1
|
Li X, Yang S, Zhang X, Zhang Y, Zhang Y, Li H. Bioinformatic Analysis of Roquin Family Reveals Their Potential Role in Immune System. Int J Mol Sci 2024; 25:5859. [PMID: 38892048 PMCID: PMC11172303 DOI: 10.3390/ijms25115859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The Roquin family is a recognized RNA-binding protein family that plays vital roles in regulating the expression of pro-inflammatory target gene mRNA during the immune process in mammals. However, the evolutionary status of the Roquin family across metazoans remains elusive, and limited studies are found in fish species. In this study, we discovered that the RC3H genes underwent a single round of gene duplication from a primitive ancestor during evolution from invertebrates to vertebrates. Furthermore, there were instances of species-specific gene loss events or teleost lineage-specific gene duplications throughout evolution. Domain/motif organization and selective pressure analysis revealed that Roquins exhibit high homology both within members of the family within the same species and across species. The three rc3h genes in zebrafish displayed similar expression patterns in early embryos and adult tissues, with rc3h1b showing the most prominent expression among them. Additionally, the promoter regions of the zebrafish rc3h genes contained numerous transcription factor binding sites similar to those of mammalian homologs. Moreover, the interaction protein network of Roquin and the potential binding motif in the 3'-UTR of putative target genes analysis both indicated that Roquins have the potential to degrade target mRNA through mechanisms similar to those of mammalian homologs. These findings shed light on the evolutionary history of Roquin among metazoans and hypothesized their role in the immune systems of zebrafish.
Collapse
Affiliation(s)
- Xianpeng Li
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (X.L.); (S.Y.); (X.Z.); (Y.Z.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266003, China
| | - Shuaiqi Yang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (X.L.); (S.Y.); (X.Z.); (Y.Z.)
| | - Xiangmin Zhang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (X.L.); (S.Y.); (X.Z.); (Y.Z.)
| | - Yi Zhang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (X.L.); (S.Y.); (X.Z.); (Y.Z.)
| | - Yu Zhang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (X.L.); (S.Y.); (X.Z.); (Y.Z.)
| | - Hongyan Li
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (X.L.); (S.Y.); (X.Z.); (Y.Z.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266003, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Ocean University of China, Qingdao 266003, China
| |
Collapse
|
2
|
Mauro MS, Martin SL, Dumont J, Shirasu-Hiza M, Canman JC. Patterning, regulation, and role of FoxO/DAF-16 in the early embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594029. [PMID: 38798632 PMCID: PMC11118310 DOI: 10.1101/2024.05.13.594029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Insulin resistance and diabetes are associated with many health issues including higher rates of birth defects and miscarriage during pregnancy. Because insulin resistance and diabetes are both associated with obesity, which also affects fertility, the role of insulin signaling itself in embryo development is not well understood. A key downstream target of the insulin/insulin-like growth factor signaling (IIS) pathway is the forkhead family transcription factor FoxO (DAF-16 in C. elegans ). Here, we used quantitative live imaging to measure the patterning of endogenously tagged FoxO/DAF-16 in the early worm embryo. In 2-4-cell stage embryos, FoxO/DAF-16 initially localized uniformly to all cell nuclei, then became dramatically enriched in germ precursor cell nuclei beginning at the 8-cell stage. This nuclear enrichment in early germ precursor cells required germ fate specification, PI3K (AGE-1)- and PTEN (DAF-18)-mediated phospholipid regulation, and the deubiquitylase USP7 (MATH-33), yet was unexpectedly insulin receptor (DAF-2)- and AKT-independent. Functional analysis revealed that FoxO/DAF-16 acts as a cell cycle pacer for early cleavage divisions-without FoxO/DAF-16 cell cycles were shorter than in controls, especially in germ lineage cells. These results reveal the germ lineage specific patterning, upstream regulation, and cell cycle role for FoxO/DAF-16 during early C. elegans embryogenesis.
Collapse
|
3
|
Vérièpe-Salerno J, Podavini S, Long MJ, Kolotuev I, Cuendet M, Thome M. MALT-1 shortens lifespan by inhibiting autophagy in the intestine of C. elegans. AUTOPHAGY REPORTS 2023; 2:2277584. [PMID: 38510643 PMCID: PMC7615756 DOI: 10.1080/27694127.2023.2277584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/21/2023] [Indexed: 03/22/2024]
Abstract
The caspase-like protease MALT1 promotes immune responses and oncogenesis in mammals by activating the transcription factor NF-κB. MALT1 is remarkably conserved from mammals to simple metazoans devoid of NF-κB homologs, like the nematode C. elegans. To discover more ancient, NF-κB -independent MALT1 functions, we analysed the phenotype of C. elegans upon silencing of MALT-1 expression systemically or in a tissue-specific manner. MALT-1 silencing in the intestine caused a significant increase in life span, whereas intestinal overexpression of MALT-1 shortened life expectancy. Interestingly, MALT-1-deficient animals showed higher constitutive levels of autophagy in the intestine, which were particularly evident in aged or starved nematodes. Silencing of the autophagy regulators ATG-13, BEC-1 or LGG-2, but not the TOR homolog LET-363, reversed lifespan extension caused by MALT-1 deficiency. These findings suggest that MALT-1 limits the lifespan of C. elegans by acting as an inhibitor of an early step of autophagy in the intestine.
Collapse
Affiliation(s)
- Julie Vérièpe-Salerno
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Silvia Podavini
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Marcus J.C. Long
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Irina Kolotuev
- Electron Microscopy Facility, University of Lausanne, Quartier Sorge – Biophore, CH-1015 Lausanne, Switzerland
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Margot Thome
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| |
Collapse
|
4
|
Song X, Du Y, Liu C, Wang W, Han J, Chai X, Liu Y. H-2 increases oxidative stress resistance through DAF-16/FOXO pathways in Caenorhabditis elegans: A new approach to vitiligo treatment. Biomed Pharmacother 2023; 157:113924. [PMID: 36450213 DOI: 10.1016/j.biopha.2022.113924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress disrupts the homeostasis of the redox state in cells and induces apoptosis. Prolonged oxidative stress can impair the normal function of cells, tissues, and organs and lead to the development of several diseases. H-2 was synthesized by derivatising N-Alkylamides (NAAs) from Anacyclus pyrethrum (L.) DC, which is commonly used in the treatment of vitiligo in Uyghurs. The antioxidant activity and potential molecular mechanisms of H-2 were investigated using Caenorhabditis elegans (C. elegans) and mouse melanoma cell B16-F10 models. The in vivo anti-vitiligo activity of H-2 was studied using C57BL/6 mice. The results showed that H-2 could increase the survival time of nematodes under oxidative stress, promote the nuclear localization of DAF-16, and enhance the expression of Superoxide Dismutase 3 (SOD-3) in nematodes thereby activating the antioxidant enzyme system. H-2 could affect the survival rate of age-1 and akt-1 mutants under oxidative stress. H-2 could reverse the oxidative stress damage by reducing the reactive oxygen species (ROS) content in the Hydrogen peroxide (H2O2) -induced oxidative stress damage model of mouse melanoma cells B16-F10. In addition, it was also able to increase the number of melanocytes in the hair follicles of vitiligo model mice and improve the phenomenon of skin damage in mice. In conclusion, our findings suggest that H-2 can alleviate oxidative stress damage in C. elegans and B16-F10, which may be associated with oxidative stress, suppression of antioxidant defences, and transcription factors DAF-16/FOXO, providing beneficial evidence for the application of H-2 in the vitiligo treatment.
Collapse
Affiliation(s)
- Xingzhuo Song
- School of Chinese Materia medica, Beijing University of Chinese medicine, Beijing, China
| | - Yu Du
- School of Chinese Materia medica, Beijing University of Chinese medicine, Beijing, China
| | - Cen Liu
- School of Chinese Materia medica, Beijing University of Chinese medicine, Beijing, China
| | - Wei Wang
- Beijing Institute of traditional Chinese medicine, Beijing University of Chinese medicine, Beijing, China.
| | - Jing Han
- Beijing Institute of traditional Chinese medicine, Beijing University of Chinese medicine, Beijing, China.
| | - Xinlou Chai
- School of traditional Chinese medicine, Beijing University of Chinese medicine, Beijing, China.
| | - Yonggang Liu
- School of Chinese Materia medica, Beijing University of Chinese medicine, Beijing, China.
| |
Collapse
|
5
|
Abstract
The proteasome is a multi-subunit proteolytic complex that functions to degrade normal proteins for physiological regulation and to eliminate abnormal proteins for cellular protection. Generally, the proteasome targets substrate proteins that are marked by attachment of multiple ubiquitin molecules. In various types of cells in an organism, damage to proteins occurs both from internal sources such as reactive oxygen species and from external ones such as UV radiation from the sun. The proteasome functions to protect the cells by degrading damaged proteins. With ageing, however, the capacity of the proteasome to degrade damaged proteins is reduced as indicated by evidence gathered by many studies. Studies on ageing in muscle, skin, and brain show that with age catalytic activity of the proteasome is decreased and the expression of proteasome subunits is altered. Age-related accumulation of damaged or misfolded proteins causes further reduction of proteasome activity. Abnormal proteins also accumulate as a result of age-related neurodegenerative diseases. Deficits in proteasome activity might be responsible for accumulation of protein aggregates and thus contribute to the pathology. Results from several studies suggest a link between the proteasome and longevity. This chapter reviews the various ways in which the proteasome is associated with the ageing process and examines evidence gathered from investigations on cultured cells, model organisms, and humans.
Collapse
Affiliation(s)
- Ashok N Hegde
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, USA.
| | - Lindsey M Duke
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, USA
| | - Logan E Timm
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, USA
| | - Hannah Nobles
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, USA
| |
Collapse
|
6
|
Dong Z, Wang Y, Hao C, Cheng Y, Guo X, He Y, Shi Y, Wang S, Li Y, Shi W. Sanghuangporus sanghuang extract extended the lifespan and healthspan of Caenorhabditis elegans via DAF-16/SIR-2.1. Front Pharmacol 2023; 14:1136897. [PMID: 37153808 PMCID: PMC10159060 DOI: 10.3389/fphar.2023.1136897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/20/2023] [Indexed: 05/10/2023] Open
Abstract
Sanghuangporus Sanghuang is a fungus species. As a traditional Chinese medicine, it is known for antitumor, antioxidant and anti-inflammatory properties. However, the antiaging effect of S. Sanghuang has not been deeply studied. In this study, the effects of S. Sanghuang extract (SSE) supernatants on the changes of nematode indicators were investigated. The results showed that different concentrations of SSE prolonged the lifespans of nematodes and substantially increased these by 26.41%. In addition, accumulations of lipofuscin were also visibly reduced. The treatment using SSE also played a role in increasing stress resistance, decreasing ROS accumulations and obesity, and enhancing the physique. RT-PCR analysis showed that the SSE treatment upregulated the transcription of daf-16, sir-2.1, daf-2, sod-3 and hsp-16.2, increased the expression of these genes in the insulin/IGF-1 signalling pathway and prolonged the lifespans of nematodes. This study reveals the new role of S. Sanghuang in promoting longevity and inhibiting stress and provides a theoretical basis for the application of S. Sanghuang in anti-ageing treatments.
Collapse
Affiliation(s)
- Zhenghan Dong
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yachao Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Cuiting Hao
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yuan Cheng
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xi Guo
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yanyu He
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yueyue Shi
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Shuang Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yunqi Li
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Shi
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
- *Correspondence: Wei Shi,
| |
Collapse
|
7
|
Sobańska D, Komur AA, Chabowska-Kita A, Gumna J, Kumari P, Pachulska-Wieczorek K, Ciosk R. The silencing of ets-4 mRNA relies on the functional cooperation between REGE-1/Regnase-1 and RLE-1/Roquin-1. Nucleic Acids Res 2022; 50:8226-8239. [PMID: 35819231 PMCID: PMC9371910 DOI: 10.1093/nar/gkac609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Regnase-1 is an evolutionarily conserved endoribonuclease. It degrades diverse mRNAs important for many biological processes including immune homeostasis, development and cancer. There are two competing models of Regnase-1-mediated mRNA silencing. One model postulates that Regnase-1 works together with another RNA-binding protein, Roquin-1, which recruits Regnase-1 to specific mRNAs. The other model proposes that the two proteins function separately. Studying REGE-1, the Caenorhabditis elegans ortholog of Regnase-1, we have uncovered its functional relationship with RLE-1, the nematode counterpart of Roquin-1. While both proteins are essential for mRNA silencing, REGE-1 and RLE-1 appear to associate with target mRNA independently of each other. Thus, although the functional interdependence between REGE-1/Regnase-1 and RLE-1/Roquin-1 is conserved, the underlying mechanisms may display species-specific variation, providing a rare perspective on the evolution of this important post-transcriptional regulatory mechanism.
Collapse
Affiliation(s)
- Daria Sobańska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | - Alicja A Komur
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | | | - Julita Gumna
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | - Pooja Kumari
- Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | | | - Rafal Ciosk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland.,Department of Biosciences, University of Oslo, Oslo 0316, Norway
| |
Collapse
|
8
|
Hughes DC, Baehr LM, Waddell DS, Sharples AP, Bodine SC. Ubiquitin Ligases in Longevity and Aging Skeletal Muscle. Int J Mol Sci 2022; 23:7602. [PMID: 35886949 PMCID: PMC9315556 DOI: 10.3390/ijms23147602] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/07/2022] Open
Abstract
The development and prevalence of diseases associated with aging presents a global health burden on society. One hallmark of aging is the loss of proteostasis which is caused in part by alterations to the ubiquitin-proteasome system (UPS) and lysosome-autophagy system leading to impaired function and maintenance of mass in tissues such as skeletal muscle. In the instance of skeletal muscle, the impairment of function occurs early in the aging process and is dependent on proteostatic mechanisms. The UPS plays a pivotal role in degradation of misfolded and aggregated proteins. For the purpose of this review, we will discuss the role of the UPS system in the context of age-related loss of muscle mass and function. We highlight the significant role that E3 ubiquitin ligases play in the turnover of key components (e.g., mitochondria and neuromuscular junction) essential to skeletal muscle function and the influence of aging. In addition, we will briefly discuss the contribution of the UPS system to lifespan. By understanding the UPS system as part of the proteostasis network in age-related diseases and disorders such as sarcopenia, new discoveries can be made and new interventions can be developed which will preserve muscle function and maintain quality of life with advancing age.
Collapse
Affiliation(s)
- David C. Hughes
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (L.M.B.); (S.C.B.)
| | - Leslie M. Baehr
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (L.M.B.); (S.C.B.)
| | - David S. Waddell
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA;
| | - Adam P. Sharples
- Institute for Physical Performance, Norwegian School of Sport Sciences (NiH), 0863 Oslo, Norway;
| | - Sue C. Bodine
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (L.M.B.); (S.C.B.)
| |
Collapse
|
9
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
10
|
SIN-3 functions through multi-protein interaction to regulate apoptosis, autophagy, and longevity in Caenorhabditis elegans. Sci Rep 2022; 12:10560. [PMID: 35732652 PMCID: PMC9217932 DOI: 10.1038/s41598-022-13864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/09/2022] [Indexed: 11/08/2022] Open
Abstract
SIN3/HDAC is a multi-protein complex that acts as a regulatory unit and functions as a co-repressor/co-activator and a general transcription factor. SIN3 acts as a scaffold in the complex, binding directly to HDAC1/2 and other proteins and plays crucial roles in regulating apoptosis, differentiation, cell proliferation, development, and cell cycle. However, its exact mechanism of action remains elusive. Using the Caenorhabditis elegans (C. elegans) model, we can surpass the challenges posed by the functional redundancy of SIN3 isoforms. In this regard, we have previously demonstrated the role of SIN-3 in uncoupling autophagy and longevity in C. elegans. In order to understand the mechanism of action of SIN3 in these processes, we carried out a comparative analysis of the SIN3 protein interactome from model organisms of different phyla. We identified conserved, expanded, and contracted gene classes. The C. elegans SIN-3 interactome -revealed the presence of well-known proteins, such as DAF-16, SIR-2.1, SGK-1, and AKT-1/2, involved in autophagy, apoptosis, and longevity. Overall, our analyses propose potential mechanisms by which SIN3 participates in multiple biological processes and their conservation across species and identifies candidate genes for further experimental analysis.
Collapse
|
11
|
Zhang WH, Koyuncu S, Vilchez D. Insights Into the Links Between Proteostasis and Aging From C. elegans. FRONTIERS IN AGING 2022; 3:854157. [PMID: 35821832 PMCID: PMC9261386 DOI: 10.3389/fragi.2022.854157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/22/2022] [Indexed: 04/20/2023]
Abstract
Protein homeostasis (proteostasis) is maintained by a tightly regulated and interconnected network of biological pathways, preventing the accumulation and aggregation of damaged or misfolded proteins. Thus, the proteostasis network is essential to ensure organism longevity and health, while proteostasis failure contributes to the development of aging and age-related diseases that involve protein aggregation. The model organism Caenorhabditis elegans has proved invaluable for the study of proteostasis in the context of aging, longevity and disease, with a number of pivotal discoveries attributable to the use of this organism. In this review, we discuss prominent findings from C. elegans across the many key aspects of the proteostasis network, within the context of aging and disease. These studies collectively highlight numerous promising therapeutic targets, which may 1 day facilitate the development of interventions to delay aging and prevent age-associated diseases.
Collapse
Affiliation(s)
- William Hongyu Zhang
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
12
|
Zhou L, Luo S, Wang X, Zhou Y, Zhang Y, Zhu S, Chen T, Feng S, Yuan M, Ding C. Blumea laciniata protected Hep G2 cells and Caenorhabditis elegans against acrylamide-induced toxicity via insulin/IGF-1 signaling pathway. Food Chem Toxicol 2021; 158:112667. [PMID: 34762976 DOI: 10.1016/j.fct.2021.112667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/30/2021] [Accepted: 11/07/2021] [Indexed: 02/07/2023]
Abstract
Acrylamide (AC), a proved toxin is mainly used in industrial fields and proved to possess various toxicities. In recent years, AC has been found in starch-containing foods due to Maillard reaction in a high-temperature process. Therefore, how to mitigate the toxic effect of AC is a research spot. Blumea laciniata is a widely used folk medicine in Asia and the extract from B. laciniata (EBL) exhibited a strong protection on cells against oxidative stress. In this work, we used EBL to protect Hep G2 cells and Caenorhabditis elegans against AC toxicity. As the results turned out, EBL increased cell viability under AC stress and notably reduced the cell apoptosis through decreasing the high level of ROS. Moreover, EBL extended the survival time of C. elegans, while EBL failed to prolong the survival time of mutants that were in Insulin signaling pathway. Besides, the expressions of antioxidant enzymes were activated after the worms were treated with EBL and daf-16 gene was activated. Our results indicated that EBL exhibited a protective effect against AC induced toxicity in Hep G2 cells and C. elegans via Insulin/IGF-1 signaling pathway. These outcomes may provide a promising natural drug to alleviate the toxic effect of AC.
Collapse
Affiliation(s)
- Lijun Zhou
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Siyuan Luo
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Xiaoju Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Yiling Zhou
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Yuan Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Shuai Zhu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Tao Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Shiling Feng
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
13
|
Du S, Zheng H. Role of FoxO transcription factors in aging and age-related metabolic and neurodegenerative diseases. Cell Biosci 2021; 11:188. [PMID: 34727995 PMCID: PMC8561869 DOI: 10.1186/s13578-021-00700-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Aging happens to all of us as we live. Thanks to the improved living standard and discovery of life-saving medicines, our life expectancy has increased substantially across the world in the past century. However, the rise in lifespan leads to unprecedented increases in both the number and the percentage of individuals 65 years and older, accompanied by the increased incidences of age-related diseases such as type 2 diabetes mellitus and Alzheimer's disease. FoxO transcription factors are evolutionarily conserved molecules that play critical roles in diverse biological processes, in particular aging and metabolism. Their dysfunction is often found in the pathogenesis of many age-related diseases. Here, we summarize the signaling pathways and cellular functions of FoxO proteins. We also review the complex role of FoxO in aging and age-related diseases, with focus on type 2 diabetes and Alzheimer's disease and discuss the possibility of FoxO as a molecular link between aging and disease risks.
Collapse
Affiliation(s)
- Shuqi Du
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
14
|
Garcia-Sanchez JA, Ewbank JJ, Visvikis O. Ubiquitin-related processes and innate immunity in C. elegans. Cell Mol Life Sci 2021; 78:4305-4333. [PMID: 33630111 PMCID: PMC11072174 DOI: 10.1007/s00018-021-03787-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Innate immunity is an evolutionary ancient defence strategy that serves to eliminate infectious agents while maintaining host health. It involves a complex network of sensors, signaling proteins and immune effectors that detect the danger, then relay and execute the immune programme. Post-translational modifications relying on conserved ubiquitin and ubiquitin-like proteins are an integral part of the system. Studies using invertebrate models of infection, such as the nematode Caenorhabditis elegans, have greatly contributed to our understanding of how ubiquitin-related processes act in immune sensing, regulate immune signaling pathways, and participate to host defence responses. This review highlights the interest of working with a genetically tractable model organism and illustrates how C. elegans has been used to identify ubiquitin-dependent immune mechanisms, discover novel ubiquitin-based resistance strategies that mediate pathogen clearance, and unravel the role of ubiquitin-related processes in tolerance, preserving host fitness during pathogen attack. Special emphasis is placed on processes that are conserved in mammals.
Collapse
Affiliation(s)
- Juan A Garcia-Sanchez
- INSERM, C3M, Côte D'Azur University, Nice, France
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France
| | - Jonathan J Ewbank
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France.
| | | |
Collapse
|
15
|
Korb J, Meusemann K, Aumer D, Bernadou A, Elsner D, Feldmeyer B, Foitzik S, Heinze J, Libbrecht R, Lin S, Majoe M, Monroy Kuhn JM, Nehring V, Negroni MA, Paxton RJ, Séguret AC, Stoldt M, Flatt T, the So-Long consortium. Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190728. [PMID: 33678016 PMCID: PMC7938167 DOI: 10.1098/rstb.2019.0728] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
The exceptional longevity of social insect queens despite their lifelong high fecundity remains poorly understood in ageing biology. To gain insights into the mechanisms that might underlie ageing in social insects, we compared gene expression patterns between young and old castes (both queens and workers) across different lineages of social insects (two termite, two bee and two ant species). After global analyses, we paid particular attention to genes of the insulin/insulin-like growth factor 1 signalling (IIS)/target of rapamycin (TOR)/juvenile hormone (JH) network, which is well known to regulate lifespan and the trade-off between reproduction and somatic maintenance in solitary insects. Our results reveal a major role of the downstream components and target genes of this network (e.g. JH signalling, vitellogenins, major royal jelly proteins and immune genes) in affecting ageing and the caste-specific physiology of social insects, but an apparently lesser role of the upstream IIS/TOR signalling components. Together with a growing appreciation of the importance of such downstream targets, this leads us to propose the TI-J-LiFe (TOR/IIS-JH-Lifespan and Fecundity) network as a conceptual framework for understanding the mechanisms of ageing and fecundity in social insects and beyond. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Judith Korb
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Karen Meusemann
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
- Australian National Insect Collection, CSIRO National Research Collections Australia, Clunies Ross Street, Canberra, Acton 2601, Australia
| | - Denise Aumer
- Developmental Zoology, Molecular Ecology Research Group, Hoher Weg 4, D-06099 Halle (Saale), Germany
| | - Abel Bernadou
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Daniel Elsner
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Senckenberg, Georg-Voigt-Straße 14-16, D-60325 Frankfurt, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - Silu Lin
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Megha Majoe
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - José Manuel Monroy Kuhn
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Volker Nehring
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Matteo A. Negroni
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - Robert J. Paxton
- Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
| | - Alice C. Séguret
- Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany
| | - Marah Stoldt
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - the So-Long consortium
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
- Australian National Insect Collection, CSIRO National Research Collections Australia, Clunies Ross Street, Canberra, Acton 2601, Australia
- Developmental Zoology, Molecular Ecology Research Group, Hoher Weg 4, D-06099 Halle (Saale), Germany
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Senckenberg, Georg-Voigt-Straße 14-16, D-60325 Frankfurt, Germany
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| |
Collapse
|
16
|
Hu D, Xie F, Xiao Y, Lu C, Zhong J, Huang D, Chen J, Wei J, Jiang Y, Zhong T. Metformin: A Potential Candidate for Targeting Aging Mechanisms. Aging Dis 2021; 12:480-493. [PMID: 33815878 PMCID: PMC7990352 DOI: 10.14336/ad.2020.0702] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Aging is a universal phenomenon in all biological organisms, defined by the loss of reproductive capacity and a progressive decline in fitness. In humans, aging is further associated with an increased incidence of disease conditions. The current aging population has become a primary public burden of the 21st century. Therefore, to delay the aging process and maintain fitness in the aging population, the discovery of novel anti-aging drugs remains an urgent need. In recent years, metformin, a widely used hypoglycemic drug, has attracted growing attention in the field of anti-aging research. Reportedly, numerous studies have indicated that metformin regulates aging-related pathways, possibly delaying the aging process by modulating these pathways. The elucidation of these anti-aging effects may provide insights into the age-retarding potential of metformin. The present review focuses on the predominant molecular mechanisms associated with aging, as well as the anti-aging effects of metformin.
Collapse
Affiliation(s)
- Die Hu
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,2Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangfang Xie
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,2Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yongwei Xiao
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,2Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Chen Lu
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Jianing Zhong
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,3Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Defa Huang
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,4Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Chen
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,2Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jifu Wei
- 4Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yu Jiang
- 5Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tianyu Zhong
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,2Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,4Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
17
|
Vatner SF, Zhang J, Oydanich M, Berkman T, Naftalovich R, Vatner DE. Healthful aging mediated by inhibition of oxidative stress. Ageing Res Rev 2020; 64:101194. [PMID: 33091597 PMCID: PMC7710569 DOI: 10.1016/j.arr.2020.101194] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022]
Abstract
The progressive increase in lifespan over the past century carries with it some adversity related to the accompanying burden of debilitating diseases prevalent in the older population. This review focuses on oxidative stress as a major mechanism limiting longevity in general, and healthful aging, in particular. Accordingly, the first goal of this review is to discuss the role of oxidative stress in limiting longevity, and compare healthful aging and its mechanisms in different longevity models. Secondly, we discuss common signaling pathways involved in protection against oxidative stress in aging and in the associated diseases of aging, e.g., neurological, cardiovascular and metabolic diseases, and cancer. Much of the literature has focused on murine models of longevity, which will be discussed first, followed by a comparison with human models of longevity and their relationship to oxidative stress protection. Finally, we discuss the extent to which the different longevity models exhibit the healthful aging features through physiological protective mechanisms related to exercise tolerance and increased β-adrenergic signaling and also protection against diabetes and other metabolic diseases, obesity, cancer, neurological diseases, aging-induced cardiomyopathy, cardiac stress and osteoporosis.
Collapse
Affiliation(s)
- Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA.
| | - Jie Zhang
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA
| | - Marko Oydanich
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA
| | - Tolga Berkman
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA
| | - Rotem Naftalovich
- Department of Anesthesiology, New Jersey Medical School, Newark, New Jersey, USA
| | - Dorothy E Vatner
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA.
| |
Collapse
|
18
|
Princz A, Pelisch F, Tavernarakis N. SUMO promotes longevity and maintains mitochondrial homeostasis during ageing in Caenorhabditis elegans. Sci Rep 2020; 10:15513. [PMID: 32968203 PMCID: PMC7511317 DOI: 10.1038/s41598-020-72637-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
The insulin/IGF signalling pathway impacts lifespan across distant taxa, by controlling the activity of nodal transcription factors. In the nematode Caenorhabditis elegans, the transcription regulators DAF-16/FOXO and SKN-1/Nrf function to promote longevity under conditions of low insulin/IGF signalling and stress. The activity and subcellular localization of both DAF-16 and SKN-1 is further modulated by specific posttranslational modifications, such as phosphorylation and ubiquitination. Here, we show that ageing elicits a marked increase of SUMO levels in C. elegans. In turn, SUMO fine-tunes DAF-16 and SKN-1 activity in specific C. elegans somatic tissues, to enhance stress resistance. SUMOylation of DAF-16 modulates mitochondrial homeostasis by interfering with mitochondrial dynamics and mitophagy. Our findings reveal that SUMO is an important determinant of lifespan, and provide novel insight, relevant to the complexity of the signalling mechanisms that influence gene expression to govern organismal survival in metazoans.
Collapse
Affiliation(s)
- Andrea Princz
- Department of Biology, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Federico Pelisch
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece. .,Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece.
| |
Collapse
|
19
|
Ensaka N, Sakamoto K. α-Pinene odor exposure enhances heat stress tolerance through Daf-16 in Caenorhabditis elegans. Biochem Biophys Res Commun 2020; 528:726-731. [PMID: 32517869 DOI: 10.1016/j.bbrc.2020.05.134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 11/27/2022]
Abstract
Aromatherapy has been widely used as complementary and alternative medicine to reduce pain and induce sleep. However, the scientific evidence regarding the biological effects of odor is scarce and the underlying molecular mechanisms have not been clarified. We treated worms with contactless S-(-)- and R-(+)-α-pinene and analyzed heat stress tolerance. Odor stimulation induced motility recovery after incubation at 35 °C for 4 h. This increase in heat stress tolerance was not present in odr-3 mutants and daf-16 mutants. S-(-)- and R-(+)-α-pinene expanded health span and increased fat accumulation. Moreover, S-(-)- and R-(+)-α-pinene modulated the expression of 84 and 54 genes, respectively. These results show that α-pinene odor stimulation is related to stress tolerance, lipid metabolism, and health span via some specific signaling pathways. This study may provide a potential target for antiaging and disease prevention.
Collapse
Affiliation(s)
- Naoko Ensaka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kazuichi Sakamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
20
|
De la Parra-Guerra A, Stürzenbaum S, Olivero-Verbel J. Intergenerational toxicity of nonylphenol ethoxylate (NP-9) in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110588. [PMID: 32289633 DOI: 10.1016/j.ecoenv.2020.110588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/22/2020] [Accepted: 04/01/2020] [Indexed: 05/24/2023]
Abstract
The ethoxylated isomers of nonylphenol (NPEs, NP-9) are one of the main active ingredients present in nonionic surfactants employed as herbicides, cosmetics, paints, plastics, disinfectants and detergents. These chemicals and their metabolites are commonly found in environmental matrices. The aim of this work was to evaluate the intergenerational toxicity of NP-9 in Caenorhabditis elegans. The lethality, length, width, locomotion and lifespan were investigated in the larval stage L4 of the wild strain N2. Transgenic green fluorescent protein (GFP) strains were employed to estimate changes in relative gene expression. RT-qPCR was utilized to measure mRNA expression for neurotoxicity-related genes (unc-30, unc-25, dop-3, dat-1, mgl-1, and eat-4). Data were obtained from parent worms (P0) and the first generation (F1). Lethality of the nematode was concentration-dependent, with 48 h-LC50 values of 3215 and 1983 μM in P0 and F1, respectively. Non-lethal concentrations of NP-9 reduced locomotion. Lifespan was also decreased by the xenobiotic, but the negative effect was greater in P0 than in F1. Non-monotonic concentration-response curves were observed for body length and width in both generations. The gene expression profile in P0 was different from that registered in F1, although the expression of sod-4, hsp-70, gpx-6 and mtl-2 increased with the surfactant concentration in both generations. None of the tested genes followed a classical concentration-neurotoxicity relationship. In P0, dopamine presented an inverted-U curve, while GABA and glutamate displayed a bimodal type. However, in F1, inverted U-shaped curves were revealed for these genes. In summary, NP-9 induced intergenerational responses in C. elegans through mechanisms involving ROS, and alterations of the GABA, glutamate, and dopamine pathways.
Collapse
Affiliation(s)
- Ana De la Parra-Guerra
- Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, Colombia.
| | - Stephen Stürzenbaum
- School of Population Health & Environmental Sciences, Faculty of Life Science & Medicine, King's College London, London, UK.
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, Colombia.
| |
Collapse
|
21
|
Investigating Mechanisms that Control Ubiquitin-Mediated DAF-16/FOXO Protein Turnover. Methods Mol Biol 2019. [PMID: 30414143 DOI: 10.1007/978-1-4939-8900-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Protein turnover of FOXO family transcription factors is regulated by the ubiquitin-proteasome system. A complex interplay of factors that covalently attach certain types of ubiquitin chains (E3-ubiquitin ligases), and enzymes that are able to remove ubiquitin conjugates (deubiquitylases), regulate the degradation of FOXO proteins by the proteasome. Here, we describe methods to characterize candidate E3-ubiquitin ligases and deubiquitylases as regulators of the FOXO ubiquitylation status. Our protocol can be utilized to purify and enrich a ubiquitylated FOXO pool from cultured cells under denaturing conditions, which inactivates cellular deubiquitylases and thereby protects ubiquitin conjugates on FOXO proteins. In addition, our method describes how ubiquitylated FOXO proteins can be renatured in a stepwise fashion to serve as substrates for in vitro deubiquitylation (DUB) assays.
Collapse
|
22
|
Denzel MS, Lapierre LR, Mack HID. Emerging topics in C. elegans aging research: Transcriptional regulation, stress response and epigenetics. Mech Ageing Dev 2018; 177:4-21. [PMID: 30134144 PMCID: PMC6696993 DOI: 10.1016/j.mad.2018.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/13/2022]
Abstract
Key discoveries in aging research have been made possible with the use of model organisms. Caenorhabditis elegans is a short-lived nematode that has become a well-established system to study aging. The practicality and powerful genetic manipulations associated with this metazoan have revolutionized our ability to understand how organisms age. 25 years after the publication of the discovery of the daf-2 gene as a genetic modifier of lifespan, C. elegans remains as relevant as ever in the quest to understand the process of aging. Nematode aging research has proven useful in identifying transcriptional regulators, small molecule signals, cellular mechanisms, epigenetic modifications associated with stress resistance and longevity, and lifespan-extending compounds. Here, we review recent discoveries and selected topics that have emerged in aging research using this incredible little worm.
Collapse
Affiliation(s)
- Martin S Denzel
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| | | |
Collapse
|
23
|
Somogyvári M, Gecse E, Sőti C. DAF-21/Hsp90 is required for C. elegans longevity by ensuring DAF-16/FOXO isoform A function. Sci Rep 2018; 8:12048. [PMID: 30104664 PMCID: PMC6089956 DOI: 10.1038/s41598-018-30592-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/02/2018] [Indexed: 01/25/2023] Open
Abstract
The FOXO transcription factor family is a conserved regulator of longevity and the downstream target of insulin/insulin-like signaling. In Caenorhabditis elegans, the FOXO ortholog DAF-16A and D/F isoforms extend lifespan in daf-2 insulin-like receptor mutants. Here we identify the DAF-21/Hsp90 chaperone as a longevity regulator. We find that reducing DAF-21 capacity by daf-21(RNAi) initiated either at the beginning or at the end of larval development shortens wild-type lifespan. daf-21 knockdown employed from the beginning of larval development also decreases longevity of daf-2 mutant and daf-2 silenced nematodes. daf-16 loss-of-function mitigates the lifespan shortening effect of daf-21 silencing. We demonstrate that DAF-21 specifically promotes daf-2 and heat-shock induced nuclear translocation of DAF-16A as well as the induction of DAF-16A-specific mRNAs, without affecting DAF-16D/F localization and transcriptional function. DAF-21 is dispensable for the stability and nuclear import of DAF-16A, excluding a chaperone-client interaction and suggesting that DAF-21 regulates DAF-16A activation upstream of its cellular traffic. Finally, we show a selective requirement for DAF-21 to extend lifespan of DAF-16A, but not DAF-16D/F, transgenic daf-2 mutant strains. Our findings indicate a spatiotemporal determination of multiple DAF-21 roles in fertility, development and longevity and reveal an isoform-specific regulation of DAF-16 activity.
Collapse
Affiliation(s)
- Milán Somogyvári
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Eszter Gecse
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Csaba Sőti
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
24
|
Ferbeyre G. Aberrant signaling and senescence associated protein degradation. Exp Gerontol 2018; 107:50-54. [DOI: 10.1016/j.exger.2017.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 11/17/2022]
|
25
|
Höhfeld J, Hoppe T. Ub and Down: Ubiquitin Exercise for the Elderly. Trends Cell Biol 2018; 28:512-522. [PMID: 29704981 DOI: 10.1016/j.tcb.2018.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 11/29/2022]
Abstract
Conjugation of ubiquitin onto proteins generates a degradation signal or exerts degradation-independent regulatory functions. Ubiquitylation is governed by the antagonistic action of ubiquitin ligases and deubiquitylating enzymes (DUBs). Several recent publications illustrate a balanced interplay of ligases and DUBs at signaling hubs that are central to longevity and protein homeostasis (proteostasis). In addition, stress-induced alterations of ubiquitin conjugation are emerging as key events that drive aging and contribute to the pathology of age-related diseases. This physiological role of dynamic ubiquitylation further extends its well-known function in protein regulation and quality control at the cellular level. Recent work thus significantly advances our understanding of the aging process both at the molecular and organismal level.
Collapse
Affiliation(s)
- Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Strasse 61a, 53121 Bonn, Germany.
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.
| |
Collapse
|
26
|
Balaji V, Pokrzywa W, Hoppe T. Ubiquitylation Pathways In Insulin Signaling and Organismal Homeostasis. Bioessays 2018; 40:e1700223. [PMID: 29611634 DOI: 10.1002/bies.201700223] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/26/2018] [Indexed: 12/26/2022]
Abstract
The insulin/insulin-like growth factor-1 (IGF-1) signaling (IIS) pathway is a pivotal genetic program regulating cell growth, tissue development, metabolic physiology, and longevity of multicellular organisms. IIS integrates a fine-tuned cascade of signaling events induced by insulin/IGF-1, which is precisely controlled by post-translational modifications. The ubiquitin/proteasome-system (UPS) influences the functionality of IIS through inducible ubiquitylation pathways that regulate internalization of the insulin/IGF-1 receptor, the stability of downstream insulin/IGF-1 signaling targets, and activity of nuclear receptors for control of gene expression. An age-related decline in UPS activity is often associated with an impairment of IIS, contributing to pathologies such as cancer, diabetes, cardiovascular, and neurodegenerative disorders. Recent findings identified a key role of diverse ubiquitin modifications in insulin signaling decisions, which governs dynamic adaption upon environmental and physiological changes. In this review, we discuss the mutual crosstalk between ubiquitin and insulin signaling pathways in the context of cellular and organismal homeostasis.
Collapse
Affiliation(s)
- Vishnu Balaji
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann Str. 26, 50931 Cologne, Germany
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism in Development and Aging, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann Str. 26, 50931 Cologne, Germany
| |
Collapse
|
27
|
Abstract
Progressive loss of proteostasis is a hallmark of aging that is marked by declines in various components of proteostasis machinery, including: autophagy, ubiquitin-mediated degradation, protein synthesis, and others. While declines in proteostasis have historically been observed as changes in these processes, or as bulk changes in the proteome, recent advances in proteomic methodologies have enabled the comprehensive measurement of turnover directly at the level of individual proteins in vivo. These methods, which utilize a combination of stable-isotope labeling, mass spectrometry, and specialized software analysis, have now been applied to various studies of aging and longevity. Here we review the role of proteostasis in aging and longevity, with a focus on the proteomic methods available to conduct protein turnover in aging models and the insights these studies have provided thus far.
Collapse
|
28
|
|
29
|
Sheng Y, Tang L, Kang L, Xiao R. Membrane ion Channels and Receptors in Animal lifespan Modulation. J Cell Physiol 2017; 232:2946-2956. [PMID: 28121014 PMCID: PMC7008462 DOI: 10.1002/jcp.25824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/01/2023]
Abstract
Acting in the interfaces between environment and membrane compartments, membrane ion channels, and receptors transduce various physical and chemical cues into downstream signaling events. Not surprisingly, these membrane proteins play essential roles in a wide range of cellular processes such as sensory perception, synaptic transmission, cellular growth and development, fate determination, and apoptosis. However, except insulin and insulin-like growth factor receptors, the functions of membrane receptors in animal lifespan modulation have not been well appreciated. On the other hand, although ion channels are popular therapeutic targets for many age-related diseases, their potential roles in aging itself are largely neglected. In this review, we will discuss our current understanding of the conserved functions and mechanisms of membrane ion channels and receptors in the modulation of lifespan across multiple species including Caenorhabditis elegans, Drosophila, mouse, and human.
Collapse
Affiliation(s)
- Yi Sheng
- Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, Florida
| | - Lanlan Tang
- Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, Florida
| | - Lijun Kang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Xiao
- Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, Florida
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida
- Center for Smell and Taste, University of Florida, Gainesville, Florida
- Genetics Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
30
|
Sirtuins, epigenetics and longevity. Ageing Res Rev 2017; 40:11-19. [PMID: 28789901 DOI: 10.1016/j.arr.2017.08.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/26/2017] [Accepted: 08/02/2017] [Indexed: 12/31/2022]
Abstract
Aging of organisms begins from a single cell at the molecular level. It includes changes related to telomere shortening, cell senescence and epigenetic modifications. These processes accumulate over the lifespan. Research studies show that epigenetic signaling contributes to human disease, tumorigenesis and aging. Epigenetic DNA modifications involve changes in the gene activity but not in the DNA sequence. An epigenome consists of chemical modifications to the DNA and histone proteins without the changes in the DNA sequence. These modifications strongly depend on the environment, could be reversible and are potentially transmittable to daughter cells. Epigenetics includes DNA methylation, noncoding RNA interference, and modifications of histone proteins. Sirtuins, a family of nicotine adenine dinucleotide (NAD+)-dependent enzymes, are involved in the cell metabolism and can regulate many cellular functions including DNA repair, inflammatory response, cell cycle or apoptosis. Literature shows the strong interconnection between sirtuin expression and aging processes. However, the direct relationship is still unknown. Here, we would like to summarize the existing knowledge about epigenetic processes in aging, especially those related to sirtuin expression. Another objective is to explain why some negative correlations between sirtuin activity and the rate of aging can be assumed.
Collapse
|
31
|
Habacher C, Ciosk R. ZC3H12A/MCPIP1/Regnase-1-related endonucleases: An evolutionary perspective on molecular mechanisms and biological functions. Bioessays 2017; 39. [PMID: 28719000 DOI: 10.1002/bies.201700051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mammalian Zc3h12a/MCPIP1/Regnase-1, an extensively studied regulator of inflammatory response, is the founding member of a ribonuclease family, which includes proteins related by the presence of the so-called Zc3h12a-like NYN domain. Recently, several related proteins have been described in Caenorhabditis elegans, allowing comparative evaluation of molecular functions and biological roles of these ribonucleases. We discuss the structural features of these proteins, which endow some members with ribonuclease (RNase) activity while others with auxiliary or RNA-independent functions. We also consider their RNA specificity and highlight a common role for these proteins in cellular defense, which is remarkable considering the evolutionary distance and fundamental differences in cellular defense mechanisms between mammals and nematodes.
Collapse
Affiliation(s)
- Cornelia Habacher
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Rafal Ciosk
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
32
|
Mitotic Dysfunction Associated with Aging Hallmarks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:153-188. [DOI: 10.1007/978-3-319-57127-0_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Shilovsky GA, Putyatina TS, Lysenkov SN, Ashapkin VV, Luchkina OS, Markov AV, Skulachev VP. Is It Possible to Prove the Existence of an Aging Program by Quantitative Analysis of Mortality Dynamics? BIOCHEMISTRY (MOSCOW) 2017; 81:1461-1476. [PMID: 28259123 DOI: 10.1134/s0006297916120075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Accumulation of various types of lesions in the course of aging increases an organism's vulnerability and results in a monotonous elevation of mortality rate, irrespective of the position of a species on the evolutionary tree. Stroustrup et al. (Nature, 530, 103-107) [1] showed in 2016 that in the nematode Caenorhabditis elegans, longevity-altering factors (e.g. oxidative stress, temperature, or diet) do not change the shape of the survival curve, but either stretch or shrink it along the time axis, which the authors attributed to the existence of an "aging program". Modification of the accelerated failure time model by Stroustrup et al. uses temporal scaling as a basic approach for distinguishing between quantitative and qualitative changes in aging dynamics. Thus we analyzed data on the effects of various longevity-increasing genetic manipulations in flies, worms, and mice and used several models to choose a theory that would best fit the experimental results. The possibility to identify the moment of switch from a mortality-governing pathway to some other pathways might be useful for testing geroprotective drugs. In this work, we discuss this and other aspects of temporal scaling.
Collapse
Affiliation(s)
- G A Shilovsky
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | | | | | | | | | | | |
Collapse
|
34
|
Sgromo A, Raisch T, Bawankar P, Bhandari D, Chen Y, Kuzuoğlu-Öztürk D, Weichenrieder O, Izaurralde E. A CAF40-binding motif facilitates recruitment of the CCR4-NOT complex to mRNAs targeted by Drosophila Roquin. Nat Commun 2017; 8:14307. [PMID: 28165457 PMCID: PMC5303829 DOI: 10.1038/ncomms14307] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022] Open
Abstract
Human (Hs) Roquin1 and Roquin2 are RNA-binding proteins that promote mRNA target degradation through the recruitment of the CCR4-NOT deadenylase complex and are implicated in the prevention of autoimmunity. Roquin1 recruits CCR4-NOT via a C-terminal region that is not conserved in Roquin2 or in invertebrate Roquin. Here we show that Roquin2 and Drosophila melanogaster (Dm) Roquin also interact with the CCR4-NOT complex through their C-terminal regions. The C-terminal region of Dm Roquin contains multiple motifs that mediate CCR4-NOT binding. One motif binds to the CAF40 subunit of the CCR4-NOT complex. The crystal structure of the Dm Roquin CAF40-binding motif (CBM) bound to CAF40 reveals that the CBM adopts an α-helical conformation upon binding to a conserved surface of CAF40. Thus, despite the lack of sequence conservation, the C-terminal regions of Roquin proteins act as an effector domain that represses the expression of mRNA targets via recruitment of the CCR4-NOT complex. Roquin proteins downregulate target mRNA expression by recruiting effectors such as the CCR4-NOT deadenylase complex. Here the authors provide molecular details of how Roquin proteins recruit the CCR4-NOT complex to repress the expression of its targets.
Collapse
Affiliation(s)
- Annamaria Sgromo
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Tobias Raisch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Praveen Bawankar
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Dipankar Bhandari
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Ying Chen
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Duygu Kuzuoğlu-Öztürk
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| |
Collapse
|
35
|
Abstract
Aging is an inevitable outcome of life, characterized by progressive decline in tissue and organ function and increased risk of mortality. Accumulating evidence links aging to genetic and epigenetic alterations. Given the reversible nature of epigenetic mechanisms, these pathways provide promising avenues for therapeutics against age-related decline and disease. In this review, we provide a comprehensive overview of epigenetic studies from invertebrate organisms, vertebrate models, tissues, and in vitro systems. We establish links between common operative aging pathways and hallmark chromatin signatures that can be used to identify "druggable" targets to counter human aging and age-related disease.
Collapse
Affiliation(s)
- Payel Sen
- Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19130, USA
| | - Parisha P Shah
- Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19130, USA
| | - Raffaella Nativio
- Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19130, USA
| | - Shelley L Berger
- Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19130, USA.
| |
Collapse
|
36
|
Singh A, Kumar N, Matai L, Jain V, Garg A, Mukhopadhyay A. A chromatin modifier integrates insulin/IGF-1 signalling and dietary restriction to regulate longevity. Aging Cell 2016; 15:694-705. [PMID: 27039057 PMCID: PMC4933660 DOI: 10.1111/acel.12477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 02/04/2023] Open
Abstract
Insulin/IGF‐1‐like signalling (IIS) and dietary restriction (DR) are the two major modulatory pathways controlling longevity across species. Here, we show that both pathways license a common chromatin modifier, ZFP‐1/AF10. The downstream transcription factors of the IIS and select DR pathways, DAF‐16/FOXO or PHA‐4/FOXA, respectively, both transcriptionally regulate the expression of zfp‐1. ZFP‐1, in turn, negatively regulates the expression of DAF‐16/FOXO and PHA‐4/FOXA target genes, apparently forming feed‐forward loops that control the amplitude as well as the duration of gene expression. We show that ZFP‐1 mediates this regulation by negatively influencing the recruitment of DAF‐16/FOXO and PHA‐4/FOXA to their target promoters. Consequently, zfp‐1 is required for the enhanced longevity observed during DR and on knockdown of IIS. Our data reveal how two distinct sensor pathways control an overlapping set of genes, using different downstream transcription factors, integrating potentially diverse and temporally distinct nutritional situations.
Collapse
Affiliation(s)
- Anupama Singh
- Molecular Aging Laboratory National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Neeraj Kumar
- Molecular Aging Laboratory National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Latika Matai
- CSIR‐Institute of Genomics & Integrative Biology South Campus Mathura Road New Delhi 110020 India
- Academy of Scientific and Innovative Research CSIR‐IGIB, Mathura Road Campus New Delhi India
| | - Vaibhav Jain
- Molecular Aging Laboratory National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Amit Garg
- Molecular Aging Laboratory National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Arnab Mukhopadhyay
- Molecular Aging Laboratory National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| |
Collapse
|
37
|
Lifespan-regulating genes in C. elegans. NPJ Aging Mech Dis 2016; 2:16010. [PMID: 28721266 PMCID: PMC5514992 DOI: 10.1038/npjamd.2016.10] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/29/2015] [Accepted: 01/27/2016] [Indexed: 01/20/2023] Open
Abstract
The molecular mechanisms underlying the aging process have garnered much attention in recent decades because aging is the most significant risk factor for many chronic diseases such as type 2 diabetes and cancer. Until recently, the aging process was not considered to be an actively regulated process; therefore, discovering that the insulin/insulin-like growth factor-1 signaling pathway is a lifespan-regulating genetic pathway in Caenorhabditis elegans was a major breakthrough that changed our understanding of the aging process. Currently, it is thought that animal lifespans are influenced by genetic and environmental factors. The genes involved in lifespan regulation are often associated with major signaling pathways that link the rate of aging to environmental factors. Although many of the major mechanisms governing the aging process have been identified from studies in short-lived model organisms such as yeasts, worms and flies, the same mechanisms are frequently observed in mammals, indicating that the genes and signaling pathways that regulate lifespan are highly conserved among different species. This review summarizes the lifespan-regulating genes, with a specific focus on studies in C. elegans.
Collapse
|
38
|
Liebl MP, Hoppe T. It's all about talking: two-way communication between proteasomal and lysosomal degradation pathways via ubiquitin. Am J Physiol Cell Physiol 2016; 311:C166-78. [PMID: 27225656 DOI: 10.1152/ajpcell.00074.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selective degradation of proteins requires a fine-tuned coordination of the two major proteolytic pathways, the ubiquitin-proteasome system (UPS) and autophagy. Substrate selection and proteolytic activity are defined by a plethora of regulatory cofactors influencing each other. Both proteolytic pathways are initiated by ubiquitylation to mark substrate proteins for degradation, although the size and/or topology of the modification are different. In this context E3 ubiquitin ligases, ensuring the covalent attachment of activated ubiquitin to the substrate, are of special importance. The regulation of E3 ligase activity, competition between different E3 ligases for binding E2 conjugation enzymes and substrates, as well as their interplay with deubiquitylating enzymes (DUBs) represent key events in the cross talk between the UPS and autophagy. The coordination between both degradation routes is further influenced by heat shock factors and ubiquitin-binding proteins (UBPs) such as p97, p62, or optineurin. Mutations in enzymes and ubiquitin-binding proteins or a general decline of both proteolytic systems during aging result in accumulation of damaged and aggregated proteins. Thus further mechanistic understanding of how UPS and autophagy communicate might allow therapeutic intervention especially against age-related diseases.
Collapse
Affiliation(s)
- Martina P Liebl
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
39
|
Athanasopoulos V, Ramiscal RR, Vinuesa CG. ROQUIN signalling pathways in innate and adaptive immunity. Eur J Immunol 2016; 46:1082-90. [PMID: 27060455 DOI: 10.1002/eji.201545956] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/15/2016] [Accepted: 03/30/2016] [Indexed: 12/25/2022]
Abstract
ROQUIN is an RNA-binding protein that plays important roles in both the innate and adaptive immune systems. ROQUIN binds to several key immune-relevant messenger RNA (mRNA) targets through its ROQ domain modulating their stability and influencing macrophage function and the peripheral homeostasis of T cells and B cells. More recently, the E3 ubiquitin ligase activity of the ROQUIN RING domain has been shown to be crucial for T-cell-dependent B-cell responses against infection. Defective ROQUIN activity can culminate in a range of diseases, such as systemic autoimmunity, immunodeficiency, and inflammatory bowel disorder. Here, we provide a current overview of the immunomodulatory role of ROQUIN defined by its ribonucleoprotein-like structure, its repertoire of mRNA targets shared by related RNA-binding enzymes, and its involvement in a range of intracellular signalling pathways central to shaping immune responses.
Collapse
Affiliation(s)
- Vicki Athanasopoulos
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Roybel R Ramiscal
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Carola G Vinuesa
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| |
Collapse
|
40
|
Schlundt A, Niessing D, Heissmeyer V, Sattler M. RNA recognition by Roquin in posttranscriptional gene regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:455-69. [PMID: 26844532 DOI: 10.1002/wrna.1333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 11/08/2022]
Abstract
Posttranscriptional regulation of gene expression plays a central role in the initiation of innate and adaptive immune responses. This is exemplified by the protein Roquin, which has attracted great interest during the past decade owing to its ability to prevent autoimmunity. Roquin controls T-cell activation and T helper cell differentiation by limiting the induced expression of costimulatory receptors on the surface of T cells. It does so by recognizing cis regulatory RNA-hairpin elements in the 3' UTR of target transcripts via its ROQ domain-a novel RNA-binding fold-and triggering their degradation through recruitment of factors that mediate deadenylation and decapping. Recent structural studies have revealed molecular details of the recognition of RNA hairpin structures by the ROQ domain. Surprisingly, it was found that Roquin mainly relies on shape-specific recognition of the RNA. This observation implies that a much broader range of RNA motifs could interact with the protein, but it also complicates systematic searches for novel mRNA targets of Roquin. Thus, large-scale approaches, such as crosslinking and immunoprecipitation or systematic evolution of ligands by exponential enrichment experiments coupled with next-generation sequencing, will be required to identify the complete spectrum of its target RNAs. Together with structural analyses of their binding modes, this will enable us to unravel the intricate complexity of 3' UTR regulation by Roquin and other trans-acting factors. Here, we review our current understanding of Roquin-RNA interactions and their role for Roquin function. WIREs RNA 2016, 7:455-469. doi: 10.1002/wrna.1333 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Andreas Schlundt
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Cell Biology, Biomedical Center of the Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Vigo Heissmeyer
- Institute of Molecular Immunology, Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, München, Germany.,Institute for Immunology, Biomedical Center of the Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| |
Collapse
|
41
|
Morsci NS, Hall DH, Driscoll M, Sheng ZH. Age-Related Phasic Patterns of Mitochondrial Maintenance in Adult Caenorhabditis elegans Neurons. J Neurosci 2016; 36:1373-85. [PMID: 26818523 PMCID: PMC4728731 DOI: 10.1523/jneurosci.2799-15.2016] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022] Open
Abstract
Aging is associated with cognitive decline and increasing risk of neurodegeneration. Perturbation of mitochondrial function, dynamics, and trafficking are implicated in the pathogenesis of several age-associated neurodegenerative diseases. Despite this fundamental importance, the critical understanding of how organismal aging affects lifetime neuronal mitochondrial maintenance remains unknown, particularly in a physiologically relevant context. To address this issue, we performed a comprehensive in vivo analysis of age-associated changes in mitochondrial morphology, density, trafficking, and stress resistance in individual Caenorhabditis elegans neurons throughout adult life. Adult neurons display three distinct stages of increase, maintenance, and decrease in mitochondrial size and density during adulthood. Mitochondrial trafficking in the distal neuronal processes declines progressively with age starting from early adulthood. In contrast, long-lived daf-2 mutants exhibit delayed age-associated changes in mitochondrial morphology, constant mitochondrial density, and maintained trafficking rates during adulthood. Reduced mitochondrial load at late adulthood correlates with decreased mitochondrial resistance to oxidative stress. Revealing aging-associated changes in neuronal mitochondria in vivo is an essential precedent that will allow future elucidation of the mechanistic causes of mitochondrial aging. Thus, our study establishes the critical foundation for the future analysis of cellular pathways and genetic and pharmacological factors regulating mitochondrial maintenance in aging- and disease-relevant conditions. SIGNIFICANCE STATEMENT Using Caenorhabditis elegans as a model, we address long-standing questions: How does aging affect neuronal mitochondrial morphology, density, trafficking, and oxidative stress resistance? Are these age-related changes amenable to genetic manipulations that slow down the aging process? Our study illustrates that mitochondrial trafficking declines progressively from the first day of adulthood, whereas mitochondrial size, density, and resistance to oxidative stress undergo three distinct stages: increase in early adulthood, maintenance at high levels during mid-adulthood, and decline during late adulthood. Thus, our study characterizes mitochondrial aging profile at the level of a single neuron in its native environment and establishes the critical foundation for the future genetic and pharmacological dissection of factors that influence long-term mitochondrial maintenance in neurons.
Collapse
Affiliation(s)
- Natalia S Morsci
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - David H Hall
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, and
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08855
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
42
|
Schaefer JS, Klein JR. Roquin--a multifunctional regulator of immune homeostasis. Genes Immun 2015; 17:79-84. [PMID: 26673963 PMCID: PMC4777649 DOI: 10.1038/gene.2015.58] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022]
Abstract
Roquin-1 (Rc3h1) is an E3 ubiquitin ligase originally discovered in a mutational screen for genetic factors contributory to systemic lupus erythematosus-like symptoms in mice. A single base-pair mutation in the Rc3h1 gene resulted in the manifestation of autoantibody production and sustained immunological inflammation characterized by excessive T follicular helper cell activation and formation of germinal centers. Subsequent studies have uncovered a multifactorial process by which Roquin-1 contributes to the maintenance of immune homeostasis. Through its interactions with partner proteins, Roquin-1 targets mRNAs for decay with inducible costimulator being a primary target. In this review, we discuss newly discovered functions of Roquin-1 in the immune system and inflammation, and in disease manifestation, and discuss avenues of further research. A model is presented for the role of Roquin in health and disease.
Collapse
Affiliation(s)
- J S Schaefer
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - J R Klein
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| |
Collapse
|
43
|
Heimbucher T, Hunter T. The C. elegans Ortholog of USP7 controls DAF-16 stability in Insulin/IGF-1-like signaling. WORM 2015; 4:e1103429. [PMID: 27123371 DOI: 10.1080/21624054.2015.1103429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022]
Abstract
FOXO family transcription factors are downstream effectors of Insulin/IGF-1 signaling (IIS) and are regulated by posttranslational modification and coregulators, including components of the ubiquitin-proteasome system (UPS). Cofactors promoting DAF-16/FOXO protein stability and function in IIS have not been described yet. In a recent study, we have identified the deubiquitylating enzyme MATH-33, the ortholog of mammalian USP7/HAUSP, as an essential DAF-16 coregulator. We found that MATH-33 actively stabilizes DAF-16 protein levels when IIS is downregulated. Here we discuss how DAF-16/FOXO transcription factors are regulated by the UPS, in particular by the interplay of E3-ubiquitin ligases and deubiquitylating enzymes, which is critical for balancing DAF-16/FOXO activity and degradation. Recent findings raise the intriguing possibility that regulated oscillations in DAF-16/FOXO steady state levels play an integral role in mechanisms controlling healthspan and lifespan extension.
Collapse
Affiliation(s)
- Thomas Heimbucher
- Salk Institute for Biological Studies; Molecular and Cell Biology Laboratory ; La Jolla, CA USA
| | - Tony Hunter
- Salk Institute for Biological Studies; Molecular and Cell Biology Laboratory ; La Jolla, CA USA
| |
Collapse
|
44
|
Ramiscal RR, Parish IA, Lee-Young RS, Babon JJ, Blagih J, Pratama A, Martin J, Hawley N, Cappello JY, Nieto PF, Ellyard JI, Kershaw NJ, Sweet RA, Goodnow CC, Jones RG, Febbraio MA, Vinuesa CG, Athanasopoulos V. Attenuation of AMPK signaling by ROQUIN promotes T follicular helper cell formation. eLife 2015; 4. [PMID: 26496200 PMCID: PMC4716841 DOI: 10.7554/elife.08698] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022] Open
Abstract
T follicular helper cells (Tfh) are critical for the longevity and quality of antibody-mediated protection against infection. Yet few signaling pathways have been identified to be unique solely to Tfh development. ROQUIN is a post-transcriptional repressor of T cells, acting through its ROQ domain to destabilize mRNA targets important for Th1, Th17, and Tfh biology. Here, we report that ROQUIN has a paradoxical function on Tfh differentiation mediated by its RING domain: mice with a T cell-specific deletion of the ROQUIN RING domain have unchanged Th1, Th2, Th17, and Tregs during a T-dependent response but show a profoundly defective antigen-specific Tfh compartment. ROQUIN RING signaling directly antagonized the catalytic α1 subunit of adenosine monophosphate-activated protein kinase (AMPK), a central stress-responsive regulator of cellular metabolism and mTOR signaling, which is known to facilitate T-dependent humoral immunity. We therefore unexpectedly uncover a ROQUIN–AMPK metabolic signaling nexus essential for selectively promoting Tfh responses. DOI:http://dx.doi.org/10.7554/eLife.08698.001 The immune system protects the body from invading microbes like bacteria and viruses. Upon recognizing the presence of these microbes, cells in the immune system are activated to destroy the foreign threat and clear it from the body. A type of immune cell called T follicular helper cells (or Tfh for short) are formed during an infection and are essential for coordinating other immune cells to produce high-quality antibody proteins that attack the microbes. Without Tfh cells, life-long production of these protective antibodies is severely crippled, which can cause common variable immune deficiency and other serious immunodeficiency diseases. On the other hand, the body must also avoid generating excessive numbers of Tfh cells, which can lead to the production of antibodies that attack healthy cells of the body. ROQUIN is a protein that inhibits the formation of Tfh cells and other types of active T cells. A region on the protein called the ROQ domain destabilizes particular molecules of ribonucleic acid (RNA) that are required for these specialist T cells to form and work properly. ROQUIN belongs to a large family of enzymes that have a so-called RING domain, which is a feature that enables these enzymes to attach tags onto specific target proteins to modify their activity or stability. However, it was not known whether the RING domain of ROQUIN was active. Ramiscal et al. now address this question in mice. Unexpectedly, the experiments show that the RING domain is required to promote the formation of Tfh cells, but not other types of active T cells. This domain allows ROQUIN to repress an enzyme called AMPK, which normally blocks cell growth by regulating cell metabolism. The findings suggest that the different roles of the ROQ and RING domains allow ROQUIN to fine-tune the numbers of Tfh cells so that they remain within a safe range. In the future, these findings may aid the development of vaccines that are more efficient at generating protective Tfh cells to prevent infectious diseases. DOI:http://dx.doi.org/10.7554/eLife.08698.002
Collapse
Affiliation(s)
- Roybel R Ramiscal
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Ian A Parish
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Robert S Lee-Young
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Jeffrey J Babon
- Division of Structural Biology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Julianna Blagih
- Department of Physiology, Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Alvin Pratama
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Jaime Martin
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Naomi Hawley
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Jean Y Cappello
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Pablo F Nieto
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Julia I Ellyard
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Nadia J Kershaw
- Division of Structural Biology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Rebecca A Sweet
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Christopher C Goodnow
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Immunology Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Russell G Jones
- Department of Physiology, Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Vicki Athanasopoulos
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| |
Collapse
|
45
|
New Insights into the RNA-Binding and E3 Ubiquitin Ligase Activities of Roquins. Sci Rep 2015; 5:15660. [PMID: 26489670 PMCID: PMC4614863 DOI: 10.1038/srep15660] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/29/2015] [Indexed: 02/08/2023] Open
Abstract
Roquins are a family of highly conserved RNA-binding proteins that also contain a RING-type E3 ubiquitin ligase domain. They repress constitutive decay elements containing mRNAs and play a critical role in RNA homeostasis and immunological self-tolerance. Here we present the crystal structures of the RNA-binding region of Roquin paralog RC3H2 in both apo- and RNA-bound forms. The RNA-binding region has a bipartite architecture composed of ROQ and HEPN domains, and can bind to stem-loop and double-stranded RNAs simultaneously. The two domains undergo a large orientation change to accommodate RNA duplex binding. We profiled E2 ubiquitin-conjugating enzymes that pair with Roquins and found that RC3H1 and RC3H2 interact with two sets of overlapping but not identical E2 enzymes to drive the assembly of polyubiquitin chains of different linkages. Crystal structures, small-angle X-ray scattering, and E2 profiling revealed that while the two paralogs are highly homologous, RC3H2 and RC3H1 are different in their structures and functions. We also demonstrated that RNA duplex binding to RC3H2 cross-talks with its E3 ubiquitin ligase function using an in vitro auto-ubiquitination assay.
Collapse
|
46
|
Chondrogianni N, Voutetakis K, Kapetanou M, Delitsikou V, Papaevgeniou N, Sakellari M, Lefaki M, Filippopoulou K, Gonos ES. Proteasome activation: An innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res Rev 2015; 23:37-55. [PMID: 25540941 DOI: 10.1016/j.arr.2014.12.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022]
Abstract
Aging is a natural process accompanied by a progressive accumulation of damage in all constituent macromolecules (nucleic acids, lipids and proteins). Accumulation of damage in proteins leads to failure of proteostasis (or vice versa) due to increased levels of unfolded, misfolded or aggregated proteins and, in turn, to aging and/or age-related diseases. The major cellular proteolytic machineries, namely the proteasome and the lysosome, have been shown to dysfunction during aging and age-related diseases. Regarding the proteasome, it is well established that it can be activated either through genetic manipulation or through treatment with natural or chemical compounds that eventually result to extension of lifespan or deceleration of the progression of age-related diseases. This review article focuses on proteasome activation studies in several species and cellular models and their effects on aging and longevity. Moreover, it summarizes findings regarding proteasome activation in the major age-related diseases as well as in progeroid syndromes.
Collapse
Affiliation(s)
- Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Konstantinos Voutetakis
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marianna Kapetanou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Vasiliki Delitsikou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marianthi Sakellari
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece; Örebro University, Medical School, Örebro, Sweden
| | - Maria Lefaki
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Konstantina Filippopoulou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece; Örebro University, Medical School, Örebro, Sweden.
| |
Collapse
|
47
|
Quarles EK, Dai DF, Tocchi A, Basisty N, Gitari L, Rabinovitch PS. Quality control systems in cardiac aging. Ageing Res Rev 2015; 23:101-15. [PMID: 25702865 PMCID: PMC4686341 DOI: 10.1016/j.arr.2015.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/02/2015] [Accepted: 02/12/2015] [Indexed: 12/31/2022]
Abstract
Cardiac aging is an intrinsic process that results in impaired cardiac function, along with cellular and molecular changes. These degenerative changes are intimately associated with quality control mechanisms. This review provides a general overview of the clinical and cellular changes which manifest in cardiac aging, and the quality control mechanisms involved in maintaining homeostasis and retarding aging. These mechanisms include autophagy, ubiquitin-mediated turnover, apoptosis, mitochondrial quality control and cardiac matrix homeostasis. Finally, we discuss aging interventions that have been observed to impact cardiac health outcomes. These include caloric restriction, rapamycin, resveratrol, GDF11, mitochondrial antioxidants and cardiolipin-targeted therapeutics. A greater understanding of the quality control mechanisms that promote cardiac homeostasis will help to understand the benefits of these interventions, and hopefully lead to further improved therapeutic modalities.
Collapse
Affiliation(s)
- Ellen K Quarles
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Dao-Fu Dai
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Autumn Tocchi
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Nathan Basisty
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Lemuel Gitari
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Peter S Rabinovitch
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| |
Collapse
|
48
|
The Deubiquitylase MATH-33 Controls DAF-16 Stability and Function in Metabolism and Longevity. Cell Metab 2015; 22:151-63. [PMID: 26154057 PMCID: PMC4502596 DOI: 10.1016/j.cmet.2015.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 04/05/2015] [Accepted: 06/02/2015] [Indexed: 01/27/2023]
Abstract
FOXO family transcription factors are downstream effectors of Insulin/IGF-1 signaling (IIS) and major determinants of aging in organisms ranging from worms to man. The molecular mechanisms that actively promote DAF16/FOXO stability and function are unknown. Here we identify the deubiquitylating enzyme MATH-33 as an essential DAF-16 regulator in IIS, which stabilizes active DAF-16 protein levels and, as a consequence, influences DAF-16 functions, such as metabolism, stress response, and longevity in C. elegans. MATH-33 associates with DAF-16 in cellulo and in vitro. MATH-33 functions as a deubiquitylase by actively removing ubiquitin moieties from DAF-16, thus counteracting the action of the RLE-1 E3-ubiquitin ligase. Our findings support a model in which MATH-33 promotes DAF-16 stability in response to decreased IIS by directly modulating its ubiquitylation state, suggesting that regulated oscillations in the stability of DAF-16 protein play an integral role in controlling processes such as metabolism and longevity.
Collapse
|
49
|
Chondrogianni N, Georgila K, Kourtis N, Tavernarakis N, Gonos ES. 20S proteasome activation promotes life span extension and resistance to proteotoxicity in Caenorhabditis elegans. FASEB J 2014; 29:611-22. [PMID: 25395451 DOI: 10.1096/fj.14-252189] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein homeostasis (proteostasis) is one of the nodal points that need to be preserved to retain physiologic cellular/organismal balance. The ubiquitin-proteasome system (UPS) is responsible for the removal of both normal and damaged proteins, with the proteasome being the downstream effector. The proteasome is the major cellular protease with progressive impairment of function during aging and senescence. Despite the documented age-retarding properties of proteasome activation in various cellular models, simultaneous enhancement of the 20S core proteasome content, assembly, and function have never been reported in any multicellular organism. Consequently, the possible effects of the core proteasome modulation on organismal life span are elusive. In this study, we have achieved activation of the 20S proteasome at organismal level. We demonstrate enhancement of proteasome levels, assembly, and activity in the nematode Caenorhabditis elegans, resulting in life span extension and increased resistance to stress. We also provide evidence that the observed life span extension is dependent on the transcriptional activity of Dauer formation abnormal/Forkhead box class O (DAF-16/FOXO), skinhead-1 (SKN-1), and heat shock factor-1 (HSF-1) factors through regulation of downstream longevity genes. We further show that the reported beneficial effects are not ubiquitous but they are dependent on the genetic context. Finally, we provide evidence that proteasome core activation might be a potential strategy to minimize protein homeostasis deficiencies underlying aggregation-related diseases, such as Alzheimer's disease (AD) or Huntington's disease (HD). In summary, this is the first report demonstrating that 20S core proteasome up-regulation in terms of both content and activity is feasible in a multicellular eukaryotic organism and that in turn this modulation promotes extension of organismal health span and life span.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece; and
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece; and
| | - Nikos Kourtis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece; and
| |
Collapse
|
50
|
Chondrogianni N, Sakellari M, Lefaki M, Papaevgeniou N, Gonos ES. Proteasome activation delays aging in vitro and in vivo. Free Radic Biol Med 2014; 71:303-320. [PMID: 24681338 DOI: 10.1016/j.freeradbiomed.2014.03.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 02/02/2023]
Abstract
Aging is a natural biological process that is characterized by a progressive accumulation of macromolecular damage. In the proteome, aging is accompanied by decreased protein homeostasis and function of the major cellular proteolytic systems, leading to the accumulation of unfolded, misfolded, or aggregated proteins. In particular, the proteasome is responsible for the removal of normal as well as damaged or misfolded proteins. Extensive work during the past several years has clearly demonstrated that proteasome activation by either genetic means or use of compounds significantly retards aging. Importantly, this represents a common feature across evolution, thereby suggesting proteasome activation to be an evolutionarily conserved mechanism of aging and longevity regulation. This review article reports on the means of function of these proteasome activators and how they regulate aging in various species.
Collapse
Affiliation(s)
- Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece.
| | - Marianthi Sakellari
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece; Örebro University Medical School, Örebro, Sweden
| | - Maria Lefaki
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece; Örebro University Medical School, Örebro, Sweden
| |
Collapse
|