1
|
Maurice MM, Angers S. Mechanistic insights into Wnt-β-catenin pathway activation and signal transduction. Nat Rev Mol Cell Biol 2025; 26:371-388. [PMID: 39856369 DOI: 10.1038/s41580-024-00823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/27/2025]
Abstract
In multicellular organisms, Wnt proteins govern stem and progenitor cell renewal and differentiation to regulate embryonic development, adult tissue homeostasis and tissue regeneration. Defects in canonical Wnt signalling, which is transduced intracellularly by β-catenin, have been associated with developmental disorders, degenerative diseases and cancers. Although a simple model describing Wnt-β-catenin signalling is widely used to introduce this pathway and has largely remained unchanged over the past 30 years, in this Review we discuss recent studies that have provided important new insights into the mechanisms of Wnt production, receptor activation and intracellular signalling that advance our understanding of the molecular mechanisms that underlie this important cell-cell communication system. In addition, we review the recent development of molecules capable of activating the Wnt-β-catenin pathway with selectivity in vitro and in vivo that is enabling new lines of study to pave the way for the development of Wnt therapies for the treatment of human diseases.
Collapse
Affiliation(s)
- Madelon M Maurice
- Center for Molecular Medicine, University Medical Center, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research and Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Ashwini P, Subhash B, Amol M, Kumar D, Atmaram P, Ravindra K. Comprehensive investigation of multiple targets in the development of newer drugs for the Alzheimer's disease. Acta Pharm Sin B 2025; 15:1281-1310. [PMID: 40370532 PMCID: PMC12069117 DOI: 10.1016/j.apsb.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 05/16/2025] Open
Abstract
Alzheimer's disease, a significant contributor to dementia, is rapidly becoming a serious healthcare concern in the 21st century. The alarming number of patients with Alzheimer's disease is steadily increasing, which is contributed by the dearth of treatment options. The current treatment for Alzheimer's disease is heavily dependent on symptomatic treatment that has failed to cure the disease despite huge investments in the development of drugs. The clinical treatment of Alzheimer's disease with limited drugs is generally targeted towards the inhibition of N-methyl-d-aspartate receptor and acetylcholine esterase, which only elevate cognition levels for a limited period. Beyond the aforementioned molecular targets, β-amyloid was much explored with little success and thus created a feel and palpable growing emphasis on discovering new putative and novel targets for AD. This has inspired medicinal chemists to explore new targets, including microglia, triggering receptors expressed on myeloid cells 2 (Trem-2), and notum carboxylesterase, to discover new lead compounds. This review explores the functions, pathophysiological roles, and importance of all AD-related targets that address therapeutic and preventive approaches for the treatment and protection of Alzheimer's disease.
Collapse
Affiliation(s)
- Patil Ashwini
- Department of Pharmaceutical Chemistry, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Bodhankar Subhash
- Department of Pharmacology, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Muthal Amol
- Department of Pharmacology, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
- University of California, Davis, CA 95616, USA
| | - Pawar Atmaram
- Department of Pharmaceutics, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Kulkarni Ravindra
- Department of Pharmaceutical Chemistry, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| |
Collapse
|
3
|
Delmore D, Waghmare I. Molecular evidence supports the functionality of a protein-trapped endogenous allele of Dally-like protein. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001283. [PMID: 39925890 PMCID: PMC11806380 DOI: 10.17912/micropub.biology.001283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/23/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
The Drosophila glypican Dally-like protein (Dlp) is an evolutionarily-conserved cell-surface protein that modulates extracellular distribution of several secreted ligands for cell signaling. Several fly lines expressing tagged dlp have been used to study the role of Dlp in vivo including the PBac{602.P.SVS-1}dlp [CPTI000445] protein-trap line, which encodes StrepII-Venus-StrepII (SVS)-tagged Dlp from the endogenous locus. dlp is essential for embryonic development, and the SVS-dlp line is homozygous viable. Although this suggests that the SVS-tagged Dlp is functional, it is possible that that the SVS-dlp flies produce wild-type dlp isoform through alternative splicing, contributing to their survival. Here, we used a molecular analysis approach to show that the SVS-dlp flies do not produce wild-type isoform, confirming that the SVS-tagged Dlp is indeed functional.
Collapse
Affiliation(s)
- Drew Delmore
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, United States
| | - Indrayani Waghmare
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, United States
| |
Collapse
|
4
|
Ell CM, Safyan A, Chayengia M, Kustermann MMM, Lorenz J, Schächtle M, Pyrowolakis G. A genome-engineered tool set for Drosophila TGF-β/BMP signaling studies. Development 2024; 151:dev204222. [PMID: 39494616 DOI: 10.1242/dev.204222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Ligands of the TGF-β/BMP superfamily are crucially involved in the regulation of growth, patterning and organogenesis and can act as long-range morphogens. Essential for understanding TGF-β/BMP signaling dynamics and regulation are tools that allow monitoring and manipulating pathway components at physiological expression levels and endogenous spatiotemporal patterns. We used genome engineering to generate a comprehensive library of endogenously epitope- or fluorescent-tagged versions of receptors, co-receptors, transcription factors and key feedback regulators of the Drosophila BMP and Activin signaling pathways. We demonstrate that the generated alleles are biologically active and can be used for assessing tissue and subcellular distribution of the corresponding proteins. Furthermore, we show that the genomic platforms can be used for in locus structure-function and cis-regulatory analyses. Finally, we present a complementary set of protein binder-based tools, which allow visualization as well as manipulation of the stability and subcellular localization of epitope-tagged proteins, providing new tools for the analysis of BMP signaling and beyond.
Collapse
Affiliation(s)
- Clara-Maria Ell
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
| | - Abu Safyan
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism, 79108 Freiburg, Germany
| | - Mrinal Chayengia
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
| | - Manuela M M Kustermann
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
| | - Jennifer Lorenz
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
| | - Melanie Schächtle
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
| | - George Pyrowolakis
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Gao Y, Feng J, Zhang Y, Yi M, Zhang L, Yan Y, Zhu AJ, Liu M. Ehbp1 orchestrates orderly sorting of Wnt/Wingless to the basolateral and apical cell membranes. EMBO Rep 2024; 25:5053-5079. [PMID: 39402333 PMCID: PMC11549480 DOI: 10.1038/s44319-024-00289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Wingless (Wg)/Wnt signaling plays a critical role in both development and adult tissue homeostasis. In the Drosophila larval wing disc epithelium, the orderly delivery of Wg/Wnt to the apical and basal cell surfaces is essential for wing development. Here, we identified Ehbp1 as the switch that dictates the direction of Wg/Wnt polarized intracellular transport: the Adaptor Protein complex 1 (AP-1) delivers Wg/Wnt to the basolateral cell surface, and its sequestration by Ehbp1 redirects Wg/Wnt for apical delivery. Genetic analyses showed that Ehbp1 specifically regulates the polarized distribution of Wg/Wnt, a process that depends on the dedicated Wg/Wnt cargo receptor Wntless. Mechanistically, Ehbp1 competes with Wntless for AP-1 binding, thereby preventing the unregulated basolateral Wg/Wnt transport. Reducing Ehbp1 expression, or removing the coiled-coil motifs within its bMERB domain, leads to basolateral Wg/Wnt accumulation. Importantly, the regulation of polarized Wnt delivery by EHBP1 is conserved in vertebrates. The generality of this switch mechanism for regulating intracellular transport remains to be determined in future studies.
Collapse
Affiliation(s)
- Yuan Gao
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jing Feng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yansong Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, 610213, China
| | - Mengyuan Yi
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lebing Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yan Yan
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, 610213, China.
| | - Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Zhang X, Wang Y, Zhao W, Yang S, Moussian B, Zhao Z, Zhang J, Dong W. Excess Dally-like Induces Malformation of Drosophila Legs. Cells 2024; 13:1199. [PMID: 39056781 PMCID: PMC11274743 DOI: 10.3390/cells13141199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Glypicans are closely associated with organ development and tumorigenesis in animals. Dally-like (Dlp), a membrane-bound glypican, plays pivotal roles in various biological processes in Drosophila. In this study, we observed that an excess of Dlp led to the malformation of legs, particularly affecting the distal part. Accordingly, the leg disc was shrunken and frequently exhibited aberrant morphology. In addition, elevated Dlp levels induced ectopic cell death with no apparent cell proliferation changes. Furthermore, Dlp overexpression in the posterior compartment significantly altered Wingless (Wg) distribution. We observed a marked expansion of Wg distribution within the posterior compartment, accompanied by a corresponding decrease in the anterior compartment. It appears that excess Dlp guides Wg to diffuse to cells with higher Dlp levels. In addition, the distal-less (dll) gene, which is crucial for leg patterning, was up-regulated significantly. Notably, dachshund (dac) and homothorax (hth) expression, also essential for leg patterning and development, only appeared to be negligibly affected. Based on these findings, we speculate that excess Dlp may contribute to malformations of the distal leg region of Drosophila, possibly through its influence on Wg distribution, dll expression and induced cell death. Our research advances the understanding of Dlp function in Drosophila leg development.
Collapse
Affiliation(s)
- Xubo Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Yi Wang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Wenting Zhao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Shumin Yang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Bernard Moussian
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, Institut Sophia Agrobiotech, Sophia Antipolis, Université Côte d′Azur, 06108 Nice, France
| | - Zhangwu Zhao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Wei Dong
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
7
|
Jiménez-Jiménez C, Grobe K, Guerrero I. Hedgehog on the Move: Glypican-Regulated Transport and Gradient Formation in Drosophila. Cells 2024; 13:418. [PMID: 38474382 PMCID: PMC10930589 DOI: 10.3390/cells13050418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Glypicans (Glps) are a family of heparan sulphate proteoglycans that are attached to the outer plasma membrane leaflet of the producing cell by a glycosylphosphatidylinositol anchor. Glps are involved in the regulation of many signalling pathways, including those that regulate the activities of Wnts, Hedgehog (Hh), Fibroblast Growth Factors (FGFs), and Bone Morphogenetic Proteins (BMPs), among others. In the Hh-signalling pathway, Glps have been shown to be essential for ligand transport and the formation of Hh gradients over long distances, for the maintenance of Hh levels in the extracellular matrix, and for unimpaired ligand reception in distant recipient cells. Recently, two mechanistic models have been proposed to explain how Hh can form the signalling gradient and how Glps may contribute to it. In this review, we describe the structure, biochemistry, and metabolism of Glps and their interactions with different components of the Hh-signalling pathway that are important for the release, transport, and reception of Hh.
Collapse
Affiliation(s)
- Carlos Jiménez-Jiménez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, E-28049 Madrid, Spain;
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany
| | - Isabel Guerrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, E-28049 Madrid, Spain;
| |
Collapse
|
8
|
Nakato E, Kamimura K, Knudsen C, Masutani S, Takemura M, Hayashi Y, Akiyama T, Nakato H. Differential heparan sulfate dependency of the Drosophila glypicans. J Biol Chem 2024; 300:105544. [PMID: 38072044 PMCID: PMC10796981 DOI: 10.1016/j.jbc.2023.105544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are composed of a core protein and glycosaminoglycan (GAG) chains and serve as coreceptors for many growth factors and morphogens. To understand the molecular mechanisms by which HSPGs regulate morphogen gradient formation and signaling, it is important to determine the relative contributions of the carbohydrate and protein moieties to the proteoglycan function. To address this question, we generated ΔGAG alleles for dally and dally-like protein (dlp), two Drosophila HSPGs of the glypican family, in which all GAG-attachment serine residues are substituted to alanine residues using CRISPR/Cas9 mutagenesis. In these alleles, the glypican core proteins are expressed from the endogenous loci with no GAG modification. Analyses of the dallyΔGAG allele defined Dally functions that do not require heparan sulfate (HS) chains and that need both core protein and HS chains. We found a new, dallyΔGAG-specific phenotype, the formation of a posterior ectopic vein, which we have never seen in the null mutants. Unlike dallyΔGAG, dlpΔGAG mutants do not show most of the dlp null mutant phenotypes, suggesting that HS chains are dispensable for these dlp functions. As an exception, HS is essentially required for Dlp's activity at the neuromuscular junction. Thus, Drosophila glypicans show strikingly different levels of HS dependency. The ΔGAG mutant alleles of the glypicans serve as new molecular genetic toolsets highly useful to address important biological questions, such as molecular mechanisms of morphogen gradient formation.
Collapse
Affiliation(s)
- Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Keisuke Kamimura
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Collin Knudsen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Suzuka Masutani
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Masahiko Takemura
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yoshiki Hayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Takuya Akiyama
- Department of Biology, Indiana State University, Terre Haute, Indiana, USA
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
9
|
Nakato E, Baker S, Kinoshita-Toyoda A, Knudsen C, Lu YS, Takemura M, Toyoda H, Nakato H. In vivo activities of heparan sulfate differentially modified by NDSTs during development. PROTEOGLYCAN RESEARCH 2024; 2:e17. [PMID: 38616954 PMCID: PMC11011245 DOI: 10.1002/pgr2.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/02/2024] [Indexed: 04/16/2024]
Abstract
Heparan sulfate proteoglycans (HSPGs) serve as co-receptors for growth factor signaling during development. It is well known that the level and patterns of sulfate groups of heparan sulfate (HS) chains, or HS fine structures, have a major impact on HSPG function. On the other hand, the physiological significance of other structural features of HS, including NS/NA domain organization, remains to be elucidated. A blueprint of the HS domain structures is mainly controlled by HS N-deacetylase/N-sulfotransferases (NDSTs). To analyze in vivo activities of differentially modified HS, we established two knock-in (KI) Drosophila strains with the insertion of mouse Ndst1 (mNdst1) or Ndst2 (mNdst2) in the locus of sulfateless (sfl), the only Drosophila NDST. In these KI lines, mNDSTs are expressed from the sfl locus, in the level and patterns identical to the endogenous sfl gene. Thus, phenotypes of Ndst1 KI and Ndst2KI animals reflect the ability of HS structures made by these enzymes to rescue sfl mutation. Remarkably, we found that mNdst1 completely rescued the loss of sfl. mNdst2 showed a limited rescue ability, despite a higher level of HS sulfation compared to HS in mNdst1 KI. Our study suggests that independent of sulfation levels, additional HS structural features controlled by NDSTs play key roles during tissue patterning.
Collapse
Affiliation(s)
- Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarah Baker
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Collin Knudsen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yi-Si Lu
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Hidenao Toyoda
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
10
|
Tian Y, Wang X, Cramer Z, Rhoades J, Estep KN, Ma X, Adams-Tzivelekidis S, Katona BW, Johnson FB, Yu Z, Blanco MA, Lengner CJ, Li N. APC and P53 mutations synergise to create a therapeutic vulnerability to NOTUM inhibition in advanced colorectal cancer. Gut 2023; 72:2294-2306. [PMID: 37591698 PMCID: PMC10715527 DOI: 10.1136/gutjnl-2022-329140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/30/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Colorectal cancer (CRC) is a leading cause of cancer-related deaths, with the majority of cases initiated by inactivation of the APC tumour suppressor. This results in the constitutive activation of canonical WNT pathway transcriptional effector ß-catenin, along with induction of WNT feedback inhibitors, including the extracellular palmitoleoyl-protein carboxylesterase NOTUM which antagonises WNT-FZD receptor-ligand interactions. Here, we sought to evaluate the effects of NOTUM activity on CRC as a function of driver mutation landscape. DESIGN Mouse and human colon organoids engineered with combinations of CRC driver mutations were used for Notum genetic gain-of-function and loss-of-function studies. In vitro assays, in vivo endoscope-guided orthotopic organoid implantation assays and transcriptomic profiling were employed to characterise the effects of Notum activity. Small molecule inhibitors of Notum activity were used in preclinical therapeutic proof-of-principle studies targeting oncogenic Notum activity. RESULTS NOTUM retains tumour suppressive activity in APC-null adenomas despite constitutive ß-catenin activity. Strikingly, on progression to adenocarcinoma with P53 loss, NOTUM becomes an obligate oncogene. These phenotypes are Wnt-independent, resulting from differential activity of NOTUM on glypican 1 and 4 in early-stage versus late-stage disease, respectively. Ultimately, preclinical mouse models and human organoid cultures demonstrate that pharmacological inhibition of NOTUM is highly effective in arresting primary adenocarcinoma growth and inhibiting metastatic colonisation of distal organs. CONCLUSIONS Our findings that a single agent targeting the extracellular enzyme NOTUM is effective in treating highly aggressive, metastatic adenocarcinomas in preclinical mouse models and human organoids make NOTUM and its glypican targets therapeutic vulnerabilities in advanced CRC.
Collapse
Affiliation(s)
- Yuhua Tian
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Wang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zvi Cramer
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua Rhoades
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katrina N Estep
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xianghui Ma
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Stephanie Adams-Tzivelekidis
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bryson W Katona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhengquan Yu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - M Andres Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ning Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Feng K, Yu M, Lou X, Wang D, Wang L, Ren W. Multi-omics analysis of bone marrow mesenchymal stem cell differentiation differences in osteoporosis. Genomics 2023; 115:110668. [PMID: 37315871 DOI: 10.1016/j.ygeno.2023.110668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/28/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Osteoporosis is a systemic skeletal disease characterized by low bone mass and degradation of bone tissue microarchitecture, leading to enhanced bone fragility and increased fracture risk. However, the pathogenesis of osteoporosis is unclear. Our results showed that BMSCs dervied from ovariectomized rats had a higher capacity for osteogenesis and lipogenic differentiation compared to the control group. In the meantime, we identified a total of 205 differentially expressed proteins and 2294 differentially expressed genes in BMSCs isolated from ovariectomized rats by proteomics analysis and transcriptome sequencing, respectively. These differentially expressed proteins and genes were mainly involved in ECM-receptor interaction signaling pathway. We speculate that BMSCs derived from ovariectomized rats have a higher potential for bone formation because expression of ECM collagen or genes encoding collagen in the bone ECM in BMSCs isolated from ovariectomized rats are increased compared with that from control group, which provided the prerequisite for the increased bone turnover effect. To conclusion, our results may provid new ideas for further research on the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Kai Feng
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Mengyuan Yu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xingyue Lou
- College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Duo Wang
- College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Lei Wang
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Institutes of Health Central Plain of Xinxiang Medical University, Xinxiang 453003, Henan, China; College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| | - Wenjie Ren
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Institutes of Health Central Plain of Xinxiang Medical University, Xinxiang 453003, Henan, China.
| |
Collapse
|
12
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins I: Localization at Plasma Membranes and Extracellular Compartments. Biomolecules 2023; 13:biom13050855. [PMID: 37238725 DOI: 10.3390/biom13050855] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of plasma membranes (PMs) of all eukaryotic organisms studied so far by covalent linkage to a highly conserved glycolipid rather than a transmembrane domain. Since their first description, experimental data have been accumulating for the capability of GPI-APs to be released from PMs into the surrounding milieu. It became evident that this release results in distinct arrangements of GPI-APs which are compatible with the aqueous milieu upon loss of their GPI anchor by (proteolytic or lipolytic) cleavage or in the course of shielding of the full-length GPI anchor by incorporation into extracellular vesicles, lipoprotein-like particles and (lyso)phospholipid- and cholesterol-harboring micelle-like complexes or by association with GPI-binding proteins or/and other full-length GPI-APs. In mammalian organisms, the (patho)physiological roles of the released GPI-APs in the extracellular environment, such as blood and tissue cells, depend on the molecular mechanisms of their release as well as the cell types and tissues involved, and are controlled by their removal from circulation. This is accomplished by endocytic uptake by liver cells and/or degradation by GPI-specific phospholipase D in order to bypass potential unwanted effects of the released GPI-APs or their transfer from the releasing donor to acceptor cells (which will be reviewed in a forthcoming manuscript).
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| |
Collapse
|
13
|
Michna A, Pomorska A, Ozcan O. Biocompatible Macroion/Growth Factor Assemblies for Medical Applications. Biomolecules 2023; 13:biom13040609. [PMID: 37189357 DOI: 10.3390/biom13040609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Growth factors are a class of proteins that play a role in the proliferation (the increase in the number of cells resulting from cell division) and differentiation (when a cell undergoes changes in gene expression becoming a more specific type of cell) of cells. They can have both positive (accelerating the normal healing process) and negative effects (causing cancer) on disease progression and have potential applications in gene therapy and wound healing. However, their short half-life, low stability, and susceptibility to degradation by enzymes at body temperature make them easily degradable in vivo. To improve their effectiveness and stability, growth factors require carriers for delivery that protect them from heat, pH changes, and proteolysis. These carriers should also be able to deliver the growth factors to their intended destination. This review focuses on the current scientific literature concerning the physicochemical properties (such as biocompatibility, high affinity for binding growth factors, improved bioactivity and stability of the growth factors, protection from heat, pH changes or appropriate electric charge for growth factor attachment via electrostatic interactions) of macroions, growth factors, and macroion-growth factor assemblies, as well as their potential uses in medicine (e.g., diabetic wound healing, tissue regeneration, and cancer therapy). Specific attention is given to three types of growth factors: vascular endothelial growth factors, human fibroblast growth factors, and neurotrophins, as well as selected biocompatible synthetic macroions (obtained through standard polymerization techniques) and polysaccharides (natural macroions composed of repeating monomeric units of monosaccharides). Understanding the mechanisms by which growth factors bind to potential carriers could lead to more effective delivery methods for these proteins, which are of significant interest in the diagnosis and treatment of neurodegenerative and civilization diseases, as well as in the healing of chronic wounds.
Collapse
|
14
|
Colin-Pierre C, Untereiner V, Sockalingum GD, Ramont L, Brézillon S. Investigation of Glypican-4 and -6 by Infrared Spectral Imaging during the Hair Growth Cycle. Int J Mol Sci 2023; 24:ijms24054291. [PMID: 36901723 PMCID: PMC10002317 DOI: 10.3390/ijms24054291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
The expression of glypicans in different hair follicle (HF) compartments is still poorly understood. Heparan sulfate proteoglycans (HSPGs) distribution in HF is classically investigated by conventional histology, biochemical analysis, and immunohistochemistry. Our previous study proposed a novel approach to assess hair histology and glypican-1 (GPC1) distribution changes in the HF at different phases of the hair growth cycle using infrared spectral imaging (IRSI). We show in the present manuscript for the first time complementary data on the distribution of glypican-4 (GPC4) and glypican-6 (GPC6) in HF at different phases of the hair growth cycle using IR imaging. Findings were supported by Western blot assays focusing on the GPC4 and GPC6 expression in HFs. Like all proteoglycan features, the glypicans are characterized by a core protein to which sulfated and/or unsulfated glycosaminoglycan (GAG) chains are covalently linked. Our study demonstrates the capacity of IRSI to identify the different HF tissue structures and to highlight protein, proteoglycan (PG), GAG, and sulfated GAG distribution in these structures. The comparison between anagen, catagen, and telogen phases shows the qualitative and/or quantitative evolution of GAGs, as supported by Western blot. Thus, in one analysis, IRSI can simultaneously reveal the location of proteins, PGs, GAGs and sulfated GAGs in HFs in a chemical and label-free manner. From a dermatological point of view, IRSI may constitute a promising technique to study alopecia.
Collapse
Affiliation(s)
- Charlie Colin-Pierre
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne-Ardenne, 51097 Reims, France
- Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, CNRS UMR 7369, 51097 Reims, France
- BASF Beauty Care Solutions France SAS, 54425 Pulnoy, France
| | | | - Ganesh D. Sockalingum
- Université de Reims Champagne-Ardenne, BioSpecT EA7506, UFR de Pharmacie, 51097 Reims, France
- Correspondence: (G.D.S.); (S.B.)
| | - Laurent Ramont
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne-Ardenne, 51097 Reims, France
- Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, CNRS UMR 7369, 51097 Reims, France
- Service Biochimie-Pharmacologie-Toxicologie, CHU de Reims, 51097 Reims, France
| | - Stéphane Brézillon
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne-Ardenne, 51097 Reims, France
- Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, CNRS UMR 7369, 51097 Reims, France
- Correspondence: (G.D.S.); (S.B.)
| |
Collapse
|
15
|
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
16
|
Colin-Pierre C, El Baraka O, Danoux L, Bardey V, André V, Ramont L, Brézillon S. Regulation of stem cell fate by HSPGs: implication in hair follicle cycling. NPJ Regen Med 2022; 7:77. [PMID: 36577752 PMCID: PMC9797564 DOI: 10.1038/s41536-022-00267-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are part of proteoglycan family. They are composed of heparan sulfate (HS)-type glycosaminoglycan (GAG) chains covalently linked to a core protein. By interacting with growth factors and/or receptors, they regulate numerous pathways including Wnt, hedgehog (Hh), bone morphogenic protein (BMP) and fibroblast growth factor (FGF) pathways. They act as inhibitor or activator of these pathways to modulate embryonic and adult stem cell fate during organ morphogenesis, regeneration and homeostasis. This review summarizes the knowledge on HSPG structure and classification and explores several signaling pathways regulated by HSPGs in stem cell fate. A specific focus on hair follicle stem cell fate and the possibility to target HSPGs in order to tackle hair loss are discussed in more dermatological and cosmeceutical perspectives.
Collapse
Affiliation(s)
- Charlie Colin-Pierre
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.
- BASF Beauty Care Solutions France SAS, Pulnoy, France.
| | | | - Louis Danoux
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - Valérie André
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
- CHU de Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
| |
Collapse
|
17
|
Waghmare I, Page-McCaw A. Regulation of Wnt distribution and function by Drosophila glypicans. J Cell Sci 2022; 135:274233. [PMID: 35112708 PMCID: PMC8918805 DOI: 10.1242/jcs.259405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The extracellular distribution of secreted Wnt proteins is crucial for their ability to induce a response in target cells at short and long ranges to ensure proper development. Wnt proteins are evolutionarily conserved ligands that are lipid-modified, and their hydrophobic nature interferes with their solubility in the hydrophilic extracellular environment. This raises the question of how Wnt proteins spread extracellularly despite their lipid modifications, which are essential for both their secretion and function. Seminal studies on Drosophila Wingless (Wg), a prototypical Wnt, have discovered multiple mechanisms by which Wnt proteins spread. A central theme emerges from these studies: the Wnt lipid moiety is shielded from the aqueous environment, allowing the ligands to spread and remain viable for signaling. Wnt distribution in vivo is primarily facilitated by glypicans, which are cell-surface heparan sulfate proteoglycans, and recent studies have further provided mechanistic insight into how glypicans facilitate Wnt distribution. In this Review, we discuss the many diverse mechanisms of Wnt distribution, with a particular focus on glypican-mediated mechanisms.
Collapse
|
18
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing.
Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|
19
|
Colin-Pierre C, Berthélémy N, Belloy N, Danoux L, Bardey V, Rivet R, Mine S, Jeanmaire C, Maquart FX, Ramont L, Brézillon S. The Glypican-1/HGF/C-Met and Glypican-1/VEGF/VEGFR2 Ternary Complexes Regulate Hair Follicle Angiogenesis. Front Cell Dev Biol 2021; 9:781172. [PMID: 34957110 PMCID: PMC8692797 DOI: 10.3389/fcell.2021.781172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
The hair renewal involves changes in the morphology of the hair follicle and its micro-vascularization. In alopecia, the hair cycle is accelerated, resulting in the formation of thinner and shorter hair. In addition, alopecia is associated with a decrease in the micro-vascularization of the hair follicles. In this study, the role of glypicans (GPCs) was analyzed in the regulation of the angiogenesis of human dermal microvascular endothelial cells (HDMEC). The analysis of glypican gene expression showed that GPC1 is the major glypican expressed by human keratinocytes of outer root sheath (KORS), human hair follicle dermal papilla cells (HHFDPC) and HDMEC. KORS were demonstrated to secrete VEGF and HGF. The HDMEC pseudotube formation was induced by KORS conditioned media (KORSCM). It was totally abrogated after GPC1 siRNA transfection of HDMEC. Moreover, when cleaved by phospholipase C (PLC), GPC1 promotes the proliferation of HDMEC. Finally, GPC1 was shown to interact directly with VEGFR2 or c-Met to regulate angiogenesis induced by the activation of these receptors. Altogether, these results showed that GPC1 is a key regulator of microvascular endothelial cell angiogenesis induced by VEGF and HGF secreted by KORS. Thus, GPC1 might constitute an interesting target to tackle alopecia in dermatology research.
Collapse
Affiliation(s)
- Charlie Colin-Pierre
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.,BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - Nicolas Belloy
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.,P3M, Multiscale Molecular Modeling Platform, Université de Reims Champagne-Ardenne, Reims, France
| | - Louis Danoux
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - Romain Rivet
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
| | - Solène Mine
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - François-Xavier Maquart
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.,CHU de Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
| |
Collapse
|
20
|
Hu B, Rodriguez JJ, Kakkerla Balaraju A, Gao Y, Nguyen NT, Steen H, Suhaib S, Chen S, Lin F. Glypican 4 mediates Wnt transport between germ layers via signaling filopodia. J Cell Biol 2021; 220:212673. [PMID: 34591076 PMCID: PMC8488972 DOI: 10.1083/jcb.202009082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/18/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022] Open
Abstract
Glypicans influence signaling pathways by regulating morphogen trafficking and reception. However, the underlying mechanisms in vertebrates are poorly understood. In zebrafish, Glypican 4 (Gpc4) is required for convergence and extension (C&E) of both the mesoderm and endoderm. Here, we show that transgenic expression of GFP-Gpc4 in the endoderm of gpc4 mutants rescued C&E defects in all germ layers. The rescue of mesoderm was likely mediated by Wnt5b and Wnt11f2 and depended on signaling filopodia rather than on cleavage of the Gpc4 GPI anchor. Gpc4 bound both Wnt5b and Wnt11f2 and regulated formation of the filopodia that transport Wnt5b and Wnt11f2 to neighboring cells. Moreover, this rescue was suppressed by blocking signaling filopodia that extend from endodermal cells. Thus, GFP-Gpc4–labeled protrusions that emanated from endodermal cells transported Wnt5b and Wnt11f2 to other germ layers, rescuing the C&E defects caused by a gpc4 deficiency. Our study reveals a new mechanism that could explain in vivo morphogen distribution involving Gpc4.
Collapse
Affiliation(s)
- Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Juan J Rodriguez
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Anurag Kakkerla Balaraju
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Nhan T Nguyen
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Heston Steen
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Saeb Suhaib
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Songhai Chen
- Department of Neuroscience and Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| |
Collapse
|
21
|
Zhu H. Elucidate growth control mechanisms using reconstructed spatiotemporal distributions of signaling events. Comput Struct Biotechnol J 2021; 19:3618-3627. [PMID: 34257840 PMCID: PMC8249872 DOI: 10.1016/j.csbj.2021.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/19/2021] [Accepted: 06/12/2021] [Indexed: 11/30/2022] Open
Abstract
A fundamental biological question is how diverse and complex signaling and patterning is controlled correctly to generate distinct tissues, organs, and body plans, but incorrectly in diseased cells and tissues. Signaling pathways important for growth control have been identified, but to identify the mechanisms their transient and context-dependent interactions encode is more difficult. Currently computational systems biology aims to infer the control mechanisms by investigating quantitative changes of gene expression and protein concentrations, but this inference is difficult in nature. We propose it is desirable to explicitly simulate events and orders of gene regulation and protein interactions, which better elucidate control mechanisms, and report a method and tool with three examples. The Drosophila wing model includes Wnt, PCP, and Hippo pathways and mechanical force, incorporates well-confirmed experimental findings, and generates novel results. The other two examples illustrate the building of three-dimensional and large-scale models. These examples support that reconstructed spatiotemporal distributions of key signaling events help elucidate growth control mechanisms. As biologists pay increasing attention to disordered signaling in diseased cells, to develop new modeling methods and tools for conducting new computational studies is important.
Collapse
Affiliation(s)
- Hao Zhu
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Shatai Road, Guangzhou 510515, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
22
|
Bayle E, Svensson F, Atkinson BN, Steadman D, Willis NJ, Woodward HL, Whiting P, Vincent JP, Fish PV. Carboxylesterase Notum Is a Druggable Target to Modulate Wnt Signaling. J Med Chem 2021; 64:4289-4311. [PMID: 33783220 PMCID: PMC8172013 DOI: 10.1021/acs.jmedchem.0c01974] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Indexed: 12/12/2022]
Abstract
Regulation of the Wnt signaling pathway is critically important for a number of cellular processes in both development and adult mammalian biology. This Perspective will provide a summary of current and emerging therapeutic opportunities in modulating Wnt signaling, especially through inhibition of Notum carboxylesterase activity. Notum was recently shown to act as a negative regulator of Wnt signaling through the removal of an essential palmitoleate group. Inhibition of Notum activity may represent a new approach to treat disease where aberrant Notum activity has been identified as the underlying cause. Reliable screening technologies are available to identify inhibitors of Notum, and structural studies are accelerating the discovery of new inhibitors. A selection of these hits have been optimized to give fit-for-purpose small molecule inhibitors of Notum. Three noteworthy examples are LP-922056 (26), ABC99 (27), and ARUK3001185 (28), which are complementary chemical tools for exploring the role of Notum in Wnt signaling.
Collapse
Affiliation(s)
- Elliott
D. Bayle
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Fredrik Svensson
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Benjamin N. Atkinson
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - David Steadman
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Nicky J. Willis
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Hannah L. Woodward
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Paul Whiting
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Jean-Paul Vincent
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Paul V. Fish
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| |
Collapse
|
23
|
Wang X, LaFever KS, Waghmare I, Page-McCaw A. Extracellular spreading of Wingless is required for Drosophila oogenesis. PLoS Genet 2021; 17:e1009469. [PMID: 33798197 PMCID: PMC8046344 DOI: 10.1371/journal.pgen.1009469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/14/2021] [Accepted: 03/05/2021] [Indexed: 11/18/2022] Open
Abstract
Recent studies have investigated whether the Wnt family of extracellular ligands can signal at long range, spreading from their source and acting as morphogens, or whether they signal only in a juxtacrine manner to neighboring cells. The original evidence for long-range Wnt signaling arose from studies of Wg, a Drosophila Wnt protein, which patterns the wing disc over several cell diameters from a central source of Wg ligand. However, the requirement of long-range Wg for patterning was called into question when it was reported that replacing the secreted protein Wg with a membrane-tethered version, NRT-Wg, results in flies with normally patterned wings. We and others previously reported that Wg spreads in the ovary about 50 μm or 5 cell diameters, from the cap cells to the follicle stem cells (FSCs) and that Wg stimulates FSC proliferation. We used the NRT-wg flies to analyze the consequence of tethering Wg to the cap cells. NRT-wg homozygous flies are sickly, but we found that hemizygous NRT-wg/null flies, carrying only one copy of tethered Wingless, were significantly healthier. Despite their overall improved health, these hemizygous flies displayed dramatic reductions in fertility and in FSC proliferation. Further, FSC proliferation was nearly undetectable when the wg locus was converted to NRT-wg only in adults, and the resulting germarium phenotype was consistent with a previously reported wg loss-of-function phenotype. We conclude that Wg protein spreads from its source cells in the germarium to promote FSC proliferation.
Collapse
Affiliation(s)
- Xiaoxi Wang
- Department of Cell and Developmental Biology, Program in Developmental Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kimberly S. LaFever
- Department of Cell and Developmental Biology, Program in Developmental Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Indrayani Waghmare
- Department of Cell and Developmental Biology, Program in Developmental Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Program in Developmental Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
24
|
Stapornwongkul KS, Vincent JP. Generation of extracellular morphogen gradients: the case for diffusion. Nat Rev Genet 2021; 22:393-411. [PMID: 33767424 DOI: 10.1038/s41576-021-00342-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Cells within developing tissues rely on morphogens to assess positional information. Passive diffusion is the most parsimonious transport model for long-range morphogen gradient formation but does not, on its own, readily explain scaling, robustness and planar transport. Here, we argue that diffusion is sufficient to ensure robust morphogen gradient formation in a variety of tissues if the interactions between morphogens and their extracellular binders are considered. A current challenge is to assess how the affinity for extracellular binders, as well as other biophysical and cell biological parameters, determines gradient dynamics and shape in a diffusion-based transport system. Technological advances in genome editing, tissue engineering, live imaging and in vivo biophysics are now facilitating measurement of these parameters, paving the way for mathematical modelling and a quantitative understanding of morphogen gradient formation and modulation.
Collapse
|
25
|
Keil S, Gupta M, Brand M, Knopf F. Heparan sulfate proteoglycan expression in the regenerating zebrafish fin. Dev Dyn 2021; 250:1368-1380. [PMID: 33638212 DOI: 10.1002/dvdy.321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/16/2021] [Accepted: 02/10/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Heparan sulfate proteoglycan (HSPG) expression is found in many animal tissues and regulates growth factor signaling such as of Fibroblast growth factors (Fgf), Wingless/Int (Wnt) and Hedgehog (HH). Glypicans, which are GPI (glycosylphosphatidylinositol)-anchored proteins, and transmembrane-anchored syndecans represent two major HSPG protein families whose involvement in development and disease has been demonstrated. Their participation in regenerative processes both of the central nervous system and of regenerating limbs is well documented. However, whether HSPG are expressed in regenerating zebrafish fins, is currently unknown. RESULTS Here, we carried out a systematic screen of glypican and syndecan mRNA expression in regenerating zebrafish fins during the outgrowth phase. We find that 8 of the 10 zebrafish glypicans and the three known zebrafish syndecans show specific expression at 3 days post amputation. Expression is found in different domains of the regenerate, including the distal and lateral basal layers of the wound epidermis, the distal most blastema and more proximal blastema regions. CONCLUSIONS HSPG expression is prevalent in regenerating zebrafish fins. Further research is needed to delineate the function of glypican and syndecan action during zebrafish fin regeneration.
Collapse
Affiliation(s)
- Sebastian Keil
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany.,Technische Universität Dresden, Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Mansi Gupta
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany.,Merus N.V, Utrecht, Netherlands
| | - Michael Brand
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Franziska Knopf
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany.,Technische Universität Dresden, Center for Healthy Aging TU Dresden, Dresden, Germany
| |
Collapse
|
26
|
Colin-Pierre C, Untereiner V, Sockalingum GD, Berthélémy N, Danoux L, Bardey V, Mine S, Jeanmaire C, Ramont L, Brézillon S. Hair Histology and Glycosaminoglycans Distribution Probed by Infrared Spectral Imaging: Focus on Heparan Sulfate Proteoglycan and Glypican-1 during Hair Growth Cycle. Biomolecules 2021; 11:biom11020192. [PMID: 33573119 PMCID: PMC7912031 DOI: 10.3390/biom11020192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 01/30/2023] Open
Abstract
The expression of glypicans in different hair follicle (HF) compartments and their potential roles during hair shaft growth are still poorly understood. Heparan sulfate proteoglycan (HSPG) distribution in HFs is classically investigated by conventional histology, biochemical analysis, and immunohistochemistry. In this report, a novel approach is proposed to assess hair histology and HSPG distribution changes in HFs at different phases of the hair growth cycle using infrared spectral imaging (IRSI). The distribution of HSPGs in HFs was probed by IRSI using the absorption region relevant to sulfation as a spectral marker. The findings were supported by Western immunoblotting and immunohistochemistry assays focusing on the glypican-1 expression and distribution in HFs. This study demonstrates the capacity of IRSI to identify the different HF tissue structures and to highlight protein, proteoglycan (PG), glycosaminoglycan (GAG), and sulfated GAG distribution in these structures. The comparison between anagen, catagen, and telogen phases shows the qualitative and/or quantitative evolution of GAGs as supported by Western immunoblotting. Thus, IRSI can simultaneously reveal the location of proteins, PGs, GAGs, and sulfated GAGs in HFs in a reagent- and label-free manner. From a dermatological point of view, IRSI shows its potential as a promising technique to study alopecia.
Collapse
Affiliation(s)
- Charlie Colin-Pierre
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, 51097 Reims, France; (C.C.-P.); (L.R.)
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, 51097 Reims, France
- BASF Beauty Care Solutions France SAS, 54425 Pulnoy, France; (N.B.); (L.D.); (V.B.); (S.M.); (C.J.)
| | | | - Ganesh D. Sockalingum
- Université de Reims Champagne-Ardenne, BioSpecT EA7506, UFR de Pharmacie, 51097 Reims, France;
| | - Nicolas Berthélémy
- BASF Beauty Care Solutions France SAS, 54425 Pulnoy, France; (N.B.); (L.D.); (V.B.); (S.M.); (C.J.)
| | - Louis Danoux
- BASF Beauty Care Solutions France SAS, 54425 Pulnoy, France; (N.B.); (L.D.); (V.B.); (S.M.); (C.J.)
| | - Vincent Bardey
- BASF Beauty Care Solutions France SAS, 54425 Pulnoy, France; (N.B.); (L.D.); (V.B.); (S.M.); (C.J.)
| | - Solène Mine
- BASF Beauty Care Solutions France SAS, 54425 Pulnoy, France; (N.B.); (L.D.); (V.B.); (S.M.); (C.J.)
| | - Christine Jeanmaire
- BASF Beauty Care Solutions France SAS, 54425 Pulnoy, France; (N.B.); (L.D.); (V.B.); (S.M.); (C.J.)
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, 51097 Reims, France; (C.C.-P.); (L.R.)
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, 51097 Reims, France
- CHU de Reims, Service Biochimie-Pharmacologie-Toxicologie, 51097 Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, 51097 Reims, France; (C.C.-P.); (L.R.)
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, 51097 Reims, France
- Correspondence:
| |
Collapse
|
27
|
Shih TC, Wang L, Wang HC, Wan YJY. Glypican-3: A molecular marker for the detection and treatment of hepatocellular carcinoma ☆. LIVER RESEARCH 2020; 4:168-172. [PMID: 33384879 PMCID: PMC7771890 DOI: 10.1016/j.livres.2020.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with a fairly poor prognosis (5-year survival of less than 50%). Using sorafenib, the only food and drug administration (FDA)-approved drug, HCC cannot be effectively treated; it can only be controlled at most for a couple of months. There is a great need to develop efficacious treatment against this debilitating disease. Glypican-3 (GPC3), a member of the glypican family that attaches to the cell surface by a glycosylphosphatidylinositol anchor, is overexpressed in HCC cases and is elevated in the serum of a large proportion of patients with HCC. GPC3 expression contributes to HCC growth and metastasis. Furthermore, several different types of antibodies targeting GPC3 have been developed. The aim of this review is to summarize the current literatures on the GPC3 expression in human HCC, molecular mechanisms of GPC3 regulation and antibodies targeting GPC3.
Collapse
Affiliation(s)
- Tsung-Chieh Shih
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | - Lijun Wang
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA
| | - Hsiao-Chi Wang
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA,Corresponding author. Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA. (Y.-J.Y. Wan)
| |
Collapse
|
28
|
Heparan Sulfate Proteoglycans Biosynthesis and Post Synthesis Mechanisms Combine Few Enzymes and Few Core Proteins to Generate Extensive Structural and Functional Diversity. Molecules 2020; 25:molecules25184215. [PMID: 32937952 PMCID: PMC7570499 DOI: 10.3390/molecules25184215] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Glycosylation is a common and widespread post-translational modification that affects a large majority of proteins. Of these, a small minority, about 20, are specifically modified by the addition of heparan sulfate, a linear polysaccharide from the glycosaminoglycan family. The resulting molecules, heparan sulfate proteoglycans, nevertheless play a fundamental role in most biological functions by interacting with a myriad of proteins. This large functional repertoire stems from the ubiquitous presence of these molecules within the tissue and a tremendous structural variety of the heparan sulfate chains, generated through both biosynthesis and post synthesis mechanisms. The present review focusses on how proteoglycans are “gagosylated” and acquire structural complexity through the concerted action of Golgi-localized biosynthesis enzymes and extracellular modifying enzymes. It examines, in particular, the possibility that these enzymes form complexes of different modes of organization, leading to the synthesis of various oligosaccharide sequences.
Collapse
|
29
|
Kamimura K, Odajima A, Ikegawa Y, Maru C, Maeda N. The HSPG Glypican Regulates Experience-Dependent Synaptic and Behavioral Plasticity by Modulating the Non-Canonical BMP Pathway. Cell Rep 2020; 28:3144-3156.e4. [PMID: 31533037 DOI: 10.1016/j.celrep.2019.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/11/2019] [Accepted: 08/08/2019] [Indexed: 01/05/2023] Open
Abstract
Under food deprivation conditions, Drosophila larvae exhibit increases in locomotor speed and synaptic bouton numbers at neuromuscular junctions (NMJs). Octopamine, the invertebrate counterpart of noradrenaline, plays critical roles in this process; however, the underlying mechanisms remain unclear. We show here that a glypican (Dlp) negatively regulates type I synaptic bouton formation, postsynaptic expression of GluRIIA, and larval locomotor speed. Starvation-induced octopaminergic signaling decreases Dlp expression, leading to increases in synapse formation and locomotion. Dlp is expressed by postsynaptic muscle cells and suppresses the non-canonical BMP pathway, which is composed of the presynaptic BMP receptor Wit and postsynaptic GluRIIA-containing ionotropic glutamate receptor. We find that during starvation, decreases in Dlp increase non-canonical BMP signaling, leading to increases in GluRIIA expression, type I bouton number, and locomotor speed. Our results demonstrate that octopamine controls starvation-induced neural plasticity by regulating Dlp and provides insights into how proteoglycans can influence behavioral and synaptic plasticity.
Collapse
Affiliation(s)
- Keisuke Kamimura
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan.
| | - Aiko Odajima
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Yuko Ikegawa
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Chikako Maru
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Nobuaki Maeda
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan.
| |
Collapse
|
30
|
Rushton E, Kopke DL, Broadie K. Extracellular heparan sulfate proteoglycans and glycan-binding lectins orchestrate trans-synaptic signaling. J Cell Sci 2020; 133:133/15/jcs244186. [PMID: 32788209 DOI: 10.1242/jcs.244186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The exceedingly narrow synaptic cleft (<20 nm) and adjacent perisynaptic extracellular space contain an astonishing array of secreted and membrane-anchored glycoproteins. A number of these extracellular molecules regulate intercellular trans-synaptic signaling by binding to ligands, acting as co-receptors or modulating ligand-receptor interactions. Recent work has greatly expanded our understanding of extracellular proteoglycan and glycan-binding lectin families as key regulators of intercellular signaling at the synapse. These secreted proteins act to regulate the compartmentalization of glycoprotein ligands and receptors, crosslink dynamic extracellular and cell surface lattices, modulate both exocytosis and endocytosis vesicle cycling, and control postsynaptic receptor trafficking. Here, we focus closely on the Drosophila glutamatergic neuromuscular junction (NMJ) as a model synapse for understanding extracellular roles of the many heparan sulfate proteoglycan (HSPG) and lectin proteins that help determine synaptic architecture and neurotransmission strength. We particularly concentrate on the roles of extracellular HSPGs and lectins in controlling trans-synaptic signaling, especially that mediated by the Wnt and BMP pathways. These signaling mechanisms are causally linked to a wide spectrum of neurological disease states that impair coordinated movement and cognitive functions.
Collapse
Affiliation(s)
- Emma Rushton
- Department of Biological Sciences, Brain Institute, and Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Danielle L Kopke
- Department of Biological Sciences, Brain Institute, and Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Brain Institute, and Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
31
|
Waghmare I, Wang X, Page-McCaw A. Dally-like protein sequesters multiple Wnt ligands in the Drosophila germarium. Dev Biol 2020; 464:88-102. [PMID: 32473955 DOI: 10.1016/j.ydbio.2020.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
Cells in multicellular organisms rely on secreted ligands for development and morphogenesis. Several mechanisms modulate the availability and distribution of secreted ligands, determining their ability to signal locally and at long range from their source. One of these mechanisms is Dally-like protein (Dlp), a cell-surface glypican that exhibits biphasic functions in Drosophila wing discs, promoting Wg signaling at long-range from Wg source cells and inhibiting Wg signaling near source cells. In the germarium at the tip of the ovary, Dlp promotes long-range distribution of Wg from cap cells to follicle stem cells. However, the germarium also expresses other Wnts - Wnt2, Wnt4, and Wnt6 - that function locally in escort cells to promote oogenesis. Whether and how local functions of these Wnts are regulated remains unknown. Here we show that the dlp overexpression phenotype is multifaceted and phenocopies multiple Wnt loss-of-function phenotypes. Each aspect of dlp overexpression phenotype is suppressed by co-expression of individual Wnts, and the suppression pattern exhibited by each Wnt suggests that Wnts have functional specificity in the germarium. Further, dlp knockdown phenocopies Wnt gain-of-function phenotypes. Together these data show that Dlp inhibits the functions of each Wnt. All four Wnts co-immunoprecipitate with Dlp in S2R+ cells, suggesting that in the germarium, Dlp sequesters Wnts to inhibit local paracrine Wnt signaling. Our results indicate that Dlp modulates the availability of multiple extracellular Wnts for local paracrine Wnt signaling in the germarium.
Collapse
Affiliation(s)
- Indrayani Waghmare
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Xiaoxi Wang
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
32
|
Smith SJ, Davidson LA, Rebeiz M. Evolutionary expansion of apical extracellular matrix is required for the elongation of cells in a novel structure. eLife 2020; 9:55965. [PMID: 32338602 PMCID: PMC7266619 DOI: 10.7554/elife.55965] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
One of the fundamental gaps in our knowledge of how novel anatomical structures evolve is understanding the origins of the morphogenetic processes that form these features. Here, we traced the cellular development of a recently evolved morphological novelty, the posterior lobe of D. melanogaster. We found that this genital outgrowth forms through extreme increases in epithelial cell height. By examining the apical extracellular matrix (aECM), we also uncovered a vast matrix associated with the developing genitalia of lobed and non-lobed species. Expression of the aECM protein Dumpy is spatially expanded in lobe-forming species, connecting the posterior lobe to the ancestrally derived aECM network. Further analysis demonstrated that Dumpy attachments are necessary for cell height increases during posterior lobe development. We propose that the aECM presents a rich reservoir for generating morphological novelty and highlights a yet unseen role for aECM in regulating extreme cell height.
Collapse
Affiliation(s)
- Sarah Jacquelyn Smith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
33
|
Bachvarova V, Dierker T, Esko J, Hoffmann D, Kjellen L, Vortkamp A. Chondrocytes respond to an altered heparan sulfate composition with distinct changes of heparan sulfate structure and increased levels of chondroitin sulfate. Matrix Biol 2020; 93:43-59. [PMID: 32201365 DOI: 10.1016/j.matbio.2020.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 01/27/2023]
Abstract
Heparan sulfate (HS) regulates the activity of many signaling molecules critical for the development of endochondral bones. Even so, mice with a genetically altered HS metabolism display a relatively mild skeletal phenotype compared to the defects observed in other tissues and organs pointing to a reduced HS dependency of growth-factor signaling in chondrocytes. To understand this difference, we have investigated the glycosaminoglycan (GAG) composition in two mouse lines that produce either reduced levels of HS (Ext1gt/gt mice) or HS lacking 2-O-sulfation (Hs2st1-/- mice). Analysis by RPIP-HPLC revealed an increased level of sulfated disaccarides not affected by the mutation in both mouse lines indicating that chondrocytes attempt to restore a critical level of sulfation. In addition, in both mutant lines we also detected significantly elevated levels of CS. Size exclusion chromatography further demonstrated that Ext1gt/gt mutants produce more but shorter CS chains, while the CS chains produced by (Hs2st1-/- mice) mutants are of similar length to that of wild type littermates indicating that chondrocytes produce more rather than longer CS chains. Expression analysis revealed an upregulation of aggrecan, which likely carries most of the additionally produced CS. Together the results of this study demonstrate for the first time that not only a reduced HS synthesis but also an altered HS structure leads to increased levels of CS in mammalian tissues. Furthermore, as chondrocytes produce 100-fold more CS than HS the increased CS levels point to an active, precursor-independent mechanism that senses the quality of HS in a vast excess of CS. Interestingly, reducing the level of cell surface CS by chondroitinase treatment leads to reduced Bmp2 induced Smad1/5/9 phosphorylation. In addition, Erk phosphorylation is increased independent of Fgf18 treatment indicating that both, HS and CS, affect growth factor signaling in chondrocytes in distinct manners.
Collapse
Affiliation(s)
- Velina Bachvarova
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University of Duisburg-Essen, Universitätsstr 1-5,45117 Essen, Germany.
| | - Tabea Dierker
- Department of Medical Biochemistry and Microbiology, and Science for Life Laboratory, Uppsala University, Box 582, Uppsala, Sweden.
| | - Jeffrey Esko
- Department of Cellular and Molecular Medicine, UCSD, United States.
| | - Daniel Hoffmann
- Department of Bioinformatics and Computational Biophysics, Faculty of Biology and Centre for Medical Biotechnology, University of Duisburg-Essen, Germany.
| | - Lena Kjellen
- Department of Medical Biochemistry and Microbiology, and Science for Life Laboratory, Uppsala University, Box 582, Uppsala, Sweden.
| | - Andrea Vortkamp
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University of Duisburg-Essen, Universitätsstr 1-5,45117 Essen, Germany.
| |
Collapse
|
34
|
Lander AD, Nie Q, Sanchez-Tapia C, Simonyan A, Wan FYM. Regulatory feedback on receptor and non-receptor synthesis for robust signaling. Dev Dyn 2020; 249:383-409. [PMID: 32034817 DOI: 10.1002/dvdy.160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022] Open
Abstract
Elaborate regulatory feedback processes are thought to make biological development robust, that is, resistant to changes induced by genetic or environmental perturbations. How this might be done is still not completely understood. Previous numerical simulations on reaction-diffusion models of Dpp gradients in Drosophila wing imaginal disc have showed that feedback (of the Hill function type) on (signaling) receptors and/or non-(signaling) receptors are of limited effectiveness in promoting robustness. Spatial nonuniformity of the feedback processes has also been shown theoretically to lead to serious shape distortion and a principal cause for ineffectiveness. Through mathematical modeling and analysis, the present article shows that spatially uniform nonlocal feedback mechanisms typically modify gradient shape through a shape parameter (that does not change with location). This in turn enables us to uncover new multi-feedback instrument for effective promotion of robust signaling gradients.
Collapse
Affiliation(s)
- Arthur D Lander
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
- Center for Complex Biological Systems (CCBS), University of California Irvine, Irvine, California
| | - Qing Nie
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
- Center for Complex Biological Systems (CCBS), University of California Irvine, Irvine, California
- Department of Mathematics, University of California Irvine, Irvine, California
- NSF-Simon Center for Multiscale Cell Fate (CMCF), University of California Irvine, Irvine, California
| | | | - Aghavni Simonyan
- Department of Mathematics, University of California Irvine, Irvine, California
- Geffen Academy, UCLA, Los Angeles, California
| | - Frederic Y M Wan
- Department of Mathematics, University of California Irvine, Irvine, California
| |
Collapse
|
35
|
Gou J, Stotsky JA, Othmer HG. Growth control in the Drosophila wing disk. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1478. [PMID: 31917525 DOI: 10.1002/wsbm.1478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Abstract
The regulation of size and shape is a fundamental requirement of biological development and has been a subject of scientific study for centuries, but we still lack an understanding of how organisms know when to stop growing. Imaginal wing disks of the fruit fly Drosophila melanogaster, which are precursors of the adult wings, are an archetypal tissue for studying growth control. The growth of the disks is dependent on many inter- and intra-organ factors such as morphogens, mechanical forces, nutrient levels, and hormones that influence gene expression and cell growth. Extracellular signals are transduced into gene-control signals via complex signal transduction networks, and since cells typically receive many different signals, a mechanism for integrating the signals is needed. Our understanding of the effect of morphogens on tissue-level growth regulation via individual pathways has increased significantly in the last half century, but our understanding of how multiple biochemical and mechanical signals are integrated to determine whether or not a cell decides to divide is still rudimentary. Numerous fundamental questions are involved in understanding the decision-making process, and here we review the major biochemical and mechanical pathways involved in disk development with a view toward providing a basis for beginning to understand how multiple signals can be integrated at the cell level, and how this translates into growth control at the level of the imaginal disk. This article is categorized under: Analytical and Computational Methods > Computational Methods Biological Mechanisms > Cell Signaling Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Jia Gou
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Jay A Stotsky
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
36
|
Sirisomboonlarp K, Udomsinprasert W, McConachie E, Woraruthai T, Poovorawan Y, Honsawek S. Increased serum glypican-3 is associated with liver stiffness and hepatic dysfunction in children with biliary atresia. Clin Exp Hepatol 2019; 5:48-54. [PMID: 30915406 PMCID: PMC6431085 DOI: 10.5114/ceh.2019.83156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022] Open
Abstract
AIM OF THE STUDY Biliary atresia (BA) is an uncommon disorder of the liver and bile ducts affecting infants and is characterized by progressive fibrosclerosing obstruction of the extrahepatic biliary tree leading to end-stage liver failure. The purpose of this study was to determine serum glypican-3 (GPC3) levels and liver stiffness in children with BA and the correlation of glypican-3 with clinical parameters. MATERIAL AND METHODS Seventy-five post-Kasai BA patients and 28 healthy age-matched controls were registered. Serum GPC3 levels were examined by enzyme-linked immunosorbent assay. Liver stiffness measurement was analyzed by transient elastography. RESULTS BA patients had significantly greater serum GPC3 and liver stiffness values than controls (p < 0.001). Serum GPC3 and liver stiffness values were significantly higher in jaundiced BA patients than in non-jaundiced BA patients (p < 0.001). Additionally, serum glypican-3 was associated with liver stiffness and serum total bilirubin (p < 0.001, respectively). CONCLUSIONS Elevated serum GPC3 levels were associated with hepatic dysfunction and the severity of BA. As a result, serum GPC3 and liver stiffness might serve as biomarkers reflecting the deterioration of hepatic function and the outcome in post-Kasai BA.
Collapse
Affiliation(s)
- Kanjaporn Sirisomboonlarp
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Wanvisa Udomsinprasert
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Ellie McConachie
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Thamonwan Woraruthai
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Sittisak Honsawek
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
37
|
Fernández D, Guereño M, Lago Huvelle MA, Cercato M, Peters MG. Signaling network involved in the GPC3-induced inhibition of breast cancer progression: role of canonical Wnt pathway. J Cancer Res Clin Oncol 2018; 144:2399-2418. [PMID: 30267212 DOI: 10.1007/s00432-018-2751-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE We have shown that GPC3 overexpression in breast cancer cells inhibits in vivo tumor progression, by acting as a metastatic suppressor. GPC3-overexpressing cells are less clonogenic, viable and motile, while their homotypic adhesion is increased. We have presented evidences indicating that GPC3 inhibits canonical Wnt and Akt pathways, while non-canonical Wnt and p38MAPK cascades are activated. In this study, we aimed to investigate whether GPC3-induced Wnt signaling inhibition modulates breast cancer cell properties as well as to describe the interactions among pathways modulated by GPC3. METHODS Fluorescence microscopy, qRT-PCR microarray, gene reporter assay and Western blotting were performed to determine gene expression levels, signaling pathway activities and molecule localization. Lithium was employed to activate canonical Wnt pathway and treated LM3-GPC3 cell viability, migration, cytoskeleton organization and homotypic adhesion were assessed using MTS, wound healing, phalloidin staining and suspension growth assays, respectively. RESULTS We provide new data demonstrating that GPC3 blocks-also at a transcriptional level-both autocrine and paracrine canonical Wnt activities, and that this inhibition is required for GPC3 to modulate migration and homotypic adhesion. Our results indicate that GPC3 is secreted into the extracellular media, suggesting that secreted GPC3 competes with Wnt factors or interacts with them and thus prevents Wnt binding to Fz receptors. We also describe the complex network of interactions among GPC3-modulated signaling pathways. CONCLUSION GPC3 is operating through an intricate molecular signaling network. From the balance of these interactions, the inhibition of breast metastatic spread induced by GPC3 emerges.
Collapse
Affiliation(s)
- Dolores Fernández
- Cell Biology Department, Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Av. San Martín 5481, C1417DTB, Buenos Aires, Argentina
| | - Macarena Guereño
- Cell Biology Department, Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Av. San Martín 5481, C1417DTB, Buenos Aires, Argentina
| | - María Amparo Lago Huvelle
- Cell Biology Department, Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Av. San Martín 5481, C1417DTB, Buenos Aires, Argentina
| | - Magalí Cercato
- Cell Biology Department, Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Av. San Martín 5481, C1417DTB, Buenos Aires, Argentina
| | - María Giselle Peters
- Cell Biology Department, Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Av. San Martín 5481, C1417DTB, Buenos Aires, Argentina.
- National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
38
|
Zhu W, Wei W, Wu Y, Zhou Y, Peng F, Zhang S, Chen P, Xu X. BcCFEM1, a CFEM Domain-Containing Protein with Putative GPI-Anchored Site, Is Involved in Pathogenicity, Conidial Production, and Stress Tolerance in Botrytis cinerea. Front Microbiol 2017; 8:1807. [PMID: 28979251 PMCID: PMC5611420 DOI: 10.3389/fmicb.2017.01807] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/05/2017] [Indexed: 12/13/2022] Open
Abstract
We experimentally isolated and characterized a CFEM protein with putative GPI-anchored site BcCFEM1 in Botrytis cinerea. BcCFEM1 contains a CFEM (common in several fungal extracellular membrane proteins) domain with the characteristic eight cysteine residues at N terminus, and a predicted GPI modification site at C terminus. BcCFEM1 was significantly up-regulated during early stage of infection on bean leaves and induced chlorosis in Nicotiana benthamiana leaves using Agrobacterium infiltration method. Targeted deletion of BcCFEM1 in B. cinerea affected virulence, conidial production and stress tolerance, but not growth rate, conidial germination, colony morphology, and sclerotial formation. However, over expression of BcCFEM1 did not make any observable phenotype change. Therefore, our data suggested that BcCFEM1 contributes to virulence, conidial production, and stress tolerance. These findings further enhance our understanding on the sophisticated pathogenicity of B. cinerea beyond necrotrophic stage, highlighting the importance of CFEM protein to B. cinerea and other broad-host-range necrotrophic pathogens.
Collapse
Affiliation(s)
- Wenjun Zhu
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic UniversityWuhan, China
| | - Wei Wei
- Institute for Interdisciplinary Research, Jianghan UniversityWuhan, China
| | - Yayun Wu
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic UniversityWuhan, China
| | - Yang Zhou
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic UniversityWuhan, China
| | - Fang Peng
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic UniversityWuhan, China
| | - Shaopeng Zhang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic UniversityWuhan, China
| | - Ping Chen
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic UniversityWuhan, China
| | - Xiaowen Xu
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural UniversityBeijing, China
| |
Collapse
|
39
|
Kopke DL, Lima SC, Alexandre C, Broadie K. Notum coordinates synapse development via extracellular regulation of Wingless trans-synaptic signaling. Development 2017; 144:3499-3510. [PMID: 28860114 DOI: 10.1242/dev.148130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/10/2017] [Indexed: 12/17/2022]
Abstract
Synaptogenesis requires orchestrated communication between pre- and postsynaptic cells via coordinated trans-synaptic signaling across the extracellular synaptomatrix. The first Wnt signaling ligand discovered, Drosophila Wingless (Wg; Wnt1 in mammals), plays crucial roles in synaptic development, regulating synapse architecture as well as functional differentiation. Here, we investigate synaptogenic functions of the secreted extracellular deacylase Notum, which restricts Wg signaling by cleaving an essential palmitoleate moiety. At the glutamatergic neuromuscular junction (NMJ) synapse, we find that Notum secreted from the postsynaptic muscle acts to strongly modulate synapse growth, structural architecture, ultrastructural development and functional differentiation. In Notum null flies, we find upregulated extracellular Wg ligand and nuclear trans-synaptic signal transduction, as well as downstream misregulation of both pre- and postsynaptic molecular assembly. Structural, functional and molecular synaptogenic defects are all phenocopied by Wg overexpression, suggesting that Notum acts solely by inhibiting Wg trans-synaptic signaling. Moreover, these synaptic development phenotypes are suppressed by genetically correcting Wg levels in Notum null mutants, indicating that Notum normally functions to coordinate synaptic structural and functional differentiation via negative regulation of Wg trans-synaptic signaling in the extracellular synaptomatrix.
Collapse
Affiliation(s)
- Danielle L Kopke
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Sofia C Lima
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Kendal Broadie
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
40
|
Neural Glycosylphosphatidylinositol-Anchored Proteins in Synaptic Specification. Trends Cell Biol 2017; 27:931-945. [PMID: 28743494 DOI: 10.1016/j.tcb.2017.06.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins are a specialized class of lipid-associated neuronal membrane proteins that perform diverse functions in the dynamic control of axon guidance, synaptic adhesion, cytoskeletal remodeling, and localized signal transduction, particularly at lipid raft domains. Recent studies have demonstrated that a subset of GPI-anchored proteins act as critical regulators of synapse development by modulating specific synaptic adhesion pathways via direct interactions with key synapse-organizing proteins. Additional studies have revealed that alteration of these regulatory mechanisms may underlie various brain disorders. In this review, we highlight the emerging role of GPI-anchored proteins as key synapse organizers that aid in shaping the properties of various types of synapses and circuits in mammals.
Collapse
|
41
|
Saad K, Theis S, Otto A, Luke G, Patel K. Detailed expression profile of the six Glypicans and their modifying enzyme, Notum during chick limb and feather development. Gene 2017; 610:71-79. [PMID: 28192166 DOI: 10.1016/j.gene.2017.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 11/29/2022]
Abstract
The development of vertebrate appendages, especially the limb and feather buds are orchestrated by numerous secreted signalling molecules including Sonic Hedgehog, Bone Morphogenetic Proteins, Fibroblast Growth Factors and Wnts. These proteins coordinate the growth and patterning of ectodermal and mesenchymal cells. The influence of signalling molecules is affected over large distances by their concentration (morphogen activity) but also at local levels by the presence of proteins that either attenuate or promote their activity. Glypicans are cell surface molecules that regulate the activity of the major secreted signalling molecules expressed in the limb and feather bud. Here we investigated the expression of all Glypicans during chick limb and feather development. In addition we profiled the expression of Notum, an enzyme that regulates Glypican activity. We show that five of the six Glypicans and Notum are expressed in a dynamic manner during the development of limbs and feathers. We also investigated the expression of key Glypicans and show that they are controlled by signalling molecules highlighting the presence of feedback loops. Lastly we show that Glypicans and Notum are expressed in a tissue specific manner in adult chicken tissues. Our results strongly suggest that the Glypicans and Notum have many as yet undiscovered roles to play during the development of vertebrate appendages.
Collapse
Affiliation(s)
- Kawakeb Saad
- School of Biological Sciences, University of Reading, Reading, UK
| | - Susanne Theis
- School of Biological Sciences, University of Reading, Reading, UK
| | - Anthony Otto
- School of Biological Sciences, University of Reading, Reading, UK
| | - Graham Luke
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
42
|
Saad K, Otto A, Theis S, Kennerley N, Munsterberg A, Luke G, Patel K. Detailed expression profile of all six Glypicans and their modifying enzyme Notum during chick embryogenesis and their role in dorsal-ventral patterning of the neural tube. Gene 2017; 609:38-51. [PMID: 28161389 DOI: 10.1016/j.gene.2017.01.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 11/28/2022]
Abstract
Vertebrate development is orchestrated by secreted signalling molecules that regulate cell behaviour and cell fate decisions during early embryogenesis. The activity of key signalling molecules including members of Hedgehog, Bone Morphogenetic Proteins and Wnt families are regulated by Glypicans, a family of GPI linked polypeptides. Glypicans either promote or inhibit the action of signalling molecules and add a layer of complexity that needs to be understood in order to fully decipher the processes that regulate early vertebrate development. Here we present a detailed expression profile of all six Glypicans and their modifying enzyme Notum during chick embryogenesis. Our results strongly suggest that these proteins have many as yet undiscovered roles to play during early embryogenesis. Finally, we have taken an experimental approach to investigate their role during the patterning of a key embryonic structure - the neural tube. In particular, we show that over-expression of Notum leads to the dorsalisation of this structure.
Collapse
Affiliation(s)
- Kawakeb Saad
- School of Biological Sciences, University of Reading, Reading, UK
| | - Anthony Otto
- School of Biological Sciences, University of Reading, Reading, UK
| | - Susanne Theis
- School of Biological Sciences, University of Reading, Reading, UK
| | - Niki Kennerley
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, NR4 7TJ
| | - Andrea Munsterberg
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, NR4 7TJ
| | - Graham Luke
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
43
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
44
|
Abstract
The Gene Ontology (GO) is a framework designed to represent biological knowledge about gene products' biological roles and the cellular location in which they act. Biocuration is a complex process: the body of scientific literature is large and selection of appropriate GO terms can be challenging. Both these issues are compounded by the fact that our understanding of biology is still incomplete; hence it is important to appreciate that GO is inherently an evolving model. In this chapter, we describe how biocurators create GO annotations from experimental findings from research articles. We describe the current best practices for high-quality literature curation and how GO curators succeed in modeling biology using a relatively simple framework. We also highlight a number of difficulties when translating experimental assays into GO annotations.
Collapse
Affiliation(s)
- Sylvain Poux
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1 rue Michel Servet, 1211, Geneva 4, Switzerland
| | - Pascale Gaudet
- CALIPHO group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1 rue Michel Servet, 1211, Geneva 4, Switzerland. .,Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
45
|
Sol narae (Sona) is a Drosophila ADAMTS involved in Wg signaling. Sci Rep 2016; 6:31863. [PMID: 27535473 PMCID: PMC4989167 DOI: 10.1038/srep31863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/28/2016] [Indexed: 01/06/2023] Open
Abstract
ADAMTS (a disintegrin and metalloproteases with thrombospondin motif) family consists of secreted proteases, and is shown to cleave extracellular matrix proteins. Their malfunctions result in cancers and disorders in connective tissues. We report here that a Drosophila ADAMTS named Sol narae (Sona) promotes Wnt/Wingless (Wg) signaling. sona loss-of-function mutants are lethal and rare escapers had malformed appendages, indicating that sona is essential for fly development and survival. sona exhibited positive genetic interaction with wntless (wls) that encodes a cargo protein for Wg. Loss of sona decreased the level of extracellular Wg, and also reduced the expression level of Wg effector proteins such as Senseless (Sens), Distalless (Dll) and Vestigial (Vg). Sona and Wg colocalized in Golgi and endosomal vesicles, and were in the same protein complex. Furthermore, co-expression of Wg and Sona generated ectopic wing margin bristles. This study suggests that Sona is involved in Wg signaling by regulating the level of extracellular Wg.
Collapse
|
46
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
47
|
Jumbo-Lucioni PP, Parkinson WM, Kopke DL, Broadie K. Coordinated movement, neuromuscular synaptogenesis and trans-synaptic signaling defects in Drosophila galactosemia models. Hum Mol Genet 2016; 25:3699-3714. [PMID: 27466186 DOI: 10.1093/hmg/ddw217] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/19/2022] Open
Abstract
The multiple galactosemia disease states manifest long-term neurological symptoms. Galactosemia I results from loss of galactose-1-phosphate uridyltransferase (GALT), which converts galactose-1-phosphate + UDP-glucose to glucose-1-phosphate + UDP-galactose. Galactosemia II results from loss of galactokinase (GALK), phosphorylating galactose to galactose-1-phosphate. Galactosemia III results from the loss of UDP-galactose 4'-epimerase (GALE), which interconverts UDP-galactose and UDP-glucose, as well as UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. UDP-glucose pyrophosphorylase (UGP) alternatively makes UDP-galactose from uridine triphosphate and galactose-1-phosphate. All four UDP-sugars are essential donors for glycoprotein biosynthesis with critical roles at the developing neuromuscular synapse. Drosophila galactosemia I (dGALT) and II (dGALK) disease models genetically interact; manifesting deficits in coordinated movement, neuromuscular junction (NMJ) development, synaptic glycosylation, and Wnt trans-synaptic signalling. Similarly, dGALE and dUGP mutants display striking locomotor and NMJ formation defects, including expanded synaptic arbours, glycosylation losses, and differential changes in Wnt trans-synaptic signalling. In combination with dGALT loss, both dGALE and dUGP mutants compromise the synaptomatrix glycan environment that regulates Wnt trans-synaptic signalling that drives 1) presynaptic Futsch/MAP1b microtubule dynamics and 2) postsynaptic Frizzled nuclear import (FNI). Taken together, these findings indicate UDP-sugar balance is a key modifier of neurological outcomes in all three interacting galactosemia disease models, suggest that Futsch homolog MAP1B and the Wnt Frizzled receptor may be disease-relevant targets in epimerase and transferase galactosemias, and identify UGP as promising new potential therapeutic target for galactosemia neuropathology.
Collapse
Affiliation(s)
| | | | | | - Kendal Broadie
- Department of Biological Sciences .,Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
48
|
Jiang X, Cong F. Novel Regulation of Wnt Signaling at the Proximal Membrane Level. Trends Biochem Sci 2016; 41:773-783. [PMID: 27377711 DOI: 10.1016/j.tibs.2016.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023]
Abstract
Wnt pathways are crucial for embryonic development and adult tissue homeostasis in all multicellular animals. Our understanding of Wnt signaling networks has grown increasingly complex. Recent studies have revealed many regulatory proteins that function at the proximal membrane level to fine-tune signaling output and enhance signaling specificity. These proteins regulate crucial points in Wnt signaling, including post-translational modification of Wnt proteins, regulation of Wnt receptor degradation, internalization of Wnt receptor complex, and specific ligand-receptor complex formation. Such regulators not only provide us with molecular details of Wnt regulation but also serve as potential targets for therapeutic intervention. In this review we highlight new insights into Wnt regulation at the plasma membrane, especially newly identified feedback regulators.
Collapse
Affiliation(s)
- Xiaomo Jiang
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Feng Cong
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
49
|
Langton PF, Kakugawa S, Vincent JP. Making, Exporting, and Modulating Wnts. Trends Cell Biol 2016; 26:756-765. [PMID: 27325141 DOI: 10.1016/j.tcb.2016.05.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/15/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
Wnt proteins activate a conserved signalling pathway that controls development and tissue homeostasis in all metazoans. The intensity of Wnt signalling must be tightly controlled to avoid diseases caused by excess or ectopic signalling. Over the years, many proteins dedicated to Wnt function have been identified, including Porcupine, which appends a palmitoleate moiety that is essential for signalling activity. This lipid inevitably affects subcellular trafficking and solubility, as well as providing a target for post-translational modulation. We review here the life history of Wnts, starting with progression through the secretory pathway, continuing with release and spread in the extracellular space, and finishing with the various proteins that dampen or inactivate Wnts in the extracellular space.
Collapse
Affiliation(s)
- Paul F Langton
- The Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Satoshi Kakugawa
- Hakuhodo Medical Inc., 6-1-20 Akasaka Minato-ku, Tokyo 107-0052, Japan
| | - Jean-Paul Vincent
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK.
| |
Collapse
|
50
|
Glypican1/2/4/6 and sulfated glycosaminoglycans regulate the patterning of the primary body axis in the cnidarian Nematostella vectensis. Dev Biol 2016; 414:108-20. [PMID: 27090806 DOI: 10.1016/j.ydbio.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/22/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022]
Abstract
Glypicans are members of the heparan sulfate (HS) subfamily of proteoglycans that can function in cell adhesion, cell crosstalk and as modulators of the major developmental signalling pathways in bilaterians. The evolutionary origin of these multiple functions is not well understood. In this study we investigate the role of glypicans in the embryonic and larval development of the sea anemone Nematostella vectensis, a member of the non-bilaterian clade Cnidaria. Nematostella has two glypican (gpc) genes that are expressed in mutually exclusive ectodermal domains, NvGpc1/2/4/6 in a broad aboral domain, and NvGpc3/5 in narrow oral territory. The endosulfatase NvSulf (an extracellular modifier of HS chains) is expressed in a broad oral domain, partially overlapping with both glypicans. Morpholino-mediated knockdown of NvGpc1/2/4/6 leads to an expansion of the expression domains of aboral marker genes and a reduction of oral markers at gastrula stage, strikingly similar to knockdown of the Wnt receptor NvFrizzled5/8. We further show that treatment with sodium chlorate, an inhibitor of glycosaminoglycan (GAG) sulfation, phenocopies knockdown of NvGpc1/2/4/6 at gastrula stage. At planula stage, knockdown of NvGpc1/2/4/6 and sodium chlorate treatment result in alterations in aboral marker gene expression that suggest additional roles in the fine-tuning of patterning within the aboral domain. These results reveal a role for NvGpc1/2/4/6 and sulfated GAGs in the patterning of the primary body axis in Nematostella and suggest an ancient function in regulating Frizzled-mediated Wnt signalling.
Collapse
|