dead/injured cells percentage (79.93 ± 18.40%; P < 0.001), followed by Dox-NPs (biovolume: 19,041.55 ± 17,638.23 µm3 , dead/injured cells: 45.53 ± 26.50%; P < 0.001). Doxycycline-loaded NPs had the largest values of inhibition of biofilm formation with the lowest biofilm biovolume (8517.65 ± 7055.81 µm3 ; P < 0.001) and a high dead/injured bacterial percentage (68.68 ± 12.50%; P < 0.001). Un-functionalized NPs did not reduce biomass growth (P > 0.05), but attained the largest percentage of compromised cells (93 ± 8.23%; P < 0.001), being able to disrupt biofilm formation. It also produced occlusion of dentinal tubules, potentially interfering with bacterial tubule penetration. CONCLUSIONS A new generation of bioactive nano-fillers (doxycycline-functionalized polymeric NPs) had antibacterial activity and occluded dentinal tubules. Incorporating these NPs into endodontic sealers may have the potential to enhance the outcome of root canal treatment.
Collapse
Affiliation(s)
| | - P Baca
- Faculty of Dentistry, University of Granada, Granada, Spain
| | - C Solana
- Faculty of Dentistry, University of Granada, Granada, Spain
| | - M Toledano
- Faculty of Dentistry, University of Granada, Granada, Spain
| | | | | | - R Osorio
- Faculty of Dentistry, University of Granada, Granada, Spain
| |
Collapse
|