1
|
Kim KM. Unveiling the Differences in Signaling and Regulatory Mechanisms between Dopamine D2 and D3 Receptors and Their Impact on Behavioral Sensitization. Int J Mol Sci 2023; 24:ijms24076742. [PMID: 37047716 PMCID: PMC10095578 DOI: 10.3390/ijms24076742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Dopamine receptors are classified into five subtypes, with D2R and D3R playing a crucial role in regulating mood, motivation, reward, and movement. Whereas D2R are distributed widely across the brain, including regions responsible for motor functions, D3R are primarily found in specific areas related to cognitive and emotional functions, such as the nucleus accumbens, limbic system, and prefrontal cortex. Despite their high sequence homology and similar signaling pathways, D2R and D3R have distinct regulatory properties involving desensitization, endocytosis, posttranslational modification, and interactions with other cellular components. In vivo, D3R is closely associated with behavioral sensitization, which leads to increased dopaminergic responses. Behavioral sensitization is believed to result from D3R desensitization, which removes the inhibitory effect of D3R on related behaviors. Whereas D2R maintains continuous signal transduction through agonist-induced receptor phosphorylation, arrestin recruitment, and endocytosis, which recycle and resensitize desensitized receptors, D3R rarely undergoes agonist-induced endocytosis and instead is desensitized after repeated agonist exposure. In addition, D3R undergoes more extensive posttranslational modifications, such as glycosylation and palmitoylation, which are needed for its desensitization. Overall, a series of biochemical settings more closely related to D3R could be linked to D3R-mediated behavioral sensitization.
Collapse
Affiliation(s)
- Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| |
Collapse
|
2
|
Csukasi F, Bosakova M, Barta T, Martin JH, Arcedo J, Barad M, Rico-Llanos GA, Zieba J, Becerra J, Krejci P, Duran I, Krakow D. Skeletal diseases caused by mutations in PTH1R show aberrant differentiation of skeletal progenitors due to dysregulation of DEPTOR. Front Cell Dev Biol 2023; 10:963389. [PMID: 36726589 PMCID: PMC9885499 DOI: 10.3389/fcell.2022.963389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Alterations in the balance between skeletogenesis and adipogenesis is a pathogenic feature in multiple skeletal disorders. Clinically, enhanced bone marrow adiposity in bones impairs mobility and increases fracture risk, reducing the quality of life of patients. The molecular mechanism that underlies the balance between skeletogenesis and adipogenesis is not completely understood but alterations in skeletal progenitor cells' differentiation pathway plays a key role. We recently demonstrated that parathyroid hormone (PTH)/PTH-related peptide (PTHrP) control the levels of DEPTOR, an inhibitor of the mechanistic target of rapamycin (mTOR), and that DEPTOR levels are altered in different skeletal diseases. Here, we show that mutations in the PTH receptor-1 (PTH1R) alter the differentiation of skeletal progenitors in two different skeletal genetic disorders and lead to accumulation of fat or cartilage in bones. Mechanistically, DEPTOR controls the subcellular localization of TAZ (transcriptional co-activator with a PDZ-binding domain), a transcriptional regulator that governs skeletal stem cells differentiation into either bone and fat. We show that DEPTOR regulation of TAZ localization is achieved through the control of Dishevelled2 (DVL2) phosphorylation. Depending on nutrient availability, DEPTOR directly interacts with PTH1R to regulate PTH/PTHrP signaling or it forms a complex with TAZ, to prevent its translocation to the nucleus and therefore inhibit its transcriptional activity. Our data point DEPTOR as a key molecule in skeletal progenitor differentiation; its dysregulation under pathologic conditions results in aberrant bone/fat balance.
Collapse
Affiliation(s)
- Fabiana Csukasi
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Tomas Barta
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czechia
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jorge H. Martin
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| | - Jesus Arcedo
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
| | - Maya Barad
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| | - Gustavo A. Rico-Llanos
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Jennifer Zieba
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| | - Jose Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Ivan Duran
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Human Genetics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Han F, Cheng C, Xu Q, Chen J, Yang Z, Liu J. DEPDC1B promotes colorectal cancer via facilitating cell proliferation and migration while inhibiting apoptosis. Cell Cycle 2023; 22:131-143. [PMID: 36016512 PMCID: PMC9769448 DOI: 10.1080/15384101.2022.2110439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 01/20/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor with strong invasiveness. Given the reported involvement of DEP domain-containing protein 1B (DEPDC1B) in the progression of some cancers, its role in CRC was explored in this study. DEPDC1B expression in CRC was assessed based on database and tissue microarray (TMA). In addition, the knockdown and overexpression of DEPDC1B in CRC cell lines were constructed using small hairpin RNA (shRNA) interference. The biological function of DEPDC1B in CRC was evaluated in vitro and in vivo through loss/gain-of-function assays. The results demonstrated that DEPDC1B was highly expressed in CRC. Furthermore, DEPDC1B had the ability to promote CRC proliferation and migration coupled by cell apoptosis. In vivo results showed that DEPDC1B knockdown significantly inhibited the growth of xenograft tumors. Additionally, the results of antibody array indicated increased apoptosis-promoting proteins and decreased apoptosis-inhibiting proteins in DEPDC1B-knockdown CRC cells. In conclusion, DEPDC1B played a key driver role in CRC progression, and inhibition of its expression may be a potential target for precision medicine in CRC.
Collapse
Affiliation(s)
- Fei Han
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianqian Xu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jisong Chen
- The Second College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| | - Zhaohui Yang
- Department of Rehabilitation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Fan X, Wen J, Bao L, Gao F, Li Y, He D. Identification and Validation of DEPDC1B as an Independent Early Diagnostic and Prognostic Biomarker in Liver Hepatocellular Carcinoma. Front Genet 2022; 12:681809. [PMID: 35095994 PMCID: PMC8793833 DOI: 10.3389/fgene.2021.681809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is one of the most lethal tumors worldwide, and while its detailed mechanism of occurrence remains unclear, an early diagnosis of LIHC could significantly improve the 5-years survival of LIHC patients. It is therefore imperative to explore novel molecular markers for the early diagnosis and to develop efficient therapies for LIHC patients. Currently, DEPDC1B has been reported to participate in the regulation of cell mitosis, transcription, and tumorigenesis. To explore the valuable diagnostic and prognostic markers for LIHC and further elucidate the mechanisms underlying DEPDC1B-related LIHC, numerous databases, such as Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, Kaplan-Meier plotter, and The Cancer Genome Atlas (TCGA) were employed to determine the association between the expression of DEPDC1B and prognosis in LIHC patients. Generally, the DEPDC1B mRNA level was highly expressed in LIHC tissues, compared with that in normal tissues (p < 0.01). High DEPDC1B expression was associated with poor overall survival (OS) in LIHC patients, especially in stage II, IV, and grade I, II, III patients (all p < 0.05). The univariate and multivariate Cox regression analysis showed that DEPDC1B was an independent risk factor for OS among LIHC patients (HR = 1.3, 95% CI: 1.08–1.6, p = 0.007). In addition, the protein expression of DEPDC1B was validated using Human Protein Atlas database. Furthermore, the expression of DEPDC1B was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) assay using five pairs of matched LIHC tissues and their adjacent noncancerous tissues. The KEGG pathway analysis indicated that high expression of DEPDC1B may be associated with several signaling pathways, such as MAPK signaling, the regulation of actin cytoskeleton, p53 signaling, and the Wnt signaling pathways. Furthermore, high DEPDC1B expression may be significantly associated with various cancers. Conclusively, DEPDC1B may be an independent risk factor for OS among LIHC cancer patients and may be used as an early diagnostic marker in patients with LIHC.
Collapse
Affiliation(s)
- Xiaoyan Fan
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Junye Wen
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, China
| | - Lei Bao
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, China
| | - Fei Gao
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - You Li
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dongwei He
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Dongwei He,
| |
Collapse
|
5
|
Jeong E, Kim Y, Jeong J, Cho Y. Structure of the class C orphan GPCR GPR158 in complex with RGS7-Gβ5. Nat Commun 2021; 12:6805. [PMID: 34815401 PMCID: PMC8611064 DOI: 10.1038/s41467-021-27147-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022] Open
Abstract
GPR158, a class C orphan GPCR, functions in cognition, stress-induced mood control, and synaptic development. Among class C GPCRs, GPR158 is unique as it lacks a Venus flytrap-fold ligand-binding domain and terminates Gαi/o protein signaling through the RGS7-Gβ5 heterodimer. Here, we report the cryo-EM structures of GPR158 alone and in complex with one or two RGS7-Gβ5 heterodimers. GPR158 dimerizes through Per-Arnt-Sim-fold extracellular and transmembrane (TM) domains connected by an epidermal growth factor-like linker. The TM domain (TMD) reflects both inactive and active states of other class C GPCRs: a compact intracellular TMD, conformations of the two intracellular loops (ICLs) and the TMD interface formed by TM4/5. The ICL2, ICL3, TM3, and first helix of the cytoplasmic coiled-coil provide a platform for the DHEX domain of one RGS7 and the second helix recruits another RGS7. The unique features of the RGS7-binding site underlie the selectivity of GPR158 for RGS7.
Collapse
Affiliation(s)
- Eunyoung Jeong
- grid.49100.3c0000 0001 0742 4007Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yoojoong Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jihong Jeong
- grid.49100.3c0000 0001 0742 4007Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yunje Cho
- Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
6
|
Structural Basis of DEPTOR to Recognize Phosphatidic Acid Using its Tandem DEP Domains. J Mol Biol 2021; 433:166989. [PMID: 33865870 DOI: 10.1016/j.jmb.2021.166989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022]
Abstract
DEP domain containing mTOR-interacting protein (DEPTOR) plays pivotal roles in regulating metabolism, growth, autophagy and apoptosis by functions as an endogenous inhibitor of mTOR signaling pathway. Activated by phosphatidic acid, a second messenger in mTOR signaling, DEPTOR dissociates from mTORC1 complex with unknown mechanism. Here, we present a 1.5 Å resolution crystal structure, which shows that the N-terminal two tandem DEP domains of hDEPTOR fold into a dumbbell-shaped structure, protruding the characteristic β-hairpin arms of DEP domains on each side. An 18 amino acids DDEX motif at the end of DEP2 interacts with DEP1 and stabilizes the structure. Biochemical studies showed that the tandem DEP domains directly interact with phosphatidic acid using two distinct positively charged patches. These results provide insights into mTOR activation upon phosphatidic acid stimulation.
Collapse
|
7
|
Morales-Martinez M, Lichtenstein A, Vega MI. Function of Deptor and its roles in hematological malignancies. Aging (Albany NY) 2021; 13:1528-1564. [PMID: 33412518 PMCID: PMC7834987 DOI: 10.18632/aging.202462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Deptor is a protein that interacts with mTOR and that belongs to the mTORC1 and mTORC2 complexes. Deptor is capable of inhibiting the kinase activity of mTOR. It is well known that the mTOR pathway is involved in various signaling pathways that are involved with various biological processes such as cell growth, apoptosis, autophagy, and the ER stress response. Therefore, Deptor, being a natural inhibitor of mTOR, has become very important in its study. Because of this, it is important to research its role regarding the development and progression of human malignancies, especially in hematologic malignancies. Due to its variation in expression in cancer, it has been suggested that Deptor can act as an oncogene or tumor suppressor depending on the cellular or tissue context. This review discusses recent advances in its transcriptional and post-transcriptional regulation of Deptor. As well as the advances regarding the activities of Deptor in hematological malignancies, its possible role as a biomarker, and its possible clinical relevance in these malignancies.
Collapse
Affiliation(s)
- Mario Morales-Martinez
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México
| | - Alan Lichtenstein
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90024, USA
| | - Mario I. Vega
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90024, USA
| |
Collapse
|
8
|
Barot N. Networks in Frontal Lobe Epilepsy. Neurosurg Clin N Am 2020; 31:319-324. [PMID: 32475482 DOI: 10.1016/j.nec.2020.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Epilepsy affects about 1% of the general population. Frontal lobe epilepsy is the second most common focal epilepsy accounting for nearly 25% of medically refractory epilepsies. This paper reviews frontal lobe epilepsy from a perspective of a network disease that may help us to understand epilepsy from the microscale of genes, to local neuronal circuits, to the macrolevel of a whole-brain network. Surgical interventions, such as ablation and resection act by removing the active target nodes in the network, while responsive neurostimulation and vagus nerve stimulation act by modulating networks at the local neuronal circuit level and whole-brain level.
Collapse
Affiliation(s)
- Niravkumar Barot
- University of Pittsburgh, Kaufmann Medical Building, 3471 Fifth Avenues, Suite 810, Pittsburgh, PA 15213, USA.
| |
Collapse
|
9
|
Bosnjak N, Smith KM, Asaria I, Lahola-Chomiak A, Kishore N, Todd AT, Freitag M, Nargang FE. Involvement of a G Protein Regulatory Circuit in Alternative Oxidase Production in Neurospora crassa. G3 (BETHESDA, MD.) 2019; 9:3453-3465. [PMID: 31444295 PMCID: PMC6778808 DOI: 10.1534/g3.119.400522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
The Neurospora crassa nuclear aod-1 gene encodes an alternative oxidase that functions in mitochondria. The enzyme provides a branch from the standard electron transport chain by transferring electrons directly from ubiquinol to oxygen. In standard laboratory strains, aod-1 is transcribed at very low levels under normal growth conditions. However, if the standard electron transport chain is disrupted, aod-1 mRNA expression is induced and the AOD1 protein is produced. We previously identified a strain of N. crassa, that produces high levels of aod-1 transcript under non-inducing conditions. Here we have crossed this strain to a standard lab strain and determined the genomic sequences of the parents and several progeny. Analysis of the sequence data and the levels of aod-1 mRNA in uninduced cultures revealed that a frameshift mutation in the flbA gene results in the high uninduced expression of aod-1 The flbA gene encodes a regulator of G protein signaling that decreases the activity of the Gα subunit of heterotrimeric G proteins. Our data suggest that strains with a functional flbA gene prevent uninduced expression of aod-1 by inactivating a G protein signaling pathway, and that this pathway is activated in cells grown under conditions that induce aod-1 Induced cells with a deletion of the gene encoding the Gα protein still have a partial increase in aod-1 mRNA levels, suggesting a second pathway for inducing transcription of the gene in N. crassa We also present evidence that a translational control mechanism prevents production of AOD1 protein in uninduced cultures.
Collapse
Affiliation(s)
- Natasa Bosnjak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Kristina M Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-4003
| | - Iman Asaria
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Adrian Lahola-Chomiak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Nishka Kishore
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Andrea T Todd
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-4003
| | - Frank E Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| |
Collapse
|
10
|
Patil DN, Rangarajan ES, Novick SJ, Pascal BD, Kojetin DJ, Griffin PR, Izard T, Martemyanov KA. Structural organization of a major neuronal G protein regulator, the RGS7-Gβ5-R7BP complex. eLife 2018; 7:e42150. [PMID: 30540250 PMCID: PMC6310461 DOI: 10.7554/elife.42150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/12/2018] [Indexed: 01/03/2023] Open
Abstract
Signaling by the G-protein-coupled receptors (GPCRs) plays fundamental role in a vast number of essential physiological functions. Precise control of GPCR signaling requires action of regulators of G protein signaling (RGS) proteins that deactivate heterotrimeric G proteins. RGS proteins are elaborately regulated and comprise multiple domains and subunits, yet structural organization of these assemblies is poorly understood. Here, we report a crystal structure and dynamics analyses of the multisubunit complex of RGS7, a major regulator of neuronal signaling with key roles in controlling a number of drug target GPCRs and links to neuropsychiatric disease, metabolism, and cancer. The crystal structure in combination with molecular dynamics and mass spectrometry analyses reveals unique organizational features of the complex and long-range conformational changes imposed by its constituent subunits during allosteric modulation. Notably, several intermolecular interfaces in the complex work in synergy to provide coordinated modulation of this key GPCR regulator.
Collapse
Affiliation(s)
- Dipak N Patil
- Department of NeuroscienceThe Scripps Research InstituteJupiterUnited States
| | - Erumbi S Rangarajan
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteJupiterUnited States
| | - Scott J Novick
- Department of Molecular MedicineThe Scripps Research InstituteJupiterUnited States
| | - Bruce D Pascal
- Department of Molecular MedicineThe Scripps Research InstituteJupiterUnited States
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteJupiterUnited States
| | - Patrick R Griffin
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteJupiterUnited States
- Department of Molecular MedicineThe Scripps Research InstituteJupiterUnited States
| | - Tina Izard
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteJupiterUnited States
| | | |
Collapse
|
11
|
Caron A, Briscoe DM, Richard D, Laplante M. DEPTOR at the Nexus of Cancer, Metabolism, and Immunity. Physiol Rev 2018; 98:1765-1803. [PMID: 29897294 DOI: 10.1152/physrev.00064.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DEP domain-containing mechanistic target of rapamycin (mTOR)-interacting protein (DEPTOR) is an important modulator of mTOR, a kinase at the center of two important protein complexes named mTORC1 and mTORC2. These highly studied complexes play essential roles in regulating growth, metabolism, and immunity in response to mitogens, nutrients, and cytokines. Defects in mTOR signaling have been associated with the development of many diseases, including cancer and diabetes, and approaches aiming at modulating mTOR activity are envisioned as an attractive strategy to improve human health. DEPTOR interaction with mTOR represses its kinase activity and rewires the mTOR signaling pathway. Over the last years, several studies have revealed key roles for DEPTOR in numerous biological and pathological processes. Here, we provide the current state of the knowledge regarding the cellular and physiological functions of DEPTOR by focusing on its impact on the mTOR pathway and its role in promoting health and disease.
Collapse
Affiliation(s)
- Alexandre Caron
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - David M Briscoe
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Denis Richard
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Mathieu Laplante
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| |
Collapse
|
12
|
Catena V, Fanciulli M. Deptor: not only a mTOR inhibitor. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:12. [PMID: 28086984 PMCID: PMC5237168 DOI: 10.1186/s13046-016-0484-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/23/2016] [Indexed: 01/09/2023]
Abstract
Deptor is an important protein that belongs to the mTORC1 and mTORC2 complexes, able to interact with mTOR and to inhibit its kinase activity. As a natural mTOR inhibitor, Deptor is involved in several molecular pathways, such as cell growth, apoptosis, autophagy and ER stress response. For this reason, Deptor seems to play an important role in controlling cellular homeostasis. Despite several recent insights characterizing Deptor functions and regulation, its complete role within cells has not yet been completely clarified. Indeed, quite recently, Deptor has been associated with chromatin, and it has been demonstrated having a role in transcriptional regulation, controlling in such way endoplasmatic reticulum activity. From all these observations it is not surprising that Deptor can behave either as an oncogene or oncosuppressor, depending on the cell- or tissue-contexts. This review highlights recent progresses made in our understanding of the many activities of Deptor, describing its transcriptional and post-transcriptional regulation in different cancer cell types. Moreover, here we discuss the possibility of using compounds able to inhibit Deptor or to disrupt its interaction with mTOR as novel approaches for cancer therapy.
Collapse
Affiliation(s)
- Valeria Catena
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Maurizio Fanciulli
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
13
|
Gurling M, Talavera K, Garriga G. The DEP domain-containing protein TOE-2 promotes apoptosis in the Q lineage of C. elegans through two distinct mechanisms. Development 2014; 141:2724-34. [PMID: 24961802 DOI: 10.1242/dev.110486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuroblast divisions in the nematode Caenorhabditis elegans often give rise to a larger neuron and a smaller cell that dies. We have previously identified genes that, when mutated, result in neuroblast divisions that generate daughter cells that are more equivalent in size. This effect correlates with the survival of daughter cells that would normally die. We now describe a role for the DEP domain-containing protein TOE-2 in promoting the apoptotic fate in the Q lineage. TOE-2 localized at the plasma membrane and accumulated in the cleavage furrow of the Q.a and Q.p neuroblasts, suggesting that TOE-2 might position the cleavage furrow asymmetrically to generate daughter cells of different sizes. This appears to be the case for Q.a divisions where loss of TOE-2 led to a more symmetric division and to survival of the smaller Q.a daughter. Localization of TOE-2 to the membrane is required for this asymmetry, but, surprisingly, the DEP domain is dispensable. By contrast, loss of TOE-2 led to loss of the apoptotic fate in the smaller Q.p daughter but did not affect the size asymmetry of the Q.p daughters. This function of TOE-2 required the DEP domain but not localization to the membrane. We propose that TOE-2 ensures an apoptotic fate for the small Q.a daughter by promoting asymmetry in the daughter cell sizes of the Q.a neuroblast division but by a mechanism that is independent of cell size in the Q.p division.
Collapse
Affiliation(s)
- Mark Gurling
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Karla Talavera
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Gian Garriga
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Su YF, Liang CY, Huang CY, Peng CY, Chen CC, Lin MC, Lin RK, Lin WW, Chou MY, Liao PH, Yang JJ. A putative novel protein, DEPDC1B, is overexpressed in oral cancer patients, and enhanced anchorage-independent growth in oral cancer cells that is mediated by Rac1 and ERK. J Biomed Sci 2014; 21:67. [PMID: 25091805 PMCID: PMC4237807 DOI: 10.1186/s12929-014-0067-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The DEP domain is a globular domain containing approximately 90 amino acids, which was first discovered in 3 proteins: Drosophila disheveled, Caenorhabditis elegans EGL-10, and mammalian Pleckstrin; hence the term, DEP. DEPDC1B is categorized as a potential Rho GTPase-activating protein. The function of the DEP domain in signal transduction pathways is not fully understood. The DEPDC1B protein exhibits the characteristic features of a signaling protein, and contains 2 conserved domains (DEP and RhoGAP) that are involved in Rho GTPase signaling. Small GTPases, such as Rac, CDC42, and Rho, regulate a multitude of cell events, including cell motility, growth, differentiation, cytoskeletal reorganization and cell cycle progression. RESULTS In this study, we found that it was a guanine nucleotide exchange factor and induced both cell migration in a cultured embryonic fibroblast cell line and cell invasion in cancer cell lines; moreover, it was observed to promote anchorage-independent growth in oral cancer cells. We also demonstrated that DEPDC1B plays a role in regulating Rac1 translocated onto cell membranes, suggesting that DEPDC1B exerts a biological function by regulating Rac1. We examined oral cancer tissue; 6 out of 7 oral cancer tissue test samples overexpressed DEPDC1B proteins, compared with normal adjacent tissue. CONCLUSIONS DEPDC1B was a guanine nucleotide exchange factor and induced both cell migration in a cultured embryonic fibroblast cell line and cell invasion in cancer cell lines; moreover, it was observed to promote anchorage-independent growth in oral cancer cells. We also demonstrated that DEPDC1B exerts a biological function by regulating Rac1. We found that oral cancer samples overexpressed DEPDC1B proteins, compared with normal adjacent tissue. Suggest that DEPDC1B plays a role in the development of oral cancer. We revealed that proliferation was linked to a novel DEPDC1B-Rac1-ERK1/2 signaling axis in oral cancer cell lines.
Collapse
|
15
|
Sendoel A, Maida S, Zheng X, Teo Y, Stergiou L, Rossi CA, Subasic D, Pinto SM, Kinchen JM, Shi M, Boettcher S, Meyer JN, Manz MG, Bano D, Hengartner MO. DEPDC1/LET-99 participates in an evolutionarily conserved pathway for anti-tubulin drug-induced apoptosis. Nat Cell Biol 2014; 16:812-20. [PMID: 25064737 DOI: 10.1038/ncb3010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/18/2014] [Indexed: 12/18/2022]
Abstract
Microtubule-targeting chemotherapeutics induce apoptosis in cancer cells by promoting the phosphorylation and degradation of the anti-apoptotic BCL-2 family member MCL1. The signalling cascade linking microtubule disruption to MCL1 degradation remains however to be defined. Here, we establish an in vivo screening strategy in Caenorhabditis elegans to uncover genes involved in chemotherapy-induced apoptosis. Using an RNAi-based screen, we identify three genes required for vincristine-induced apoptosis. We show that the DEP domain protein LET-99 acts upstream of the heterotrimeric G protein alpha subunit GPA-11 to control activation of the stress kinase JNK-1. The human homologue of LET-99, DEPDC1, similarly regulates vincristine-induced cell death by promoting JNK-dependent degradation of the BCL-2 family protein MCL1. Collectively, these data uncover an evolutionarily conserved mediator of anti-tubulin drug-induced apoptosis and suggest that DEPDC1 levels could be an additional determinant for therapy response upstream of MCL1.
Collapse
Affiliation(s)
- Ataman Sendoel
- 1] Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190 CH-8057 Zurich, Switzerland [2] Division of Hematology, University Hospital Zurich, Raemistrasse 190 CH-8091 Zurich, Switzerland [3]
| | - Simona Maida
- German Center for Neurodegenerative Diseases (DZNE) e.V. Ludwig-Erhard-Allee 2, D-53175 Bonn, Germany
| | - Xue Zheng
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190 CH-8057 Zurich, Switzerland
| | - Youjin Teo
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190 CH-8057 Zurich, Switzerland
| | - Lilli Stergiou
- 1] Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190 CH-8057 Zurich, Switzerland [2]
| | - Carlo-Alberto Rossi
- German Center for Neurodegenerative Diseases (DZNE) e.V. Ludwig-Erhard-Allee 2, D-53175 Bonn, Germany
| | - Deni Subasic
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190 CH-8057 Zurich, Switzerland
| | - Sergio M Pinto
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190 CH-8057 Zurich, Switzerland
| | - Jason M Kinchen
- Center for Cell Clearance, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Moyin Shi
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190 CH-8057 Zurich, Switzerland
| | - Steffen Boettcher
- Division of Hematology, University Hospital Zurich, Raemistrasse 190 CH-8091 Zurich, Switzerland
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, USA
| | - Markus G Manz
- Division of Hematology, University Hospital Zurich, Raemistrasse 190 CH-8091 Zurich, Switzerland
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE) e.V. Ludwig-Erhard-Allee 2, D-53175 Bonn, Germany
| | - Michael O Hengartner
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190 CH-8057 Zurich, Switzerland
| |
Collapse
|
16
|
Capelluto DGS, Zhao X, Lucas A, Lemkul JA, Xiao S, Fu X, Sun F, Bevan DR, Finkielstein CV. Biophysical and molecular-dynamics studies of phosphatidic acid binding by the Dvl-2 DEP domain. Biophys J 2014; 106:1101-11. [PMID: 24606934 PMCID: PMC4026774 DOI: 10.1016/j.bpj.2014.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/08/2014] [Accepted: 01/27/2014] [Indexed: 11/16/2022] Open
Abstract
The Wnt-dependent, β-catenin-independent pathway modulates cell movement and behavior. A downstream regulator of this signaling pathway is Dishevelled (Dvl), which, among other multiple interactions, binds to the Frizzled receptor and the plasma membrane via phosphatidic acid (PA) in a mechanism proposed to be pH-dependent. While the Dvl DEP domain is central to the β-catenin-independent Wnt signaling function, the mechanism underlying its physical interaction with the membrane remains elusive. In this report, we elucidate the structural and functional basis of PA association to the Dvl2 DEP domain. Nuclear magnetic resonance, molecular-dynamics simulations, and mutagenesis data indicated that the domain interacted with the phospholipid through the basic helix 3 and a contiguous loop with moderate affinity. The association suggested that PA binding promoted local conformational changes in helix 2 and β-strand 4, both of which are compromised to maintain a stable hydrophobic core in the DEP domain. We also show that the Dvl2 DEP domain bound PA in a pH-dependent manner in a mechanism that resembles deprotonation of PA. Collectively, our results structurally define the PA-binding properties of the Dvl2 DEP domain, which can be exploited for the investigation of binding mechanisms of other DEP domain-interacting proteins.
Collapse
Affiliation(s)
| | - Xiaolin Zhao
- Protein Signaling Domains Laboratory, Virginia Tech, Blacksburg, Virginia
| | - Andrew Lucas
- Protein Signaling Domains Laboratory, Virginia Tech, Blacksburg, Virginia; Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
| | - Shuyan Xiao
- Protein Signaling Domains Laboratory, Virginia Tech, Blacksburg, Virginia
| | - Xiangping Fu
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia
| | - Furong Sun
- Protein Signaling Domains Laboratory, Virginia Tech, Blacksburg, Virginia
| | - David R Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
17
|
Croft W, Hill C, McCann E, Bond M, Esparza-Franco M, Bennett J, Rand D, Davey J, Ladds G. A physiologically required G protein-coupled receptor (GPCR)-regulator of G protein signaling (RGS) interaction that compartmentalizes RGS activity. J Biol Chem 2013; 288:27327-27342. [PMID: 23900842 DOI: 10.1074/jbc.m113.497826] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors (GPCRs) can interact with regulator of G protein signaling (RGS) proteins. However, the effects of such interactions on signal transduction and their physiological relevance have been largely undetermined. Ligand-bound GPCRs initiate by promoting exchange of GDP for GTP on the Gα subunit of heterotrimeric G proteins. Signaling is terminated by hydrolysis of GTP to GDP through intrinsic GTPase activity of the Gα subunit, a reaction catalyzed by RGS proteins. Using yeast as a tool to study GPCR signaling in isolation, we define an interaction between the cognate GPCR (Mam2) and RGS (Rgs1), mapping the interaction domains. This reaction tethers Rgs1 at the plasma membrane and is essential for physiological signaling response. In vivo quantitative data inform the development of a kinetic model of the GTPase cycle, which extends previous attempts by including GPCR-RGS interactions. In vivo and in silico data confirm that GPCR-RGS interactions can impose an additional layer of regulation through mediating RGS subcellular localization to compartmentalize RGS activity within a cell, thus highlighting their importance as potential targets to modulate GPCR signaling pathways.
Collapse
Affiliation(s)
- Wayne Croft
- Division of Biomedical Cell Biology, Warwick Medical School
| | | | - Eilish McCann
- Division of Biomedical Cell Biology, Warwick Medical School
| | - Michael Bond
- Division of Biomedical Cell Biology, Warwick Medical School
| | | | | | - David Rand
- Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - John Davey
- Division of Biomedical Cell Biology, Warwick Medical School
| | - Graham Ladds
- Division of Biomedical Cell Biology, Warwick Medical School.
| |
Collapse
|
18
|
Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet 2013; 45:546-51. [PMID: 23542697 DOI: 10.1038/ng.2599] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/06/2013] [Indexed: 11/08/2022]
Abstract
The majority of epilepsies are focal in origin, with seizures emanating from one brain region. Although focal epilepsies often arise from structural brain lesions, many affected individuals have normal brain imaging. The etiology is unknown in the majority of individuals, although genetic factors are increasingly recognized. Autosomal dominant familial focal epilepsy with variable foci (FFEVF) is notable because family members have seizures originating from different cortical regions. Using exome sequencing, we detected DEPDC5 mutations in two affected families. We subsequently identified mutations in five of six additional published large families with FFEVF. Study of families with focal epilepsy that were too small for conventional clinical diagnosis with FFEVF identified DEPDC5 mutations in approximately 12% of families (10/82). This high frequency establishes DEPDC5 mutations as a common cause of familial focal epilepsies. Shared homology with G protein signaling molecules and localization in human neurons suggest a role of DEPDC5 in neuronal signal transduction.
Collapse
|
19
|
Malcolm HR, Maurer JA. The mechanosensitive channel of small conductance (MscS) superfamily: not just mechanosensitive channels anymore. Chembiochem 2012; 13:2037-43. [PMID: 22915507 DOI: 10.1002/cbic.201200410] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Indexed: 01/13/2023]
Abstract
A family of many talents: The mechanosensitive channel of small conductance (MscS) superfamily of ion channels is composed of 15 unique subfamilies. Many of these subfamilies are predicted to be nonmechanosensitive and to have evolved to play critical roles in bacterial signal transduction.
Collapse
Affiliation(s)
- Hannah R Malcolm
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | |
Collapse
|
20
|
Richthammer C, Enseleit M, Sanchez-Leon E, März S, Heilig Y, Riquelme M, Seiler S. RHO1 and RHO2 share partially overlapping functions in the regulation of cell wall integrity and hyphal polarity in Neurospora crassa. Mol Microbiol 2012; 85:716-33. [DOI: 10.1111/j.1365-2958.2012.08133.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Functional analyses of regulators of G protein signaling in Gibberella zeae. Fungal Genet Biol 2012; 49:511-20. [PMID: 22634273 DOI: 10.1016/j.fgb.2012.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 11/20/2022]
Abstract
Regulators of G protein signaling (RGS) proteins make up a highly diverse and multifunctional protein family that plays a critical role in controlling heterotrimeric G protein signaling. In this study, seven RGS genes (FgFlbA, FgFlbB, FgRgsA, FgRgsB, FgRgsB2, FgRgsC, and FgGprK) were functionally characterized in the plant pathogenic fungus, Gibberella zeae. Mutant phenotypes were observed for deletion mutants of FgRgsA and FgRgsB in vegetative growth, FgFlbB and FgRgsB in conidia morphology, FgFlbA in conidia production, FgFlbA, FgRgsB, and FgRgsC in sexual development, FgFlbA and FgRgsA in spore germination and mycotoxin production, and FgFlbA, FgRgsA, and FgRgsB in virulence. Furthermore, FgFlbA, FgRgsA, and FgRgsB acted pleiotropically, while FgFlbB and FgRgsC deletion mutants exhibited a specific defect in conidia morphology and sexual development, respectively. Amino acid substitutions in Gα subunits and overexpression of the FgFlbA gene revealed that deletion of FgFlbA and dominant active GzGPA2 mutant, gzgpa2(Q207L), had similar phenotypes in cell wall integrity, perithecia formation, mycotoxin production, and virulence, suggesting that FgFlbA may regulate asexual/sexual development, mycotoxin biosynthesis, and virulence through GzGPA2-dependent signaling in G. zeae.
Collapse
|
22
|
Zhao Y, Sun Y. Targeting the mTOR-DEPTOR pathway by CRL E3 ubiquitin ligases: therapeutic application. Neoplasia 2012; 14:360-7. [PMID: 22745582 PMCID: PMC3384423 DOI: 10.1593/neo.12532] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 12/16/2022]
Abstract
The mammalian target of rapamycin (mTOR), an evolutionarily conserved serine/threonine protein kinase, integrates both intracellular and extracellular signals and serves as a central regulator of cell metabolism, growth, proliferation, survival, and autophagy. The mTOR pathway is frequently activated in many human cancers, mainly resulting from alterations in the upstream regulators, such as phosphoinositide 3-kinase (PI3K)/AKT activation, PTEN loss or dysregulation of mTOR-negative regulators (e.g., TSC1/2), leading to uncontrolled proliferation. Thus, inhibiting the PI3K/AKT/mTOR pathways is widely considered as an effective approach for targeted cancer therapy. Recently, we and others found that DEPTOR, a naturally occurring inhibitor of both mTORC1 and mTORC2, was degraded by SCF (Skp1-Cullin-F box proteins) E3 ubiquitin ligase, the founding member of cullin-RING-ligases (CRLs), resulting in mTOR activation and cell proliferation. In addition to DEPTOR, previous studies have demonstrated that several other negative regulators of mTOR pathway are also substrates of CRL/SCF E3s. Thus, targeting CRL/SCF E3s is expected to cause the accumulation of these mTOR signal inhibitors to effectively block the mTOR pathway. In this review, we will discuss mTOR signaling pathway, how DEPTOR regulates mTOR/AKT axis, thus acting as a tumor suppressor or oncogene in some cases, how DEPTOR is ubiquitinated and degraded by SCF(β-TrCP) E3, and how MLN4924, a small-molecule indirect inhibitor of CRL/SCF E3 ligases through blocking cullin neddylation, might be useful as a novel approach of mTOR pathway targeting for cancer therapy.
Collapse
Affiliation(s)
- Yongchao Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
23
|
Celver J, Sharma M, Kovoor A. D(2)-Dopamine receptors target regulator of G protein signaling 9-2 to detergent-resistant membrane fractions. J Neurochem 2011; 120:56-69. [PMID: 22035199 DOI: 10.1111/j.1471-4159.2011.07559.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Detergent-resistant membranes (DRM) are thought to contain structures such as lipid rafts that are involved in compartmentalizing cell membranes. We report that the majority of D(2)-dopamine receptors (D(2)R) expressed endogenously in mouse striatum or expressed in immortalized cell-lines is found in DRM. In addition, exogenous co-expression of D(2)R in a cell line shifted the expression of regulator of G protein signaling 9-2 (RGS9-2) into DRM. RGS9-2 is a protein that is highly enriched in the striatum and specifically regulates striatal D(2)R. In the striatum, RGS9-2 is mostly associated with DRMs but when expressed in cell lines, RGS9-2 is present in the soluble cytoplasmic fraction. In contrast, the majority of mu opioid receptors and delta opioid receptors are found in detergent-soluble membrane and there was no shift of RGS9-2 into DRM after co-expression of mu opioid receptor. These data suggest that the targeting of RGS9-2 to DRM in the striatum is mediated by D(2)R and that DRM is involved in the formation of a D(2)R signaling complex. D(2)R-mediated targeting of RGS9-2 to DRM was blocked by the deletion of the RGS9-2 DEP domain or by a point mutation that abolishes the GTPase accelerating protein function of RGS9-2.
Collapse
Affiliation(s)
- Jeremy Celver
- Department of Biomedical and Pharmacological Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | | | | |
Collapse
|
24
|
Vesterlund L, Jiao H, Unneberg P, Hovatta O, Kere J. The zebrafish transcriptome during early development. BMC DEVELOPMENTAL BIOLOGY 2011; 11:30. [PMID: 21609443 PMCID: PMC3118190 DOI: 10.1186/1471-213x-11-30] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/24/2011] [Indexed: 01/11/2023]
Abstract
Background The transition from fertilized egg to embryo is accompanied by a multitude of changes in gene expression, and the transcriptional events that underlie these processes have not yet been fully characterized. In this study RNA-Seq is used to compare the transcription profiles of four early developmental stages in zebrafish (Danio rerio) on a global scale. Results An average of 79 M total reads were detected from the different stages. Out of the total number of reads 65% - 73% reads were successfully mapped and 36% - 44% out of those were uniquely mapped. The total number of detected unique gene transcripts was 11187, of which 10096 were present at 1-cell stage. The largest number of common transcripts was observed between 1-cell stage and 16-cell stage. An enrichment of gene transcripts with molecular functions of DNA binding, protein folding and processing as well as metal ion binding was observed with progression of development. The sequence data (accession number ERP000635) is available at the European Nucleotide Archive. Conclusion Clustering of expression profiles shows that a majority of the detected gene transcripts are present at steady levels, and thus a minority of the gene transcripts clusters as increasing or decreasing in expression over the four investigated developmental stages. The three earliest developmental stages were similar when comparing highly expressed genes, whereas the 50% epiboly stage differed from the other three stages in the identity of highly expressed genes, number of uniquely expressed genes and enrichment of GO molecular functions. Taken together, these observations indicate a major transition in gene regulation and transcriptional activity taking place between the 512-cell and 50% epiboly stages, in accordance with previous studies.
Collapse
Affiliation(s)
- Liselotte Vesterlund
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Inaki K, Hillmer AM, Ukil L, Yao F, Woo XY, Vardy LA, Zawack KFB, Lee CWH, Ariyaratne PN, Chan YS, Desai KV, Bergh J, Hall P, Putti TC, Ong WL, Shahab A, Cacheux-Rataboul V, Karuturi RKM, Sung WK, Ruan X, Bourque G, Ruan Y, Liu ET. Transcriptional consequences of genomic structural aberrations in breast cancer. Genome Res 2011; 21:676-87. [PMID: 21467264 DOI: 10.1101/gr.113225.110] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Using a long-span, paired-end deep sequencing strategy, we have comprehensively identified cancer genome rearrangements in eight breast cancer genomes. Herein, we show that 40%-54% of these structural genomic rearrangements result in different forms of fusion transcripts and that 44% are potentially translated. We find that single segmental tandem duplication spanning several genes is a major source of the fusion gene transcripts in both cell lines and primary tumors involving adjacent genes placed in the reverse-order position by the duplication event. Certain other structural mutations, however, tend to attenuate gene expression. From these candidate gene fusions, we have found a fusion transcript (RPS6KB1-VMP1) recurrently expressed in ∼30% of breast cancers associated with potential clinical consequences. This gene fusion is caused by tandem duplication on 17q23 and appears to be an indicator of local genomic instability altering the expression of oncogenic components such as MIR21 and RPS6KB1.
Collapse
Affiliation(s)
- Koichiro Inaki
- Cancer Biology and Pharmacology, Genome Institute of Singapore, Genome, Singapore 138672, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Trifonov S, Houtani T, Shimizu JI, Hamada S, Kase M, Maruyama M, Sugimoto T. GPR155: Gene organization, multiple mRNA splice variants and expression in mouse central nervous system. Biochem Biophys Res Commun 2010; 398:19-25. [DOI: 10.1016/j.bbrc.2010.05.162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 05/30/2010] [Indexed: 11/30/2022]
|
27
|
Celver J, Sharma M, Kovoor A. RGS9-2 mediates specific inhibition of agonist-induced internalization of D2-dopamine receptors. J Neurochem 2010; 114:739-49. [PMID: 20477943 DOI: 10.1111/j.1471-4159.2010.06805.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulator of G protein signaling 9-2 (RGS9-2), a member of the RGS family of GTPase accelerating proteins, is expressed specifically in the striatum, a brain region involved in controlling movement, motivation, mood and addiction. RGS9-2 can be found co-localized with D(2)-class dopamine receptors in medium spiny striatal neurons and altered functioning of both RGS9-2 and D(2)-like dopamine receptors have been implicated in schizophrenia, movement disorders and reward responses. Previously we showed that RGS9-2 can specifically co-localize with D(2)-dopamine receptors (D2R). Here we provide further evidence of the specificity of RGS9-2 for regulating D2R cellular functions: the expression of RGS9-2 inhibits dopamine-mediated cellular internalization of D2R, while the expression of another RGS protein, RGS4, had no effect. In addition, the agonist-mediated internalization of the G protein coupled delta opioid receptor was unaffected by RGS9-2 expression. We utilized mutant constructs of RGS9-2 to show that the RGS9-2 DEP (for Disheveled, EGL-10, Pleckstrin homology) domain and the GTPase accelerating activity of RGS9-2 were necessary for mediating specific inhibition of D2R internalization.
Collapse
Affiliation(s)
- Jeremy Celver
- Department of Biomedical and Pharmacological Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | |
Collapse
|
28
|
Regulators of G Protein Signaling Proteins as Targets for Drug Discovery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 91:81-119. [DOI: 10.1016/s1877-1173(10)91004-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
The repertoire of heterotrimeric G proteins and RGS proteins in Ciona intestinalis. PLoS One 2009; 4:e7349. [PMID: 19806206 PMCID: PMC2752167 DOI: 10.1371/journal.pone.0007349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/16/2009] [Indexed: 01/06/2023] Open
Abstract
Background Heterotrimeric G proteins and regulators of G protein signaling (RGS) proteins are key downstream interacting partners in the G protein coupled receptor (GPCR) signaling pathway. The highly versatile GPCR transmembrane signaling system is a consequence of the coupling of a diverse set of receptors to downstream partners that include multiple subforms of G proteins and regulatory proteins including RGS proteins, among others. While the GPCR repertoire of Ciona intestinalis, representing the basal chordate is known, the repertoire of the heterotrimeric G proteins and RGS proteins is unknown. Methodology/Principal Findings In the present study, we performed an in-silico genome-wide search of C. intestinalis for its complement of G proteins and RGS proteins. The identification of several one-to-one orthologs of human G proteins at the levels of families, subfamilies and types and of homologs of the human RGS proteins suggests an evolutionarily conserved structure function relationship of the GPCR signaling mechanism in the chordates. Conclusions The C. intestinalis genome encodes a highly conserved, albeit, limited repertoire of the heterotrimeric G protein complexes with the size of subunit types comparable with that in lower eukaryotes.
Collapse
|
30
|
Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, Gray NS, Sabatini DM. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009; 137:873-86. [PMID: 19446321 PMCID: PMC2758791 DOI: 10.1016/j.cell.2009.03.046] [Citation(s) in RCA: 949] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 01/23/2009] [Accepted: 03/19/2009] [Indexed: 11/28/2022]
Abstract
The mTORC1 and mTORC2 pathways regulate cell growth, proliferation, and survival. We identify DEPTOR as an mTOR-interacting protein whose expression is negatively regulated by mTORC1 and mTORC2. Loss of DEPTOR activates S6K1, Akt, and SGK1, promotes cell growth and survival, and activates mTORC1 and mTORC2 kinase activities. DEPTOR overexpression suppresses S6K1 but, by relieving feedback inhibition from mTORC1 to PI3K signaling, activates Akt. Consistent with many human cancers having activated mTORC1 and mTORC2 pathways, DEPTOR expression is low in most cancers. Surprisingly, DEPTOR is highly overexpressed in a subset of multiple myelomas harboring cyclin D1/D3 or c-MAF/MAFB translocations. In these cells, high DEPTOR expression is necessary to maintain PI3K and Akt activation and a reduction in DEPTOR levels leads to apoptosis. Thus, we identify a novel mTOR-interacting protein whose deregulated overexpression in multiple myeloma cells represents a mechanism for activating PI3K/Akt signaling and promoting cell survival.
Collapse
Affiliation(s)
- Timothy R. Peterson
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mathieu Laplante
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Carson C. Thoreen
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Yasemin Sancak
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Seong A. Kang
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - W. Michael Kuehl
- National Cancer Institute, 8901 Rockville Pike, Bethesda, MD 20814
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
| | - David M. Sabatini
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Koch Center for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
31
|
Abstract
The ROCO family of multidomain proteins extends across the eukaryotes, and has been implicated in numerous cellular processes. Following the description of mutations causing PD (Parkinson's disease) in a human representative of the ROCO family, LRRK2 (leucine-rich repeat kinase 2), a great deal of research has been carried out into these proteins. This review examines the published data regarding the roles the ROCO proteins are thought to play in cell processes, and how the structure and domain organization of these proteins relates to their function.
Collapse
|
32
|
Abstract
Cells split in two at the final step of each division cycle. This division normally bisects through the middle of the cell and generates two equal daughters. However, developmental signals can change the plane of cell cleavage to facilitate asymmetric segregation of fate determinants and control the position and relative sizes of daughter cells. The anaphase spindle instructs the site of cell cleavage in animal cells, hence its position is critical in the regulation of symmetric vs asymmetric cell division. Studies in a variety of models identified evolutionarily conserved mechanisms that control spindle positioning. However, how the spindle determines the cleavage site is poorly understood. Recent results in Caenorhabditis elegans indicate dual functions for a Galpha pathway in positioning the spindle and cleavage furrow. We review asymmetric division of the C. elegans zygote, with a focus on microtubule-cortex interactions that position the spindle and cleavage plane.
Collapse
Affiliation(s)
- Matilde Galli
- Developmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
33
|
Fission yeast rgf2p is a rho1p guanine nucleotide exchange factor required for spore wall maturation and for the maintenance of cell integrity in the absence of rgf1p. Genetics 2009; 181:1321-34. [PMID: 19189958 DOI: 10.1534/genetics.108.094839] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Schizosaccharomyces pombe Rho1p is essential, directly activates beta-1,3-glucan synthase, and participates in the regulation of morphogenesis. In S. pombe, Rho1p is activated by at least three guanine nucleotide exchange factors (GEFs): Rgf1p, Rgf2p, and Rgf3p. In this study we show that Rgf2p is a Rho1p GEF required for sporulation. The rgf2+ deletion did not affect forespore membrane formation and the nuclei were encapsulated properly. However, the mutant ascospores appeared dark and immature. The rgf2Delta zygotes were not able to release the ascospores spontaneously, and the germination efficiency was greatly reduced compared to wild-type (wt) spores. This phenotype resembles that of the mutants in bgs2+, which encodes a sporulation-specific glucan synthase subunit. In fact, glucan synthase activity was diminished in sporulating rgf2Delta diploids. Rgf2p also plays a role in beta-glucan biosynthesis during vegetative growth. Overexpression of rgf2+ specifically increased GTP-bound Rho1p, caused changes in cell morphology, and elicited an increase in beta-1,3-glucan synthase activity. Moreover, the simultaneous disruption of rgf1+ and rgf2+ was lethal and both Rgf1p and Rgf2p were able to partially substitute for each other. Our results suggest that Rgf1p and Rgf2p are alternative GEFs with an essential overlapping function in Rho1p activation during vegetative growth.
Collapse
|
34
|
Garcia P, Tajadura V, Sanchez Y. The Rho1p exchange factor Rgf1p signals upstream from the Pmk1 mitogen-activated protein kinase pathway in fission yeast. Mol Biol Cell 2008; 20:721-31. [PMID: 19037094 DOI: 10.1091/mbc.e08-07-0673] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Schizosaccharomyces pombe exchange factor Rgf1p specifically regulates Rho1p during polarized growth. Rgf1p activates the beta-glucan synthase (GS) complex containing the catalytic subunit Bgs4p and is involved in the activation of growth at the second end, a transition that requires actin reorganization. In this work, we investigated Rgf1p signaling and observed that Rgf1p acted upstream from the Pck2p-Pmk1p MAPK signaling pathway. We noted that Rgf1p and calcineurin play antagonistic roles in Cl(-) homeostasis; rgf1Delta cells showed the vic phenotype (viable in the presence of immunosuppressant and chlorine ion) and were unable to grow in the presence of high salt concentrations, both phenotypes being characteristic of knockouts of the MAPK components. In addition, mutations that perturb signaling through the MAPK pathway resulted in defective cell integrity (hypersensitivity to caspofungin and beta-glucanase). Rgf1p acts by positively regulating a subset of stimuli toward the Pmk1p-cell integrity pathway. After osmotic shock and cell wall damage HA-tagged Pmk1p was phosphorylated in wild-type cells but not in rgf1Delta cells. Finally, we provide evidence to show that Rgf1p regulates Pmk1p activation in a process that involves the activation of Rho1p and Pck2p, and we demonstrate that Rgf1p is unique in this signaling process, because Pmk1p activation was largely independent of the other two Rho1p-specific GEFs, Rgf2p and Rgf3p.
Collapse
Affiliation(s)
- Patricia Garcia
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | |
Collapse
|
35
|
Goulding MB, Canman JC, Senning EN, Marcus AH, Bowerman B. Control of nuclear centration in the C. elegans zygote by receptor-independent Galpha signaling and myosin II. ACTA ACUST UNITED AC 2007; 178:1177-91. [PMID: 17893243 PMCID: PMC2064652 DOI: 10.1083/jcb.200703159] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitotic spindle positioning in the Caenorhabditis elegans zygote involves microtubule-dependent pulling forces applied to centrosomes. In this study, we investigate the role of actomyosin in centration, the movement of the nucleus-centrosome complex (NCC) to the cell center. We find that the rate of wild-type centration depends equally on the nonmuscle myosin II NMY-2 and the Galpha proteins GOA-1/GPA-16. In centration- defective let-99(-) mutant zygotes, GOA-1/GPA-16 and NMY-2 act abnormally to oppose centration. This suggests that LET-99 determines the direction of a force on the NCC that is promoted by Galpha signaling and actomyosin. During wild-type centration, NMY-2-GFP aggregates anterior to the NCC tend to move further anterior, suggesting that actomyosin contraction could pull the NCC. In GOA-1/GPA-16-depleted zygotes, NMY-2 aggregate displacement is reduced and largely randomized, whereas in a let-99(-) mutant, NMY-2 aggregates tend to make large posterior displacements. These results suggest that Galpha signaling and LET-99 control centration by regulating polarized actomyosin contraction.
Collapse
Affiliation(s)
- Morgan B Goulding
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | | | | | | | | |
Collapse
|
36
|
Rodríguez-Muñoz M, de la Torre-Madrid E, Gaitán G, Sánchez-Blázquez P, Garzón J. RGS14 prevents morphine from internalizing Mu-opioid receptors in periaqueductal gray neurons. Cell Signal 2007; 19:2558-71. [PMID: 17825524 DOI: 10.1016/j.cellsig.2007.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 08/06/2007] [Indexed: 01/24/2023]
Abstract
Opioid agonists display different capacities to stimulate mu-opioid receptor (MOR) endocytosis, which is related to their ability to provoke the phosphorylation of specific cytosolic residues in the MORs. Generally, opioids that efficiently promote MOR endocytosis and recycling produce little tolerance, as is the case for [D-Ala(2), N-MePhe(4),Gly-ol(5)] encephalin (DAMGO). However, morphine produces rapid and profound antinociceptive desensitization in the adult mouse brain associated with little MOR internalization. The regulator of G-protein signaling, the RGS14 protein, associates with MORs in periaqueductal gray matter (PAG) neurons, and when RGS14 is silenced morphine increased the serine 375 phosphorylation in the C terminus of the MOR, a GRK substrate. Subsequently, these receptors were internalized and recycled back to the membrane where they accumulated on cessation of antinociception. These mice now exhibited a resensitized response to morphine and little tolerance developed. Thus, in morphine-activated MORs the RGS14 prevents GRKs from phosphorylating those residues required for beta-arresting-mediated endocytosis. Moreover morphine but not DAMGO triggered a process involving calcium/calmodulin-dependent kinase II (CaMKII) in naïve mice, which contributes to MOR desensitization in the plasma membrane. In RGS14 knockdown mice morphine failed to activate this kinase. It therefore appears that phosphorylation and internalization of MORs disrupts the CaMKII-mediated negative regulation of these opioid receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Animals
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Tolerance
- Endocytosis/drug effects
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enzyme Activation
- G-Protein-Coupled Receptor Kinases/metabolism
- Gene Silencing
- Hot Temperature/adverse effects
- Injections, Intraventricular
- Male
- Mice
- Molecular Sequence Data
- Morphine/administration & dosage
- Morphine/pharmacology
- Neurons/drug effects
- Neurons/enzymology
- Neurons/metabolism
- Oligonucleotides, Antisense/metabolism
- Pain/etiology
- Pain/physiopathology
- Pain/prevention & control
- Pain Measurement
- Pain Threshold/drug effects
- Periaqueductal Gray/cytology
- Periaqueductal Gray/drug effects
- Periaqueductal Gray/enzymology
- Periaqueductal Gray/metabolism
- Phosphorylation
- RGS Proteins/genetics
- RGS Proteins/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Serine/metabolism
- Synaptosomes/drug effects
- Synaptosomes/metabolism
- Time Factors
Collapse
Affiliation(s)
- María Rodríguez-Muñoz
- Neurofarmacología, Instituto de Neurobiología Santiago Ramón y Cajal, Madrid E-28002, Spain
| | | | | | | | | |
Collapse
|