1
|
Petersen I, Jonusaite S, Thoben F, Hu MY. Evidence for HCO 3- and NH 3/NH 4+-dependent pH regulatory mechanisms in the alkaline midgut of the sea urchin larva. Am J Physiol Regul Integr Comp Physiol 2025; 328:R685-R699. [PMID: 40248920 DOI: 10.1152/ajpregu.00222.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/07/2024] [Accepted: 03/20/2025] [Indexed: 04/19/2025]
Abstract
Alkaline digestive systems are well described for some insect species and their larval stages. More recently, larvae of the members of ambulacraria superphylum consisting of echinoderms and hemichordates were also discovered to have highly alkaline midguts (pH 9.5-10.5) with the underlying acid-base regulatory mechanisms largely unknown. Using pharmacological inhibition of acid-base transporters in conjunction with ion-selective microelectrode measurements and pH-sensitive dyes, we investigated intracellular and extracellular pH regulatory mechanisms of midgut epithelial cells of a sea urchin (Strongylocentrotus purpuratus) larva. Our findings suggest that vacuolar-type H+-ATPase (inhibited by bafilomycin a1), carbonic anhydrase (inhibited by acetazolamide), anion-exchangers (inhibited by 4,4'-diisothiocyano-2,2'-disulfonic acid or DIDS), and soluble adenylyl cyclase (inhibited by KH7) play crucial roles in cellular acid-base regulation as well as midgut alkalization. Ammonia excretion rates were decreased in the presence of bafilomycin and colchicine, pointing toward vesicular [Formula: see text] trapping and exocytosis mechanism in eliminating nitrogenous proton equivalents from midgut cells. Finally, midgut perfusion studies revealed ouabain-sensitive luminal [Formula: see text] uptake, suggesting a role for Na+/K+-ATPase-mediated ammonia transport in midgut alkalization. This comprehensive pharmacological analysis provides a new working model relying on the CO2/[Formula: see text] and NH3/[Formula: see text] buffer systems for midgut alkalization in the sea urchin larva. These findings are discussed in the context of other alkalizing systems with strong implications for the conserved role of [Formula: see text] and NH3-driven mechanism of midgut alkalization across the animal kingdom.NEW & NOTEWORTHY Sea urchin larvae evolved highly alkaline conditions in their digestive tracts, and the underlying acid-base regulatory mechanisms are little understood. Here we present evidence that the process of luminal alkalization is cAMP-dependent. Furthermore, our data point toward the involvement of bicarbonate and ammonia in regulating midgut fluid pH. These results identified a novel mechanism for luminal alkalization in the digestive tract of a marine animal with strong implications for other alkalizing systems in animals.
Collapse
Affiliation(s)
- Inga Petersen
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Sima Jonusaite
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
- Department of Biological Sciences, University of Tulsa, Tulsa, Oklahoma, United States
| | - Femke Thoben
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Marian Y Hu
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
2
|
Luque GM, Jabloñski M, Schiavi-Ehrenhaus LJ, Del Prado RC, Balbach M, Romarowski A, Martin-Hidalgo D, Visconti PE, Krapf D, Darszon A, Krapf D, Buck J, Levin LR, Buffone MG. Bovine serum albumin-induced calcium influx triggers soluble adenylyl cyclase activation and cyclic AMP signalling pathways in mouse sperm capacitation. J Physiol 2025; 603:2633-2653. [PMID: 40320899 DOI: 10.1113/jp288389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
Sperm capacitation involves a series of biochemical and physiological changes essential for fertilization. A critical regulator of capacitation, the soluble adenylyl cyclase (sAC; ADCY10)-dependent production of the second messenger cyclic AMP (cAMP), drives key downstream events such as protein kinase A (PKA) substrate phosphorylation. sAC activity is directly stimulated by bicarbonate (HCO3 -) and calcium (Ca2+). CatSper, a sperm-specific Ca2+ channel, is considered the primary pathway for Ca2+ influx during capacitation; however, emerging evidence suggests additional pathways exist. This study reveals that bovine serum albumin (BSA) influences the dynamics of intracellular Ca2+ concentration ([Ca2+]i) in CatSper1 knockout (KO) sperm and plays a novel role in sAC activation. Using single-cell live imaging and flow cytometry, we observed a rapid [Ca2+]i rise in the head of CatSper1 KO sperm under capacitating conditions, indicating an alternative Ca2+ entry mechanism. BSA alone, in the absence of HCO3 -, triggered a significant [Ca2+]i rise. Removal of extracellular Ca2+ abolished this [Ca2+]i rise, confirming the necessity of Ca2+ influx. This BSA-induced [Ca2+]i rise was upstream of sAC activation, since it was not affected by sAC inhibitors and led to increased cAMP production and PKA substrate phosphorylation. Our findings provide new insights into the regulatory mechanisms of sAC, highlighting the existence of a CatSper-independent Ca2+ entry pathway activated by BSA during sperm capacitation. This rapid [Ca2+]i rise is initiated in the sperm head and propagates throughout the cell, and is sufficient to activate sAC and stimulate cAMP synthesis independently of HCO3 -. KEY POINTS: Sperm capacitation, essential for fertilization, is regulated by sAC, which produces cAMP in response to HCO3 - and Ca2+, driving key events like protein kinase A substrate phosphorylation. We demonstrate the existence of a CatSper-independent Ca2+ entry pathway that initiates in the sperm head and propagates throughout the cell, occurring rapidly after sperm encounters albumin, a critical component of the capacitation medium used in in vitro fertilization procedures in mammals. This albumin-induced Ca2+ influx is sufficient to activate sAC and stimulate cAMP synthesis independently of HCO3 -. We further reveal a novel role for albumin, beyond its well-established function as a cholesterol acceptor, in triggering this rapid Ca2+ influx and downstream signalling events essential for sperm capacitation. By demonstrating a CatSper-independent regulatory pathway, we expand the current paradigm of Ca2+ signalling in sperm physiology.
Collapse
Affiliation(s)
- Guillermina M Luque
- Instituto de Biología y Medicina Experimental (IBYME), Ciudad Autónoma de Buenos Aires, Argentina
| | - Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IBYME), Ciudad Autónoma de Buenos Aires, Argentina
| | - Liza J Schiavi-Ehrenhaus
- Instituto de Biología y Medicina Experimental (IBYME), Ciudad Autónoma de Buenos Aires, Argentina
| | - Rita C Del Prado
- Instituto de Biología y Medicina Experimental (IBYME), Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Ana Romarowski
- Instituto de Biología y Medicina Experimental (IBYME), Ciudad Autónoma de Buenos Aires, Argentina
- University of Massachusetts Amherst (UMass Amherst), Amherst, MA, USA
| | | | - Pablo E Visconti
- University of Massachusetts Amherst (UMass Amherst), Amherst, MA, USA
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (IBR), Rosario, Santa Fe, Argentina
| | - Alberto Darszon
- Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Diego Krapf
- Colorado State University, Fort Collins, CO, USA
| | | | | | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
3
|
Violante S, Kyaw A, Kouatli L, Paladugu K, Apostolakis L, Jenks M, Johnson A, Sheldon RD, Schilmiller AL, Visconti PE, Cross JR, Levin LR, Buck J, Balbach M. Sperm meet the elevated energy demands to attain fertilization competence by increasing flux through aldolase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.09.647926. [PMID: 40291655 PMCID: PMC12027340 DOI: 10.1101/2025.04.09.647926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Prior to ejaculation, sperm are stored in the epididymis in a 'resting' metabolic state. Upon ejaculation, sperm must alter their metabolism to generate the energy needed to support the motility and maturation process known as capacitation to reach and fertilize the oocyte. How sperm regulate the capacitation-induced increase in carbon flux is unknown. Here, we use 13 C stable isotope labeling to follow glucose metabolism through sperm central carbon metabolic network before and after sperm activation. We identify regulatory steps which sperm use to alter their metabolic state from resting to highly active. In activated sperm, glucose flux through glycolysis is increased at the expense of the pentose phosphate pathway to increase energy yield. Increased glycolytic activity seems to be due to capacitation-induced stimulation of flux through aldolase. In the mitochondria-containing midpiece, glycolytically generated pyruvate feeds the TCA cycle to further maximize energy yield via oxidative phosphorylation. In the mitochondria-free principal piece of the tail, pyruvate produced from glycolysis is reduced to lactate by lactate dehydrogenase. Reduction to lactate regenerates oxidized NAD + ensuring a sufficient supply to support glycolysis. The resultant lactate is at least partially secreted. Finally, we find evidence that there is an as yet unknown endogenous source of energy in sperm feeding the upregulation of TCA cycle intermediates. These studies provide the most complete picture of the metabolic shift which occurs in capacitating sperm. Significance statement A rapid switch from a quiescent to a high energy-demanding state during ejaculation is essential for sperm to reach and fertilize the oocyte. Somatic cells also undergo bioenergetic switches from low to very high energy demand. However, because metabolic processes essential for proliferation are going on in parallel, it is difficult to identify the molecular mechanisms regulating the increase in ATP production. This study represents the first complete picture of the metabolic reprogramming that happens in sperm upon ejaculation. Using stable isotope labeling, we identify rate-limiting enzymatic steps and points of regulation directing the changes in metabolic flux. Our sperm metabolic studies allow us to identify conserved mechanisms of metabolic regulation that are crucial for the survival of mammalian cells.
Collapse
|
4
|
Wang HY, Chen KR, Yeh BC, Li WD, Wu SR, Ching YH, Wang CY, Kuo PL. SEPT14 complexes maintain sperm morphogenesis and function. FASEB J 2025; 39:e70414. [PMID: 39982757 DOI: 10.1096/fj.202402135r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/14/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Mutations in the septin (SEPT) family lead to male infertility. Septin 14 (SEPT14) is abundantly expressed in the testis, and its expression is significantly reduced in individuals with teratozoospermia, suggesting that SEPT14 may play a role in spermatogenesis. Here, we demonstrated that Sept14 is expressed mainly at the acroplaxome, manchette, neck, and annulus during spermiogenesis. To study the role of SEPT14 in sperm morphogenesis and function, the Sept14 knockout (Sept14-/-) mice were generated. The Sept14-/- male mice were subfertile and presented phenotypes such as irregular acrosomes, DNA damage, disorganized mitochondria, and displaced annuli. These abnormalities contributed to reduced sperm motility and impaired capacitation. Mechanistically, in the sperm head, SEPT14 interacted and colocalized with microtubules and actin during the manchette formation at the sperm metamorphosis phase. In the annulus, SEPT14 interacted with SEPT9, SEPT7, and SEPT2 to form the septin filaments to maintain the localization of the annulus. The GTP-binding domain (GBD) of SEPT14 interacted with the GBD of SEPT2, whereas the C-terminus of SEPT14 interacted with the GBD of SEPT7. Thus, our study reveals a role of SEPT14 in mediating sperm morphogenesis.
Collapse
Affiliation(s)
- Han-Yu Wang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Kuan-Ru Chen
- Department for Medical Research, E-Da Hospital, I-Shou University, Koahsiung, Taiwan
| | - Bor-Chun Yeh
- Department for Medical Research, E-Da Hospital, I-Shou University, Koahsiung, Taiwan
| | - Wei-De Li
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Ayoub S, Rivera Sanchez NDR, Fischoeder J, Balbach M, Levin LR, Buck J, Ritagliati C. Cyclic AMP Rescue of Motility in Sperm Devoid of Soluble Adenylyl Cyclase. Int J Mol Sci 2025; 26:1489. [PMID: 40003956 PMCID: PMC11855772 DOI: 10.3390/ijms26041489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The second messenger cAMP plays multiple critical roles in the control of sperm functions essential for male fertility, including motility. The enzyme soluble adenylyl cyclase (sAC; ADCY10) was shown genetically and pharmacologically to be the essential source of cAMP mediating many of these functions. Male mice and men with genetic deletions of sAC are infertile, and their sperm are progressively immotile. Pharmacologically, delivery of potent and specific sAC inhibitors to male mice renders them temporarily infertile, and their sperm are similarly immotile. Here, we show that males from a second, independently derived mouse sAC knockout line are also infertile with progressively immotile sperm. We use these mouse models to determine optimal conditions for pharmacologically elevating intracellular cAMP to rescue the sAC null motility defect. We show that cell-permeable cAMP analogs, but not forskolin, rescue the motility defects of sAC deficient sperm, and we demonstrate that 8Br-cAMP is an efficient cAMP analog to rescue motility.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carla Ritagliati
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA (L.R.L.)
| |
Collapse
|
6
|
Hirashima T, W P S, Noda T. Collective sperm movement in mammalian reproductive tracts. Semin Cell Dev Biol 2025; 166:13-21. [PMID: 39675229 DOI: 10.1016/j.semcdb.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Mammalian sperm cells travel from their origin in the male reproductive tract to fertilization in the female tract through a complex process driven by coordinated mechanical and biochemical mechanisms. Recent experimental and theoretical advances have illuminated the collective behaviors of sperm both in vivo and in vitro. However, our understanding of the underlying mechano-chemical processes remains incomplete. This review integrates current insights into sperm group movement, examining both immotile and motile states, which are essential for passive transport and active swimming through the reproductive tracts. We provide an overview of the current understanding of collective sperm movement, focusing on the experimental and theoretical mechanisms behind these behaviors. We also explore how sperm motility is regulated through the coordination of mechanical and chemical processes. Emerging evidence highlights the mechanosensitive properties of a sperm flagellum, suggesting that mechanical stimuli regulate flagellar beating at both individual and collective levels. This self-regulatory, mechano-chemical system reflects a broader principle observed in multicellular systems, offering a system-level insight into the regulation of motility and collective dynamics in biological systems.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117593, Singapore.
| | - Sound W P
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Taichi Noda
- Division of Reproductive Biology, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
7
|
Khamzina AK, Igoshin AV, Muslimova ZU, Turgumbekov AA, Khussainov DM, Yudin NS, Ussenbekov YS, Larkin DM. Resequencing Composite Kazakh Whiteheaded Cattle: Insights into Ancestral Breed Contributions, Selection Signatures, and Candidate Genetic Variants. Animals (Basel) 2025; 15:385. [PMID: 39943155 PMCID: PMC11815988 DOI: 10.3390/ani15030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigates the genetic architecture of the Kazakh Whiteheaded (KWH) cattle, applying population genetics approaches to resequenced genomes. FST analysis of 66 cattle breeds identified breeds for admixture analysis. At K = 19, the composite KWH breed showed contributions from Hereford, Altai, and Kalmyk cattle. Principal component analysis and ancestry inference confirmed these patterns, with KWH genomes comprising 45% Hereford, 30% Altai, and 25% Kalmyk ancestries. Haplotype analysis revealed 73 regions under putative selection in KWH, some shared with Hereford (e.g., with the gene DCUN1D4) and some KWH-specific (e.g., with the gene SCMH1). FST analysis identified 105 putative intervals under selection, with key genes (KITLG, SLC9C1, and SCMH1) involved in coat colour and physiological adaptations. Functional enrichment using The Database for Annotation, Visualization, and Integrated Discovery (DAVID) in selected regions highlighted clusters associated with developmental processes, ubiquitination, and fatty acid metabolism. Point FST identified 42 missense variants in genes enriched in functions related to economically important traits. Local ancestry inference revealed genomic intervals with predominantly non-Hereford ancestry, including high Altai (e.g., SCAPER) and Kalmyk (e.g., SRD5A2) contributions, while Hereford-dominated regions included genes ENO1 and RERE. This work elucidates the genomic contributions and adaptive signatures of selection shaping the KWH breed, providing candidate genetic variants for breeding program improvement and enhanced genome predictions.
Collapse
Affiliation(s)
- Aigerim K. Khamzina
- Green Biotechnology and Cell Engineering Laboratory, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan;
| | - Alexander V. Igoshin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Zhadyra U. Muslimova
- Faculty of Veterinary and Zooengineering, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan (D.M.K.)
| | - Asset A. Turgumbekov
- Faculty of Veterinary and Zooengineering, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan (D.M.K.)
| | - Damir M. Khussainov
- Faculty of Veterinary and Zooengineering, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan (D.M.K.)
| | - Nikolay S. Yudin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yessengali S. Ussenbekov
- Faculty of Veterinary and Zooengineering, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan (D.M.K.)
| | - Denis M. Larkin
- Royal Veterinary College, University of London, London NW1 0TU, UK
| |
Collapse
|
8
|
Mappanganro R, Sonjaya H, Baco S, Hasbi H, Gustina S. Seminal plasma protein profiles based on molecular weight as biomarkers of sperm fertility in horned and polled Bali bulls. Vet World 2025; 18:122-132. [PMID: 40041500 PMCID: PMC11873378 DOI: 10.14202/vetworld.2025.122-132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/16/2024] [Indexed: 03/06/2025] Open
Abstract
Background and Aim Seminal plasma proteins (SPPs) significantly influence sperm quality, playing a critical role in fertility. This study aims to investigate the molecular weight (MW) profiles of SPPs in horned and polled Bali bulls and their correlation with sperm quality parameters. Materials and Methods Semen samples were collected from six Bali bulls (3 horned, 3 polled). Sperm quality was evaluated based on motility, viability, abnormalities, intact membranes, and acrosomes. SPPs were extracted and analyzed using one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis to determine protein MWs. Pearson's correlation was used to analyze relationships between MW profiles and sperm quality metrics. Results SPPs were identified across a MW range of 15-165 kDa, with specific proteins showing strong correlations with sperm quality. Proteins at 50 and 46 kDa positively correlated with motility (r = -0.96), viability (r = -0.99), and intact membranes (r = -0.86). Conversely, proteins at 40 kDa negatively correlated with these parameters. A 25 kDa protein displayed a positive correlation with intact acrosomes (r = -0.93) and a negative correlation with abnormalities (r = -0.99). Differences in sperm quality metrics between horned and polled bulls were observed, with polled bulls exhibiting fewer abnormalities. Conclusion This study highlights the potential of SPP MW profiles as biomarkers of sperm quality in Bali bulls. Proteins at 50, 46, and 25 kDa are promising markers for sperm motility, viability, and intact acrosomes, respectively. These findings could inform bull selection and reproductive management strategies. Further research is recommended to validate these biomarkers using advanced proteomic approaches.
Collapse
Affiliation(s)
- Rasyidah Mappanganro
- Department of Animal Science, Faculty of Science and Technology, Universitas Islam Negeri Alauddin Makassar, Indonesia
- Animal Science Study Program, Faculty of Animal Science, Hasanuddin University, Makassar, Indonesia
| | - Herry Sonjaya
- Department of Animal Production, Faculty of Animal Science, Hasanuddin University, Makassar, Indonesia
| | - Sudirman Baco
- Department of Animal Production, Faculty of Animal Science, Hasanuddin University, Makassar, Indonesia
| | - Hasbi Hasbi
- Department of Animal Production, Faculty of Animal Science, Hasanuddin University, Makassar, Indonesia
| | - Sri Gustina
- Department of Animal Production, Faculty of Animal Science, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
9
|
Whitfield M. The annulus: composition, role and importance in sperm flagellum biogenesis and male fertility. Basic Clin Androl 2024; 34:25. [PMID: 39676174 DOI: 10.1186/s12610-024-00241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/23/2024] [Indexed: 12/17/2024] Open
Abstract
The annulus is an electron-dense ring structure that surrounds the axoneme and compartmentalizes the sperm flagellum into two parts: the midpiece and the principal piece. The function of the annulus as a diffusion barrier in the mature spermatozoon is now well described but its function during spermiogenesis remains unclear. The intriguing spatio-temporal dynamics of the annulus during spermiogenesis and its position at the interface of the two main flagellar compartments have been highlighted for more than 50 years, and suggest a major role in this process. During the last decade, numerous studies contributed in establishing a repertoire of proteins known to be located at the annulus. Mutant mouse models of invalidation of these proteins have provided essential information and clues for novel hypotheses regarding the functions and regulation of this structure. Importantly, the recent identification in humans of homozygous mutations of genes coding for annulus proteins and leading to sterility have reinforced the importance of this ring structure for sperm physiology and male fertility. This review provides a comprehensive description of all the knowledge obtained in the last several years regarding the annulus composition and functions, both in mice and in humans.
Collapse
Affiliation(s)
- Marjorie Whitfield
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team 'Physiopathology and Pathophysiology of Sperm cells', 38000, Grenoble, France.
| |
Collapse
|
10
|
Zhao X, Zhou W, Nie J, Zhang X, Zeng X, Sun X. CABS1 Is Essential for Progressive Motility and the Integrity of Fibrous Sheath in Mouse Epididymal Spermatozoa. Mol Reprod Dev 2024; 91:e23776. [PMID: 39526486 DOI: 10.1002/mrd.23776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 11/16/2024]
Abstract
The calcium-binding protein spermatid-associated 1 (CABS1) localizes to the principal piece of mature sperm flagella. Deletion of CABS1 results in subfertility in male mice, possibly due to an impaired annulus in the sperm flagella. However, it is unknown whether there are other mechanisms by which CABS1 affects male fertility. Our current investigation has uncovered that CABS1 is located in the midsection of the flagellum in testicular sperm and the principal piece in epididymal sperm. Moreover, male mice lacking CABS1 exhibit a defect in the progressive motility of sperm. Furthermore, the regulation of calcium levels, which has been reported to have a significant impact on sperm motility, capacitation, and the acrosome reaction, is also affected when sperm are exposed to alkalized high-salt buffer (pH 8.0) and progesterone (100 μM) in Cabs1-null spermatozoa. This alteration in calcium response may contribute to changes in the phosphorylation of PKA substrates and subsequent phosphorylation of tyrosine residues. Additionally, the absence of CABS1 leads to a defective fibrous sheath and abnormal configuration of doublet microtubules in post-testicular sperm. These findings indicate that the absence of CABS1 also disrupts the structural integrity of the fibrous sheath, resulting in male subfertility. The highly conserved nature of CABS1 in humans suggests that it could potentially be a contributing factor to asthenozoospermia in men.
Collapse
Affiliation(s)
- Xiuling Zhao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Wenwen Zhou
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Junyu Nie
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xiaoli Sun
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| |
Collapse
|
11
|
Osycka-Salut CE, Waremkraut M, Garaguso R, Piga E, Martínez-León E, Marín-Briggiler CI, Gervasi MG, Navarro M, Visconti PE, Buffone MG, Mutto AA, Krapf D. Treatment of cryopreserved bovine sperm with calcium ionophore A23187 increases in vitro embryo production. Theriogenology 2024; 229:1-7. [PMID: 39133991 DOI: 10.1016/j.theriogenology.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
After ejaculation, mammalian sperm undergo a series of molecular events conducive to the acquisition of fertilizing competence. These events are collectively known as capacitation and involve acrosomal responsiveness and a vigorous sperm motility called hyperactivation. When mimicked in the laboratory, capacitating bovine sperm medium contains bicarbonate, calcium, albumin and heparin, among other components. In this study, we aimed at establishing a new capacitation protocol for bovine sperm, using calcium ionophore. Similar to our findings using mouse sperm, bovine sperm treated with Ca2+ ionophore A23187 were quickly immobilized. However, these sperm initiated capacitation after ionophore removal in fresh medium without heparin, and independent of the Protein Kinase A. When A23187-treated sperm were used on in vitro fertilization (IVF) procedures without heparin, eggs showed cleavage rates similar to standardized IVF protocols using heparin containg synthetic oviduct fluid (IVF-SOF). However, when A23187 pre-treated sperm were further used for inseminating eggs in complete IVF-SOF-heparin, a significantly higher percentage of embryo development was observed, suggesting a synergism between two different signaling pathways during bovine sperm capacitation. These results have the potential to improve current protocols for bovine IVF that could also be applied in other species of commercial interest.
Collapse
Affiliation(s)
- C E Osycka-Salut
- Instituto de Investigaciones Biotecnológicas (IIBio-UNSAM-CONICET), Buenos Aires C1650, Argentina
| | - M Waremkraut
- Instituto de Investigaciones Biotecnológicas (IIBio-UNSAM-CONICET), Buenos Aires C1650, Argentina
| | - R Garaguso
- Instituto de Investigaciones Biotecnológicas (IIBio-UNSAM-CONICET), Buenos Aires C1650, Argentina
| | - E Piga
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Santa Fe S2000EZP, Argentina
| | - E Martínez-León
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas "José de San Martín", CABA, 1120, Argentina
| | - C I Marín-Briggiler
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - M G Gervasi
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - M Navarro
- Instituto de Investigaciones Biotecnológicas (IIBio-UNSAM-CONICET), Buenos Aires C1650, Argentina
| | - P E Visconti
- Department of Veterinary and Animal Science, Paige Labs, University of Massachusetts, Amherst, MA 01003, USA
| | - M G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - A A Mutto
- Instituto de Investigaciones Biotecnológicas (IIBio-UNSAM-CONICET), Buenos Aires C1650, Argentina.
| | - D Krapf
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Santa Fe S2000EZP, Argentina.
| |
Collapse
|
12
|
Visconti PE, Levin LR, Buck J. David Garbers and the Birth of cAMP Biology in Mammalian Sperm. Mol Reprod Dev 2024; 91:e23773. [PMID: 39385557 PMCID: PMC11910748 DOI: 10.1002/mrd.23773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
Dr. David Garbers made many impactful contributions to science and vastly improved our understanding of sperm biology. In this review, we focus on his identification of a key role for the second messenger cAMP in mammalian sperm. As a graduate student David discovered that sperm motility, which is essential for sperm to fertilize the egg, is under the control of the (at the time) recently identified, prototypical second messenger cAMP. Fast-forwarding to the present, agents which turn off sperm's ability to generate cAMP and block sperm motility are being investigated as potential nonhormonal contraceptives for men and women. Should these efforts prove successful, Dave's discoveries will prove to be the spark which ignited a revolution in human health.
Collapse
Affiliation(s)
- Pablo E Visconti
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
13
|
Fuentes F, Contreras MJ, Arroyo-Salvo C, Cabrera P P, Silva M, Merino O, Arias ME, Felmer R. Effect of exogenous sperm capacitation inducers on stallion sperm. Theriogenology 2024; 226:29-38. [PMID: 38824691 DOI: 10.1016/j.theriogenology.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Although under appropriate laboratory conditions, sperm from different mammalian species can be capacitated in vitro, the optimal conditions for sperm capacitation in the stallion have been elusive. This study evaluated the effect of different capacitating inducers in Whitten and Tyrode media and assessed their impact on capacitation-related factors. Stallion sperm were incubated with different combinations of capacitating inducers at 38.5 °C in an air atmosphere. Sperm quality variables such as motility, mitochondrial membrane potential, and lipid peroxidation were assessed. Membrane fluidity and intracellular calcium levels were evaluated as early markers of capacitation, while tyrosine phosphorylation events and the sperm's ability to perform acrosomal exocytosis were used as late capacitation markers. Finally, these sperm were evaluated using a heterologous zona pellucida binding assay. The findings confirm that capacitating conditions evaluated increase intracellular calcium levels and membrane fluidity in both media. Similarly, including 2 or 3 inducers in both media increased tyrosine phosphorylation levels and acrosomal exocytosis after exposure to progesterone, confirming that stallion sperm incubated in these conditions shows cellular and molecular changes consistent with sperm capacitation. Furthermore, the zona pellucida binding assay confirmed the binding capacity of sperm incubated in capacitation conditions, a key step for stallion in vitro fertilization success. Further studies are needed to evaluate the effect of these conditions on in vitro fertilization in the horse.
Collapse
Affiliation(s)
- Fernanda Fuentes
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Doctoral Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Maria Jose Contreras
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Camila Arroyo-Salvo
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Paulina Cabrera P
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Mauricio Silva
- Department of Veterinary Sciences and Public Health, Universidad Catolica de Temuco, Temuco, Chile
| | - Osvaldo Merino
- Department of Basic Sciences, Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
| | - Maria Elena Arias
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Department of Agricultural Production, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
14
|
González LN, Giaccagli MM, Herzfeld JD, Cuasnicú PS, Da Ros VG, Cohen DJ. A side-by-side comparison of different capacitation media in developing mouse sperm fertilizing ability. Sci Rep 2024; 14:14287. [PMID: 38907001 PMCID: PMC11192932 DOI: 10.1038/s41598-024-65134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
To acquire the ability to fertilize the egg, mammalian spermatozoa must undergo a series of changes occurring within the highly synchronized and specialized environment of the female reproductive tract, collectively known as capacitation. In an attempt to replicate this process in vitro, various culture media for mouse sperm were formulated over the past decades, sharing a similar overall composition but differing mainly in ion concentrations and metabolic substrates. The widespread use of the different media to study the mechanisms of capacitation might hinder a comprehensive understanding of this process, as the medium could become a confounding variable in the analysis. In this context, the present side-by-side study compares the influence of four commonly used culture media (FD, HTF and two TYH versions) on mouse sperm capacitation. We evaluated the induction of protein kinase A phosphorylation pathway, motility, hyperactivation and acrosome reaction. Additionally, in vitro fertilization and embryo development were also assessed. By analyzing these outcomes in two mouse colonies with different reproductive performance, our study provides critical insights to improve the global understanding of sperm function. The results obtained highlight the importance of considering variations in medium composition, and their potential implications for the future interpretation of results.
Collapse
Affiliation(s)
- Lucas N González
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina
| | - María M Giaccagli
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jael D Herzfeld
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricia S Cuasnicú
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina
| | - Vanina G Da Ros
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina
| | - Débora J Cohen
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
15
|
Dai P, Zou M, Cai Z, Zeng X, Zhang X, Liang M. pH Homeodynamics and Male Fertility: A Coordinated Regulation of Acid-Based Balance during Sperm Journey to Fertilization. Biomolecules 2024; 14:685. [PMID: 38927088 PMCID: PMC11201807 DOI: 10.3390/biom14060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3- and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize in the testis, epididymis, and spermatozoa, such as HCO3- transporters (solute carrier family 4 and solute carrier family 26 transporters), carbonic anhydrases, and H+-transport channels and enzymes (e.g., Na+-H+ exchangers, monocarboxylate transporters, H+-ATPases, and voltage-gated proton channels). Hormone-mediated signals impose an influence on the production of some HCO3- or H+ transporters, such as NBCe1, SLC4A2, MCT4, etc. Additionally, ion channels including sperm-specific cationic channels for Ca2+ (CatSper) and K+ (SLO3) are directly or indirectly regulated by pH, exerting specific actions on spermatozoa. The slightly alkaline testicular pH is conducive to spermatogenesis, whereas the epididymis's low HCO3- concentration and acidic lumen are favorable for sperm maturation and storage. Spermatozoa pH increases substantially after being fused with seminal fluid to enhance motility. In the female reproductive tract, sperm are subjected to increasing concentrations of HCO3- in the uterine and fallopian tube, causing a rise in the intracellular pH (pHi) of spermatozoa, leading to hyperpolarization of sperm plasma membranes, capacitation, hyperactivation, acrosome reaction, and ultimately fertilization. The physiological regulation initiated by SLC26A3, SLC26A8, NHA1, sNHE, and CFTR localized in sperm is proven for certain to be involved in male fertility. This review intends to present the key factors and characteristics of pHi regulation in the testes, efferent duct, epididymis, seminal fluid, and female reproductive tract, as well as the associated mechanisms during the sperm journey to fertilization, proposing insights into outstanding subjects and future research trends.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| | - Min Liang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| |
Collapse
|
16
|
Goto S, Takahashi T, Sato T, Toyama F, Takayama-Watanabe E, Watanabe A. A CatSper-Uninvolved Mechanism to Induce Forward Sperm Motility in the Internal Fertilization. Zoolog Sci 2024; 41:302-313. [PMID: 38809869 DOI: 10.2108/zs230046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/04/2024] [Indexed: 05/31/2024]
Abstract
Sperm-specific cation channel (CatSper), sperm-specific Na + /H + exchanger (sNHE), and soluble adenylyl cyclase (sAC) are necessary in the signaling pathways to control sperm motility in many animals, whereas some animals have lost some or all of them. In the present study, we examined CatSper-uninvolved signaling for vigorous undulation of the undulating membrane that is attached to the sperm tail and gives thrust for forward motility in the internally fertilizing newt Cynops pyrrhogaster. Reverse-transcription PCR failed to detect sNHE in the newt sperm. However, the pH of sperm cytoplasm was raised under a high extracellular pH equivalent to that of egg jelly, where sperm motility is initiated by sperm motility-initiating substance (SMIS). Carbonic anhydrase XII/ XVI and SLC4A4/8 were suggested to be present in the sperm, and transported bicarbonates raised the intracellular pH. In egg jelly extract that contained SMIS, the anion transporter inhibitor DIDS weakened the undulation of the undulating membrane, while bicarbonates enhanced it. The cyclic AMP concentration was found to increase in sperm cytoplasm in the egg-jelly extract. An inhibitor of sAC (KH7) weakened the undulation of the undulating membrane, and dibutyryl cyclic AMP blocked the inhibitory effect. Inhibitor of transmembrane AC (DDA) limitedly affected the undulation. The undulation was weakened by an inhibitor of protein kinase A (H89), and by an inhibitor of transient receptor potential (TRP) channels (RN1747). Our results support the conclusions that the high pH of the egg jelly triggers a signaling pathway through sAC, PKA, and TRP channels, and coacts with SMIS to induce forward sperm motility.
Collapse
Affiliation(s)
- Sayuri Goto
- Faculty of Science, Biological Division, Yamagata University, Yamagata 990-8560, Japan
| | - Tomoe Takahashi
- Faculty of Science, Biological Division, Yamagata University, Yamagata 990-8560, Japan
| | - Tae Sato
- Faculty of Science, Biological Division, Yamagata University, Yamagata 990-8560, Japan
| | - Fubito Toyama
- Graduate School of Engineering, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | | | - Akihiko Watanabe
- Faculty of Science, Biological Division, Yamagata University, Yamagata 990-8560, Japan,
| |
Collapse
|
17
|
Sanchez NDRR, Ritagliati C, Kopf GS, Kretschmer S, Buck J, Levin LR. The uniqueness of on-demand male contraception. Mol Aspects Med 2024; 97:101281. [PMID: 38805792 PMCID: PMC11167369 DOI: 10.1016/j.mam.2024.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Because nearly half of pregnancies worldwide are unintended, available contraceptive methods are inadequate. Moreover, due to the striking imbalance between contraceptive options available for men compared to the myriad of options available to women, there is an urgent need for new methods of contraception for men. This review summarizes ongoing efforts to develop male contraceptives highlighting the unique aspects particular to on-demand male contraception, where a man takes a contraceptive only when and as often as needed.
Collapse
Affiliation(s)
| | - Carla Ritagliati
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
18
|
Chávez JC, Carrasquel-Martínez G, Hernández-Garduño S, Matamoros Volante A, Treviño CL, Nishigaki T, Darszon A. Cytosolic and Acrosomal pH Regulation in Mammalian Sperm. Cells 2024; 13:865. [PMID: 38786087 PMCID: PMC11120249 DOI: 10.3390/cells13100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
As in most cells, intracellular pH regulation is fundamental for sperm physiology. Key sperm functions like swimming, maturation, and a unique exocytotic process, the acrosome reaction, necessary for gamete fusion, are deeply influenced by pH. Sperm pH regulation, both intracellularly and within organelles such as the acrosome, requires a coordinated interplay of various transporters and channels, ensuring that this cell is primed for fertilization. Consistent with the pivotal importance of pH regulation in mammalian sperm physiology, several of its unique transporters are dependent on cytosolic pH. Examples include the Ca2+ channel CatSper and the K+ channel Slo3. The absence of these channels leads to male infertility. This review outlines the main transport elements involved in pH regulation, including cytosolic and acrosomal pH, that participate in these complex functions. We present a glimpse of how these transporters are regulated and how distinct sets of them are orchestrated to allow sperm to fertilize the egg. Much research is needed to begin to envision the complete set of players and the choreography of how cytosolic and organellar pH are regulated in each sperm function.
Collapse
Affiliation(s)
- Julio C. Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Gabriela Carrasquel-Martínez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
- CITMER, Medicina Reproductiva, México City 11520, Mexico
| | - Sandra Hernández-Garduño
- Departamento de Morfología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico;
| | - Arturo Matamoros Volante
- Department of Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Claudia L. Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| |
Collapse
|
19
|
Morabbi A, Karimian M. Trace and essential elements as vital components to improve the performance of the male reproductive system: Implications in cell signaling pathways. J Trace Elem Med Biol 2024; 83:127403. [PMID: 38340548 DOI: 10.1016/j.jtemb.2024.127403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Successful male fertilization requires the main processes such as normal spermatogenesis, sperm capacitation, hyperactivation, and acrosome reaction. The progress of these processes depends on some endogenous and exogenous factors. So, the optimal level of ions and essential and rare elements such as selenium, zinc, copper, iron, manganese, calcium, and so on in various types of cells of the reproductive system could affect conception and male fertility rates. The function of trace elements in the male reproductive system could be exerted through some cellular and molecular processes, such as the management of active oxygen species, involvement in the action of membrane channels, regulation of enzyme activity, regulation of gene expression and hormone levels, and modulation of signaling cascades. In this review, we aim to summarize the available evidence on the role of trace elements in improving male reproductive performance. Also, special attention is paid to the cellular aspects and the involved molecular signaling cascades.
Collapse
Affiliation(s)
- Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
20
|
Yamamoto C, Takahashi F, Suetsugu N, Yamada K, Yoshikawa S, Kohchi T, Kasahara M. The cAMP signaling module regulates sperm motility in the liverwort Marchantia polymorpha. Proc Natl Acad Sci U S A 2024; 121:e2322211121. [PMID: 38593080 PMCID: PMC11032487 DOI: 10.1073/pnas.2322211121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Adenosine 3',5'-cyclic monophosphate (cAMP) is a universal signaling molecule that acts as a second messenger in various organisms. It is well established that cAMP plays essential roles across the tree of life, although the function of cAMP in land plants has long been debated. We previously identified the enzyme with both adenylyl cyclase (AC) and cAMP phosphodiesterase (PDE) activity as the cAMP-synthesis/hydrolysis enzyme COMBINED AC with PDE (CAPE) in the liverwort Marchantia polymorpha. CAPE is conserved in streptophytes that reproduce with motile sperm; however, the precise function of CAPE is not yet known. In this study, we demonstrate that the loss of function of CAPE in M. polymorpha led to male infertility due to impaired sperm flagellar motility. We also found that two genes encoding the regulatory subunits of cAMP-dependent protein kinase (PKA-R) were also involved in sperm motility. Based on these findings, it is evident that CAPE and PKA-Rs act as a cAMP signaling module that regulates sperm motility in M. polymorpha. Therefore, our results have shed light on the function of cAMP signaling and sperm motility regulators in land plants. This study suggests that cAMP signaling plays a common role in plant and animal sperm motility.
Collapse
Affiliation(s)
- Chiaki Yamamoto
- Department of Biotechnology, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu525-8577, Japan
| | - Fumio Takahashi
- Department of Biotechnology, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu525-8577, Japan
| | - Noriyuki Suetsugu
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo153-8902, Japan
| | - Kazumasa Yamada
- Department of Marine Science and Technology, Faculty of Marine Science and Technology, Fukui Prefectural University, Obama917-0003, Japan
| | - Shinya Yoshikawa
- Department of Marine Science and Technology, Faculty of Marine Science and Technology, Fukui Prefectural University, Obama917-0003, Japan
| | - Takayuki Kohchi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto606-8502, Japan
| | - Masahiro Kasahara
- Department of Biotechnology, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu525-8577, Japan
| |
Collapse
|
21
|
Martín-Hidalgo D, Solar-Málaga S, González-Fernández L, Zamorano J, García-Marín LJ, Bragado MJ. The compound YK 3-237 promotes pig sperm capacitation-related events. Vet Res Commun 2024; 48:773-786. [PMID: 37906355 PMCID: PMC10998788 DOI: 10.1007/s11259-023-10243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023]
Abstract
Before fertilization of the oocyte, the spermatozoa must undergo through a series of biochemical changes in the female reproductive tract named sperm capacitation. Spermatozoa regulates its functions by post-translational modifications, being historically the most studied protein phosphorylation. In addition to phosphorylation, recently, protein acetylation has been described as an important molecular mechanism with regulatory roles in several reproductive processes. However, its role on the mammal's sperm capacitation process remains unraveled. Sirtuins are a deacetylase protein family with 7 members that regulate protein acetylation. Here, we investigated the possible role of SIRT1 on pig sperm capacitation-related events by using YK 3-237, a commercial SIRT1 activator drug. SIRT1 is localized in the midpiece of pig spermatozoa. Protein tyrosine phosphorylation (focused at p32) is an event associated to pig sperm capacitation that increases when spermatozoa are in vitro capacitated in presence of YK 3-237. Eventually, YK 3-237 induces acrosome reaction in capacitated spermatozoa: YK 3-237 treatment tripled (3.40 ± 0.40 fold increase) the percentage of acrosome-reacted spermatozoa compared to the control. In addition, YK 3-237 induces sperm intracellular pH alkalinization and raises the intracellular calcium levels through a CatSper independent mechanism. YK 3-237 was not able to bypass sAC inhibition by LRE1. In summary, YK 3-237 promotes pig sperm capacitation by a mechanism upstream of sAC activation and independent of CatSper calcium channel.
Collapse
Affiliation(s)
- David Martín-Hidalgo
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España.
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España.
- Unidad de Investigación, Complejo Hospitalario Universitario de Cáceres, Avenida Pablo Naranjo s/n, Cáceres, 10003, Spain.
| | - Soraya Solar-Málaga
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| | - Lauro González-Fernández
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| | - José Zamorano
- Unidad de Investigación, Complejo Hospitalario Universitario de Cáceres, Avenida Pablo Naranjo s/n, Cáceres, 10003, Spain
| | - Luis Jesús García-Marín
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| | - María Julia Bragado
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| |
Collapse
|
22
|
Potter AE, White CR, Marshall DJ. Per capita sperm metabolism is density dependent. J Exp Biol 2024; 227:jeb246674. [PMID: 38380562 PMCID: PMC11006396 DOI: 10.1242/jeb.246674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
From bacteria to metazoans, higher density populations have lower per capita metabolic rates than lower density populations. The negative covariance between population density and metabolic rate is thought to represent a form of adaptive metabolic plasticity. A relationship between density and metabolism was actually first noted 100 years ago, and was focused on spermatozoa; even then, it was postulated that adaptive plasticity drove this pattern. Since then, contemporary studies of sperm metabolism specifically assume that sperm concentration has no effect on metabolism and that sperm metabolic rates show no adaptive plasticity. We did a systematic review to estimate the relationship between sperm aerobic metabolism and sperm concentration, for 198 estimates spanning 49 species, from protostomes to humans from 88 studies. We found strong evidence that per capita metabolic rates are concentration dependent: both within and among species, sperm have lower metabolisms in dense ejaculates, but increase their metabolism when diluted. On average, a 10-fold decrease in sperm concentration increased per capita metabolic rate by 35%. Metabolic plasticity in sperm appears to be an adaptive response, whereby sperm maximize their chances of encountering eggs.
Collapse
Affiliation(s)
- Ashley E. Potter
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Craig R. White
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Dustin J. Marshall
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
23
|
Gardner CC, Abele JA, Winkler TJ, Reckers CN, Anas SA, James PF. Common as well as unique methylation-sensitive DNA regulatory elements in three mammalian SLC9C1 genes. Gene 2024; 893:147897. [PMID: 37832806 PMCID: PMC10841394 DOI: 10.1016/j.gene.2023.147897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The SLC9C1 gene (which encodes the NHE10 protein) is essential for male fertility in both mice and humans, however the epigenetic mechanisms regulating its testis/sperm-specific gene expression have yet to be studied. Here we identify and characterize DNA regulatory elements of the SLC9C1 gene across three mammalian species: mouse, rat, and human. First, in silico analysis of these mammalian SLC9C1 genes identified a CpG island located upstream of the transcription start site in the same relative position in all three genes. Further analysis reveals that this CpG island behaves differently, with respect to gene regulatory activity, in the mouse SLC9C1 gene than it does in the rat and human SLC9C1 gene. The mouse SLC9C1 CpG island displays strong promoter activity by itself and seems to have a stronger gene regulatory effect than either the rat or human SLC9C1 CpG islands. While the function of the upstream SLC9C1 CpG island may be divergent across the three studied species, it appears that the promoters of these three mammalian SLC9C1 genes share similar DNA methylation-sensitive regulatory mechanisms. All three SLC9C1 promoter regions are differentially methylated in lung and testis, being more hypermethylated in lung relative to the testis, and DNA sequence alignments provide strong evidence of primary sequence conservation. Luciferase assays reveal that in vitro methylation of constructs containing different elements of the three SLC9C1 genes largely exhibit methylation-sensitive promoter activity (reduced promoter activity when methylated) in both HEK 293 and GC-1spg cells. In total, our data suggest that the DNA methylation-sensitive elements of the mouse, rat, and human SLC9C1 promoters are largely conserved, while the upstream SLC9C1 CpG island common to all three species seems to perform a different function in mouse than it does in rat and human. This work provides evidence that while homologous genes can all be regulated by DNA methylation-dependent epigenetic mechanisms, the location of the specific cis-regulatory elements responsible for this regulation can differ across species.
Collapse
Affiliation(s)
| | - Jason A Abele
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | | | | | - Sydney A Anas
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Paul F James
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
24
|
Rodríguez-Páez L, Aguirre-Alvarado C, Chamorro-Cevallos G, Veronica AF, Sandra Irel CE, Hugo CP, García-Pérez CA, Jiménez-Gutiérrez GE, Cordero-Martínez J. Polyamines modulate mouse sperm motility. Syst Biol Reprod Med 2023; 69:435-449. [PMID: 37812755 DOI: 10.1080/19396368.2023.2262714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/17/2023] [Indexed: 10/11/2023]
Abstract
Polyamines are polycationic molecules which contains two or more amino groups (-NH3+) highly charged at physiological pH, and among them we found spermine, spermidine, putrescine, and cadaverine. They interact with proteins, nucleic acids, modulate Ca2+, K+, and Na+ channels, and protect sperm from oxidative stress. In this work, we evaluate the effect of spermine, spermidine, and putrescine on the total, progressive and kinematic parameters of motility, capacitation, acrosome reaction, also in presence and absence of the dbcAMP, an analogue of the cAMP, and the IBMX, a phosphodiesterase inhibitor. In addition, we evaluated the intracellular concentrations of cAMP [cAMP]i, and performed an in silico analysis between polyamines and the sAC from mouse to predict the possible interaction among them. Our results showed that all polyamines decrease drastically the total, progressive and the kinetic parameters of sperm motility, decrease the capacitation, and only spermidine and putrescine impeded the acquisition of acrosome reaction. Moreover, the effect of polyamines was attenuated but not countered by the addition of db-cAMP and IBMX, suggesting a possible inhibition of the sAC. Also, the presence of polyamines induced a decrease of the [cAMP]i, and the in silico analysis predicted a strong interaction among polyamines and the sAC. Overall, the evidence suggests that probably the polyamines interact and inhibit the activity of the sAC.
Collapse
Affiliation(s)
- Lorena Rodríguez-Páez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Charmina Aguirre-Alvarado
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Unidad de Investigación Médica en Inmunología e Infectología, Centro Médico Nacional, La Raza, IMSS, Ciudad de México, Mexico
| | - Germán Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Alcántara-Farfán Veronica
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Calderón-Espinosa Sandra Irel
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Castillo-Pérez Hugo
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | | - Guadalupe Elizabeth Jiménez-Gutiérrez
- Departamento de Genética, Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Joaquín Cordero-Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
25
|
Shiba K, Inaba K. The Role of Soluble Adenylyl Cyclase in the Regulation of Flagellar Motility in Ascidian Sperm. Biomolecules 2023; 13:1594. [PMID: 38002275 PMCID: PMC10668965 DOI: 10.3390/biom13111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Flagellar motility in sperm is activated and regulated by factors related to the eggs at fertilization. In the ascidian Ciona intestinalis, a sulfated steroid called the SAAF (sperm activating and attracting factor) induces both sperm motility activation and chemotaxis. Cyclic AMP (cAMP) is one of the most important intracellular factors in the sperm signaling pathway. Adenylyl cyclase (AC) is the key enzyme that synthesizes cAMP at the onset of the signaling pathway in all cellular functions. We previously reported that both transmembrane AC (tmAC) and soluble AC (sAC) play important roles in sperm motility in Ciona. The tmAC plays a major role in the SAAF-induced activation of sperm motility. On the other hand, sAC is involved in the regulation of flagellar beat frequency and the Ca2+-dependent chemotactic movement of sperm. In this study, we focused on the role of sAC in the regulation of flagellar motility in Ciona sperm chemotaxis. The immunochemical analysis revealed that several isoforms of sAC protein were expressed in Ciona sperm, as reported in mammals and sea urchins. We demonstrated that sAC inhibition caused strong and transient asymmetrization during the chemotactic turn, and then sperm failed to turn toward the SAAF. In addition, real-time Ca2+ imaging in sperm flagella revealed that sAC inhibition induced an excessive and prolonged Ca2+ influx to flagella. These results indicate that sAC plays a key role in sperm chemotaxis by regulating the clearance of [Ca2+]i and by modulating Ca2+-dependent flagellar waveform conversion.
Collapse
Affiliation(s)
- Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan;
| | | |
Collapse
|
26
|
Mohanty G, Tourzani DA, Gervasi MG, Houle E, Oluwayiose O, Suvorov A, Richard Pilsner J, Visconti PE. Effects of preconception exposure to phthalates on mouse sperm capacitation parameters. Andrology 2023; 11:1484-1494. [PMID: 36891737 PMCID: PMC11004914 DOI: 10.1111/andr.13423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/04/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Phthalates have been linked to adverse male reproductive health, including poor sperm quality and embryo quality as well as a longer time to pregnancy (months of unprotected intercourse before conception occurs). The present study aimed to evaluate the effect of preconception exposure to two ubiquitous phthalate chemicals, di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), and their mixture on sperm function, fertilization, and embryo development in mice. MATERIALS AND METHODS Adult male C57BL/6J mice aged 8-9 weeks were exposed to di(2-ethylhexyl) phthalate, di-n-butyl phthalate, or their mixture (di-n-butyl phthalate + di(2-ethylhexyl) phthalate) at 2.5 mg/kg/day or vehicle for 40 days (equivalent to one spermatogenic cycle) via surgically implanted osmotic pumps. Caudal epididymal spermatozoa were extracted and analyzed for motility using computer-assisted sperm analyses. Sperm phosphorylation of protein kinase A substrates and tyrosine phosphorylation, markers of early and late capacitation events, respectively, were analyzed by Western blots. In vitro fertilization was used to evaluate the sperm fertilizing capacity. RESULTS While the study did not reveal any significant differences in sperm motility and fertilization potential, abnormal sperm morphology was observed in all phthalate exposures, particularly in the phthalate mixture group. In addition, the study revealed significant differences in sperm concentration between control and exposed groups. Moreover, protein phosphorylation of protein kinase A substrates was decreased in the di(2-ethylhexyl) phthalate and mixture exposure groups, while no significant changes in protein tyrosine phosphorylation were observed in any of the groups. Assessment of the reproductive functionality did not reveal significant effects on in vitro fertilization and early embryo development rates but showed wide variability in the phthalate mixture group. CONCLUSION Our findings suggest that preconception phthalate exposure affects sperm numbers and phosphorylation of protein kinase A substrates involved in capacitation. Future research is warranted to examine the associations between phthalate exposure and capacitation in human spermatozoa.
Collapse
Affiliation(s)
- Gayatri Mohanty
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, USA
| | - Darya A. Tourzani
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, USA
| | - María G. Gervasi
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, USA
| | - Emily Houle
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Oladele Oluwayiose
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Alexander Suvorov
- Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - J. Richard Pilsner
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Pablo E. Visconti
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, USA
| |
Collapse
|
27
|
Benko F, Urminská D, Ďuračka M, Tvrdá E. Signaling Roleplay between Ion Channels during Mammalian Sperm Capacitation. Biomedicines 2023; 11:2519. [PMID: 37760960 PMCID: PMC10525812 DOI: 10.3390/biomedicines11092519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
In order to accomplish their primary goal, mammalian spermatozoa must undergo a series of physiological, biochemical, and functional changes crucial for the acquisition of fertilization ability. Spermatozoa are highly polarized cells, which must swiftly respond to ionic changes on their passage through the female reproductive tract, and which are necessary for male gametes to acquire their functional competence. This review summarizes the current knowledge about specific ion channels and transporters located in the mammalian sperm plasma membrane, which are intricately involved in the initiation of changes within the ionic milieu of the sperm cell, leading to variations in the sperm membrane potential, membrane depolarization and hyperpolarization, changes in sperm motility and capacitation to further lead to the acrosome reaction and sperm-egg fusion. We also discuss the functionality of selected ion channels in male reproductive health and/or disease since these may become promising targets for clinical management of infertility in the future.
Collapse
Affiliation(s)
- Filip Benko
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.U.); (E.T.)
| | - Dana Urminská
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.U.); (E.T.)
| | - Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.U.); (E.T.)
| |
Collapse
|
28
|
Mariani NAP, Silva JV, Fardilha M, Silva EJR. Advances in non-hormonal male contraception targeting sperm motility. Hum Reprod Update 2023; 29:545-569. [PMID: 37141450 DOI: 10.1093/humupd/dmad008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND The high rates of unintended pregnancy and the ever-growing world population impose health, economic, social, and environmental threats to countries. Expanding contraceptive options, including male methods, are urgently needed to tackle these global challenges. Male contraception is limited to condoms and vasectomy, which are unsuitable for many couples. Thus, novel male contraceptive methods may reduce unintended pregnancies, meet the contraceptive needs of couples, and foster gender equality in carrying the contraceptive burden. In this regard, the spermatozoon emerges as a source of druggable targets for on-demand, non-hormonal male contraception based on disrupting sperm motility or fertilization. OBJECTIVE AND RATIONALE A better understanding of the molecules governing sperm motility can lead to innovative approaches toward safe and effective male contraceptives. This review discusses cutting-edge knowledge on sperm-specific targets for male contraception, focusing on those with crucial roles in sperm motility. We also highlight challenges and opportunities in male contraceptive drug development targeting spermatozoa. SEARCH METHODS We conducted a literature search in the PubMed database using the following keywords: 'spermatozoa', 'sperm motility', 'male contraception', and 'drug targets' in combination with other related terms to the field. Publications until January 2023 written in English were considered. OUTCOMES Efforts for developing non-hormonal strategies for male contraception resulted in the identification of candidates specifically expressed or enriched in spermatozoa, including enzymes (PP1γ2, GAPDHS, and sAC), ion channels (CatSper and KSper), transmembrane transporters (sNHE, SLC26A8, and ATP1A4), and surface proteins (EPPIN). These targets are usually located in the sperm flagellum. Their indispensable roles in sperm motility and male fertility were confirmed by genetic or immunological approaches using animal models and gene mutations associated with male infertility due to sperm defects in humans. Their druggability was demonstrated by the identification of drug-like small organic ligands displaying spermiostatic activity in preclinical trials. WIDER IMPLICATIONS A wide range of sperm-associated proteins has arisen as key regulators of sperm motility, providing compelling druggable candidates for male contraception. Nevertheless, no pharmacological agent has reached clinical developmental stages. One reason is the slow progress in translating the preclinical and drug discovery findings into a drug-like candidate adequate for clinical development. Thus, intense collaboration among academia, private sectors, governments, and regulatory agencies will be crucial to combine expertise for the development of male contraceptives targeting sperm function by (i) improving target structural characterization and the design of highly selective ligands, (ii) conducting long-term preclinical safety, efficacy, and reversibility evaluation, and (iii) establishing rigorous guidelines and endpoints for clinical trials and regulatory evaluation, thus allowing their testing in humans.
Collapse
Affiliation(s)
- Noemia A P Mariani
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Joana V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
29
|
Gardner CC, Abele JA, Winkler TJ, Reckers CN, Anas SA, James PF. Common as well as unique methylation-sensitive DNA regulatory elements in three mammalian SLC9C1 genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555319. [PMID: 37693488 PMCID: PMC10491193 DOI: 10.1101/2023.08.29.555319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The SLC9C1 gene (which encodes the NHE10 protein) is essential for male fertility in both mice and humans, however the epigenetic mechanisms regulating its testis/sperm-specific gene expression have yet to be studied. Here we identify and characterize DNA regulatory elements of the SLC9C1 gene across three mammalian species: mouse, rat, and human. First, in silico analysis of these mammalian SLC9C1 genes identified a CpG island located upstream of the transcription start site in the same relative position in all three genes. Further analysis reveals that this CpG island behaves differently, with respect to gene regulatory activity, in the mouse SLC9C1 gene than it does in the rat and human SLC9C1 gene. The mouse SLC9C1 CpG island displays strong promoter activity by itself and seems to have a stronger gene regulatory effect than either the rat or human SLC9C1 CpG islands. While the function of the upstream SLC9C1 CpG island may be divergent across the three studied species, it appears that the promoters of these three mammalian SLC9C1 genes share similar DNA methylation-sensitive regulatory mechanisms. All three SLC9C1 promoter regions are differentially methylated in lung and testis, being more hypermethylated in lung relative to the testis, and DNA sequence alignments provide strong evidence of primary sequence conservation. Luciferase assays reveal that in vitro methylation of constructs containing different elements of the three SLC9C1 genes largely exhibit methylation-sensitive promoter activity (reduced promoter activity when methylated) in both HEK 293 and GC-1spg cells. In total, our data suggest that the DNA methylation-sensitive elements of the mouse, rat, and human SLC9C1 promoters are largely conserved, while the upstream SLC9C1 CpG island common to all three species seems to perform a different function in mouse than it does in rat and human. This work provides evidence that while homologous genes can all be regulated by DNA methylation-dependent epigenetic mechanisms, the location of the specific cis-regulatory elements responsible for this regulation can differ across species.
Collapse
|
30
|
Azoulay Y, Malik Z, Breitbart H. Sperm interaction with bacteria induces the spontaneous acrosome reaction. Theriogenology 2023; 203:82-88. [PMID: 36989544 DOI: 10.1016/j.theriogenology.2023.02.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/16/2023] [Accepted: 02/04/2023] [Indexed: 03/30/2023]
Abstract
Bacterial contamination in the semen deteriorates spermatozoa function. One mechanism through which this may occur is by inducing a premature form of the acrosome reaction (spontaneous acrosome reaction (sAR)) which has been shown to abrogate fertilization. To understand the mechanism by which bacteria affect sperm functions, we determined the effects of bacteria on sperm sAR and on other parameters involved in sperm capacitation. Sperm cells undergo biochemical changes in the female reproductive tract collectively called capacitation. Only capacitated sperm can undergo the physiological acrosomal exocytosis process near or on the oocyte, which allows the spermatozoon to penetrate and fertilize the egg. Bovine sperm incubated with the bacteria Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) or Pseudomonas aeruginosa (P. aeruginosa), revealed a sperm-bacteria interaction, however only E. coli and P. aeruginosa caused an increase in sperm sAR. This effect was seen only when the bacteria were present with the sperm during the full incubation under capacitation conditions but not when the bacteria were added to capacitated sperm. These results indicate that bacteria affect sperm during capacitation and not at the AR step. In addition, Ca2+ influx, protein kinase A, and protein tyrosine phosphorylation activities, three essential processes that promote capacitation, were inhibited by the bacteria. Moreover, increasing intracellular cAMP, which also occur during sperm capacitation, caused significant reverse of sAR induced by the bacteria.
Collapse
|
31
|
Wiggins SV, Schreiner R, Ferreira J, Marmorstein AD, Levin LR, Buck J. Carbonic Anhydrase Inhibitor Modulation of Intraocular Pressure Is Independent of Soluble Adenylyl Cyclase. J Ocul Pharmacol Ther 2023; 39:317-323. [PMID: 37097314 PMCID: PMC10398745 DOI: 10.1089/jop.2022.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Purpose: We investigated whether a clinically used carbonic anhydrase inhibitor (CAIs) can modulate intraocular pressure (IOP) through soluble adenylyl cyclase (sAC) signaling. Methods: IOP was measured 1 h after topical treatment with brinzolamide, a topically applied and clinically used CAIs, using direct cannulation of the anterior chamber in sAC knockout (KO) mice or C57BL/6J mice in the presence or absence of the sAC inhibitor (TDI-10229). Results: Mice treated with the sAC inhibitor TDI-10229 had elevated IOP. CAIs treatment significantly decreased increased intraocular pressure (IOP) in wild-type, sAC KO mice, as well as TDI-10229-treated mice. Conclusions: Inhibiting carbonic anhydrase reduces IOP independently from sAC in mice. Our studies suggest that the signaling cascade by which brinzolamide regulates IOP does not involve sAC.
Collapse
Affiliation(s)
- Shakarr V. Wiggins
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, USA
- Graduate Program in Neuroscience, Weill Cornell Medicine, New York, New York, USA
| | - Ryan Schreiner
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, New York, USA
| | - Jacob Ferreira
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, USA
| | | | - Lonny R. Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
32
|
Wang W, Guo L, Jiang B, Yan B, Li Y, Ye X, Yang Y, Liu S, Shao Z, Diao H. Role of the Glycogen Synthase Kinase 3-Cyclic AMP/Protein Kinase A in the Immobilization of Human Sperm by Tideglusib. Reprod Sci 2023; 30:1281-1290. [PMID: 36207578 DOI: 10.1007/s43032-022-01086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/15/2022] [Indexed: 10/10/2022]
Abstract
Tideglusib is considered to be a promising alternative to nonyl alcohol-9 contraceptives. Previous studies have demonstrated that the rapid spermicidal effect of tideglusib at a high concentration (≥ 10 μM) may occur through detergent-like activity; however, the effect of low concentrations of tideglusib (< 5 μM) on sperm is unknown. We explored the intracellular mechanism of tideglusib (< 5 μM) on the immobilization of human sperm by exploring related signaling pathways in human sperm. After treatment with tideglusib (1.25 μM) for 2 h, sperm motility rate decreased to 0, while sperm membrane integrity rate was 70%. Protein tyrosine phosphorylation level and intracellular cyclic adenosine 3,5-monophosphate (cAMP) concentration decreased significantly compared to those in the control group. Isobutylmethylxanthine and 8-Bromo-cAMP relieved the inhibition of spermatozoa tyrosine phosphorylation, while tyrosine phosphorylation of sperm protein in the H89 and CALP1 treatment groups was significantly inhibited, and there was no difference in the tideglusib treatment group. H-89 and CALP1 reduced the level of serine phosphorylation of GSK-3α/β (Ser21/9), while its level was enhanced by IBMX and 8-Bromo-cAMP. Our results show the existence of the GSK3-cAMP/PKA regulatory loop in human sperm, which may mediate the immobilization effect of tideglusib at low of concentrations (e.g., 1.25 μM) on sperm motility.
Collapse
Affiliation(s)
- Weiwei Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lina Guo
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Bingbing Jiang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Bin Yan
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuhua Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xin Ye
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Yiting Yang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Suying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhiyu Shao
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| | - Hua Diao
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
33
|
The SLC9C2 Gene Product (Na+/H+ Exchanger Isoform 11; NHE11) Is a Testis-Specific Protein Localized to the Head of Mature Mammalian Sperm. Int J Mol Sci 2023; 24:ijms24065329. [PMID: 36982403 PMCID: PMC10049371 DOI: 10.3390/ijms24065329] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are a family of ion transporters that regulate the pH of various cell compartments across an array of cell types. In eukaryotes, NHEs are encoded by the SLC9 gene family comprising 13 genes. SLC9C2, which encodes the NHE11 protein, is the only one of the SLC9 genes that is essentially uncharacterized. Here, we show that SLC9C2 exhibits testis/sperm-restricted expression in rats and humans, akin to its paralog SLC9C1 (NHE10). Similar to NHE10, NHE11 is predicted to contain an NHE domain, a voltage sensing domain, and finally an intracellular cyclic nucleotide binding domain. An immunofluorescence analysis of testis sections reveals that NHE11 localizes with developing acrosomal granules in spermiogenic cells in both rat and human testes. Most interestingly, NHE11 localizes to the sperm head, likely the plasma membrane overlaying the acrosome, in mature sperm from rats and humans. Therefore, NHE11 is the only known NHE to localize to the acrosomal region of the head in mature sperm cells. The physiological role of NHE11 has yet to be demonstrated but its predicted functional domains and unique localization suggests that it could modulate intracellular pH of the sperm head in response to changes in membrane potential and cyclic nucleotide concentrations that are a result of sperm capacitation events. If NHE11 is shown to be important for male fertility, it will be an attractive target for male contraceptive drugs due to its exclusive testis/sperm-specific expression.
Collapse
|
34
|
Chang WW, Thies AB, Tresguerres M, Hu MY. Soluble adenylyl cyclase coordinates intracellular pH homeostasis and biomineralization in calcifying cells of a marine animal. Am J Physiol Cell Physiol 2023; 324:C777-C786. [PMID: 36779665 DOI: 10.1152/ajpcell.00524.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Biomineralizing cells concentrate dissolved inorganic carbon (DIC) and remove protons from the site of mineral precipitation. However, the molecular regulatory mechanisms that orchestrate pH homeostasis and biomineralization of calcifying cells are poorly understood. Here, we report that the acid-base sensing enzyme soluble adenylyl cyclase (sAC) coordinates intracellular pH (pHi) regulation in the calcifying primary mesenchyme cells (PMCs) of sea urchin larvae. Single-cell transcriptomics, in situ hybridization, and immunocytochemistry elucidated the spatiotemporal expression of sAC during skeletogenesis. Live pHi imaging of PMCs revealed that the downregulation of sAC activity with two structurally unrelated small molecules inhibited pHi regulation of PMCs, an effect that was rescued by the addition of cell-permeable cAMP. Pharmacological sAC inhibition also significantly reduced normal spicule growth and spicule regeneration, establishing a link between PMC pHi regulation and biomineralization. Finally, increased expression of sAC mRNA was detected during skeleton remineralization and exposure to CO2-induced acidification. These findings suggest that transcriptional regulation of sAC is required to promote remineralization and to compensate for acidic stress. This work highlights the central role of sAC in coordinating acid-base regulation and biomineralization in calcifying cells of a marine animal.
Collapse
Affiliation(s)
| | - Angus B Thies
- Scripps Institution of Oceanography, University of California San Diego, California, United States
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, California, United States
| | - Marian Y Hu
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
35
|
Wang HY, Shen YR, Tsai YC, Wu SR, Wang CY, Kuo PL. Proper phosphorylation of septin 12 regulates septin 4 and soluble adenylyl cyclase expression to induce sperm capacitation. J Cell Physiol 2023; 238:597-609. [PMID: 36715674 DOI: 10.1002/jcp.30951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
Septin-based ring complexes maintain the sperm annulus. Defective annular structures are observed in the sperm of Sept12- and Sept4-null mice. In addition, sperm capacitation, a process required for proper fertilization, is inhibited in Sept4-null mice, implying that the sperm annulus might play a role in controlling sperm capacitation. Hence, we analyzed sperm capacitation of sperm obtained from SEPT12 Ser196 phosphomimetic (S196E), phosphorylation-deficient (S196A), and SEPT4-depleted mutant mice. Capacitation was reduced in the sperm of both the Sept12 S196E- and Sept12 S196A-knock-in mice. The protein levels of septins, namely, SEPT4 and SEPT12, were upregulated, and these proteins were concentrated in the sperm annulus during capacitation. Importantly, the expression of soluble adenylyl cyclase (sAC), a key enzyme that initiates capacitation, was upregulated, and sAC was recruited to the sperm annulus following capacitation stimulation. We further found that SEPT12, SEPT4, and sAC formed a complex and colocalized to the sperm annulus. Additionally, sAC expression was reduced and disappeared in the annulus of the SEPT12 S196E- and S196A-mutant mouse sperm. In the sperm of the SEPT4-knockout mice, sAC did not localize to the annulus. Thus, our data demonstrate that SEPT12 phosphorylation status and SEPT4 activity jointly regulate sAC protein levels and annular localization to induce sperm capacitation.
Collapse
Affiliation(s)
- Han-Yu Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ru Shen
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Chieh Tsai
- Department of Obstetrics and Gynecology, Sport Management, and Biotechnology, Chi-Mei Medical Center, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Lin Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
36
|
Balbach M, Rossetti T, Ferreira J, Ghanem L, Ritagliati C, Myers RW, Huggins DJ, Steegborn C, Miranda IC, Meinke PT, Buck J, Levin LR. On-demand male contraception via acute inhibition of soluble adenylyl cyclase. Nat Commun 2023; 14:637. [PMID: 36788210 PMCID: PMC9929232 DOI: 10.1038/s41467-023-36119-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Nearly half of all pregnancies are unintended; thus, existing family planning options are inadequate. For men, the only choices are condoms and vasectomy, and most current efforts to develop new contraceptives for men impact sperm development, meaning that contraception requires months of continuous pretreatment. Here, we provide proof-of-concept for an innovative strategy for on-demand contraception, where a man would take a birth control pill shortly before sex, only as needed. Soluble adenylyl cyclase (sAC) is essential for sperm motility and maturation. We show a single dose of a safe, acutely-acting sAC inhibitor with long residence time renders male mice temporarily infertile. Mice exhibit normal mating behavior, and full fertility returns the next day. These studies define sAC inhibitors as leads for on-demand contraceptives for men, and they provide in vivo proof-of-concept for previously untested paradigms in contraception; on-demand contraception after just a single dose and pharmacological contraception for men.
Collapse
Affiliation(s)
- Melanie Balbach
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Thomas Rossetti
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Jacob Ferreira
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Lubna Ghanem
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Carla Ritagliati
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Robert W Myers
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - David J Huggins
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Ileana C Miranda
- Laboratory of Comparative Pathology, Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center, and The Rockefeller University, New York, NY, USA
| | - Peter T Meinke
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.,Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
37
|
Pizzoni A, Zhang X, Naim N, Altschuler DL. Soluble cyclase-mediated nuclear cAMP synthesis is sufficient for cell proliferation. Proc Natl Acad Sci U S A 2023; 120:e2208749120. [PMID: 36656863 PMCID: PMC9942871 DOI: 10.1073/pnas.2208749120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023] Open
Abstract
cAMP, a key player in many physiological processes, was classically considered to originate solely from the plasma membrane (PM). This view was recently challenged by observations showing that upon internalization GsPCRs can sustain signaling from endosomes and/or the trans-Golgi network (TGN). In this new view, after the first PM-generated cAMP wave, the internalization of GsPCRs and ACs generates a second wave that was strictly associated with nuclear transcriptional events responsible for triggering specific biological responses. Here, we report that the endogenously expressed TSHR, a canonical GsPCR, triggers an internalization-dependent, calcium-mediated nuclear sAC activation that drives PKA activation and CREB phosphorylation. Both pharmacological and genetic sAC inhibition, which did not affect the cytosolic cAMP levels, blunted nuclear cAMP accumulation, PKA activation, and cell proliferation, while an increase in nuclear sAC expression significantly enhanced cell proliferation. Furthermore, using novel nuclear-targeted optogenetic actuators, we show that light-stimulated nuclear cAMP synthesis can mimic the proliferative action of TSH by activating PKA and CREB. Therefore, based on our results, we propose a novel three-wave model in which the "third" wave of cAMP is generated by nuclear sAC. Despite being downstream of events occurring at the PM (first wave) and endosomes/TGN (second wave), the nuclear sAC-generated cAMP (third wave) is sufficient and rate-limiting for thyroid cell proliferation.
Collapse
Affiliation(s)
- Alejandro Pizzoni
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Nyla Naim
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Daniel L. Altschuler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| |
Collapse
|
38
|
Ritagliati C, Ayoub S, Balbach M, Buck J, Levin LR. In vivo characterization of sAC null sperm. Front Cell Dev Biol 2023; 11:1134051. [PMID: 37152282 PMCID: PMC10160483 DOI: 10.3389/fcell.2023.1134051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Targeted disruption of the soluble adenylyl cyclase (ADCY10; sAC) gene results in male-specific sterility without affecting spermatogenesis, mating behavior, or spermatozoa morphology and count; however, it dramatically impairs sperm motility and prevents capacitation. These phenotypes were identified in sperm from sAC null mice surgically extracted from the epididymis and studied in vitro. Epididymal sperm are dormant, and never exposed to physiological activators in semen or the female reproductive tract. To study sAC null sperm under conditions which more closely resemble natural fertilization, we explored phenotypes of ejaculated sAC null sperm in vivo post-coitally as well as ex vivo, collected from the female reproductive tract. Ex vivo ejaculated sAC null sperm behaved similarly to epididymal sAC null sperm, except with respect to the physiologically induced acrosome reaction. These studies suggest there is a sAC-independent regulation of acrosome responsiveness induced upon ejaculation or exposure to factors in the female reproductive tract. We also studied the behavior of sAC null sperm in vivo post-coitally by taking advantage of transgenes with fluorescently labelled sperm. Transgenes expressing GFP in the acrosome and DsRed2 in the mitochondria located in the midpiece of sperm (DsRed2/Acr3-EGFP) allow visualization of sperm migration through the female reproductive tract after copulation. As previously reported, sperm from wild type (WT) double transgenic mice migrated from the uterus through the uterotubular junction (UTJ) into the oviduct within an hour post-copulation. In contrast, sperm from sAC null double transgenic mice were only found in the uterus. There were no sAC null sperm in the oviduct, even 8 h after copulation. These results demonstrate that sAC KO males are infertile because their sperm do not migrate to the fertilization site.
Collapse
|
39
|
Chhikara N, Tomar AK, Datta SK, Yadav S. Proteomic changes in human spermatozoa during in vitro capacitation and acrosome reaction in normozoospermia and asthenozoospermia. Andrology 2023; 11:73-85. [PMID: 36057948 DOI: 10.1111/andr.13289] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/31/2022] [Accepted: 08/28/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The cellular and molecular mechanisms of the events that help spermatozoa acquire their fertilizing capability during capacitation and acrosome reaction are not completely understood. OBJECTIVE This study was performed with a postulation that the identification of sperm proteins and their changes during in vitro capacitation and acrosome reaction will unravel unknown molecular aspects of fertilization that impact male fertility. MATERIALS AND METHODS Spermatozoa collected from sequential conditions, that is, separation of ejaculated spermatozoa by Percoll gradient centrifugation, in vitro capacitation, and acrosome reaction were processed for tandem mass spectrometric analysis, followed by protein identification, label-free quantitation, and statistical analysis. RESULTS AND DISCUSSION Collectively, a total of 1088 sperm proteins were identified. In comparison to ejaculated spermatozoa, 44 and 141 proteins were differentially expressed in capacitated and acrosome reacted spermatozoa, respectively. A large number of proteins were found downregulated, including clusterin, pyruvate dehydrogenase E1 component, semenogelin-1 and 2, heat shock protein 90, beta-microseminoprotein, and keratin. It was expected as sperm-membrane-associated proteins are removed during capacitation. There were significant proteomic alterations in asthenozoospermia compared to normozoospermia; however, variation was more noticeable among proteins of acrosome reacted spermatozoa and those released during the acrosome reaction. The processes enriched among downregulated proteins in asthenozoospermia included acrosome assembly, binding of spermatozoa to zona pellucida, nucleosome assembly, flagellated sperm motility, protein folding, oxidative phosphorylation, tricarboxylic acid cycle, chromatin silencing, gluconeogenesis, glycolytic process, and glycolysis. CONCLUSION The dynamic information generated about proteomic alterations in spermatozoa during capacitation and acrosome reaction and their variability in asthenozoospermia will contribute not only to enhancing our understanding of processes that prepare spermatozoa to acquire fertilization capability but also help in deciphering novel factors of male infertility.
Collapse
Affiliation(s)
- Nirmal Chhikara
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sudip Kumar Datta
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
40
|
Influence of Two Widely Used Solvents, Ethanol and Dimethyl Sulfoxide, on Human Sperm Parameters. Int J Mol Sci 2022; 24:ijms24010505. [PMID: 36613946 PMCID: PMC9820180 DOI: 10.3390/ijms24010505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
To study mechanisms involved in fertility, many experimental assays are conducted by incubating spermatozoa in the presence of molecules dissolved in solvents such as ethanol (EtOH) or dimethyl sulfoxide (DMSO). Although a vehicle control group is usually included in such studies, it does not allow to evaluate the intrinsic effect of the solvent on sperm parameters and its potential influence on the outcome of the experiment. In the present study, we incubated human spermatozoa for 4 h in a capacitation medium in the absence or the presence of different concentrations of EtOH and DMSO (0.1, 0.5, 1.0, and 2.0%) to assess the impact of these solvents on sperm motility, vitality, capacitation, and acrosome integrity. The presence of statistically significant relationships between increasing solvent concentrations and the investigated parameters was assessed using linear mixed models. A significant effect was observed with both solvents for total and progressive sperm motilities. We also evaluated the effect of time for these parameters and showed that the influence of the solvents was stable between 0 and 4 h, indicating an almost direct impact of the solvents. While EtOH did not influence sperm vitality and acrosome integrity, a significant effect of increasing DMSO concentrations was observed for these parameters. Finally, regarding capacitation, measured via phosphotyrosine content, although a dose-dependent effect was observed with both solvents, the statistical analysis did not allow to precisely evaluate the intensity of the effect. Based on the results obtained in the present study, and the corresponding linear mixed models, we calculated the concentration of both solvents which would result in a 5% decline in sperm parameters. For EtOH, these concentrations are 0.9, 0.7, and 0.3% for total motility, progressive motility, and capacitation, respectively, while for DMSO they are 1.5, 1.1, >2, 0.3 and >2% for total motility, progressive motility, vitality, capacitation, and acrosome integrity, respectively. We recommend using solvent concentrations below these values to dissolve molecules used to study sperm function in vitro, to limit side effects.
Collapse
|
41
|
Miller M, Rossetti T, Ferreira J, Ghanem L, Balbach M, Kaur N, Levin LR, Buck J, Kehr M, Coquille S, van den Heuvel J, Steegborn C, Fushimi M, Finkin-Groner E, Myers RW, Kargman S, Liverton NJ, Huggins DJ, Meinke PT. Design, Synthesis, and Pharmacological Evaluation of Second-Generation Soluble Adenylyl Cyclase (sAC, ADCY10) Inhibitors with Slow Dissociation Rates. J Med Chem 2022; 65:15208-15226. [PMID: 36346696 PMCID: PMC9866367 DOI: 10.1021/acs.jmedchem.2c01133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Soluble adenylyl cyclase (sAC: ADCY10) is an enzyme involved in intracellular signaling. Inhibition of sAC has potential therapeutic utility in a number of areas. For example, sAC is integral to successful male fertility: sAC activation is required for sperm motility and ability to undergo the acrosome reaction, two processes central to oocyte fertilization. Pharmacologic evaluation of existing sAC inhibitors for utility as on-demand, nonhormonal male contraceptives suggested that both high intrinsic potency, fast on and slow dissociation rates are essential design elements for successful male contraceptive applications. During the course of the medicinal chemistry campaign described here, we identified sAC inhibitors that fulfill these criteria and are suitable for in vivo evaluation of diverse sAC pharmacology.
Collapse
Affiliation(s)
- Michael Miller
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Thomas Rossetti
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Jacob Ferreira
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Lubna Ghanem
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Melanie Balbach
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Navpreet Kaur
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Lonny R. Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Maria Kehr
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Sandrine Coquille
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Joop van den Heuvel
- Helmholtz Centre for Infection Research, Recombinant Protein Expression, 38124 Braunschweig, Germany
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Makoto Fushimi
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Efrat Finkin-Groner
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Robert W. Myers
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Stacia Kargman
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Nigel J. Liverton
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - David J. Huggins
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10021, United States
| | - Peter T. Meinke
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States; Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| |
Collapse
|
42
|
Cordero-Martínez J, Jimenez-Gutierrez GE, Aguirre-Alvarado C, Alacántara-Farfán V, Chamorro-Cevallos G, Roa-Espitia AL, Hernández-González EO, Rodríguez-Páez L. Participation of signaling proteins in sperm hyperactivation. Syst Biol Reprod Med 2022; 68:315-330. [DOI: 10.1080/19396368.2022.2122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Joaquín Cordero-Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | | - Charmina Aguirre-Alvarado
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Unidad de Investigación Médica en Inmunología e Infectología Centro Médico Nacional La Raza, IMSS, Ciudad de México, Mexico
| | - Verónica Alacántara-Farfán
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Germán Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica Departamento de Farmacia Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ana L. Roa-Espitia
- Departamento de Biología Celular Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional, México City, Mexico
| | - Enrique O. Hernández-González
- Departamento de Biología Celular Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional, México City, Mexico
| | - Lorena Rodríguez-Páez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
43
|
Maitan P, Bromfield EG, Stout TAE, Gadella BM, Leemans B. A stallion spermatozoon's journey through the mare's genital tract: In vivo and in vitro aspects of sperm capacitation. Anim Reprod Sci 2022; 246:106848. [PMID: 34556396 DOI: 10.1016/j.anireprosci.2021.106848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Conventional in vitro fertilization is not efficacious when working with equine gametes. Although stallion spermatozoa bind to the zona pellucida in vitro, these gametes fail to initiate the acrosome reaction in the vicinity of the oocyte and cannot, therefore, penetrate into the perivitelline space. Failure of sperm penetration most likely relates to the absence of optimized in vitro fertilization media containing molecules essential to support stallion sperm capacitation. In vivo, the female reproductive tract, especially the oviductal lumen, provides an environmental milieu that appropriately regulates interactions between the gametes and promotes fertilization. Identifying these 'fertilization supporting factors' would be a great contribution for development of equine in vitro fertilization media. In this review, a description of the current understanding of the interactions stallion spermatozoa undergo during passage through the female genital tract, and related specific molecular changes that occur at the sperm plasma membrane is provided. Understanding these molecular changes may hold essential clues to achieving successful in vitro fertilization with equine gametes.
Collapse
Affiliation(s)
- Paula Maitan
- Departments of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands; Department of Veterinary Sciences, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Elizabeth G Bromfield
- Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands; Priority Research Centre for Reproductive Science, College of Engineering, Science and Environment, University of Newcastle, Australia
| | - Tom A E Stout
- Departments of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - Bart M Gadella
- Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands; Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Bart Leemans
- Departments of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands.
| |
Collapse
|
44
|
Swain DK, Sharma P, Shah N, Sethi M, Mahajan A, Gupta S, Mishra AK, Yadav S. Introduction to the pathways involved in the activation and regulation of sperm motility: A review of the relevance of ion channels. Anim Reprod Sci 2022; 246:107052. [PMID: 35987804 DOI: 10.1016/j.anireprosci.2022.107052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022]
Abstract
To participate in sperm-oocyte fusion, spermatozoa need to be motile. In the testes, spermatozoa are immotile, although these gametes acquire the capacity for motility during the transit through the epididymis. During the period of epididymal transport from the male genital tract to the female genital tract, spermatozoa exhibit various types of motility that are regulated by complex signalling and communication mechanisms. Because motility is very dynamic, it can be affected by small changes in the external or internal environment of spermatozoa within a very short time. This indicates that regulatory membrane proteins, known as sperm ion channels, are involved in the regulation of sperm motility. Research results from studies, where there was use of electrophysiological, pharmacological, molecular and knock-out approaches, indicate ion channels are possibly involved in the regulation of sperm membrane polarisation, intracellular pH, motility, energy homeostasis, membrane integrity, capacitation, hyperactivity, acrosome reaction and fertilisation processes. In this review, there is summarisation of the key functions that ion channels have in the regulation, initiation, maintenance, and modulation of sperm motility. In addition, in this review there is highlighting of novel insights about the pathways of ion channels that are activated in spermatozoa while these gametes are located in the oviduct leading to the fertilisation capacity of these cells.
Collapse
Affiliation(s)
- Dilip Kumar Swain
- Sperm Signaling Laboratory, Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India.
| | - Pratishtha Sharma
- Sperm Signaling Laboratory, Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India
| | - Nadeem Shah
- Department of Veterinary Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Manisha Sethi
- Department of Veterinary Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Abhishek Mahajan
- Sperm Signaling Laboratory, Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India
| | - Shashikant Gupta
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izzatnagar, Bareilly 243122, Uttar Pradesh, India
| | | | - Sarvajeet Yadav
- Sperm Signaling Laboratory, Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India
| |
Collapse
|
45
|
Bowker Z, Goldstein S, Breitbart H. Protein acetylation protects sperm from spontaneous acrosome reaction. Theriogenology 2022; 191:231-238. [PMID: 35998406 DOI: 10.1016/j.theriogenology.2022.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Abstract
In order to penetrate the egg, spermatozoa must undergo the acrosome reaction in close proximity to the egg. This process can take place only after a series of biochemical changes in the sperm, collectively termed capacitation, occur in the female reproductive tract. Sperm cells can undergo spontaneous-acrosome reaction(sAR) before reaching the vicinity of the egg, preventing successful fertilization. Several mechanisms were shown to protect sperm from undergoing sAR, and all of them are involved in proper capacitation. Here, we describe the involvement of protein acetylation in the mechanism that protects bovine spermatozoa from sAR. Incubation of bovine sperm under non-capacitation conditions revealed a strong increase in sAR that was significantly reduced in the presence of deacetylase inhibitors. Protein kinase A (PKA) is an essential key enzyme in sperm capacitation, and its inhibition results in high sAR. The reduction in sAR by hyperacetylation was independent of PKA activity. We previously demonstrated that calmodulin-kinase II (CaMKII) activity protects sperm from sAR, and here we show that its activity is essential for reduction in sAR by hyperacetylation. We further show that the 'exchange protein directly activated by Camp' (EPAC) mediates both protein lysine acetylation and the reduced rate of sAR caused by hyperacetylation. In conclusion, these results suggest a PKA-independent and EPAC-CaMKII dependent hyperacetylation mechanism that protects sperm from sAR.
Collapse
Affiliation(s)
- Z Bowker
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - S Goldstein
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - H Breitbart
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
46
|
Rossetti T, Ferreira J, Ghanem L, Buck H, Steegborn C, Myers RW, Meinke PT, Levin LR, Buck J. Assessing potency and binding kinetics of soluble adenylyl cyclase (sAC) inhibitors to maximize therapeutic potential. Front Physiol 2022; 13:1013845. [PMID: 36246105 PMCID: PMC9554468 DOI: 10.3389/fphys.2022.1013845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
In mammalian cells, 10 different adenylyl cyclases produce the ubiquitous second messenger, cyclic adenosine monophosphate (cAMP). Amongst these cAMP-generating enzymes, bicarbonate (HCO3 -)-regulated soluble adenylyl cyclase (sAC; ADCY10) is uniquely essential in sperm for reproduction. For this reason, sAC has been proposed as a potential therapeutic target for non-hormonal contraceptives for men. Here, we describe key sAC-focused in vitro assays to identify and characterize sAC inhibitors for therapeutic use. The affinity and binding kinetics of an inhibitor can greatly influence in vivo efficacy, therefore, we developed improved assays for assessing these efficacy defining features.
Collapse
Affiliation(s)
- Thomas Rossetti
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Jacob Ferreira
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Lubna Ghanem
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Hannes Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Robert W. Myers
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, United States
| | - Peter T. Meinke
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, United States
| | - Lonny R. Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
47
|
Ferreira J, Levin LR, Buck J. Strategies to safely target widely expressed soluble adenylyl cyclase for contraception. Front Pharmacol 2022; 13:953903. [PMID: 36091839 PMCID: PMC9452739 DOI: 10.3389/fphar.2022.953903] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
In humans, the prototypical second messenger cyclic AMP is produced by 10 adenylyl cyclase isoforms, which are divided into two classes. Nine isoforms are G protein coupled transmembrane adenylyl cyclases (tmACs; ADCY1-9) and the 10th is the bicarbonate regulated soluble adenylyl cyclase (sAC; ADCY10). This review details why sAC is uniquely druggable and outlines ways to target sAC for novel forms of male and female contraception.
Collapse
|
48
|
Hernández-Garduño S, Chavez JC, Matamoros-Volante A, Sánchez-Guevara Y, Torres P, Treviño CL, Nishigaki T. Hyperpolarization induces cytosolic alkalization of mouse sperm flagellum probably through sperm Na+/H+ exchanger. Reproduction 2022; 164:125-134. [PMID: 35900329 DOI: 10.1530/rep-22-0101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
The sperm-specific sodium/proton exchanger (sNHE) is an indispensable protein for male fertility in mammals. Nevertheless, it is still unknown how mammalian sNHE is regulated. Evidence obtained from sea urchin sNHE indicates that hyperpolarization of plasma membrane potential (Vm), which is a hallmark of mammalian capacitation, positively regulates the sNHE. Therefore, we explored the activity of sNHE in mouse and human sperm by fluorescence imaging of intracellular pH (pHi) with a ratiometric dye, SNARF-5F. A valinomycin-induced Vm hyperpolarization elevated sperm flagellar pHi of wild-type mouse, but not in sNHE-KO mouse. Moreover, this pHi increase was inhibited in a high K+ (40 mM) medium. These results support the idea that mouse sNHE is activated by Vm hyperpolarization. Interestingly, we observed different types of kinetics derived from valinomycin-induced alkalization, including some (30 %) without any pHi changes. Our quantitative pHi determinations revealed that unresponsive cells had a high resting pHi (> 7.5), suggesting that the activity of mouse sNHE is regulated by the resting pHi. On the other hand, valinomycin did not increase the pHi of human sperm in the head or the flagellum, regardless of their resting pHi values. Our findings suggest that the regulatory mechanisms of mammalian sNHEs are probably distinct depending on the species.
Collapse
Affiliation(s)
- Sandra Hernández-Garduño
- S Hernández-Garduño, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Julio C Chavez
- J Chavez, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Arturo Matamoros-Volante
- A Matamoros-Volante, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Yoloxochitl Sánchez-Guevara
- Y Sánchez-Guevara, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Paulina Torres
- P Torres, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Claudia L Treviño
- C Treviño, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Takuya Nishigaki
- T Nishigaki, Genetica del Desarrollo y Fisiologia Molecular, Instituto de Biotecnologia UNAM, Cuernavaca, 62210, Mexico
| |
Collapse
|
49
|
Tommasi S, Kitapci TH, Blumenfeld H, Besaratinia A. Secondhand smoke affects reproductive functions by altering the mouse testis transcriptome, and leads to select intron retention in Pde1a. ENVIRONMENT INTERNATIONAL 2022; 161:107086. [PMID: 35063792 PMCID: PMC8891074 DOI: 10.1016/j.envint.2022.107086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Human exposure to secondhand smoke (SHS) is known to result in adverse effects in multiple organ systems. However, the impact of SHS on the male reproductive system, particularly on the regulation of genes and molecular pathways that govern sperm production, maturation, and functions remains largely understudied. OBJECTIVE We investigated the effects of SHS on the testis transcriptome in a validated mouse model. METHODS Adult male mice were exposed to SHS (5 h/day, 5 days/week for 4 months) as compared to controls (clean air-exposed). RNA-seq analysis was performed on the testis of SHS-exposed mice and controls. Variant discovery and plink association analyses were also conducted to detect exposure-related transcript variants in SHS-treated mice. RESULTS Exposure of mice to SHS resulted in the aberrant expression of 131 testicular genes. Whilst approximately two thirds of the differentially expressed genes were protein-coding, the remaining (30.5%) comprised noncoding elements, mostly lncRNAs (19.1%). Variant discovery analysis identified a homozygous frameshift variant that is statistically significantly associated with SHS exposure (P = 7.744e-06) and is generated by retention of a short intron within Pde1a, a key regulator of spermatogenesis. Notably, this SHS-associated intron variant harbors an evolutionarily conserved, premature termination codon (PTC) that disrupts the open reading frame of Pde1a, presumably leading to its degradation via nonsense-mediated decay. DISCUSSION SHS alters the expression of genes involved in molecular pathways that are crucial for normal testis development and function. Preferential targeting of lncRNAs in the testis of SHS-exposed mice is especially significant considering their crucial role in the spatial and temporal modulation of spermatogenesis. Equally important is our discovery of a novel homozygous frameshift variant that is exclusively and significantly associated with SHS-exposure and is likely to represent a safeguard mechanism to regulate transcription of Pde1a and preserve normal testis function during harmful exposure to environmental agents.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| | - Tevfik H Kitapci
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Hannah Blumenfeld
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Ahmad Besaratinia
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
50
|
Carrasquel Martínez G, Aldana A, Carneiro J, Treviño CL, Darszon A. Acrosomal alkalinization occurs during human sperm capacitation. Mol Hum Reprod 2022; 28:6535714. [PMID: 35201340 DOI: 10.1093/molehr/gaac005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/22/2022] [Indexed: 11/14/2022] Open
Abstract
Mammalian sperm capacitation is a prerequisite for successful fertilization. Capacitation involves biochemical and physiological modifications of sperm as they travel through the female reproductive tract. These modifications prepare the sperm to undergo the acrosome reaction (AR), an acrosome vesicle exocytosis that is necessary for gamete fusion. Capacitation requires an increase in both intracellular calcium ([Ca2+]i) and pH (pHi). Mouse sperm capacitation is accompanied by acrosomal alkalinization and artificial elevation of the acrosome pH (pHa) is sufficient to trigger the AR in mouse and human sperm, but it is unknown if pHa increases naturally during human sperm capacitation. We used single-cell imaging and image-based flow cytometry to evaluate pHa during capacitation and its regulation. We found that pHa progressively increases during capacitation. The V-ATPase, which immunolocalized to the acrosome and equatorial segment, is mainly responsible for the acidity of the acrosome. It is likely that the regulation of V-ATPase is at least in part responsible for the progressive increase in pHa during capacitation. Acrosome alkalinization was dependent on extracellular HCO3- and Ca2+. Inhibition of the HCO3--dependent adenylyl cyclase and protein kinase A induced significant pHa changes. Overall, alkalinization of the acrosome may be a key step in the path towards the AR.
Collapse
Affiliation(s)
- Gabriela Carrasquel Martínez
- Departamento de Genética del Desarrollo y Fisiología Molecular. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Andrés Aldana
- Departamento de Genética del Desarrollo y Fisiología Molecular. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jorge Carneiro
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal.,Instituto de Tecnología Química e Biológica António Xavier, Universida de Nova, Oeiras, Portugal
| | - Claudia Lydia Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| |
Collapse
|