1
|
Dynamic Variations of 3'UTR Length Reprogram the mRNA Regulatory Landscape. Biomedicines 2021; 9:biomedicines9111560. [PMID: 34829789 PMCID: PMC8615635 DOI: 10.3390/biomedicines9111560] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
This paper concerns 3′-untranslated regions (3′UTRs) of mRNAs, which are non-coding regulatory platforms that control stability, fate and the correct spatiotemporal translation of mRNAs. Many mRNAs have polymorphic 3′UTR regions. Controlling 3′UTR length and sequence facilitates the regulation of the accessibility of functional effectors (RNA binding proteins, miRNAs or other ncRNAs) to 3′UTR functional boxes and motifs and the establishment of different regulatory landscapes for mRNA function. In this context, shortening of 3′UTRs would loosen miRNA or protein-based mechanisms of mRNA degradation, while 3′UTR lengthening would strengthen accessibility to these effectors. Alterations in the mechanisms regulating 3′UTR length would result in widespread deregulation of gene expression that could eventually lead to diseases likely linked to the loss (or acquisition) of specific miRNA binding sites. Here, we will review the mechanisms that control 3′UTR length dynamics and their alterations in human disorders. We will discuss, from a mechanistic point of view centered on the molecular machineries involved, the generation of 3′UTR variability by the use of alternative polyadenylation and cleavage sites, of mutually exclusive terminal alternative exons (exon skipping) as well as by the process of exonization of Alu cassettes to generate new 3′UTRs with differential functional features.
Collapse
|
2
|
Levin M, Zalts H, Mostov N, Hashimshony T, Yanai I. Gene expression dynamics are a proxy for selective pressures on alternatively polyadenylated isoforms. Nucleic Acids Res 2020; 48:5926-5938. [PMID: 32421815 PMCID: PMC7293032 DOI: 10.1093/nar/gkaa359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/11/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
Alternative polyadenylation (APA) produces isoforms with distinct 3′-ends, yet their functional differences remain largely unknown. Here, we introduce the APA-seq method to detect the expression levels of APA isoforms from 3′-end RNA-Seq data by exploiting both paired-end reads for gene isoform identification and quantification. We detected the expression levels of APA isoforms in individual Caenorhabditis elegans embryos at different stages throughout embryogenesis. Examining the correlation between the temporal profiles of isoforms led us to distinguish two classes of genes: those with highly correlated isoforms (HCI) and those with lowly correlated isoforms (LCI) across time. We hypothesized that variants with similar expression profiles may be the product of biological noise, while the LCI variants may be under tighter selection and consequently their distinct 3′ UTR isoforms are more likely to have functional consequences. Supporting this notion, we found that LCI genes have significantly more miRNA binding sites, more correlated expression profiles with those of their targeting miRNAs and a relative lack of correspondence between their transcription and protein abundances. Collectively, our results suggest that a lack of coherence among the regulation of 3′ UTR isoforms is a proxy for selective pressures acting upon APA usage and consequently for their functional relevance.
Collapse
Affiliation(s)
- Michal Levin
- Quantitative Proteomics, Institute of Molecular Biology, Mainz 55128, Germany
| | - Harel Zalts
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Natalia Mostov
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Tamar Hashimshony
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Itai Yanai
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York 10016, USA
| |
Collapse
|
3
|
The conserved regulatory basis of mRNA contributions to the early Drosophila embryo differs between the maternal and zygotic genomes. PLoS Genet 2020; 16:e1008645. [PMID: 32226006 PMCID: PMC7145188 DOI: 10.1371/journal.pgen.1008645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 04/09/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
The gene products that drive early development are critical for setting up developmental trajectories in all animals. The earliest stages of development are fueled by maternally provided mRNAs until the zygote can take over transcription of its own genome. In early development, both maternally deposited and zygotically transcribed gene products have been well characterized in model systems. Previously, we demonstrated that across the genus Drosophila, maternal and zygotic mRNAs are largely conserved but also showed a surprising amount of change across species, with more differences evolving at the zygotic stage than the maternal stage. In this study, we use comparative methods to elucidate the regulatory mechanisms underlying maternal deposition and zygotic transcription across species. Through motif analysis, we discovered considerable conservation of regulatory mechanisms associated with maternal transcription, as compared to zygotic transcription. We also found that the regulatory mechanisms active in the maternal and zygotic genomes are quite different. For maternally deposited genes, we uncovered many signals that are consistent with transcriptional regulation at the level of chromatin state through factors enriched in the ovary, rather than precisely controlled gene-specific factors. For genes expressed only by the zygotic genome, we found evidence for previously identified regulators such as Zelda and GAGA-factor, with multiple analyses pointing toward gene-specific regulation. The observed mechanisms of regulation are consistent with what is known about regulation in these two genomes: during oogenesis, the maternal genome is optimized to quickly produce a large volume of transcripts to provide to the oocyte; after zygotic genome activation, mechanisms are employed to activate transcription of specific genes in a spatiotemporally precise manner. Thus the genetic architecture of the maternal and zygotic genomes, and the specific requirements for the transcripts present at each stage of embryogenesis, determine the regulatory mechanisms responsible for transcripts present at these stages.
Collapse
|
4
|
Shin S, Hong JH, Na Y, Lee M, Qian WJ, Kim VN, Kim JS. Development of Multiplexed Immuno-N-Terminomics to Reveal the Landscape of Proteolytic Processing in Early Embryogenesis of Drosophila melanogaster. Anal Chem 2020; 92:4926-4934. [DOI: 10.1021/acs.analchem.9b05035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sanghee Shin
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Ji Hye Hong
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yongwoo Na
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea
| | - Wei-Jun Qian
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - V. Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
5
|
Evolution of maternal and zygotic mRNA complements in the early Drosophila embryo. PLoS Genet 2018; 14:e1007838. [PMID: 30557299 PMCID: PMC6312346 DOI: 10.1371/journal.pgen.1007838] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 12/31/2018] [Accepted: 11/18/2018] [Indexed: 01/19/2023] Open
Abstract
The earliest stages of animal development are controlled by maternally deposited mRNA transcripts and proteins. Once the zygote is able to transcribe its own genome, maternal transcripts are degraded, in a tightly regulated process known as the maternal to zygotic transition (MZT). While this process has been well-studied within model species, we have little knowledge of how the pools of maternal and zygotic transcripts evolve. To characterize the evolutionary dynamics and functional constraints on early embryonic expression, we created a transcriptomic dataset for 14 Drosophila species spanning over 50 million years of evolution, at developmental stages before and after the MZT, and compared our results with a previously published Aedes aegypti developmental time course. We found deep conservation over 250 million years of a core set of genes transcribed only by the zygote. This select group is highly enriched in transcription factors that play critical roles in early development. However, we also identify a surprisingly high level of change in the transcripts represented at both stages over the phylogeny. While mRNA levels of genes with maternally deposited transcripts are more highly conserved than zygotic genes, those maternal transcripts that are completely degraded at the MZT vary dramatically between species. We also show that hundreds of genes have different isoform usage between the maternal and zygotic genomes. Our work suggests that maternal transcript deposition and early zygotic transcription are remarkably dynamic over evolutionary time, despite the widespread conservation of early developmental processes.
Collapse
|
6
|
Onichtchouk DV, Voronina AS. Regulation of Zygotic Genome and Cellular Pluripotency. BIOCHEMISTRY (MOSCOW) 2016; 80:1723-33. [PMID: 26878577 DOI: 10.1134/s0006297915130088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Events, manifesting transition from maternal to zygotic period of development are studied for more than 100 years, but underlying mechanisms are not yet clear. We provide a brief historical overview of development of concepts and explain the specific terminology used in the field. We further discuss differences and similarities between the zygotic genome activation and in vitro reprogramming process. Finally, we envision the future research directions within the field, where biochemical methods will play increasingly important role.
Collapse
Affiliation(s)
- D V Onichtchouk
- University of Freiburg, Developmental Biology Unit, Biologie 1, Freiburg, 79194, Germany.
| | | |
Collapse
|
7
|
Sysoev VO, Fischer B, Frese CK, Gupta I, Krijgsveld J, Hentze MW, Castello A, Ephrussi A. Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila. Nat Commun 2016; 7:12128. [PMID: 27378189 PMCID: PMC4935972 DOI: 10.1038/ncomms12128] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/03/2016] [Indexed: 12/15/2022] Open
Abstract
The maternal-to-zygotic transition (MZT) is a process that occurs in animal embryos at the earliest developmental stages, during which maternally deposited mRNAs and other molecules are degraded and replaced by products of the zygotic genome. The zygotic genome is not activated immediately upon fertilization, and in the pre-MZT embryo post-transcriptional control by RNA-binding proteins (RBPs) orchestrates the first steps of development. To identify relevant Drosophila RBPs organism-wide, we refined the RNA interactome capture method for comparative analysis of the pre- and post-MZT embryos. We determine 523 proteins as high-confidence RBPs, half of which were not previously reported to bind RNA. Comparison of the RNA interactomes of pre- and post-MZT embryos reveals high dynamicity of the RNA-bound proteome during early development, and suggests active regulation of RNA binding of some RBPs. This resource provides unprecedented insight into the system of RBPs that govern the earliest steps of Drosophila development.
Collapse
Affiliation(s)
- Vasiliy O. Sysoev
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bernd Fischer
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Christian K. Frese
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Ishaan Gupta
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Matthias W. Hentze
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Alfredo Castello
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England
| | - Anne Ephrussi
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
8
|
Ferree PL, Deneke VE, Di Talia S. Measuring time during early embryonic development. Semin Cell Dev Biol 2016; 55:80-8. [PMID: 26994526 PMCID: PMC4903905 DOI: 10.1016/j.semcdb.2016.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/15/2016] [Indexed: 11/27/2022]
Abstract
In most metazoans, embryonic development is orchestrated by a precise series of cellular behaviors. Understanding how such events are regulated to achieve a stereotypical temporal progression is a fundamental problem in developmental biology. In this review, we argue that studying the regulation of the cell cycle in early embryonic development will reveal novel principles of how embryos accurately measure time. We will discuss the strategies that have emerged from studying early development of Drosophila embryos. By comparing the development of flies to that of other metazoans, we will highlight both conserved and alternative mechanisms to generate precision during embryonic development.
Collapse
Affiliation(s)
- Patrick L Ferree
- Department of Cell Biology, Duke University Medical Center, Durham NC, United States
| | - Victoria E Deneke
- Department of Cell Biology, Duke University Medical Center, Durham NC, United States
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham NC, United States.
| |
Collapse
|
9
|
The Drosophila prage Gene, Required for Maternal Transcript Destabilization in Embryos, Encodes a Predicted RNA Exonuclease. G3-GENES GENOMES GENETICS 2016; 6:1687-93. [PMID: 27172196 PMCID: PMC4889664 DOI: 10.1534/g3.116.028415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Egg activation, the transition of mature oocytes into developing embryos, is critical for the initiation of embryogenesis. This process is characterized by resumption of meiosis, changes in the egg's coverings and by alterations in the transcriptome and proteome of the egg; all of these occur in the absence of new transcription. Activation of the egg is prompted by ionic changes in the cytoplasm (usually a rise in cytosolic calcium levels) that are triggered by fertilization in some animals and by mechanosensitive cues in others. The egg's transcriptome is dramatically altered during the process, including by the removal of many maternal mRNAs that are not needed for embryogenesis. However, the mechanisms and regulators of this selective RNA degradation are not yet fully known. Forward genetic approaches in Drosophila have identified maternal-effect genes whose mutations prevent the transcriptome changes. One of these genes, prage (prg), was identified by Tadros et al. in a screen for mutants that fail to destabilize maternal transcripts. We identified the molecular nature of the prg gene through a combination of deficiency mapping, complementation analysis, and DNA sequencing of both extant prg mutant alleles. We find that prg encodes a ubiquitously expressed predicted exonuclease, consistent with its role in maternal mRNA destabilization during egg activation.
Collapse
|
10
|
Protein palmitoylation activate zygotic gene expression during the maternal-to-zygotic transition. Biochem Biophys Res Commun 2016; 475:194-201. [DOI: 10.1016/j.bbrc.2016.05.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/13/2016] [Indexed: 12/31/2022]
|
11
|
Pires CV, Freitas FCDP, Cristino AS, Dearden PK, Simões ZLP. Transcriptome Analysis of Honeybee (Apis Mellifera) Haploid and Diploid Embryos Reveals Early Zygotic Transcription during Cleavage. PLoS One 2016; 11:e0146447. [PMID: 26751956 PMCID: PMC4713447 DOI: 10.1371/journal.pone.0146447] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022] Open
Abstract
In honeybees, the haplodiploid sex determination system promotes a unique embryogenesis process wherein females develop from fertilized eggs and males develop from unfertilized eggs. However, the developmental strategies of honeybees during early embryogenesis are virtually unknown. Similar to most animals, the honeybee oocytes are supplied with proteins and regulatory elements that support early embryogenesis. As the embryo develops, the zygotic genome is activated and zygotic products gradually replace the preloaded maternal material. The analysis of small RNA and mRNA libraries of mature oocytes and embryos originated from fertilized and unfertilized eggs has allowed us to explore the gene expression dynamics in the first steps of development and during the maternal-to-zygotic transition (MZT). We localized a short sequence motif identified as TAGteam motif and hypothesized to play a similar role in honeybees as in fruit flies, which includes the timing of early zygotic expression (MZT), a function sustained by the presence of the zelda ortholog, which is the main regulator of genome activation. Predicted microRNA (miRNA)-target interactions indicated that there were specific regulators of haploid and diploid embryonic development and an overlap of maternal and zygotic gene expression during the early steps of embryogenesis. Although a number of functions are highly conserved during the early steps of honeybee embryogenesis, the results showed that zygotic genome activation occurs earlier in honeybees than in Drosophila based on the presence of three primary miRNAs (pri-miRNAs) (ame-mir-375, ame-mir-34 and ame-mir-263b) during the cleavage stage in haploid and diploid embryonic development.
Collapse
Affiliation(s)
- Camilla Valente Pires
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Alexandre S. Cristino
- The University of Queensland, Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Peter K. Dearden
- Genetics Otago and Gravida, the National Centre for Growth and Development, Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Zilá Luz Paulino Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Ruiz N, de Abreu LA, Parizi LF, Kim TK, Mulenga A, Braz GRC, Vaz IDS, Logullo C. Non-Invasive Delivery of dsRNA into De-Waxed Tick Eggs by Electroporation. PLoS One 2015; 10:e0130008. [PMID: 26091260 PMCID: PMC4474930 DOI: 10.1371/journal.pone.0130008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 05/15/2015] [Indexed: 11/18/2022] Open
Abstract
RNA interference-mediated gene silencing was shown to be an efficient tool for validation of targets that may become anti-tick vaccine components. Here, we demonstrate the application of this approach in the validation of components of molecular signaling cascades, such as the Protein Kinase B (AKT)/Glycogen Synthase Kinase (GSK) axis during tick embryogenesis. It was shown that heptane and hypochlorite treatment of tick eggs can remove wax, affecting corium integrity and but not embryo development. Evidence of AKT and GSK dsRNA delivery into de-waxed eggs of via electroporation is provided. Primers designed to amplify part of the dsRNA delivered into the electroporated eggs dsRNA confirmed its entry in eggs. In addition, it was shown that electroporation is able to deliver the fluorescent stain, 4',6-diamidino-2-phenylindole (DAPI). To confirm gene silencing, a second set of primers was designed outside the dsRNA sequence of target gene. In this assay, the suppression of AKT and GSK transcripts (approximately 50% reduction in both genes) was demonstrated in 7-day-old eggs. Interestingly, silencing of GSK in 7-day-old eggs caused 25% reduction in hatching. Additionally, the effect of silencing AKT and GSK on embryo energy metabolism was evaluated. As expected, knockdown of AKT, which down regulates GSK, the suppressor of glycogen synthesis, decreased glycogen content in electroporated eggs. These data demonstrate that electroporation of de-waxed R. microplus eggs could be used for gene silencing in tick embryos, and improve the knowledge about arthropod embryogenesis.
Collapse
Affiliation(s)
- Newton Ruiz
- Unidade de Experimentação Animal and Laboratório de Química e Função de Proteínas—Universidade Estadual Norte Fluminense–Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Leonardo Araujo de Abreu
- Laboratório Integrado de Bioquímica Hatisaburo Masuda—Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM/UFRJ), Macaé, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, United States of America
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, United States of America
| | - Gloria Regina Cardoso Braz
- Departamento de Bioquímica–Instituto de Química, Universidade Federal do Rio de Janeiro, Ilha do Fundão, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
| | - Carlos Logullo
- Unidade de Experimentação Animal and Laboratório de Química e Função de Proteínas—Universidade Estadual Norte Fluminense–Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
- * E-mail:
| |
Collapse
|
13
|
Abstract
Comparative genome analyses reveal that organismal complexity scales not with gene number but with gene regulation. Recent efforts indicate that the human genome likely contains hundreds of thousands of enhancers, with a typical gene embedded in a milieu of tens of enhancers. Proliferation of cis-regulatory DNAs is accompanied by increased complexity and functional diversification of transcriptional machineries recognizing distal enhancers and core promoters and by the high-order spatial organization of genetic elements. We review progress in unraveling one of the outstanding mysteries of modern biology: the dynamic communication of remote enhancers with target promoters in the specification of cellular identity.
Collapse
|
14
|
Umemiya-Shirafuji R, Galay RL, Maeda H, Kawano S, Tanaka T, Fukumoto S, Suzuki H, Tsuji N, Fujisaki K. Expression analysis of autophagy-related genes in the hard tick Haemaphysalis longicornis. Vet Parasitol 2014; 201:169-75. [DOI: 10.1016/j.vetpar.2014.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/14/2014] [Accepted: 01/24/2014] [Indexed: 12/16/2022]
|
15
|
Giuliani G, Giuliani F, Volk T, Rabouille C. The Drosophila RNA-binding protein HOW controls the stability of dgrasp mRNA in the follicular epithelium. Nucleic Acids Res 2014; 42:1970-86. [PMID: 24217913 PMCID: PMC3919595 DOI: 10.1093/nar/gkt1118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 11/14/2022] Open
Abstract
Post-transcriptional regulation of RNA stability and localization underlies a wide array of developmental processes, such as axon guidance and epithelial morphogenesis. In Drosophila, ectopic expression of the classically Golgi peripheral protein dGRASP at the plasma membrane is achieved through its mRNA targeting at key developmental time-points, in a process critical to follicular epithelium integrity. However, the trans-acting factors that tightly regulate the spatio-temporal dynamics of dgrasp are unknown. Using an in silico approach, we identified two putative HOW Response Elements (HRE1 and HRE2) within the dgrasp open reading frame for binding to Held Out Wings (HOW), a member of the Signal Transduction and Activation of RNA family of RNA-binding proteins. Using RNA immunoprecipitations, we confirmed this by showing that the short cytoplasmic isoform of HOW binds directly to dgrasp HRE1. Furthermore, HOW loss of function in vivo leads to a significant decrease in dgrasp mRNA levels. We demonstrate that HRE1 protects dgrasp mRNA from cytoplasmic degradation, but does not mediate its targeting. We propose that this binding event promotes the formation of ribonucleoprotein particles that ensure dgrasp stability during transport to the basal plasma membrane, thus enabling the local translation of dgrasp for its roles at non-Golgi locations.
Collapse
Affiliation(s)
- Giuliano Giuliani
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands, Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel and The Department of Cell Biology, UMC Utrecht, The Netherlands
| | - Fabrizio Giuliani
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands, Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel and The Department of Cell Biology, UMC Utrecht, The Netherlands
| | - Talila Volk
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands, Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel and The Department of Cell Biology, UMC Utrecht, The Netherlands
| | - Catherine Rabouille
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands, Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel and The Department of Cell Biology, UMC Utrecht, The Netherlands
| |
Collapse
|
16
|
Iida Y, Fujiwara K, Yoshioka Y, Tsuge T. Mutation of FVS1, encoding a protein with a sterile alpha motif domain, affects asexual reproduction in the fungal plant pathogen Fusarium oxysporum. FEMS Microbiol Lett 2014; 351:104-112. [PMID: 24330129 DOI: 10.1111/1574-6968.12356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/24/2013] [Accepted: 12/10/2013] [Indexed: 11/30/2022] Open
Abstract
Fusarium oxysporum produces three kinds of asexual spores: microconidia, macroconidia and chlamydospores. We previously analysed expressed sequence tags during vegetative growth and conidiation in F. oxysporum and found 42 genes that were markedly upregulated during conidiation compared to vegetative growth. One of the genes, FVS1, encodes a protein with a sterile alpha motif (SAM) domain, which functions in protein-protein interactions that are involved in transcriptional or post-transcriptional regulation and signal transduction. Here, we made FVS1-disrupted mutants from the melon wilt pathogen F. oxysporum f. sp. melonis. Although the mutants produced all three kinds of asexual spores with normal morphology, they formed markedly fewer microconidia and macroconidia than the wild type. The mutants appeared to have a defect in the development of the conidiogenesis cells, conidiophores and phialides, required for the formation of microconidia and macroconidia. In contrast, chlamydospore formation was dramatically promoted in the mutants. The growth rates of the mutants on media were slightly reduced, indicating that FVS1 is also involved in, but not essential for, vegetative growth. We also observed that mutation of FVS1 caused defects in conidial germination and virulence, suggesting that the Fvs1 has pleiotropic functions in F. oxysporum.
Collapse
Affiliation(s)
- Yuichiro Iida
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | | | | | | |
Collapse
|
17
|
RNAi phenotypes are influenced by the genetic background of the injected strain. BMC Genomics 2013; 14:5. [PMID: 23324472 PMCID: PMC3574008 DOI: 10.1186/1471-2164-14-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/19/2012] [Indexed: 12/22/2022] Open
Abstract
Background RNA interference (RNAi) is a powerful tool to study gene function in organisms that are not amenable to classical forward genetics. Hence, together with the ease of comprehensively identifying genes by new generation sequencing, RNAi is expanding the scope of animal species and questions that can be addressed in terms of gene function. In the case of genetic mutants, the genetic background of the strains used is known to influence the phenotype while this has not been described for RNAi experiments. Results Here we show in the red flour beetle Tribolium castaneum that RNAi against Tc-importin α1 leads to different phenotypes depending on the injected strain. We rule out off target effects and show that sequence divergence does not account for this difference. By quantitatively comparing phenotypes elicited by RNAi knockdown of four different genes we show that there is no general difference in RNAi sensitivity between these strains. Finally, we show that in case of Tc-importin α1 the difference depends on the maternal genotype. Conclusions These results show that in RNAi experiments strain specific differences have to be considered and that a proper documentation of the injected strain is required. This is especially important for the increasing number of emerging model organisms that are being functionally investigated using RNAi. In addition, our work shows that RNAi is suitable to systematically identify the differences in the gene regulatory networks present in populations of the same species, which will allow novel insights into the evolution of animal diversity.
Collapse
|
18
|
Di Talia S, She R, Blythe SA, Lu X, Zhang QF, Wieschaus EF. Posttranslational control of Cdc25 degradation terminates Drosophila's early cell-cycle program. Curr Biol 2013; 23:127-32. [PMID: 23290553 DOI: 10.1016/j.cub.2012.11.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/05/2012] [Accepted: 11/12/2012] [Indexed: 11/30/2022]
Abstract
In most metazoans, early embryonic development is characterized by rapid mitotic divisions that are controlled by maternal mRNAs and proteins that accumulate during oogenesis. These rapid divisions pause at the midblastula transition (MBT), coinciding with a dramatic increase in gene transcription and the degradation of a subset of maternal mRNAs. In Drosophila, the cell-cycle pause is controlled by inhibitory phosphorylation of Cdk1, which in turn is driven by downregulation of the activating Cdc25 phosphatases. Here, we show that the two Drosophila Cdc25 homologs, String and Twine, differ in their dynamics and that, contrary to current models, their downregulations are not controlled by mRNA degradation but through different posttranslational mechanisms. The degradation rate of String protein gradually increases during the late syncytial cycles in a manner dependent on the nuclear-to-cytoplasmic ratio and on the DNA replication checkpoints. Twine, on the other hand, is targeted for degradation at the onset of the MBT through a switch-like mechanism controlled, like String, by the nuclear-to-cytoplasmic ratio, but not requiring the DNA replication checkpoints. We demonstrate that posttranslational control of Twine degradation ensures that the proper number of mitoses precede the MBT.
Collapse
Affiliation(s)
- Stefano Di Talia
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | |
Collapse
|
19
|
Xin HP, Zhao J, Sun MX. The maternal-to-zygotic transition in higher plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:610-5. [PMID: 22731521 DOI: 10.1111/j.1744-7909.2012.01138.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
During early embryogenesis in mammals and higher plants, the maternal-to-zygotic transition (MZT) marks the turnover of developmental control from maternal products to de novo zygotic genome transcripts. Intensive studies in animals indicate that early embryonic development is largely maternally controlled. In recent years, the MZT has drawn the attention of botanists, as it is important for understanding the mechanism of embryogenesis and hybrid vigor. In this study, we present a brief overview of some aspects of the MZT in flowering plants. Based on what we have learned from Nicotiana tabacum, we hypothesize that the MZT occurs before zygotic cell division and that the development of the fertilized egg cell in flowering plants can be divided into two phases: the zygote stage, which is mainly controlled maternally, and the one-celled proembryo stage, in which zygotic genome activation (ZGA) occurs and is required for zygote division.
Collapse
Affiliation(s)
- Hai-Ping Xin
- Department of Cell and Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
20
|
Hu SN, Yu H, Zhang YB, Wu ZL, Yan YC, Li YX, Li YY, Li YP. Splice blocking of zygotic sox31 leads to developmental arrest shortly after Mid-Blastula Transition and induces apoptosis in zebrafish. FEBS Lett 2011; 586:222-8. [PMID: 22209980 DOI: 10.1016/j.febslet.2011.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 11/29/2011] [Accepted: 12/06/2011] [Indexed: 10/14/2022]
Abstract
Here we report that splice blocking morpholinos (Sb MO) against zebrafish sox31 elicit developmental arrest, likely through creating a series of dominant negative splicing variants. Embryos injected with the Sb MO develop normally before the Mid-Blastula Transition (MBT); however, they do not initiate epiboly. Microarray analysis of mRNAs collected at the dome stage revealed that the Sb MO impairs activation of a large set of zygotic genes and reduces degradation of maternal mRNA during MBT. Furthermore, an apoptotic response occurs in Sb morphants at about 6hpf. SoxB1 family genes including sox31 thus play an essential role for early embryos traversing the transitional stage.
Collapse
Affiliation(s)
- Sheng-Nan Hu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Johnson C, Tinti M, Wood NT, Campbell DG, Toth R, Dubois F, Geraghty KM, Wong BHC, Brown LJ, Tyler J, Gernez A, Chen S, Synowsky S, MacKintosh C. Visualization and biochemical analyses of the emerging mammalian 14-3-3-phosphoproteome. Mol Cell Proteomics 2011; 10:M110.005751. [PMID: 21725060 PMCID: PMC3205853 DOI: 10.1074/mcp.m110.005751] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hundreds of candidate 14-3-3-binding (phospho)proteins have been reported in publications that describe one interaction at a time, as well as high-throughput 14-3-3-affinity and mass spectrometry-based studies. Here, we transcribed these data into a common format, deposited the collated data from low-throughput studies in MINT (http://mint.bio.uniroma2.it/mint), and compared the low- and high-throughput data in VisANT graphs that are easy to analyze and extend. Exploring the graphs prompted questions about technical and biological specificity, which were addressed experimentally, resulting in identification of phosphorylated 14-3-3-binding sites in the mitochondrial import sequence of the iron-sulfur cluster assembly enzyme (ISCU), cytoplasmic domains of the mitochondrial fission factor (MFF), and endoplasmic reticulum-tethered receptor expression-enhancing protein 4 (REEP4), RNA regulator SMAUG2, and cytoskeletal regulatory proteins, namely debrin-like protein (DBNL) and kinesin light chain (KLC) isoforms. Therefore, 14-3-3s undergo physiological interactions with proteins that are destined for diverse subcellular locations. Graphing and validating interactions underpins efforts to use 14-3-3-phosphoproteomics to identify mechanisms and biomarkers for signaling pathways in health and disease.
Collapse
Affiliation(s)
- Catherine Johnson
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Genome-wide analysis of mRNA decay patterns during early Drosophila development. Genome Biol 2010; 11:R93. [PMID: 20858238 PMCID: PMC2965385 DOI: 10.1186/gb-2010-11-9-r93] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/08/2010] [Accepted: 09/21/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The modulation of mRNA levels across tissues and time is key for the establishment and operation of the developmental programs that transform the fertilized egg into a fully formed embryo. Although the developmental mechanisms leading to differential mRNA synthesis are heavily investigated, comparatively little attention is given to the processes of mRNA degradation and how these relate to the molecular programs controlling development. RESULTS Here we combine timed collection of Drosophila embryos and unfertilized eggs with genome-wide microarray technology to determine the degradation patterns of all mRNAs present during early fruit fly development. Our work studies the kinetics of mRNA decay, the contributions of maternally and zygotically encoded factors to mRNA degradation, and the ways in which mRNA decay profiles relate to gene function, mRNA localization patterns, translation rates and protein turnover. We also detect cis-regulatory sequences enriched in transcripts with common degradation patterns and propose several proteins and microRNAs as developmental regulators of mRNA decay during early fruit fly development. Finally, we experimentally validate the effects of a subset of cis-regulatory sequences and trans-regulators in vivo. CONCLUSIONS Our work advances the current understanding of the processes controlling mRNA degradation during early Drosophila development, taking us one step closer to the understanding of mRNA decay processes in all animals. Our data also provide a valuable resource for further experimental and computational studies investigating the process of mRNA decay.
Collapse
|
23
|
Shen-Orr SS, Pilpel Y, Hunter CP. Composition and regulation of maternal and zygotic transcriptomes reflects species-specific reproductive mode. Genome Biol 2010; 11:R58. [PMID: 20515465 PMCID: PMC2911106 DOI: 10.1186/gb-2010-11-6-r58] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 04/23/2010] [Accepted: 06/01/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early embryos contain mRNA transcripts expressed from two distinct origins; those expressed from the mother's genome and deposited in the oocyte (maternal) and those expressed from the embryo's genome after fertilization (zygotic). The transition from maternal to zygotic control occurs at different times in different animals according to the extent and form of maternal contributions, which likely reflect evolutionary and ecological forces. Maternally deposited transcripts rely on post-transcriptional regulatory mechanisms for precise spatial and temporal expression in the embryo, whereas zygotic transcripts can use both transcriptional and post-transcriptional regulatory mechanisms. The differences in maternal contributions between animals may be associated with gene regulatory changes detectable by the size and complexity of the associated regulatory regions. RESULTS We have used genomic data to identify and compare maternal and/or zygotic expressed genes from six different animals and find evidence for selection acting to shape gene regulatory architecture in thousands of genes. We find that mammalian maternal genes are enriched for complex regulatory regions, suggesting an increase in expression specificity, while egg-laying animals are enriched for maternal genes that lack transcriptional specificity. CONCLUSIONS We propose that this lack of specificity for maternal expression in egg-laying animals indicates that a large fraction of maternal genes are expressed non-functionally, providing only supplemental nutritional content to the developing embryo. These results provide clear predictive criteria for analysis of additional genomes.
Collapse
Affiliation(s)
- Shai S Shen-Orr
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
24
|
Monzo K, Dowd SR, Minden JS, Sisson JC. Proteomic analysis reveals CCT is a target of Fragile X mental retardation protein regulation in Drosophila. Dev Biol 2010; 340:408-18. [PMID: 20122915 DOI: 10.1016/j.ydbio.2010.01.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/21/2010] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
Fragile X mental retardation protein (FMRP) is an RNA-binding protein that is required for the translational regulation of specific target mRNAs. Loss of FMRP causes Fragile X syndrome (FXS), the most common form of inherited mental retardation in humans. Understanding the basis for FXS has been limited because few in vivo targets of FMRP have been identified and mechanisms for how FMRP regulates physiological targets are unclear. We have previously demonstrated that Drosophila FMRP (dFMRP) is required in early embryos for cleavage furrow formation. In an effort to identify new targets of dFMRP-dependent regulation and new effectors of cleavage furrow formation, we used two-dimensional difference gel electrophoresis and mass spectrometry to identify proteins that are misexpressed in dfmr1 mutant embryos. Of the 28 proteins identified, we have identified three subunits of the Chaperonin containing TCP-1 (CCT) complex as new direct targets of dFMRP-dependent regulation. Furthermore, we found that the septin Peanut, a known effector of cleavage, is a likely conserved substrate of fly CCT and is mislocalized in both cct and in dfmr1 mutant embryos. Based on these results we propose that dFMRP-dependent regulation of CCT subunits is required for cleavage furrow formation and that at least one of its substrates is affected in dfmr1- embryos suggesting that dFMRP-dependent regulation of CCT contributes to the cleavage furrow formation phenotype.
Collapse
Affiliation(s)
- Kate Monzo
- Institute of Cellular and Molecular Biology and Section of Molecular Cell and Developmental Biology, University of Texas at Austin, 2400 Speedway Ave, Patterson Labs 216, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
25
|
Benoit B, He CH, Zhang F, Votruba SM, Tadros W, Westwood JT, Smibert CA, Lipshitz HD, Theurkauf WE. An essential role for the RNA-binding protein Smaug during the Drosophila maternal-to-zygotic transition. Development 2009; 136:923-32. [PMID: 19234062 DOI: 10.1242/dev.031815] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genetic control of embryogenesis switches from the maternal to the zygotic genome during the maternal-to-zygotic transition (MZT), when maternal mRNAs are destroyed, high-level zygotic transcription is initiated, the replication checkpoint is activated and the cell cycle slows. The midblastula transition (MBT) is the first morphological event that requires zygotic gene expression. The Drosophila MBT is marked by blastoderm cellularization and follows 13 cleavage-stage divisions. The RNA-binding protein Smaug is required for cleavage-independent maternal transcript destruction during the Drosophila MZT. Here, we show that smaug mutants also disrupt syncytial blastoderm stage cell-cycle delays, DNA replication checkpoint activation, cellularization, and high-level zygotic expression of protein coding and micro RNA genes. We also show that Smaug protein levels increase through the cleavage divisions and peak when the checkpoint is activated and zygotic transcription initiates, and that transgenic expression of Smaug in an anterior-to-posterior gradient produces a concomitant gradient in the timing of maternal transcript destruction, cleavage cell cycle delays, zygotic gene transcription, cellularization and gastrulation. Smaug accumulation thus coordinates progression through the MZT.
Collapse
Affiliation(s)
- Beatrice Benoit
- Program in Molecular Medicine, University of Massachusetts Medical School, 377 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
A shared enhancer controls a temporal switch between promoters during Drosophila primary sex determination. Proc Natl Acad Sci U S A 2008; 105:18436-41. [PMID: 19011108 DOI: 10.1073/pnas.0805993105] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sex-lethal (Sxl), the master regulatory gene of Drosophila somatic sex determination, is stably maintained in an on or an off state by autoregulatory control of Sxl premRNA processing. Establishment of the correct Sxl splicing pattern requires the coordinate regulation of two Sxl promoters. The first of these promoters, SxlPe, responds to the female dose of two X chromosomes to produce a pulse of Sxl protein that acts on the premRNA products from the second promoter, SxlPm, to establish the splicing loop. SxlPm is active in both sexes throughout most of development, but nothing is known about how SxlPm is expressed during the transition from X signal assessment to maintenance splicing. We found that SxlPm is activated earlier in females than in males in a range of Drosophila species, and that its expression overlaps briefly with that of SxlPe during the syncytial blastoderm stage. Activation of SxlPm depends on the scute, daughterless, and runt transcription factors, which communicate X chromosome dose to SxlPe, but is independent of the X signal element sisA and the maternal co-repressor groucho. We show that DNA sequences regulating the response of SxlPe to the X chromosome dose also control the sex-differential response of SxlPm. We propose that co-expression of Sxl protein and its premRNA substrate facilitates the transition from transcriptional to splicing control, and that delayed activation of SxlPm in males buffers against the inappropriate activation of Sxl by fluctuations in the strength of the X chromosome signal.
Collapse
|
27
|
Drosophila maternal Hsp83 mRNA destabilization is directed by multiple SMAUG recognition elements in the open reading frame. Mol Cell Biol 2008; 28:6757-72. [PMID: 18794360 DOI: 10.1128/mcb.00037-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SMAUG (SMG) is an RNA-binding protein that functions as a key component of a transcript degradation pathway that eliminates maternal mRNAs in the bulk cytoplasm of activated Drosophila melanogaster eggs. We previously showed that SMG destabilizes maternal Hsp83 mRNA by recruiting the CCR4-NOT deadenylase to trigger decay; however, the cis-acting elements through which this was accomplished were unknown. Here we show that Hsp83 transcript degradation is regulated by a major element, the Hsp83 mRNA instability element (HIE), which maps to a 615-nucleotide region of the open reading frame (ORF). The HIE is sufficient for association of a transgenic mRNA with SMG protein as well as for SMG-dependent destabilization. Although the Hsp83 mRNA is translated in the early embryo, we show that translation of the mRNA is not necessary for destabilization; indeed, the HIE functions even when located in an mRNA's 3' untranslated region. The Hsp83 mRNA contains eight predicted SMG recognition elements (SREs); all map to the ORF, and six reside within the HIE. Mutation of a single amino acid residue that is essential for SMG's interaction with SREs stabilizes endogenous Hsp83 transcripts. Furthermore, simultaneous mutation of all eight predicted SREs also results in transcript stabilization. A plausible model is that the multiple, widely distributed SREs in the ORF enable some SMG molecules to remain bound to the mRNA despite ribosome transit through any individual SRE. Thus, SMG can recruit the CCR4-NOT deadenylase to trigger Hsp83 mRNA degradation despite the fact that it is being translated.
Collapse
|
28
|
Lécuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T, Cerovina T, Hughes TR, Tomancak P, Krause HM. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 2008; 131:174-87. [PMID: 17923096 DOI: 10.1016/j.cell.2007.08.003] [Citation(s) in RCA: 732] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/30/2007] [Accepted: 08/02/2007] [Indexed: 01/01/2023]
Abstract
Although subcellular mRNA trafficking has been demonstrated as a mechanism to control protein distribution, it is generally believed that most protein localization occurs subsequent to translation. To address this point, we developed and employed a high-resolution fluorescent in situ hybridization procedure to comprehensively evaluate mRNA localization dynamics during early Drosophila embryogenesis. Surprisingly, of the 3370 genes analyzed, 71% of those expressed encode subcellularly localized mRNAs. Dozens of new and striking localization patterns were observed, implying an equivalent variety of localization mechanisms. Tight correlations between mRNA distribution and subsequent protein localization and function, indicate major roles for mRNA localization in nucleating localized cellular machineries. A searchable web resource documenting mRNA expression and localization dynamics has been established and will serve as an invaluable tool for dissecting localization mechanisms and for predicting gene functions and interactions.
Collapse
Affiliation(s)
- Eric Lécuyer
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Over 80 years ago, Bridges came to the conclusion that sex inDrosophila is determined by the X:A ratio. Doubts about this hypothesis are raised by taking a molecular look at how--and when--sex is determined.
Collapse
Affiliation(s)
- Helen K Salz
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America.
| |
Collapse
|