1
|
Durán-Carabali LE, Odorcyk FK, Greggio S, Venturin GT, Sanches EF, Schu GG, Carvalho AS, Pedroso TA, de Sá Couto-Pereira N, Da Costa JC, Dalmaz C, Zimmer ER, Netto CA. Pre- and early postnatal enriched environmental experiences prevent neonatal hypoxia-ischemia late neurodegeneration via metabolic and neuroplastic mechanisms. J Neurochem 2020; 157:1911-1929. [PMID: 33098090 DOI: 10.1111/jnc.15221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/04/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022]
Abstract
Prenatal and early postnatal periods are important for brain development and neural function. Neonatal insults such as hypoxia-ischemia (HI) causes prolonged neural and metabolic dysregulation, affecting central nervous system maturation. There is evidence that brain hypometabolism could increase the risk of adult-onset neurodegenerative diseases. However, the impact of non-pharmacologic strategies to attenuate HI-induced brain glucose dysfunction is still underexplored. This study investigated the long-term effects of early environmental enrichment in metabolic, cell, and functional responses after neonatal HI. Thereby, male Wistar rats were divided according to surgical procedure, sham, and HI (performed at postnatal day 3), and the allocation to standard (SC) or enriched condition (EC) during gestation and lactation periods. In-vivo cerebral metabolism was assessed by means of [18 F]-FDG micro-positron emission tomography, and cognitive, biochemical, and histological analyses were performed in adulthood. Our findings reveal that HI causes a reduction in glucose metabolism and glucose transporter levels as well as hyposynchronicity in metabolic brain networks. However, EC during prenatal or early postnatal period attenuated these metabolic disturbances. A positive correlation was observed between [18 F]-FDG values and volume ratios in adulthood, indicating that preserved tissue by EC is metabolically active. EC promotes better cognitive scores, as well as down-regulation of amyloid precursor protein in the parietal cortex and hippocampus of HI animals. Furthermore, growth-associated protein 43 was up-regulated in the cortex of EC animals. Altogether, results presented support that EC during gestation and lactation period can reduce HI-induced impairments that may contribute to functional decline and progressive late neurodegeneration.
Collapse
Affiliation(s)
- Luz Elena Durán-Carabali
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe Kawa Odorcyk
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Samuel Greggio
- Preclinical Research Center, Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Eduardo Farias Sanches
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Garcia Schu
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andrey Soares Carvalho
- Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thales Avila Pedroso
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natividade de Sá Couto-Pereira
- Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaderson Costa Da Costa
- Preclinical Research Center, Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Dalmaz
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Rigon Zimmer
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
2
|
A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors. Sci Rep 2016; 6:36670. [PMID: 27830712 PMCID: PMC5103210 DOI: 10.1038/srep36670] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/10/2016] [Indexed: 12/22/2022] Open
Abstract
The blood-brain barrier (BBB) restricts the uptake of many neuro-therapeutic molecules, presenting a formidable hurdle to drug development in brain diseases. We proposed a new and dynamic in vivo-like three-dimensional microfluidic system that replicates the key structural, functional and mechanical properties of the blood-brain barrier in vivo. Multiple factors in this system work synergistically to accentuate BBB-specific attributes-permitting the analysis of complex organ-level responses in both normal and pathological microenvironments in brain tumors. The complex BBB microenvironment is reproduced in this system via physical cell-cell interaction, vascular mechanical cues and cell migration. This model possesses the unique capability to examine brain metastasis of human lung, breast and melanoma cells and their therapeutic responses to chemotherapy. The results suggest that the interactions between cancer cells and astrocytes in BBB microenvironment might affect the ability of malignant brain tumors to traverse between brain and vascular compartments. Furthermore, quantification of spatially resolved barrier functions exists within a single assay, providing a versatile and valuable platform for pharmaceutical development, drug testing and neuroscientific research.
Collapse
|
3
|
Fernández-López D, Faustino J, Derugin N, Vexler ZS. Acute and chronic vascular responses to experimental focal arterial stroke in the neonate rat. Transl Stroke Res 2014; 4:179-88. [PMID: 23730350 DOI: 10.1007/s12975-012-0214-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The presence of active developmental angiogenesis and vascular outgrowth in the postnatal brain may differentially affect vascular responses to stroke in newborns and adults, but very little is known about the dynamics of vascular injury and re-growth after stroke during the neonatal period. In this study we used a clinically relevant animal model of ischemic arterial stroke in neonate rats, a transient middle cerebral artery occlusion (MCAO) in postnatal day 7 (P7), to characterize the effects of injury on vascular density and angiogenesis from acute through the chronic phase. A marked vessel degeneration and suppressed endothelial cell proliferation occur in the ischemic regions early after neonatal stroke. In contrast to what has been described in adult animals, endothelial cell proliferation and vascular density are not increased in the peri-ischemic regions during the first week after MCAO in neonates. By two weeks after injury, endothelial cell proliferation is increased in the cortical peri-ischemic region but these changes are not accompanied by an increased vascular density. Suppressed angiogenesis in injured postnatal brain that we report may limit recovery after neonatal stroke. Thus, enhancement of angiogenesis after neonatal stroke may be a promising strategy for the long-term recovery of the affected newborns.
Collapse
Affiliation(s)
- David Fernández-López
- Neonatal Brain Disorders Center. Department of Neurology. University of California San Francisco, San Francisco, USA
| | | | | | | |
Collapse
|
4
|
Bengoetxea H, Ortuzar N, Rico-Barrio I, Lafuente JV, Argandoña EG. Increased physical activity is not enough to recover astrocytic population from dark-rearing. Synergy with multisensory enrichment is required. Front Cell Neurosci 2013; 7:170. [PMID: 24109431 PMCID: PMC3790150 DOI: 10.3389/fncel.2013.00170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/11/2013] [Indexed: 12/17/2022] Open
Abstract
Elimination of sensory inputs (deprivation) modifies the properties of the sensory cortex and serves as a model for studying plasticity during postnatal development. Many studies on the effects of deprivation have been performed in the visual cortex using dark-rearing as a visual deprivation model. It induces changes in all cellular and molecular components, including astrocytes, which play an important role in the development, maintenance, and plasticity of the cortex, mediated by cytokines which have been termed angioglioneurins. When one sense is deprived, a compensatory mechanism called cross-modal plasticity increases performance in the remaining senses. Environmental enrichment is so far the best-known method to compensate sensorial deprivation. The aim of this work is to study the effects of exercise alone, and of an enriched environment combined with exercise, on astroglial population in order to observe the effects of exercise by itself, or the potential synergistic effect during the rat visual system development. Pregnant Sprague-Dawley rats were raised in one of the following rearing conditions: in total darkness and enriched environment conditions with physical exercise, and in total darkness with voluntary physical exercise. Astrocytic density was estimated by immunohistochemistry for S-100β protein and quantifications were performed in layer IV. The somatosensorial cortex barrel field was also studied as control. Our main result shows that an enriched environment combined with voluntary physical exercise manages to reverse the negative effects induced by darkness over the astroglial population of both the visual and the somatosensory cortices. On the other hand, exercise alone only produces effects upon the astroglial population of the somatosensory cortex, and less so when combined with an enriched environment.
Collapse
Affiliation(s)
- Harkaitz Bengoetxea
- Laboratory of Experimental Neuroscience, Department of Neuroscience, Faculty of Medicine and Odontology, University of the Basque Country Leioa, Spain
| | | | | | | | | |
Collapse
|
5
|
Argandoña EG, Bengoetxea H, Bulnes S, Rico-Barrio I, Ortuzar N, Lafuente JV. Effect of intracortical vascular endothelial growth factor infusion and blockade during the critical period in the rat visual cortex. Brain Res 2012; 1473:141-54. [DOI: 10.1016/j.brainres.2012.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 06/18/2012] [Accepted: 07/06/2012] [Indexed: 12/11/2022]
|
6
|
Enriched and deprived sensory experience induces structural changes and rewires connectivity during the postnatal development of the brain. Neural Plast 2012; 2012:305693. [PMID: 22848849 PMCID: PMC3400395 DOI: 10.1155/2012/305693] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/20/2012] [Accepted: 06/13/2012] [Indexed: 11/17/2022] Open
Abstract
During postnatal development, sensory experience modulates cortical development, inducing numerous changes in all of the components of the cortex. Most of the cortical changes thus induced occur during the critical period, when the functional and structural properties of cortical neurons are particularly susceptible to alterations. Although the time course for experience-mediated sensory development is specific for each system, postnatal development acts as a whole, and if one cortical area is deprived of its normal sensory inputs during early stages, it will be reorganized by the nondeprived senses in a process of cross-modal plasticity that not only increases performance in the remaining senses when one is deprived, but also rewires the brain allowing the deprived cortex to process inputs from other senses and cortices, maintaining the modular configuration. This paper summarizes our current understanding of sensory systems development, focused specially in the visual system. It delineates sensory enhancement and sensory deprivation effects at both physiological and anatomical levels and describes the use of enriched environment as a tool to rewire loss of brain areas to enhance other active senses. Finally, strategies to apply restorative features in human-deprived senses are studied, discussing the beneficial and detrimental effects of cross-modal plasticity in prostheses and sensory substitution devices implantation.
Collapse
|
7
|
Heterogeneity in the rat brain vasculature revealed by quantitative confocal analysis of endothelial barrier antigen and P-glycoprotein expression. J Cereb Blood Flow Metab 2012; 32:81-92. [PMID: 21792241 PMCID: PMC3323292 DOI: 10.1038/jcbfm.2011.109] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
While phenotypic endothelial heterogeneity is well documented in peripheral organs, it is only now being explored in the brain. We used confocal imaging of thick sections of rat brain to qualitatively and quantitatively examine the expression of two key markers of the blood-brain barrier (BBB) in the rat, P-glycoprotein (P-gp), and endothelial barrier antigen (EBA). We found that these markers were not uniformly distributed throughout the whole vasculature of the cortex and hippocampus. P-glycoprotein displayed a gradient of expression from an almost undetectable level in large penetrating arterioles to a high and uniform level in capillaries and venules. While EBA was lacking in all cerebral arterioles, regardless of their size, its expression varied greatly among endothelial cells in capillaries and venules, yielding a striking mosaic pattern. A detailed quantitative analysis of the distribution of these markers at the single cell level in capillaries is provided. These results challenge the view of a uniform BBB and suggest that regulatory mechanisms might differentially modulate BBB features not only among arterioles/capillaries/venules but also at the single cell level within the capillaries. Hypotheses are made regarding the underlying mechanisms and physiopathological consequences of this heterogeneity.
Collapse
|
8
|
Gómez‐González B, Larios HM, Escobar A. Increased transvascular transport of WGA‐peroxidase after chronic perinatal stress in the hippocampal microvasculature of the rat. Int J Dev Neurosci 2011; 29:839-46. [DOI: 10.1016/j.ijdevneu.2011.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/08/2011] [Accepted: 08/08/2011] [Indexed: 12/20/2022] Open
Affiliation(s)
- Beatriz Gómez‐González
- Dept. Cell Biology and PhysiologyInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad Universitaria04510Mexico CityMexico
| | - Horacio Merchant Larios
- Dept. Cell Biology and PhysiologyInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad Universitaria04510Mexico CityMexico
| | - Alfonso Escobar
- Dept. Cell Biology and PhysiologyInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad Universitaria04510Mexico CityMexico
| |
Collapse
|
9
|
Prilloff S, Henrich-Noack P, Kropf S, Sabel BA. Experience-Dependent Plasticity and Vision Restoration in Rats after Optic Nerve Crush. J Neurotrauma 2010; 27:2295-307. [DOI: 10.1089/neu.2010.1439] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Sylvia Prilloff
- Institute of Medical Psychology, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Petra Henrich-Noack
- Institute of Medical Psychology, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Siegfried Kropf
- Institute for Biometry and Medical Informatics, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Bernhard A. Sabel
- Institute of Medical Psychology, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
10
|
Combination of intracortically administered VEGF and environmental enrichment enhances brain protection in developing rats. J Neural Transm (Vienna) 2010; 118:135-44. [DOI: 10.1007/s00702-010-0496-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 09/24/2010] [Indexed: 01/07/2023]
|
11
|
Parfenova H, Leffler CW, Tcheranova D, Basuroy S, Zimmermann A. Epileptic seizures increase circulating endothelial cells in peripheral blood as early indicators of cerebral vascular damage. Am J Physiol Heart Circ Physiol 2010; 298:H1687-98. [PMID: 20363895 PMCID: PMC2886638 DOI: 10.1152/ajpheart.00032.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/29/2010] [Indexed: 12/24/2022]
Abstract
Circulating endothelial cells (CECs) are nonhematopoetic mononuclear cells in peripheral blood that are dislodged from injured vessels during cardiovascular disease, systemic vascular disease, and inflammation. Their occurrence during cerebrovascular insults has not been previously described. Epileptic seizures cause the long-term loss of cerebrovascular endothelial dilator function. We hypothesized that seizures cause endothelial sloughing from cerebral vessels and the appearance of brain-derived CECs (BCECs), possible early indicators of cerebral vascular damage. Epileptic seizures were induced by bicuculline in newborn pigs; venous blood was then sampled during a 4-h period. CECs were identified in the fraction of peripheral blood mononuclear cells by the expression of endothelial antigens (CD146, CD31, and endothelial nitric oxide synthase) and by Ulex europeaus lectin binding. In control animals, few CECs were detected. Seizures caused a time-dependent increase in CECs 2-4 h after seizure onset. Seizure-induced CECs coexpress glucose transporter-1, a blood-brain barrier-specific glucose transporter, indicating that these cells originate in the brain vasculature and are thus BCECs. Seizure-induced BCECs cultured in EC media exhibited low proliferative potential and abnormal cell contacts. BCEC appearance during seizures was blocked by a CO-releasing molecule (CORM-A1) or cobalt protoporphyrin (heme oxygenase-1 inducer), which prevented apoptosis in cerebral arterioles and the loss of cerebral vascular endothelial function during the late postictal period. These findings suggest that seizure-induced BCECs are injured ECs dislodged from cerebral microvessels during seizures. The correlation between the appearance of BCECs in peripheral blood, apoptosis in cerebral vessels, and the loss of postictal cerebral vascular function suggests that BCECs are early indicators of late cerebral vascular damage.
Collapse
Affiliation(s)
- Helena Parfenova
- Dept. of Physiology, Univ. of Tennessee Health Science Center, 894 Union Ave., Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
12
|
Bulnes S, Argandoña EG, Bengoetxea H, Leis O, Ortuzar N, Lafuente JV. The role of eNOS in vascular permeability in ENU-induced gliomas. ACTA NEUROCHIRURGICA. SUPPLEMENT 2010; 106:277-82. [PMID: 19812964 DOI: 10.1007/978-3-211-98811-4_52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Brain edema in gliomas is an epiphenomenon related to blood-brain-barrier (BBB) breakdown in which endothelial nitric oxide synthase (eNOS) plays a key role. When induced by vascular endothelial growth factor (VEGF), eNOS synthesizes nitric oxide that increases vascular permeability. We investigated the relationship between eNOS, VEGF and BBB dysfunction in experimental gliomas.Tumors were produced in Sprague-Dawley rats by transplacentary administration of Ethylnitrosourea (ENU). Immunoexpression of eNOS and VEGF(165) was studied to identify locations of vascular permeability. BBB permeability was evaluated using gadolinium and intravital dyes and BBB integrity by endothelial barrier antigen (EBA), glucose transporter-1 (GluT-1) and occludin immunostaining. Low grade gliomas displayed constitutive eNOS expression in endothelial cells and in VEGF-positive astrocytes surrounding vessels. Malignant gliomas overexpressed eNOS in aberrant vessels and displayed numerous adjacent reactive astrocytes positive for VEGF. Huge dilated vessels inside tumors and glomeruloid vessels on the periphery of the tumor showed strong immunopositivity for eNOS and a lack of occludin and EBA staining in several vascular sections. BBB dysfunction on these aberrant vessels caused increased permeability as shown by Gadolinium contrast enhancement and intravital dye extravasation.These findings support the central role of eNOS in intra- and peritumoral edema in ENU-induced gliomas.
Collapse
Affiliation(s)
- S Bulnes
- Department of Neuroscience, LaNCE, Clinical and Experimental Neuroscience Laboratory, University of Basque Country, Leioa, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Ortuzar N, Argandoña EG, Bengoetxea H, Leis O, Bulnes S, Lafuente JV. Effects of VEGF administration or neutralization on the BBB of developing rat brain. ACTA NEUROCHIRURGICA. SUPPLEMENT 2010; 106:55-59. [PMID: 19812921 DOI: 10.1007/978-3-211-98811-4_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We investigated the effects of exogenous Vascular Endothelial Growth Factor VEGF combined with an enriched environment on BBB integrity after a minimal trauma induced during the first days of the critical visual period in rats, when peak levels of endogenous VEGF secretion are reached. VEGF was administered using osmotic mini-pumps placed in middle cortical layers of P18 Long-Evansrats. Tissue changes were evaluated using conventional histology. BBB integrity was shown by immunohistochemistry techniques for EBA and GluT-1. Mini-pump implantation produced a wider cavity in anti-VEGF infused rats. In VEGF-infused rats there was a damaged region around the cannula that was smaller in rats raised in an enriched environment (EE). The administration of VEGF induced a high concentration of plasma proteins in the neuropil around the point of cannula placement and a high inflammatory reaction. VEGF-infused rats raised in an EE showed a lower degree of extravasation and better tissue preservation. Anti-VEGF administration produced a lower protein expression profile and more widespread deterioration of tissue. Double immunofluorescence for EBA and GluT-1 showed that the administration of VEGF preserves the tissue, which remains present but not fully functional. In contrast, a combination of VEGF administration and an EE partially protects the functionally damaged tissue with a higher preservation of BBB integrity.
Collapse
Affiliation(s)
- N Ortuzar
- Department of Neuroscience, LaNCE, Clinical and Experimental Neuroscience Laboratory, University of Basque Country, Leioa, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Altered functional development of the blood–brain barrier after early life stress in the rat. Brain Res Bull 2009; 79:376-87. [DOI: 10.1016/j.brainresbull.2009.05.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 05/09/2009] [Accepted: 05/13/2009] [Indexed: 11/22/2022]
|
15
|
Argandoña EG, Bengoetxea H, Lafuente JV. Physical exercise is required for environmental enrichment to offset the quantitative effects of dark-rearing on the S-100beta astrocytic density in the rat visual cortex. J Anat 2009; 215:132-40. [PMID: 19500177 DOI: 10.1111/j.1469-7580.2009.01103.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
After birth, exposure to visual inputs modulates cortical development, inducing numerous changes in all of the components of the visual cortex. Most of the cortical changes thus induced occur during what is called the critical period. Astrocytes play an important role in the development, maintenance and plasticity of the cortex as well as in the structure and function of the vascular network. Visual deprivation induces a decrease in the astroglial population, whereas enhanced experience increases it. Exposure to an enriched environment has been shown to prevent the effects of dark-rearing in the visual cortex. Our purpose was to study the effects of an enriched environment on the density of astrocytes per reference surface at the visual cortex of dark-reared rats, in order to determine if enhanced experience is able to compensate the quantitative effects of visual deprivation and the role of physical exercise on the enrichment paradigm. Pregnant Sprague-Dawley rats were raised in one of the following rearing conditions: control rats with standard housing (12-h light/dark cycle); in total darkness for the dark-rearing experiments; and dark-rearing in conditions of enriched environment without and with physical exercise. The astrocytic density was estimated by immunohistochemistry for S-100beta protein. Quantifications were performed in layer IV. The somatosensorial cortex barrel field was also studied as control. The volume of layer IV was stereologically calculated for each region, age and experimental condition. From the beginning of the critical period, astrocyte density was higher in control rats than in the enriched environment group without physical exercise, with densities of astrocytes around 20% higher at all of the different ages. In contrast, when the animals had access to voluntary exercise, densities were significantly higher than even the control rats. Our main result shows that strategies to apply environmental enrichment should always consider the incorporation of physical exercise, even for sensorial areas such as the visual area, where complex enriched experience by itself is not enough to compensate the effects of visual deprivation.
Collapse
Affiliation(s)
- Enrike G Argandoña
- Department of Nursing I, Faculty of Medicine and Odontology, Basque Country University, Leioa, Spain.
| | | | | |
Collapse
|
16
|
Lee KM, Jang JH, Park JS, Kim DS, Han HS. Effect of mild hypothermia on blood brain barrier disruption induced by oleic acid in rats. Genes Genomics 2009. [DOI: 10.1007/bf03191142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Bengoetxea H, Argandoña EG, Lafuente JV. Effects of visual experience on vascular endothelial growth factor expression during the postnatal development of the rat visual cortex. Cereb Cortex 2008; 18:1630-9. [PMID: 17986606 PMCID: PMC2430152 DOI: 10.1093/cercor/bhm190] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The development of the cortical vascular network depends on functional maturation. External inputs are an essential requirement in the modeling of the visual cortex, mainly during the critical period, when the functional and structural properties of visual cortical neurons are particularly susceptible to alterations. Vascular endothelial growth factor (VEGF) is the major angiogenic factor, a key signal in the induction of vessel growth. Our study focused on the role of visual stimuli on the development of the vascular pattern correlated with VEGF levels. Vascular density and the expression of VEGF were examined in the primary visual cortex of rats reared under different visual environments (dark rearing, dark-rearing in conditions of enriched environment, enriched environment, and laboratory standard conditions) during postnatal development (before, during, and after the critical period). Our results show a restricted VEGF cellular expression to astroglial cells. Quantitative differences appeared during the critical period: higher vascular density and VEGF protein levels were found in the enriched environment group; both dark-reared groups showed lower vascular density and VEGF levels, which means that enriched environment without the physical exercise component does not exert effects in dark-reared rats.
Collapse
Affiliation(s)
- Harkaitz Bengoetxea
- Laboratory of Clinical and Experimental Neuroscience (LaNCE), Department of Neuroscience, Faculty of Medicine and Odontology, Basque Country University, Barrio Sarriena, 48940 Leioa, Spain.
| | | | | |
Collapse
|
18
|
Norsted E, Gömüç B, Meister B. Protein components of the blood-brain barrier (BBB) in the mediobasal hypothalamus. J Chem Neuroanat 2008; 36:107-21. [PMID: 18602987 DOI: 10.1016/j.jchemneu.2008.06.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 01/27/2023]
Abstract
The blood-brain barrier (BBB) plays an important role in controlling the access of substances to the brain. Of the circumventricular organs (CVO), i.e. areas that lack a BBB, the median eminence and its close relationship with the hypothalamic arcuate nucleus plays an important role in controlling the entry of blood-borne substances to neurons of the mediobasal hypothalamus. In order to clarify the nature of the BBB in the median eminence-arcuate nucleus complex, we have used immunohistochemistry and antisera to protein components of the BBB-(1) tight junctions, claudin-5 and zona occludens-1 (ZO-1); (2) endothelial cells: (a) all endothelial cells: rat endothelial cell antigen-1 (RECA-1), (b) endothelial cells at BBB: endothelial barrier antigen (EBA), glucose transporter 1 (GLUT1) and transferrin receptor (TfR), and (c) endothelial cells at CVOs: dysferlin; (3) basal lamina: laminin; (4) vascular smooth muscle cells: smooth muscle actin (SMA); (5) pericytes: chondroitin sulfate proteoglycan (NG2); (6) glial cells: (a) astrocytes: glial fibrillary acidic protein (GFAP), (b) tanycytes: dopamine- and cAMP-regulated phosphoprotein of 32kDA (DARPP-32), (c) microglia: CD11b. Neuronal cell bodies located in the ventromedial aspect of the arcuate nucleus were visualized by antiserum to agouti-related protein (AgRP). The study provides a detailed analysis on the cellular localization of BBB components in the mediobasal hypothalamus. Some vessels in the ventromedial aspect of the arcuate nucleus lacked the BBB markers EBA and TfR, suggesting an absence of an intact BBB. These vessels may represent a route of entry for circulating substances to a subpopulation of arcuate nucleus neurons.
Collapse
Affiliation(s)
- Ebba Norsted
- Department of Neuroscience, The Retzius Laboratory, Karolinska Institutet, Retzius väg 8, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
19
|
Kasselman LJ, Kintner J, Sideris A, Pasnikowski E, Krellman JW, Shah S, Rudge JS, Yancopoulos GD, Wiegand SJ, Croll SD. Dexamethasone treatment and ICAM-1 deficiency impair VEGF-induced angiogenesis in adult brain. J Vasc Res 2007; 44:283-91. [PMID: 17406120 DOI: 10.1159/000101450] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 01/26/2007] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Infusion of exogenous vascular endothelial growth factor (VEGF) into adult brain at doses above 60 ng/day induces dramatic angiogenesis accompanied by vascular leak and inflammation. Blood vessels formed by this treatment are dilated and tortuous, exhibiting a pathological morphology. Pathological VEGF-induced angiogenesis is preceded by vascular leak and inflammation, which have been proposed to mediate subsequent angiogenesis. METHODS To test this hypothesis, we infused VEGF into the brains of adult rats to induce pathological angiogenesis. Some of these rats were treated with dexamethasone, a potent anti-inflammatory glucocorticoid, to inhibit inflammation and edema. RESULTS We demonstrate that inhibition of inflammation by treatment with dexamethasone significantly attenuated VEGF-induced pathological angiogenesis. To present converging evidence that inflammation may be important in this angiogenic process, we also demonstrate that mice genetically deficient in the inflammatory mediator intercellular adhesion molecule-1 have attenuated VEGF-induced angiogenesis. These same mice showed normal amounts of physiological angiogenesis in response to enriched environments, however, suggesting that a generalized reduction in vascular plasticity could not account for their poor angiogenic response to VEGF. CONCLUSIONS Taken together, the data from these experiments suggest that the inflammation which occurs before or during VEGF-induced pathological brain angiogenesis plays a contributory role in the pathological angiogenic process.
Collapse
Affiliation(s)
- Lora J Kasselman
- Neuropsychology Doctoral Subprogram, Graduate Center of the City University of New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lafuente JV, Argandoña EG, Mitre B. VEGFR-2 expression in brain injury: its distribution related to brain-blood barrier markers. J Neural Transm (Vienna) 2006; 113:487-96. [PMID: 16550327 DOI: 10.1007/s00702-005-0407-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Accepted: 09/26/2005] [Indexed: 12/21/2022]
Abstract
VEGF is a major regulator of angiogenesis and vascular permeability in development and injury. The involvement of one of its receptors, Flk-1 in angiogenesis has been widely demonstrated, but few studies elucidate its role as a mediator of the BBB permeability and none displays its distribution following a cortical micronecrosis. A microvascular marker (LEA lectin), two BBB markers (EBA, GluT-1) and the VEGFR2 receptor were studied in adult rats after a minimal brain injury. Immunohistochemistry shows an increase of positive vessels, somata and processes around the micronecrosis from 6 to 72 hours after injury. Flk-1 was overexpressed mainly in endothelial cells, but also in astrocytes, neuronal somata and processes adjacent to the damage. This increase correlates to the lose of positivity for EBA. After injury, VEGFR-2 expression increases and its distribution corresponds to VEGF one. The whole system seems to play a role in the disruption of the BBB.
Collapse
Affiliation(s)
- J V Lafuente
- Laboratory of Clinical and Experimental Neuroscience (LaNCE), Department of Neuroscience, University of the Basque Country, Leioa, Spain.
| | | | | |
Collapse
|