1
|
Łobacz M, Rahnama-Hezavah M, Mertowska P, Mertowski S, Wieczorek K, Hajduk G, Grywalska E. Dysregulation of the Immune System in Advanced Periimplantitis: Systemic Implications and Inflammatory Mechanisms-A Hematological and Immunological Study. J Clin Med 2025; 14:2453. [PMID: 40217900 PMCID: PMC11989658 DOI: 10.3390/jcm14072453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Objectives: This study aimed to assess the systemic and local inflammatory responses in patients with periimplantitis, focusing on key immune markers and clinical parameters. The study further explores the relationship between inflammatory markers, clinical indices, and immune dysregulation, particularly regarding T-cell exhaustion and systemic inflammation. Methods: A cohort of patients with periimplantitis, classified into moderate and advanced stages, was compared to a control group of healthy individuals with dental implants. Clinical parameters, including plaque index (API), bleeding on probing (BoP), probing pocket depth (PPD), and peri-implant sulcus depth (PSI), were recorded. Hematological, immunological, and biochemical analyses were performed, with a focus on immune cell populations (NK cells, T-cells, and their exhaustion markers PD-1 and PD-L1). Results: Patients with periimplantitis exhibited significantly higher clinical indices (API, BoP, PSI, and PPD) than the control group, with the most pronounced differences in the advanced periimplantitis group. Hematological analysis revealed increased leukocyte and neutrophil counts, whereas NK cell levels were significantly reduced. Immunological profiling indicated elevated PD-1 and PD-L1 expression on T-cells, suggesting T-cell exhaustion and immune dysregulation. Furthermore, strong correlations were found between increased PPD values and elevated inflammatory marker levels, highlighting the relationship between peri-implant pocket depth and systemic inflammation. Conclusions: The findings confirm that immune dysregulation plays a central role in periimplantitis progression. The association between increased inflammatory markers, immune alterations, and clinical indices emphasizes the need for a multifactorial diagnostic and treatment approach. Integrating immune modulation strategies, clinical assessments, and lifestyle modifications, such as improved oral hygiene and smoking cessation, could improve disease management and reduce recurrence.
Collapse
Affiliation(s)
- Michał Łobacz
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (K.W.); (G.H.)
| | - Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (K.W.); (G.H.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (S.M.); (E.G.)
| | - Katarzyna Wieczorek
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (K.W.); (G.H.)
| | - Grzegorz Hajduk
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (K.W.); (G.H.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (S.M.); (E.G.)
| |
Collapse
|
2
|
Gantier-Takano MK, Xing Y, Ye N, Aparicio C, Navarro Cuéllar C, Meira JBC, Fok ASL. Microgap Formation in Conical Implant-Abutment Connections Under Oblique Loading: Influence of Cone Angle Mismatch Through Finite Element Analysis. Clin Implant Dent Relat Res 2025; 27:e13436. [PMID: 39840917 DOI: 10.1111/cid.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/21/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025]
Abstract
OBJECTIVES This study evaluated different designs of the conical implant-abutment connection (IAC) and their resistance to microgap formation under oblique loads as specified by the ISO standard for testing dental implants. Also evaluated was the effect of deviations from the ISO specifications on the outcomes. METHODS Finite element analysis was conducted to compare the microgap formation and stress distribution among three conical IAC designs (A, B, and C) in two loading configurations: one compliant with ISO 14801 and one with a modified load adaptor (non-ISO). The different IAC designs varied in the taper, diameter, and cone height. The cone angle mismatch (Cam) between the implant and abutment was considered. A torque of 20 Ncm and oblique loads (up to 400 N) were simulated. RESULTS The stresses produced by the screw-tightening torque varied among the different IAC designs. The contact height was approximately 0.3 mm for Designs A and B, and less than 0.03 mm for Design C. Under oblique loads, Design A maintained IAC sealing without gap formation up to 400 N. With the ISO adaptor, gaps appeared in Design B at 300 N and in Design C at 90 N. The non-ISO adaptor resulted in gap formation at 160 N for Design B and at 50 N for Design C. CONCLUSIONS The IAC design and cone angle mismatch significantly influenced microgap formation, with some designs showing zero gaps even when the oblique load reached 400 N. The non-ISO adaptor increased gap formation in IACs B and C.
Collapse
Affiliation(s)
| | - Yiyun Xing
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ning Ye
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Conrado Aparicio
- Department of Research, Faculty of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carlos Navarro Cuéllar
- Maxillofacial Surgery Department, Hospital Gregorio Marañón, Madrid, Spain
- Surgery Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Josete Barbosa Cruz Meira
- School of Dentistry, Department of Biomaterials and Oral Biology, University of São Paulo, São Paulo, Brazil
| | - Alex Siu Lun Fok
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Rehner (Costache) AMG, Tudorache DI, Bîrcă AC, Nicoară AI, Niculescu AG, Holban AM, Hudiță A, Bîclesanu FC, Balaure PC, Pangică AM, Grumezescu AM, Croitoru GA. Antibacterial Properties of PMMA/ZnO(NanoAg) Coatings for Dental Implant Abutments. MATERIALS (BASEL, SWITZERLAND) 2025; 18:382. [PMID: 39859853 PMCID: PMC11766497 DOI: 10.3390/ma18020382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Infections continue to pose significant challenges in dentistry, necessitating the development of innovative solutions that can effectively address these issues. This study focuses on creating coatings made from polymethyl methacrylate (PMMA) enriched with zinc oxide-silver composite nanoparticles, layered to Ti6Al4V-titanium alloy substrates. The application of these materials aims to create a solution for the abutments utilized in complete dental implant systems, representing the area most susceptible to bacterial infections. The nanoparticles were synthesized using a hydrothermal method, optimized through specific temperature and pressure parameters to achieve effective morphologies and sizes that enhance antibacterial efficacy. The layers were applied to the titanium substrate using the spin coating technique, chosen for its advantages and compatibility with the materials involved. Comprehensive analyses were conducted on the antimicrobial powders, including X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Furthermore, the PMMA-based coatings incorporating antimicrobial nanoparticles were evaluated to ensure uniformity and homogeneity across the titanium alloy surface by IR mapping and SBF immersion-SEM analysis. The antimicrobial activity of the samples was demonstrated with impressive results against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, as assessed through biofilm modulation studies. The biocompatibility of the samples was validated through in vitro cell-based assays, which demonstrated excellent compatibility between PMMA-based coatings and human preosteoblasts, confirming their potential suitability for future use in dental implants.
Collapse
Affiliation(s)
| | - Dana-Ionela Tudorache
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu Str. 1–7, 060042 Bucharest, Romania; (D.-I.T.); (A.C.B.); (A.I.N.); (A.-G.N.); (P.C.B.)
| | - Alexandra Cătălina Bîrcă
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu Str. 1–7, 060042 Bucharest, Romania; (D.-I.T.); (A.C.B.); (A.I.N.); (A.-G.N.); (P.C.B.)
| | - Adrian Ionuț Nicoară
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu Str. 1–7, 060042 Bucharest, Romania; (D.-I.T.); (A.C.B.); (A.I.N.); (A.-G.N.); (P.C.B.)
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu Str. 1–7, 060042 Bucharest, Romania; (D.-I.T.); (A.C.B.); (A.I.N.); (A.-G.N.); (P.C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
| | - Alina Maria Holban
- Faculty of Biology, University of Bucharest, Aleea Portocalelor 1–3, Sector 5, 030018 Bucharest, Romania;
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Faculty of Biology, University of Bucharest, Aleea Portocalelor 1–3, Sector 5, 030018 Bucharest, Romania;
| | | | - Paul Cătălin Balaure
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu Str. 1–7, 060042 Bucharest, Romania; (D.-I.T.); (A.C.B.); (A.I.N.); (A.-G.N.); (P.C.B.)
| | - Anna Maria Pangică
- Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania; (A.M.G.R.); (F.C.B.); (A.M.P.)
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu Str. 1–7, 060042 Bucharest, Romania; (D.-I.T.); (A.C.B.); (A.I.N.); (A.-G.N.); (P.C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
| | - George-Alexandru Croitoru
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania;
| |
Collapse
|
4
|
Tang S, Zhang J, Ma P, Zhang Z. Effect of ultraviolet treatment on soft tissue healing and bacterial attachment to titania-coated zirconia. Biomed Mater 2024; 20:015003. [PMID: 39419114 DOI: 10.1088/1748-605x/ad8827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Zirconia is the most promising implant abutment material due to its excellent aesthetic effect, good biocompatibility and corrosion resistance. To obtain ideal soft tissue sealing, the implant abutment surface should facilitate cell adhesion and inhibit bacterial colonization. In this study, pre-sintered zirconia was placed in a suspension of titania (TiO2) and zirconium oxychloride (ZrOCl2) and heated in a water bath for dense sintering. A titania coating was prepared on the zirconia surface and subjected to UV irradiation. The surface morphology, elemental composition and chemical state of each group of samples were analyzed by scanning electron microscope, x-ray energy spectrometer, x-ray photoelectron spectroscopy and x-ray diffraction. The responses of human gingival fibroblasts (HGFs) and common oral pathogensStreptococcus mutans(S. mutans) andPorphyromonas gingivalis(P. gingivalis) to modified zirconia were systematically assessed. Our findings demonstrated that the surface of titania-coated zirconia after UV irradiation produced a large number of hydroxyl groups, and its hydrophilicity was significantly improved. Meanwhile, the UV irradiation also greatly removed the hydrocarbon contaminants on the surface of the titania-coated zirconia. The UV-treated titania coating significantly promoted the proliferation, spreading, and up-regulation of adhesion-related genes and proteins of HGFs. Furthermore, the titania coating irradiated with UV could reduce the adhesion, colonization and metabolic activity ofS. mutansandP. gingivalis. Therefore, UV irradiation of titania-coated zirconia can promote the biological behavior of HGFs and exert a significant antibacterial effect, which has broad clinical application prospects for improving soft tissue integration around zirconia abutments.
Collapse
Affiliation(s)
- Shuang Tang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Jiebing Zhang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Ping Ma
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Zutai Zhang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| |
Collapse
|
5
|
Crenn MJ, Lefort L, Brazuna RP, Dubot P, Giorgi ML, Peyre P. Anodized SLM Ti6Al4V surfaces: influence of surface characteristics on NTs growth and resulted surfaces properties. J Mater Chem B 2024; 12:11502-11514. [PMID: 39403811 DOI: 10.1039/d4tb00672k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
TiO2 nanotubes (NTs) obtained via electrochemical anodization (EA) on conventionally machined titanium surfaces are reported to be promising for achieving mucointegration in dental implant therapy. Dental abutments, manufactured by selective laser melting (SLM), combined with thermal post-treatment, present a promising alternative to conventionally machined titanium. Based on an original protocol, this study aims to investigate how the characteristic microstructure of the α + β phases in post-heated SLM Ti6Al4V can influence the growth of NTs and the resulting physical and chemical surface properties. Ti6Al4V-SLM discs were fabricated, heat post-treated and mechanically polished. The samples were then subjected to EA under different voltage conditions (10, 20 and 30 V). The specimens' surfaces were characterized at the same location, before NTs formation by electron backscatter diffraction (EBSD), and after by scanning electron microscopy (SEM). Then, roughness and wettability were studied to determine how EA affects surface properties compared to conventionally machined and polished titanium surfaces without NTs (reference). Surface reactivity was evaluated through chemical analysis and collagen binding capacities. The self-organized TiO2 layer was developed on the α phase only and the β phase was preferentially dissolved. The characteristic dimensions of the nanotubes (diameter, length and wall thickness), measured by SEM image analysis, increased proportionally with the rise in voltage but were not affected by the crystallographic orientation of the underlying α grain. Micro-roughness was the same for nanotubular and reference surfaces. Wettability was improved, as was surface reactivity towards collagen, which may contribute to improved bioactivity of titanium surfaces in dentistry.
Collapse
Affiliation(s)
- Marie-Joséphine Crenn
- Innovative Biomaterials and Interfaces Research Unit - URB2i. Dental Faculty - Université Paris Cité, 9210, Montrouge, France.
- Department of prosthodontics, Rothschild Hospital, 75012 Paris, France
- CRC UMR 1139, Team "Oral Molecular Physiopathology", University Paris Cité, 75006 Paris, France.
| | - Lanig Lefort
- CRC UMR 1139, Team "Oral Molecular Physiopathology", University Paris Cité, 75006 Paris, France.
| | - Rémy Pires Brazuna
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) UMR 7182 CNRS - University Paris-Est Créteil 94320, Thiais, France.
| | - Pierre Dubot
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) UMR 7182 CNRS - University Paris-Est Créteil 94320, Thiais, France.
| | - Marie-Laurence Giorgi
- Paris-Saclay University, CentraleSupélec, Génie des Procédés et Matériaux Unit, 91192, Gif-sur-Yvette cedex, France.
| | - Patrice Peyre
- PIMM Laboratory, Arts et Métiers Institute of Technology, CNRS, CNAM, HESAM University, 151 Bd de l'Hôpital, 75013 PARIS, France.
| |
Collapse
|
6
|
Utomo RNC, Palkowitz AL, Gan L, Rudzinski A, Franzen J, Ballerstedt H, Zimmermann M, Blank LM, Fischer H, Wolfart S, Tuna T. In vitro plaque formation model to unravel biofilm formation dynamics on implant abutment surfaces. J Oral Microbiol 2024; 16:2424227. [PMID: 39529861 PMCID: PMC11552293 DOI: 10.1080/20002297.2024.2424227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Background Biofilm formation on implant-abutment surfaces can cause inflammatory reactions. Ethical concerns often limit intraoral testing, necessitating preliminary in vitro or animal studies. Here, we propose an in vitro model using human saliva and hypothesize that this model has the potential to closely mimic the dynamics of biofilm formation on implant-abutment material surfaces in vivo. Methods A saliva stock was mixed with modified Brain-Heart-Infusion medium to form biofilms on Titanium-Aluminum-Vanadium (Ti6Al4V) and Yttria-partially Stabilized Zirconia (Y-TZP) discs in 24-well plates. Biofilm analyses included crystal violet staining, intact cell quantification with BactoBox, 16S rRNA gene analysis, and short-chain fatty acids measurement. As a control, discs were worn in maxillary splints by four subjects for four days to induce in vivo biofilm formation. Results After four days, biofilms fully covered Ti6Al4V and Y-TZP discs both in vivo and in vitro, with similar cell viability. There was a 60.31% overlap of genera between in vitro and in vivo biofilms in the early stages, and 41% in the late stages. Ten key oral bacteria, including Streptococcus, Haemophilus, Neisseria, Veillonella, and Porphyromonas, were still detectable in vitro, representing the common stages of oral biofilm formation. Conclusion This in vitro model effectively simulates oral conditions and provides valuable insights into biofilm dynamics.
Collapse
Affiliation(s)
- Romualdus Nugraha Catur Utomo
- Department of Prosthodontics and Biomaterials, Center of Implantology, RWTH University Hospital Aachen, Aachen, Germany
| | - Alena Lisa Palkowitz
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Lin Gan
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF) RWTH Aachen University Hospital, Aachen, Germany
| | - Anna Rudzinski
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF) RWTH Aachen University Hospital, Aachen, Germany
| | - Julia Franzen
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF) RWTH Aachen University Hospital, Aachen, Germany
| | - Hendrik Ballerstedt
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Martin Zimmermann
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Lars Mathias Blank
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Stefan Wolfart
- Department of Prosthodontics and Biomaterials, Center of Implantology, RWTH University Hospital Aachen, Aachen, Germany
| | - Taskin Tuna
- Department of Prosthodontics and Biomaterials, Center of Implantology, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
7
|
Barylyak A, Wojnarowska-Nowak R, Kus-Liśkiewicz M, Krzemiński P, Płoch D, Cieniek B, Bobitski Y, Kisała J. Photocatalytic and antibacterial activity properties of Ti surface treated by femtosecond laser-a prospective solution to peri-implant disease. Sci Rep 2024; 14:20926. [PMID: 39251685 PMCID: PMC11385220 DOI: 10.1038/s41598-024-70103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Laser texturing seems to be a promising technique for reducing bacterial adhesion on titanium implant surfaces. This work aims to demonstrate the possibility of obtaining a functionally orientated surface of titanium implant elements with a specific architecture with specific bacteriological and photocatalytic properties. Femtosecond laser-generated surface structures, such as laser-induced periodic surface structures (LIPSS, wrinkles), grooves, and spikes on titanium, have been characterised by XRD, Raman spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of the titanium surfaces produced was tested based on the degradation effect of methylene blue (MB). The correlation between the photocatalytic activity of TiO2 coatings and their morphology and structure has been analysed. Features related to the size, shape, and distribution of the roughness patterns were found to influence the adhesion of the bacterial strain on different surfaces. On the laser-structurised surface, the adhesion of Escherichia coli bacteria were reduced by 80% compared to an untreated reference surface.
Collapse
Affiliation(s)
- Adriana Barylyak
- Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, Lviv, 79010, Ukraine.
| | - Renata Wojnarowska-Nowak
- Institute of Materials Engineering, University of Rzeszow, Pigonia 1 Str., 35-959, Rzeszow, Poland
| | | | - Piotr Krzemiński
- Institute of Physics, University of Rzeszow, 35-959, Rzeszow, Poland
| | - Dariusz Płoch
- Institute of Materials Engineering, University of Rzeszow, Pigonia 1 Str., 35-959, Rzeszow, Poland
| | - Bogumił Cieniek
- Institute of Materials Engineering, University of Rzeszow, Pigonia 1 Str., 35-959, Rzeszow, Poland
| | - Yaroslav Bobitski
- Institute of Physics, University of Rzeszow, 35-959, Rzeszow, Poland
- NoviNano Lab LLC, Pasternaka 5, Lviv, 79015, Ukraine
| | - Joanna Kisała
- Institute of Biology, University of Rzeszow, Zelwerowicza 4 Str., 35-601, Rzeszow, Poland.
| |
Collapse
|
8
|
Schnurr E, Sperlich M, Sones A, Romanos GE, Rutkowski JL, Duddeck DU, Neugebauer J, Att W, Sperlich M, Volz KU, Ghanaati S. Ceramic Implant Rehabilitation: Consensus Statements from Joint Congress for Ceramic Implantology: Consensus Statements on Ceramic Implant. J ORAL IMPLANTOL 2024; 50:435-445. [PMID: 38867376 DOI: 10.1563/aaid-joi-d-23-00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The objectives of the study group focused on the following main topics related to the performance of 1- and 2-piece ceramic implants: defining bone-implant-contact percentages and its measurement methods, evaluating the pink esthetic score as an esthetic outcome parameter after immediate implantation, recognizing the different results of ceramic implant designs as redefined by the German Association of Oral Implantology, incorporating the patient report outcome measure to include satisfaction and improvement in oral health-related quality of life, and conducting preclinical studies to address existing gaps in ceramic implants. During the Joint Congress for Ceramic Implantology (2022), the study group evaluated 17 clinical trials published between 2015 and 2021. After extensive discussions and multiple closed sessions, consensus statements and recommendations were developed, incorporating all approved modifications. A 1-piece implant design features a coronal part that is fused to the implant body or interfaces with the postabutment restoration platform, undergoing transmucosal healing. Long-term evaluations of this implant design are supported by established favorable clinical evidence. Inaccuracies in the pink esthetic score and bone-implant-contact percentages were managed by establishing control groups for preclinical studies and randomizing clinical trials. The patient-reported outcome measures were adjusted to include an individual visual analog scale, collected from each clinical study, that quantified improved oral health and quality of life. Preclinical investigations should focus on examining the spread of ceramic debris and the impact of heat generation on tissue and cellular levels during drilling. Further technical advancements should prioritize wound management and developing safe drilling protocols.
Collapse
Affiliation(s)
- Etyene Schnurr
- Ceramic and Biological Dentistry Foundation, Kreuzlingen, Switzerland
- Basic Science Department, Health Institute of Nova Friburgo, Federal Fluminense University, Brazil
| | | | - Amerian Sones
- Board of Directors of the Academy of Osseointegration
| | - George E Romanos
- Department of Periodontology and Endodontics, School of Dental Medicine, Stony Brook University, Stony Brook, New York
| | - J L Rutkowski
- Restorative Dentistry, School of Dental Medicine, State University of New York, Buffalo, New York
| | | | - Jörg Neugebauer
- Department of Oral and Maxillofacial Plastic Surgery, University of Cologne, Köln, Germany
| | - Wael Att
- Department of Prosthodontics, Tufts University School of Dental Medicine, Boston, Massachusetts
| | | | | | - Shahram Ghanaati
- Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, Frankfurt Am Main, Germany
| |
Collapse
|
9
|
Kunrath MF, Hubler R, Dahlin C. Adverse effects of sterilization processes on the fundamental topographic properties of modified dental implant surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:44. [PMID: 39073722 PMCID: PMC11286709 DOI: 10.1007/s10856-024-06813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
The employ of sterilization processes are essential to investigate biomaterials aiming for experimental, preclinical, or clinical applications with biological tissues. However, responsive surface properties of biomaterials may be susceptible to sterilization processes, compromising important physio-chemical characteristics. For that reason, this in vitro study aimed to investigate the effects of three different processes for sterilization (humid heat under pressure, UVC-light exposure, and Gamma irradiation) on the major topographical properties of implant surfaces applied to dental bone-anchored implants and/or implant-abutments. Three groups of implant surfaces were developed: a smooth machined surface, a micro-texturized surface, and a hydrophilic micro-texturized surface. The implants were sterilized with three methodologies and characterized regarding surface morphology, elemental surface composition, roughness parameters, wettability characteristics, and compared to the samples as-developed. Surface morphology and roughness parameters were not modified by any of the sterilization processes applied. On the other hand, hydrophilic implants were negatively affected by autoclaving. After package opening, hydrophilic features showed to be sensible to atmospheric air exposition independently of the sterilization process performed. Our findings revealed significant chemical changes on the implant surfaces caused by autoclaving and UVC exposure; additionally, the results showed the importance of selecting an appropriate sterilization method when investigating hydrophilic implants so as not to generate imprecise outcomes.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30, Göteborg, Sweden.
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
- School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Roberto Hubler
- School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30, Göteborg, Sweden
| |
Collapse
|
10
|
Wang C, Lu R, Cao X, Mu Y, Chen S. Multifunctional and bioinspired titanium surface with multilayer nanofilms for novel dental implant applications. Front Chem 2024; 12:1426865. [PMID: 39036659 PMCID: PMC11259965 DOI: 10.3389/fchem.2024.1426865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction: Smart multifunctional surfaces targeting intricate biological events or versatile therapeutic strategies are imminent to achieve long-term transmucosal implant success. Methods: This study used dopamine (DA), graphene oxide (GO), and type IV collagen (COL-IV) to construct multilayer nanofilms (DGCn) based on their universal adhesive and biomimetic properties to design a versatile and bioactive titanium implant. The characterization of DGCn on different titanium surfaces was performed, and its loading capacity, release profile, in situ gene delivery, and in vitro biological properties were preliminarily evaluated. Results: Our results demonstrate that hydrogenated TiO2 nanotubes (H) provide a better platform for the DGCn coating than machined Ti and air-TiO2 nanotubes. The H-DGC10 displayed the most stable surface with excellent loading capacity, sustained-release profile, and in situ gene transfection efficiency; this could be due to the high specific surface area of H and GO, as well as the functional groups in H, DA, and GO. Moreover, the H-DGC10 exhibited good biocompatibility for human oral epithelial cells and promoted the expression of integrin β4 and laminin 332, both being hemidesmosome-related proteins. Discussion: Our findings suggest that H-DGCn can be designed as a smart multifunctional interface for titanium implants to achieve long-term transmucosal implant success and aid in versatile therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Su Chen
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Kunrath MF, Farina G, Sturmer LBS, Teixeira ER. TiO 2 nanotubes as an antibacterial nanotextured surface for dental implants: Systematic review and meta-analysis. Dent Mater 2024; 40:907-920. [PMID: 38714394 DOI: 10.1016/j.dental.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
OBJECTIVES Nanotechnology is constantly advancing in dental science, progressing several features aimed at improving dental implants. An alternative for surface treatment of dental implants is electrochemical anodization, which may generate a nanotubular surface (TiO2 nanotubes) with antibacterial potential and osteoinductive features. This systematic review and meta-analysis aims to elucidate the possible antibacterial properties of the surface in question compared to the untreated titanium surface. SOURCES For that purpose, was performed a systematic search on the bases PubMed, Lilacs, Embase, Web Of Science, Cinahl, and Cochrane Central, as well as, manual searches and gray literature. STUDY SELECTION The searches resulted in 742 articles, of which 156 followed for full-text reading. Then, 37 were included in the systematic review and 8 were included in meta-analysis. RESULTS Fifteen studies revealed significant antibacterial protection using TiO2 nanotube surfaces, while 15 studies found no statistical difference between control and nanotextured surfaces. Meta-analysis of in vitro studies demonstrated relevant bacterial reduction only for studies investigating Staphylococcus aureus in a period of 6 h. Meta-analysis of in vivo studies revealed three times lower bacterial adhesion and proliferation on TiO2 nanotube surfaces. CONCLUSIONS TiO2 nanotube topography as a surface for dental implants in preclinical research has demonstrated a positive relationship with antibacterial properties, nevertheless, factors such as anodization protocols, bacteria strains, and mono-culture methods should be taken into consideration, consequently, further studies are necessary to promote clinical translatability.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden; School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Georgia Farina
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza B S Sturmer
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo R Teixeira
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Baus-Domínguez M, Oliva-Ferrusola E, Maza-Solano S, Ruiz-de-León G, Serrera-Figallo MÁ, Gutiérrez-Perez JL, Torres-Lagares D, Macías-García L. Biological Response of the Peri-Implant Mucosa to Different Definitive Implant Rehabilitation Materials. Polymers (Basel) 2024; 16:1534. [PMID: 38891480 PMCID: PMC11174483 DOI: 10.3390/polym16111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Sealing the peri-implant tissue is a determining factor for long-term implant survival. In the transmucosal region, the cervical fraction of the prosthetic crown is in contact with these tissues, so mucointegration will also be influenced by the biomaterial used for the prosthetic restoration. This study aims to compare the tissue response generated by definitive restorative materials and polymeric materials from a histological point of view. METHODS This study performed an observational prospective cohort study in which biopsies of the peri-implant mucosa were taken after placement of implant-supported prosthetic restorations made of different materials (zirconium oxide, lithium disilicate, and PMMA). RESULTS A statistically significant difference was observed in the increase in the thickness of the non-keratinized epithelium when comparing the definitive materials (zirconium oxide/lithium disilicate) vs. the provisional material (PMMA) and in the number of collagen fibers when comparing zirconium oxide and lithium disilicate. CONCLUSIONS This study found that zirconia is the material that presents the most adequate biological response of peri-implant tissues. It shows a lower intensity of inflammatory cellular content, a total normality in the number of collagen fibers (the arrangement of the fibers is normal in 90% of the cases), and vascular proliferation of connective tissue in 83% of the cases. These parameters make it a material with a predictable response. Similarly, only the following slight statistically significant differences between the definitive and provisional materials are observed, indicating that the biological response generated by the provisional material (PMMA) is not very different from that obtained with the placement of the definitive restoration.
Collapse
Affiliation(s)
- María Baus-Domínguez
- Department of Stomatology, Faculty of Dentistry, University of Seville, C/Avicena S/N, 41009 Seville, Spain; (E.O.-F.); (S.M.-S.); (G.R.-d.-L.); (M.-Á.S.-F.); (J.-L.G.-P.); (D.T.-L.)
| | - Elena Oliva-Ferrusola
- Department of Stomatology, Faculty of Dentistry, University of Seville, C/Avicena S/N, 41009 Seville, Spain; (E.O.-F.); (S.M.-S.); (G.R.-d.-L.); (M.-Á.S.-F.); (J.-L.G.-P.); (D.T.-L.)
| | - Serafín Maza-Solano
- Department of Stomatology, Faculty of Dentistry, University of Seville, C/Avicena S/N, 41009 Seville, Spain; (E.O.-F.); (S.M.-S.); (G.R.-d.-L.); (M.-Á.S.-F.); (J.-L.G.-P.); (D.T.-L.)
| | - Gonzalo Ruiz-de-León
- Department of Stomatology, Faculty of Dentistry, University of Seville, C/Avicena S/N, 41009 Seville, Spain; (E.O.-F.); (S.M.-S.); (G.R.-d.-L.); (M.-Á.S.-F.); (J.-L.G.-P.); (D.T.-L.)
| | - María-Ángeles Serrera-Figallo
- Department of Stomatology, Faculty of Dentistry, University of Seville, C/Avicena S/N, 41009 Seville, Spain; (E.O.-F.); (S.M.-S.); (G.R.-d.-L.); (M.-Á.S.-F.); (J.-L.G.-P.); (D.T.-L.)
| | - José-Luis Gutiérrez-Perez
- Department of Stomatology, Faculty of Dentistry, University of Seville, C/Avicena S/N, 41009 Seville, Spain; (E.O.-F.); (S.M.-S.); (G.R.-d.-L.); (M.-Á.S.-F.); (J.-L.G.-P.); (D.T.-L.)
| | - Daniel Torres-Lagares
- Department of Stomatology, Faculty of Dentistry, University of Seville, C/Avicena S/N, 41009 Seville, Spain; (E.O.-F.); (S.M.-S.); (G.R.-d.-L.); (M.-Á.S.-F.); (J.-L.G.-P.); (D.T.-L.)
| | - Laura Macías-García
- Department of Cytology and Normal and Pathological Histology, School of Medicine, University of Seville, Av. Sánchez Pizjuán S/N, 41009 Seville, Spain
| |
Collapse
|
13
|
Safaei M, Mohammadi H, Beddu S, Mozaffari HR, Rezaei R, Sharifi R, Moradpoor H, Fallahnia N, Ebadi M, Md Jamil MS, Md Zain AR, Yusop MR. Surface Topography Steer Soft Tissue Response and Antibacterial Function at the Transmucosal Region of Titanium Implant. Int J Nanomedicine 2024; 19:4835-4856. [PMID: 38828200 PMCID: PMC11141758 DOI: 10.2147/ijn.s461549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/10/2024] [Indexed: 06/05/2024] Open
Abstract
Metallic dental implants have been extensively used in clinical practice due to their superior mechanical properties, biocompatibility, and aesthetic outcomes. However, their integration with the surrounding soft tissue at the mucosal region remains challenging and can cause implant failure due to the peri-implant immune microenvironment. The soft tissue integration of dental implants can be ameliorated through different surface modifications. This review discussed and summarized the current knowledge of topography-mediated immune response and topography-mediated antibacterial activity in Ti dental implants which enhance soft tissue integration and their clinical performance. For example, nanopillar-like topographies such as spinules, and spikes showed effective antibacterial activity in human salivary biofilm which was due to the lethal stretching of bacterial membrane between the nanopillars. The key findings of this review were (I) cross-talk between surface nanotopography and soft tissue integration in which the surface nanotopography can guide the perpendicular orientation of collagen fibers into connective tissue which leads to the stability of soft tissue, (II) nanotubular array could shift the macrophage phenotype from pro-inflammatory (M1) to anti-inflammatory (M2) and manipulate the balance of osteogenesis/osteoclasia, and (III) surface nanotopography can provide specific sites for the loading of antibacterial agents and metallic nanoparticles of clinical interest functionalizing the implant surface. Silver-containing nanotubular topography significantly decreased the formation of fibrous encapsulation in per-implant soft tissue and showed synergistic antifungal and antibacterial properties. Although the Ti implants with surface nanotopography have shown promising in targeting soft tissue healing in vitro and in vivo through their immunomodulatory and antibacterial properties, however, long-term in vivo studies need to be conducted particularly in osteoporotic, and diabetic patients to ensure their desired performance with immunomodulatory and antibacterial properties. The optimization of product development is another challenging issue for its clinical translation, as the dental implant with surface nanotopography must endure implantation and operation inside the dental microenvironment. Finally, the sustainable release of metallic nanoparticles could be challenging to reduce cytotoxicity while augmenting the therapeutic effects.
Collapse
Affiliation(s)
- Mohsen Safaei
- Division of Dental Biomaterials, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Advanced Dental Sciences and Technology Research Center, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Mohammadi
- Biomaterials Research Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Penang, 14300, Malaysia
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM UNITEN, Kajang, Selangor, 43000, Malaysia
| | - Salmia Beddu
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM UNITEN, Kajang, Selangor, 43000, Malaysia
| | - Hamid Reza Mozaffari
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Razieh Rezaei
- Advanced Dental Sciences and Technology Research Center, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roohollah Sharifi
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hedaiat Moradpoor
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nima Fallahnia
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Ebadi
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Mohd Suzeren Md Jamil
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Ahmad Rifqi Md Zain
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| | - Muhammad Rahimi Yusop
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
14
|
Shrivas S, Samaur H, Yadav V, Boda SK. Soft and Hard Tissue Integration around Percutaneous Bone-Anchored Titanium Prostheses: Toward Achieving Holistic Biointegration. ACS Biomater Sci Eng 2024; 10:1966-1987. [PMID: 38530973 DOI: 10.1021/acsbiomaterials.3c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A holistic biointegration of percutaneous bone-anchored metallic prostheses with both hard and soft tissues dictates their longevity in the human body. While titanium (Ti) has nearly solved osseointegration, soft tissue integration of percutaneous metallic prostheses is a perennial problem. Unlike the firm soft tissue sealing in biological percutaneous structures (fingernails and teeth), foreign body response of the skin to titanium (Ti) leads to inflammation, epidermal downgrowth and inferior peri-implant soft tissue sealing. This review discusses various implant surface treatments/texturing and coatings for osseointegration, soft tissue integration, and against bacterial attachment. While surface microroughness by SLA (sandblasting with large grit and acid etched) and porous calcium phosphate (CaP) coatings improve Ti osseointegration, smooth and textured titania nanopores, nanotubes, microgrooves, and biomolecular coatings encourage soft tissue attachment. However, the inferior peri-implant soft tissue sealing compared to natural teeth can lead to peri-implantitis. Toward this end, the application of smart multifunctional bioadhesives with strong adhesion to soft tissues, mechanical resilience, durability, antibacterial, and immunomodulatory properties for soft tissue attachment to metallic prostheses is proposed.
Collapse
Affiliation(s)
- Sangeeta Shrivas
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Harshita Samaur
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Vinod Yadav
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sunil Kumar Boda
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
15
|
Wu H, Chen X, Kong L, Liu P. Mechanical and Biological Properties of Titanium and Its Alloys for Oral Implant with Preparation Techniques: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6860. [PMID: 37959457 PMCID: PMC10649385 DOI: 10.3390/ma16216860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Dental implants have revolutionised restorative dentistry, offering patients a natural-looking and durable solution to replace missing or severely damaged teeth. Titanium and its alloys have emerged as the gold standard among the various materials available due to their exceptional properties. One of the critical advantages of titanium and its alloys is their remarkable biocompatibility which ensures minimal adverse reactions within the human body. Furthermore, they exhibit outstanding corrosion resistance ensuring the longevity of the implant. Their mechanical properties, including hardness, tensile strength, yield strength, and fatigue strength, align perfectly with the demanding requirements of dental implants, guaranteeing the restoration's functionality and durability. This narrative review aims to provide a comprehensive understanding of the manufacturing techniques employed for titanium and its alloy dental implants while shedding light on their intrinsic properties. It also presents crucial proof-of-concept examples, offering tangible evidence of these materials' effectiveness in clinical applications. However, despite their numerous advantages, certain limitations still exist necessitating ongoing research and development efforts. This review will briefly touch upon these restrictions and explore the evolving trends likely to shape the future of titanium and its alloy dental implants.
Collapse
Affiliation(s)
| | | | | | - Ping Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.W.); (X.C.); (L.K.)
| |
Collapse
|