1
|
Li Y, Ge L, Ren B, Zhang X, Yin Z, Liu H, Yang Y, Liu Y, Xu H. De-Differentiation of Corneal Epithelial Cells Into Functional Limbal Epithelial Stem Cells After the Ablation of Innate Stem Cells. Invest Ophthalmol Vis Sci 2024; 65:32. [PMID: 39546294 DOI: 10.1167/iovs.65.13.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Purpose Regeneration after tissue injury is often associated with cell fate plasticity, which restores damaged or lost cells. Here, we examined the de-differentiation of corneal epithelial cells (CECs) into functional limbal epithelial stem cells (LESCs) after the ablation of innate stem cells. Methods The regeneration of LESCs after the ablation of innate LESCs was identified by a set of markers: ApoE+/Cx43low/CK12-. CK14-CreERT2 or Slc1a3-CreERT mice were crossed with reporter mice to trace the fate of CECs. YAP-TEAD inhibitor verteporfin (VTP) and LATS inhibitor TRULI were used to examine the role of Hippo/YAP pathway in the de-differentiation of CECs. Results LESCs-ablation cornea showed to be functionally normal, including the maintenance of corneal transparency, prevention of conjunctivalization, and wound healing rate equivalent to that of normal cornea. ApoE+/Cx43low/CK12- LESCs regenerated at the limbus at 6 days after the ablation of innate stem cells, and maintained for at least 6 months. Corneal epithelial lineage tracing showed that CECs migrated back to the limbus after the ablation of innate stem cells, and de-differentiated into active and quiescent LESCs (aLESCs and qLESCs), which participated in corneal epithelial homeostasis and wound healing, respectively, like their innate counterparts. However, when the limbus niche was destroyed by NaOH (1 M, 5 seconds), CECs that occupied the limbus could not de-differentiate into ApoE+/Cx43low/CK12- LESCs and cornea developed into conjunctivalization. In addition, the protein level and activity of YAP increased at the early stage (1-2 days) after the ablation of limbal epithelium, and decreased when the de-differentiation occurred. The YAP-TEAD inhibitor VTP promoted the de-differentiation, whereas LATS inhibitor TRULI inhibited the de-differentiation of CECs. However, the persistent activation of YAP prevented the de-differentiation of CECs after an additional NaOH burn to the limbal stroma, and VTP could not rescue the capacity of CECs to de-differentiate into LESCs. Conclusions These results reveal the de-differentiation of CECs into functional LESCs after the ablation of innate stem cells, and suggest potential role of Hippo/YAP pathway in the de-differentiation of CECs in vivo.
Collapse
Affiliation(s)
- Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Bangqi Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Xue Zhang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Zhiyuan Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Hongling Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yuli Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| |
Collapse
|
2
|
Li S, Sun H, Chen L, Fu Y. Targeting limbal epithelial stem cells: master conductors of corneal epithelial regeneration from the bench to multilevel theranostics. J Transl Med 2024; 22:794. [PMID: 39198892 PMCID: PMC11350997 DOI: 10.1186/s12967-024-05603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
The cornea is the outermost layer of the eye and plays an essential role in our visual system. Limbal epithelial stem cells (LESCs), which are localized to a highly regulated limbal niche, are the master conductors of corneal epithelial regeneration. Damage to LESCs and their niche may result in limbal stem cell deficiency (LSCD), a disease confused ophthalmologists so many years and can lead to corneal conjunctivalization, neovascularization, and even blindness. How to restore the LESCs function is the hot topic for ocular scientists and clinicians around the world. This review introduced LESCs and the niche microenvironment, outlined various techniques for isolating and culturing LESCs used in LSCD research, presented common diseases that cause LSCD, and provided a comprehensive overview of both the diagnosis and multiple treatments for LSCD from basic research to clinical therapies, especially the emerging cell therapies based on various stem cell sources. In addition, we also innovatively concluded the latest strategies in recent years, including exogenous drugs, tissue engineering, nanotechnology, exosome and gene therapy, as well as the ongoing clinical trials for treating LSCD in recent five years. Finally, we highlighted challenges from bench to bedside in LSCD and discussed cutting-edge areas in LSCD therapeutic research. We hope that this review could pave the way for future research and translation on treating LSCD, a crucial step in the field of ocular health.
Collapse
Affiliation(s)
- Shiding Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Hao Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Liangbo Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 639 Zhizaoju Rd, Shanghai, 200011, China.
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 639 Zhizaoju Rd, Shanghai, 200011, China.
| |
Collapse
|
3
|
Na KS, Kim D, Kim H, Koh WG, Lee HJ. The combined effect of epidermal growth factor and keratinocyte growth factor delivered by hyaluronic acid hydrogel on corneal wound healing. Int J Biol Macromol 2024; 270:132365. [PMID: 38750850 DOI: 10.1016/j.ijbiomac.2024.132365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
This study strategically incorporates epidermal growth factor (EGF) and keratinocyte growth factor (KGF) within a hyaluronic acid (HA) hydrogel to enhance corneal wound healing. The controlled release of EGF and KGF from the HA hydrogel is engineered to promote the regeneration of both the epithelial and stromal layers. Specifically, EGF plays a pivotal role in the regeneration of the epithelial layer, while KGF exhibits efficacy in the regeneration of the stromal layer. The combination of these growth factors facilitates efficient regeneration of each layer and demonstrates the capability to modulate each other's regenerative effects. The interplay between EGF and KGF provides an understanding of their cooperative influence on the dynamics of corneal wound healing. The results of this study contribute to the development of advanced strategies for corneal wound management and offer insights into the complex process of corneal regeneration.
Collapse
Affiliation(s)
- Kyung-Sun Na
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, 10 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| | - Dohyun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyewon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Hyun Jong Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
4
|
Jin L, Zhang L, Yan C, Liu M, Dean DC, Liu Y. Corneal injury repair and the potential involvement of ZEB1. EYE AND VISION (LONDON, ENGLAND) 2024; 11:20. [PMID: 38822380 PMCID: PMC11143703 DOI: 10.1186/s40662-024-00387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The cornea, consisting of three cellular and two non-cellular layers, is the outermost part of the eyeball and frequently injured by external physical, chemical, and microbial insults. The epithelial-to-mesenchymal transition (EMT) plays a crucial role in the repair of corneal injuries. Zinc finger E-box binding homeobox 1 (ZEB1), an important transcription factor involved in EMT, is expressed in the corneal tissues. It regulates cell activities like migration, transformation, and proliferation, and thereby affects tissue inflammation, fibrosis, tumor metastasis, and necrosis by mediating various major signaling pathways, including transforming growth factor (TGF)-β. Dysfunction of ZEB1 would impair corneal tissue repair leading to epithelial healing delay, interstitial fibrosis, neovascularization, and squamous cell metaplasia. Understanding the mechanism underlying ZEB1 regulation of corneal injury repair will help us to formulate a therapeutic approach to enhance corneal injury repair.
Collapse
Affiliation(s)
- Lin Jin
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Lijun Zhang
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Chunxiao Yan
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Mengxin Liu
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Douglas C Dean
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Yongqing Liu
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
5
|
Rice G, Farrelly O, Huang S, Kuri P, Curtis E, Ohman L, Li N, Lengner C, Lee V, Rompolas P. Sox9 marks limbal stem cells and is required for asymmetric cell fate switch in the corneal epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588195. [PMID: 38645161 PMCID: PMC11030424 DOI: 10.1101/2024.04.08.588195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Adult tissues with high cellular turnover require a balance between stem cell renewal and differentiation, yet the mechanisms underlying this equilibrium are unclear. The cornea exhibits a polarized lateral flow of progenitors from the peripheral stem cell niche to the center; attributed to differences in cellular fate. To identify genes that are critical for regulating the asymmetric fates of limbal stem cells and their transient amplified progeny in the central cornea, we utilized an in vivo cell cycle reporter to isolate proliferating basal cells across the anterior ocular surface epithelium and performed single-cell transcriptional analysis. This strategy greatly increased the resolution and revealed distinct basal cell identities with unique expression profiles of structural genes and transcription factors. We focused on Sox9; a transcription factor implicated in stem cell regulation across various organs. Sox9 was found to be differentially expressed between limbal stem cells and their progeny in the central corneal. Lineage tracing analysis confirmed that Sox9 marks long-lived limbal stem cells and conditional deletion led to abnormal differentiation and squamous metaplasia in the central cornea. These data suggest a requirement for Sox9 for the switch to asymmetric fate and commitment toward differentiation, as transient cells exit the limbal niche. By inhibiting terminal differentiation of corneal progenitors and forcing them into perpetual symmetric divisions, we replicated the Sox9 loss-of-function phenotype. Our findings reveal an essential role for Sox9 for the spatial regulation of asymmetric fate in the corneal epithelium that is required to sustain tissue homeostasis.
Collapse
|
6
|
Bu J, Guo Y, Wu Y, Zhang R, Zhuang J, Zhao J, Sun L, Quantock AJ, Liu Z, Li W. Models for Meibomian gland dysfunction: In vivo and in vitro. Ocul Surf 2024; 32:154-165. [PMID: 38490475 DOI: 10.1016/j.jtos.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Meibomian gland dysfunction (MGD) is a chronic abnormality of the Meibomian glands (MGs) that is recognized as the leading cause of evaporative dry eye worldwide. Despite its prevalence, however, the pathophysiology of MGD remains elusive, and effective disease management continues to be a challenge. In the past 50 years, different models have been developed to illustrate the pathophysiological nature of MGD and the underlying disease mechanisms. An understanding of these models is crucial if researchers are to select an appropriate model to address specific questions related to MGD and to develop new treatments. Here, we summarize the various models of MGD, discuss their applications and limitations, and provide perspectives for future studies in the field.
Collapse
Affiliation(s)
- Jinghua Bu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Yuli Guo
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yang Wu
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China
| | - Rongrong Zhang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jingbin Zhuang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jiankai Zhao
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Le Sun
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Andrew J Quantock
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Zuguo Liu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian, China
| | - Wei Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian, China.
| |
Collapse
|
7
|
Ludwig M, Birkeland A, Smith J, Gensterblum-Miller E, Zhai JI, Kulkarni A, Jiang H, Brenner C. A Genome Wide CRISPR Pro filing Approach Identi fies Mechanisms of Cisplatin Resistance in Head and Neck Squamous Cell Carcinoma. RESEARCH SQUARE 2024:rs.3.rs-3922565. [PMID: 38464196 PMCID: PMC10925415 DOI: 10.21203/rs.3.rs-3922565/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a lethal disease with poor survival rates, especially for cancers arising in the oral cavity or larynx. Cisplatin is a key chemotherapeutic for HNSCC; however poor survival rates may be partially due to cisplatin resistance observed in some HNSCCs. Here, we examined the utility of genome-wide CRISPR knockout profiling for nominating pivotal mechanisms of cisplatin resistance in HNSCC models. Methods We characterized the cisplatin sensitivity of 18 HNSCC cell lines. Next, we used a genome-wide CRISPR/Cas9 library to identify genes involved in cisplatin resistance. We next performed validation assays in the UM-SCC-49 cell line model. Results Our data prioritized 207 genes as pivotal for cisplatin resistance in HNSCC, including novel genes VGLL3, CIRHA1, NCOR1, SPANXA1, MAP2K7, ULK1, and CDK16. Gene set enrichment analysis identified several NOTCH family genes comprising the top pathway driving cisplatin resistance, which we then validated using a targeted NOTCH1 knockout model. Interestingly, we noted that HNSCC models with natural NOTCH pathway alterations including single allele mutations and/or frameshift alterations had diverse responses to cisplatin treatment suggesting that complex and multi-faceted mechanisms contribute to cisplatin resistance in HNSCC. Conclusions Collectively, our study validates a genome-wide CRISPR/Cas9 approach for the discovery of resistance mechanisms in HNSCC, adds to the growing evidence that NOTCH1 status should be evaluated as a biomarker of cisplatin response and provides a framework for future work aimed at overcoming cisplatin resistance.
Collapse
|
8
|
Wang B, Guo H, Han Z, Wu S, Liu J, Lin Z, An F, Zhu J, Li M. NRG1 Regulates Proliferation, Migration and Differentiation of Human Limbal Epithelial Stem Cells. Curr Issues Mol Biol 2023; 45:10121-10130. [PMID: 38132478 PMCID: PMC10742012 DOI: 10.3390/cimb45120632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Limbal epithelial stem/progenitor cells (LESCs) proliferate, migrate and differentiate into mature corneal epithelium cells (CECs) that cover the ocular surface. LESCs play a crucial role in the maintenance and regeneration of the corneal epithelium, and their dysfunction can lead to various corneal diseases. Neuregulin 1 (NRG1) is a member of the epidermal growth factor family that regulates the growth and differentiation of epithelial tissues. Here, we depicted the dynamic transcriptomic profiles during human CEC differentiation, identifying six gene co-expression modules that were specific to different differentiation stages. We found that the expression of NRG1 was high in human LESCs and decreased dramatically upon differentiation. Knockdown of NRG1 significantly inhibited LESC proliferation and upregulated the expression of the terminal differentiation marker genes KRT3, KRT12 and CLU. In addition, the scratch wound closure assay showed that knockdown of NRG1 attenuated wound closure of LESCs over 24 h. Together, we dissected the transcriptional regulatory dynamics during CEC differentiation and identified NRG1 as a key regulator that promoted LESC proliferation and migration and maintained the undifferentiated state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (B.W.); (Z.H.)
| |
Collapse
|
9
|
Altshuler A, Amitai-Lange A, Nasser W, Dimri S, Bhattacharya S, Tiosano B, Barbara R, Aberdam D, Shimmura S, Shalom-Feuerstein R. Eyes open on stem cells. Stem Cell Reports 2023; 18:2313-2327. [PMID: 38039972 PMCID: PMC10724227 DOI: 10.1016/j.stemcr.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/03/2023] Open
Abstract
Recently, the murine cornea has reemerged as a robust stem cell (SC) model, allowing individual SC tracing in living animals. The cornea has pioneered seminal discoveries in SC biology and regenerative medicine, from the first corneal transplantation in 1905 to the identification of limbal SCs and their transplantation to successfully restore vision in the early 1990s. Recent experiments have exposed unexpected properties attributed to SCs and progenitors and revealed flexibility in the differentiation program and a key role for the SC niche. Here, we discuss the limbal SC model and its broader relevance to other tissues, disease, and therapy.
Collapse
Affiliation(s)
- Anna Altshuler
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| | - Aya Amitai-Lange
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Waseem Nasser
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Shalini Dimri
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Swarnabh Bhattacharya
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Beatrice Tiosano
- Department of Ophthalmology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Ramez Barbara
- Department of Ophthalmology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Daniel Aberdam
- Université Paris-Cité, INSERM U1138, Centre des Cordeliers, 75270 Paris, France
| | - Shigeto Shimmura
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Tokyo, Japan
| | - Ruby Shalom-Feuerstein
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
10
|
Yang Y, Zhong J, Cui D, Jensen LD. Up-to-date molecular medicine strategies for management of ocular surface neovascularization. Adv Drug Deliv Rev 2023; 201:115084. [PMID: 37689278 DOI: 10.1016/j.addr.2023.115084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Ocular surface neovascularization and its resulting pathological changes significantly alter corneal refraction and obstruct the light path to the retina, and hence is a major cause of vision loss. Various factors such as infection, irritation, trauma, dry eye, and ocular surface surgery trigger neovascularization via angiogenesis and lymphangiogenesis dependent on VEGF-related and alternative mechanisms. Recent advances in antiangiogenic drugs, nanotechnology, gene therapy, surgical equipment and techniques, animal models, and drug delivery strategies have provided a range of novel therapeutic options for the treatment of ocular surface neovascularization. In this review article, we comprehensively discuss the etiology and mechanisms of corneal neovascularization and other types of ocular surface neovascularization, as well as emerging animal models and drug delivery strategies that facilitate its management.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Junmu Zhong
- Department of Ophthalmology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Dongmei Cui
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Lasse D Jensen
- Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
11
|
Portal C, Lin Y, Rastogi V, Peterson C, Yiu SCH, Foster JW, Wilkerson A, Butovich IA, Iomini C. Primary cilia control cellular patterning of Meibomian glands during morphogenesis but not lipid composition. Commun Biol 2023; 6:282. [PMID: 36932132 PMCID: PMC10023665 DOI: 10.1038/s42003-023-04632-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Meibomian glands (MGs) are modified sebaceous glands producing the tear film's lipids. Despite their critical role in maintaining clear vision, the mechanisms underlying MG morphogenesis in development and disease remain obscure. Cilia-mediate signals are critical for the development of skin adnexa, including sebaceous glands. Thus, we investigated the role of cilia in MG morphogenesis during development. Most cells were ciliated during early MG development, followed by cilia disassembly during differentiation. In mature glands, ciliated cells were primarily restricted to the basal layer of the proximal gland central duct. Cilia ablation in keratine14-expressing tissue disrupted the accumulation of proliferative cells at the distal tip but did not affect the overall rate of proliferation or apoptosis. Moreover, impaired cellular patterning during elongation resulted in hypertrophy of mature MGs with increased meibum volume without altering its lipid composition. Thus, cilia signaling networks provide a new platform to design therapeutic treatments for MG dysfunction.
Collapse
Affiliation(s)
- Céline Portal
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Yvonne Lin
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Varuni Rastogi
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Cornelia Peterson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Samuel Chi-Hung Yiu
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - James W Foster
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Amber Wilkerson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Igor A Butovich
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Carlo Iomini
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| |
Collapse
|
12
|
Wang Y, Di G, Zhang K, Bai Y, Cao X, Zhao H, Wang D, Chen P. Loss of aquaporin 5 contributes to the corneal epithelial pathogenesis via Wnt/β-catenin pathway. FASEB J 2023; 37:e22776. [PMID: 36688817 DOI: 10.1096/fj.202201503r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/08/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023]
Abstract
AQP5 plays a crucial role in maintaining corneal transparency and the barrier function of the cornea. Here, we found that in the corneas of Aqp5-/- mice at older than 6 months, loss of AQP5 significantly increased corneal neovascularization, inflammatory cell infiltration, and corneal haze. The results of immunofluorescence staining showed that upregulation of K1, K10, and K14, and downregulation of K12 and Pax6 were detected in Aqp5-/- cornea and primary corneal epithelial cells. Loss of AQP5 aggravated wound-induced corneal neovascularization, inflammation, and haze. mRNA sequencing, western blotting, and qRT-PCR showed that Wnt2 and Wnt6 were significantly decreased in Aqp5-/- corneas and primary corneal epithelial cells, accompanied by decreased aggregation in the cytoplasm and nucleus of β-catenin. IIIC3 significantly suppressed corneal neovascularization, inflammation, haze, and maintained corneal transparent epithelial in Aqp5-/- corneas. We also found that pre-stimulated Aqp5-/- primary corneal epithelial cells with IIIC3 caused the decreased expression of K1, K10, and K14, the increased expression of K12, Pax6, and increased aggregation in the cytoplasm and nucleus of β-catenin. These findings revealed that AQP5 may regulate corneal epithelial homeostasis and function through the Wnt/β-catenin signaling pathway. Together, we uncovered a possible role of AQP5 in determining corneal epithelial cell fate and providing a potential therapeutic target for corneal epithelial dysfunction.
Collapse
Affiliation(s)
- Yihui Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guohu Di
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kaier Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ying Bai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xin Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui Zhao
- The 971 Hospital of the Chinese People's Liberation Army Navy, Qingdao, China
| | - Dianqiang Wang
- Department of Ophthalmology, Qingdao Aier Eye Hospital, Qingdao, China
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Di Girolamo N, Park M. Cell identity changes in ocular surface Epithelia. Prog Retin Eye Res 2022:101148. [DOI: 10.1016/j.preteyeres.2022.101148] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
|
14
|
Park M, Zhang R, Pandzic E, Sun M, Coulson-Thomas VJ, Di Girolamo N. Plasticity of ocular surface epithelia: Using a murine model of limbal stem cell deficiency to delineate metaplasia and transdifferentiation. Stem Cell Reports 2022; 17:2451-2466. [DOI: 10.1016/j.stemcr.2022.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
|
15
|
Altshuler A, Wickström SA, Shalom-Feuerstein R. Spotlighting adult stem cells: advances, pitfalls, and challenges. Trends Cell Biol 2022; 33:477-494. [PMID: 36270939 DOI: 10.1016/j.tcb.2022.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
The existence of stem cells (SCs) at the tip of the cellular differentiation hierarchy has fascinated the scientific community ever since their discovery in the early 1950s to 1960s. Despite the remarkable success of the SC theory and the development of SC-based treatments, fundamental features of SCs remain enigmatic. Recent advances in single-cell lineage tracing, live imaging, and genomic technologies have allowed capture of life histories and transcriptional signatures of individual cells, leaving SCs much less space to 'hide'. Focusing on epithelial SCs and comparing them to other SCs, we discuss new paradigms of the SC niche, dynamics, and pathology, highlighting key open questions in SC biology that need to be resolved for harnessing SC potential in regenerative medicine.
Collapse
|
16
|
Biswas S, Shafiquzzaman M, Yu G, Li P, Yu Q, Zhao P, Li B, Li J. Notch1 signaling in keratocytes maintains corneal transparency by suppressing VEGF expression. Stem Cell Reports 2022; 17:1442-1457. [PMID: 35623350 PMCID: PMC9214072 DOI: 10.1016/j.stemcr.2022.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
The cornea fends off chemicals, dirt, and infectious particles and provides most of the eye's focusing power. Corneal transparency is of paramount importance to normal vision, yet how it is established and maintained remains unclear. Here, we ablated Notch1 in keratocytes using Twist2-Cre mice and found that Twist2-Cre; Notch1f/f mice developed stroma expansion and neovascularization, followed by hyperproliferation and metaplasia of corneal epithelial progenitor cells and plaque formation at central cornea, leading to loss of transparency. Development of these phenotypes does not involve bacteria-caused inflammation; instead, Notch1 deletion upregulates Vegfa and Vegfc via Hif1α in keratocytes. Vascular endothelial growth factor (VEGF) receptor inhibitor axitinib prevented development of these anomalies in Twist2-Cre; Notch1f/f mice, suggesting that VEGFs secreted by keratocytes promote not only neovascularization but also proliferation and metaplasia of epithelial progenitor cells at central cornea. This study uncovers a Notch1-Hif1α-VEGF pathway in keratocytes that maintains corneal transparency and represents a potential target for treatment of related corneal disorders.
Collapse
Affiliation(s)
- Soma Biswas
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Md Shafiquzzaman
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Guo Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; Institute of Traditional Chinese Medicine and Stem Cell Research, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Aniridia-related keratopathy relevant cell signaling pathways in human fetal corneas. Histochem Cell Biol 2022; 158:169-180. [PMID: 35551459 PMCID: PMC9338123 DOI: 10.1007/s00418-022-02099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 11/26/2022]
Abstract
We aimed to study aniridia-related keratopathy (ARK) relevant cell signaling pathways [Notch1, Wnt/β-catenin, Sonic hedgehog (SHH) and mTOR] in normal human fetal corneas compared with normal human adult corneas and ARK corneas. We found that fetal corneas at 20 weeks of gestation (wg) and normal adult corneas showed similar staining patterns for Notch1; however 10–11 wg fetal corneas showed increased presence of Notch1. Numb and Dlk1 had an enhanced presence in the fetal corneas compared with the adult corneas. Fetal corneas showed stronger immunolabeling with antibodies against β-catenin, Wnt5a, Wnt7a, Gli1, Hes1, p-rpS6, and mTOR when compared with the adult corneas. Gene expression of Notch1, Wnt5A, Wnt7A, β-catenin, Hes1, mTOR, and rps6 was higher in the 9–12 wg fetal corneas compared with adult corneas. The cell signaling pathway differences found between human fetal and adult corneas were similar to those previously found in ARK corneas with the exception of Notch1. Analogous profiles of cell signaling pathway activation between human fetal corneas and ARK corneas suggests that there is a less differentiated host milieu in ARK.
Collapse
|
18
|
Yang C, Pan J, Luo X, Li J, Jiang Z. Hypoxia-induced mesenchymal stem cells inhibit corneal fibroblast proliferation by regulating the WWP2/Notch1 axis. Regen Med 2022; 17:375-388. [PMID: 35545948 DOI: 10.2217/rme-2021-0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study aimed to explore the role of hypoxic mesenchymal stem cells (MSCs) in corneal alkali burns and the underlying mechanism. Materials & methods: Rat corneal fibroblasts were incubated with IL-6, followed by treatment with hypoxic MSC supernatant. A rat corneal alkali burn model was implemented and processed with hypoxic MSCs. The associated factors were detected by corresponding methods. Results: Hypoxic MSCs reduced the Notch1 level and the proliferation of rat corneal fibroblasts. Hypoxic MSCs or WWP2 overexpression in MSCs enhanced ubiquitination of Notch1. WWP2 interacted with Notch1, and WWP2 silencing reversed the effects of the hypoxic MSCs. Hypoxic MSC treatment in vivo decreased the corneal neovascularization scores and opacity scores. Conclusion: Hypoxic MSCs inhibited inflammation and alleviated corneal injury in alkali burns via the WWP2/Notch1 axis.
Collapse
Affiliation(s)
- Chongmeng Yang
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325000, China
| | - Jian Pan
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325000, China
| | - Xu Luo
- Burn & Wound Healing Centre, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.,Wound Repair Department, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Jianmin Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325000, China
| | - Zipei Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
19
|
Thulabandu V, Ferguson JW, Phung M, Atit RP. EZH2 modulates retinoic acid signaling to ensure myotube formation during development. FEBS Lett 2022; 596:1672-1685. [PMID: 35294045 DOI: 10.1002/1873-3468.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 11/09/2022]
Abstract
Sequential differentiation of pre-somitic progenitors into myocytes and subsequently into myotubes and myofibers is essential for the myogenic differentiation program (MDP) crucial for muscle development. Signaling factors involved in MDP are Polycomb Repressive Complex 2 (PRC2) targets in various developmental contexts. PRC2 is active in the developing myotomes during MDP, but how it regulates MDP is unclear. Here, we found that myocyte differentiation to myotubes requires Enhancer of Zeste 2 (EZH2), the catalytic component of PRC2. We observed elevated retinoic-acid (RA) signaling in the prospective myocytes in the Ezh2 mutants (E8.5-MusEzh2 ), and its inhibition can partially rescue the myocyte differentiation defect. Together, our data demonstrate a new role for PRC2-EZH2 during myocyte differentiation into myotubes by modulating RA signaling.
Collapse
Affiliation(s)
- Venkata Thulabandu
- Dept. of Biology, Case Western Reserve University, Cleveland, Ohio, U.S.A
| | - James W Ferguson
- Dept. of Biology, Case Western Reserve University, Cleveland, Ohio, U.S.A
| | - Melissa Phung
- Dept. of Biology, Case Western Reserve University, Cleveland, Ohio, U.S.A
| | - Radhika P Atit
- Dept. of Biology, Case Western Reserve University, Cleveland, Ohio, U.S.A.,Dept. of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, U.S.A.,Dept. of Dermatology, Case Western Reserve University, Cleveland, Ohio, U.S.A
| |
Collapse
|
20
|
Comprehensive 3D epigenomic maps define limbal stem/progenitor cell function and identity. Nat Commun 2022; 13:1293. [PMID: 35277509 PMCID: PMC8917218 DOI: 10.1038/s41467-022-28966-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
The insights into how genome topology couples with epigenetic states to govern the function and identity of the corneal epithelium are poorly understood. Here, we generate a high-resolution Hi-C interaction map of human limbal stem/progenitor cells (LSCs) and show that chromatin multi-hierarchical organisation is coupled to gene expression. By integrating Hi-C, epigenome and transcriptome data, we characterize the comprehensive 3D epigenomic landscapes of LSCs. We find that super-silencers mediate gene repression associated with corneal development, differentiation and disease via chromatin looping and/or proximity. Super-enhancer (SE) interaction analysis identified a set of SE interactive hubs that contribute to LSC-specific gene activation. These active and inactive element-anchored loop networks occur within the cohesin-occupied CTCF-CTCF loops. We further reveal a coordinated regulatory network of core transcription factors based on SE-promoter interactions. Our results provide detailed insights into the genome organization principle for epigenetic regulation of gene expression in stratified epithelia. Genome topology provides a structural basis for epigenome-mediated transcriptional regulation in eukaryotes. Here the authors characterized the 3D genome of stratified squamous epithelia. They generated a Hi-C map of human limbal stem/progenitor cells (LSCs) and integrated these data with epigenomics, transcription factor binding maps, and transcriptome data.
Collapse
|
21
|
Portal C, Wang Z, Scott DK, Wolosin JM, Iomini C. The c-Myc Oncogene Maintains Corneal Epithelial Architecture at Homeostasis, Modulates p63 Expression, and Enhances Proliferation During Tissue Repair. Invest Ophthalmol Vis Sci 2022; 63:3. [PMID: 35103750 PMCID: PMC8822362 DOI: 10.1167/iovs.63.2.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The transcription factor c-Myc (Myc) plays central regulatory roles in both self-renewal and differentiation of progenitors of multiple cell lineages. Here, we address its function in corneal epithelium (CE) maintenance and repair. Methods Myc ablation in the limbal–corneal epithelium was achieved by crossing a floxed Myc mouse allele (Mycfl/fl) with a mouse line expressing the Cre recombinase gene under the keratin (Krt) 14 promoter. CE stratification and protein localization were assessed by histology of paraffin and plastic sections and by immunohistochemistry of frozen sections, respectively. Protein levels and gene expression were determined by western blot and real-time quantitative PCR, respectively. CE wound closure was tracked by fluorescein staining. Results At birth, mutant mice appeared indistinguishable from control littermates; however, their rates of postnatal weight gain were 67% lower than those of controls. After weaning, mutants also exhibited spontaneous skin ulcerations, predominantly in the tail and lower lip, and died 45 to 60 days after birth. The mutant CE displayed an increase in stratal thickness, increased levels of Krt12 in superficial cells, and decreased exfoliation rates. Accordingly, the absence of Myc perturbed protein and mRNA levels of genes modulating differentiation and proliferation processes, including ΔNp63β, Ets1, and two Notch target genes, Hey1 and Maml1. Furthermore, Myc promoted CE wound closure and wound-induced hyperproliferation. Conclusions Myc regulates the balance among CE stratification, differentiation, and surface exfoliation and promotes the transition to the hyperproliferative state during wound healing. Its effect on this balance may be exerted through the control of multiple regulators of cell fate, including isoforms of tumor protein p63.
Collapse
Affiliation(s)
- Céline Portal
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Zheng Wang
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Donald K Scott
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - J Mario Wolosin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Carlo Iomini
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
22
|
Chang MS, Azin M, Demehri S. Cutaneous Squamous Cell Carcinoma: The Frontier of Cancer Immunoprevention. ANNUAL REVIEW OF PATHOLOGY 2022; 17:101-119. [PMID: 35073167 DOI: 10.1146/annurev-pathol-042320-120056] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common cancer, with its incidence rising steeply. Immunosuppression is a well-established risk factor for cSCC, and this risk factor highlights the critical role of the immune system in regulating cSCC development and progression. Further highlighting the nature of cSCC as an immunological disorder, substantial evidence demonstrates a tight association between cSCC risk and age-related immunosenescence. Besides the proven efficacy of immune checkpoint blockade therapy for advanced cSCC, novel immunotherapy that targets cSCC precursor lesions has shown efficacy for cSCC prevention. Furthermore, the appreciation of the interplay between keratinocytes, commensal papillomaviruses, and the immune system has revealed the possibility for the development of a preventive cSCC vaccine. cSCC shares fundamental aspects of its origin and pathogenesis with mucosal SCCs. Therefore, advances in the field of cSCC immunoprevention will inform our approach to the management of mucosal SCCs and potentially other epithelial cancers.
Collapse
Affiliation(s)
| | - Marjan Azin
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Shadmehr Demehri
- Harvard Medical School, Boston, Massachusetts 02115, USA; .,Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
23
|
Robertson SYT, Roberts JS, Deng SX. Regulation of Limbal Epithelial Stem Cells: Importance of the Niche. Int J Mol Sci 2021; 22:11975. [PMID: 34769405 PMCID: PMC8584795 DOI: 10.3390/ijms222111975] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Limbal epithelial stem/progenitor cells (LSCs) reside in a niche that contains finely tuned balances of various signaling pathways including Wnt, Notch, BMP, Shh, YAP, and TGFβ. The activation or inhibition of these pathways is frequently dependent on the interactions of LSCs with various niche cell types and extracellular substrates. In addition to receiving molecular signals from growth factors, cytokines, and other soluble molecules, LSCs also respond to their surrounding physical structure via mechanotransduction, interaction with the ECM, and interactions with other cell types. Damage to LSCs or their niche leads to limbal stem cell deficiency (LSCD). The field of LSCD treatment would greatly benefit from an understanding of the molecular regulation of LSCs in vitro and in vivo. This review synthesizes current literature around the niche factors and signaling pathways that influence LSC function. Future development of LSCD therapies should consider all these niche factors to achieve improved long-term restoration of the LSC population.
Collapse
Affiliation(s)
| | | | - Sophie X. Deng
- Jules Stein Eye Institute, University of California, Los Angeles, CA 94143, USA; (S.Y.T.R.); (J.S.R.)
| |
Collapse
|
24
|
Bonnet C, González S, Roberts JS, Robertson SYT, Ruiz M, Zheng J, Deng SX. Human limbal epithelial stem cell regulation, bioengineering and function. Prog Retin Eye Res 2021; 85:100956. [PMID: 33676006 PMCID: PMC8428188 DOI: 10.1016/j.preteyeres.2021.100956] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
The corneal epithelium is continuously renewed by limbal stem/progenitor cells (LSCs), a cell population harbored in a highly regulated niche located at the limbus. Dysfunction and/or loss of LSCs and their niche cause limbal stem cell deficiency (LSCD), a disease that is marked by invasion of conjunctival epithelium into the cornea and results in failure of epithelial wound healing. Corneal opacity, pain, loss of vision, and blindness are the consequences of LSCD. Successful treatment of LSCD depends on accurate diagnosis and staging of the disease and requires restoration of functional LSCs and their niche. This review highlights the major advances in the identification of potential LSC biomarkers and components of the LSC niche, understanding of LSC regulation, methods and regulatory standards in bioengineering of LSCs, and diagnosis and staging of LSCD. Overall, this review presents key points for researchers and clinicians alike to consider in deepening the understanding of LSC biology and improving LSCD therapies.
Collapse
Affiliation(s)
- Clémence Bonnet
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA; Cornea Department, Paris University, Cochin Hospital, AP-HP, F-75014, Paris, France
| | - Sheyla González
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - JoAnn S Roberts
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Sarah Y T Robertson
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Maxime Ruiz
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jie Zheng
- Basic Science Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Sophie X Deng
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
25
|
Tchegnon E, Liao CP, Ghotbi E, Shipman T, Wang Y, McKay RM, Le LQ. Epithelial stem cell homeostasis in Meibomian gland development, dysfunction, and dry eye disease. JCI Insight 2021; 6:e151078. [PMID: 34499624 PMCID: PMC8564894 DOI: 10.1172/jci.insight.151078] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Dry eye disease affects over 16 million adults in the US, and the majority of cases are due to Meibomian gland dysfunction. Unfortunately, the identity of the stem cells involved in Meibomian gland development and homeostasis is not well elucidated. Here, we report that loss of Krox20, a zinc finger transcription factor involved in the development of ectoderm-derived tissues, or deletion of KROX20-expressing epithelial cells disrupted Meibomian gland formation and homeostasis, leading to dry eye disease secondary to Meibomian gland dysfunction. Ablation of Krox20-lineage cells in adult mice also resulted in dry eye disease, implicating Krox20 in homeostasis of the mature Meibomian gland. Lineage-tracing and expression analyses revealed a restricted KROX20 expression pattern in the ductal areas of the Meibomian gland, although Krox20-lineage cells generate the full, mature Meibomian gland. This suggests that KROX20 marks a stem/progenitor cell population that differentiates to generate the entire Meibomian gland. Our Krox20 mouse models provide a powerful system that delineated the identity of stem cells required for Meibomian gland development and homeostasis and can be used to investigate the factors underlying these processes. They are also robust models of Meibomian gland dysfunction-related dry eye disease, with a potential for use in preclinical therapeutic screening.
Collapse
Affiliation(s)
- Edem Tchegnon
- Department of Dermatology and.,Genetics, Development and Disease Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chung-Ping Liao
- Department of Dermatology and.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | - Lu Q Le
- Department of Dermatology and.,Genetics, Development and Disease Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Hamon Center for Regenerative Science and Medicine.,Simmons Comprehensive Cancer Center, and.,O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
26
|
Yu Q, Biswas S, Ma G, Zhao P, Li B, Li J. Canonical NF-κB signaling maintains corneal epithelial integrity and prevents corneal aging via retinoic acid. eLife 2021; 10:e67315. [PMID: 34085926 PMCID: PMC8192125 DOI: 10.7554/elife.67315] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Disorders of the transparent cornea affect millions of people worldwide. However, how to maintain and/or regenerate this organ remains unclear. Here, we show that Rela (encoding a canonical NF-κB subunit) ablation in K14+ corneal epithelial stem cells not only disrupts corneal regeneration but also results in age-dependent epithelial deterioration, which triggers aberrant wound-healing processes including stromal remodeling, neovascularization, epithelial metaplasia, and plaque formation at the central cornea. These anomalies are largely recapitulated in normal mice that age naturally. Mechanistically, Rela deletion suppresses expression of Aldh1a1, an enzyme required for retinoic acid synthesis from vitamin A. Retinoic acid administration blocks development of ocular anomalies in Krt14-Cre; Relaf/f mice and naturally aged mice. Moreover, epithelial metaplasia and plaque formation are preventable by inhibition of angiogenesis. This study thus uncovers the major mechanisms governing corneal maintenance, regeneration, and aging and identifies the NF-κB-retinoic acid pathway as a therapeutic target for corneal disorders.
Collapse
MESH Headings
- Age Factors
- Aldehyde Dehydrogenase 1 Family/genetics
- Aldehyde Dehydrogenase 1 Family/metabolism
- Animals
- Burns, Chemical/drug therapy
- Burns, Chemical/etiology
- Burns, Chemical/metabolism
- Burns, Chemical/pathology
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Cellular Senescence/drug effects
- Corneal Neovascularization/metabolism
- Corneal Neovascularization/pathology
- Corneal Neovascularization/prevention & control
- Corneal Stroma/drug effects
- Corneal Stroma/metabolism
- Corneal Stroma/pathology
- Disease Models, Animal
- Epithelium, Corneal/drug effects
- Epithelium, Corneal/metabolism
- Epithelium, Corneal/pathology
- Eye Burns/chemically induced
- Eye Burns/drug therapy
- Eye Burns/metabolism
- Eye Burns/pathology
- Mice, Knockout
- Regeneration/drug effects
- Retinal Dehydrogenase/genetics
- Retinal Dehydrogenase/metabolism
- Signal Transduction
- Stem Cells/drug effects
- Stem Cells/metabolism
- Stem Cells/pathology
- Transcription Factor RelA/genetics
- Transcription Factor RelA/metabolism
- Tretinoin/pharmacology
- Mice
Collapse
Affiliation(s)
- Qian Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| | - Soma Biswas
- Department of Ophthalmology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gang Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
- Institute of Traditional Chinese Medicine and Stem Cell Research, School of Basic Medicine, Chengdu University of Traditional Chinese MedicineChengduChina
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
27
|
Li Y, Ge L, Chen X, Mao Y, Gu X, Ren B, Zeng Y, Chen M, Chen S, Liu J, Yang Y, Xu H. The common YAP activation mediates corneal epithelial regeneration and repair with different-sized wounds. NPJ Regen Med 2021; 6:16. [PMID: 33772031 PMCID: PMC7997881 DOI: 10.1038/s41536-021-00126-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/01/2021] [Indexed: 02/01/2023] Open
Abstract
Regeneration/repair after injury can be endowed by adult stem cells (ASCs) or lineage restricted and even terminally differentiated cells. In corneal epithelium, regeneration after a large wound depends on ASCs (limbal epithelial stem cells, LESCs), whereas repair after a small wound is LESCs-independent. Here, using rat corneal epithelial wounds with different sizes, we show that YAP activation promotes the activation and expansion of LESCs after a large wound, as well as the reprogramming of local epithelial cells (repairing epithelial cells) after a small wound, which contributes to LESCs-dependent and -independent wound healing, respectively. Mechanically, we highlight that the reciprocal regulation of YAP activity and the assembly of cell junction and cortical F-actin cytoskeleton accelerates corneal epithelial healing with different-sized wounds. Together, the common YAP activation and the underlying regulatory mechanism are harnessed by LESCs and lineage-restricted epithelial cells to cope with corneal epithelial wounds with different sizes.
Collapse
Affiliation(s)
- Yijian Li
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Lingling Ge
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xia Chen
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China ,grid.263906.8Southwest University, Chongqing, China
| | - Yumei Mao
- grid.449525.b0000 0004 1798 4472North Sichuan Medical College, Sichuan, China
| | - Xianliang Gu
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Bangqi Ren
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yuxiao Zeng
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Min Chen
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Siyu Chen
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jinhua Liu
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yuli Yang
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Haiwei Xu
- grid.410570.70000 0004 1760 6682Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China ,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| |
Collapse
|
28
|
Li M, Huang H, Li L, He C, Zhu L, Guo H, Wang L, Liu J, Wu S, Liu J, Xu T, Mao Z, Cao N, Zhang K, Lan F, Ding J, Yuan J, Liu Y, Ouyang H. Core transcription regulatory circuitry orchestrates corneal epithelial homeostasis. Nat Commun 2021; 12:420. [PMID: 33462242 PMCID: PMC7814021 DOI: 10.1038/s41467-020-20713-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022] Open
Abstract
Adult stem cell identity, plasticity, and homeostasis are precisely orchestrated by lineage-restricted epigenetic and transcriptional regulatory networks. Here, by integrating super-enhancer and chromatin accessibility landscapes, we delineate core transcription regulatory circuitries (CRCs) of limbal stem/progenitor cells (LSCs) and find that RUNX1 and SMAD3 are required for maintenance of corneal epithelial identity and homeostasis. RUNX1 or SMAD3 depletion inhibits PAX6 and induces LSCs to differentiate into epidermal-like epithelial cells. RUNX1, PAX6, and SMAD3 (RPS) interact with each other and synergistically establish a CRC to govern the lineage-specific cis-regulatory atlas. Moreover, RUNX1 shapes LSC chromatin architecture via modulating H3K27ac deposition. Disturbance of RPS cooperation results in cell identity switching and dysfunction of the corneal epithelium, which is strongly linked to various human corneal diseases. Our work highlights CRC TF cooperativity for establishment of stem cell identity and lineage commitment, and provides comprehensive regulatory principles for human stratified epithelial homeostasis and pathogenesis. Corneal epithelium shares similar molecular signatures to other stratified epithelia. Here, the authors map super-enhancers and accessible chromatin in corneal epithelium, identifying a transcription regulatory circuit, including RUNX1, PAX6, and SMAD3, required for corneal epithelial identity and homeostasis.
Collapse
Affiliation(s)
- Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lingyu Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Chenxi He
- Key Laboratory of Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences; Liver Cancer Institute, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Liqiong Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Jingxin Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Tao Xu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Zhen Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Nan Cao
- Program of Stem Cells and Regenerative Medicine, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
| | - Kang Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China.,Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Fei Lan
- Key Laboratory of Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences; Liver Cancer Institute, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Junjun Ding
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China. .,Research Units of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China.
| |
Collapse
|
29
|
Tidu A, Schanne-Klein MC, Borderie VM. Development, structure, and bioengineering of the human corneal stroma: A review of collagen-based implants. Exp Eye Res 2020; 200:108256. [PMID: 32971095 DOI: 10.1016/j.exer.2020.108256] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/15/2023]
Abstract
Bio-engineering technologies are currently used to produce biomimetic artificial corneas that should present structural, chemical, optical, and biomechanical properties close to the native tissue. These properties are mainly supported by the corneal stroma which accounts for 90% of corneal thickness and is mainly made of collagen type I. The stromal collagen fibrils are arranged in lamellae that have a plywood-like organization. The fibril diameter is between 25 and 35 nm and the interfibrillar space about 57 nm. The number of lamellae in the central stroma is estimated to be 300. In the anterior part, their size is 10-40 μm. They appear to be larger in the posterior part of the stroma with a size of 60-120 μm. Their thicknesses also vary from 0.2 to 2.5 μm. During development, the acellular corneal stroma, which features a complex pattern of organization, serves as a scaffold for mesenchymal cells that invade and further produce the cellular stroma. Several pathways including Bmp4, Wnt/β-catenin, Notch, retinoic acid, and TGF-β, in addition to EFTFs including the mastering gene Pax-6, are involved in corneal development. Besides, retinoic acid and TGF- β seem to have a crucial role in the neural crest cell migration in the stroma. Several technologies can be used to produce artificial stroma. Taking advantage of the liquid-crystal properties of acid-soluble collagen, it is possible to produce transparent stroma-like matrices with native-like collagen I fibrils and plywood-like organization, where epithelial cells can adhere and proliferate. Other approaches include the use of recombinant collagen, cross-linkers, vitrification, plastically compressed collagen or magnetically aligned collagen, providing interesting optical and mechanical properties. These technologies can be classified according to collagen type and origin, presence of telopeptides and native-like fibrils, structure, and transparency. Collagen matrices feature transparency >80% for the appropriate 500-μm thickness. Non-collagenous matrices made of biopolymers including gelatin, silk, or fish scale have been developed which feature interesting properties but are less biomimetic. These bioengineered matrices still need to be colonized by stromal cells to fully reproduce the native stroma.
Collapse
Affiliation(s)
- Aurélien Tidu
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Centre Hospitalier, National d'Ophtalmologie des 15-20, 75571, Paris, France; Groupe de Recherche Clinique 32, Sorbonne Université, Paris, France
| | - Marie-Claire Schanne-Klein
- Laboratory for Optics and Biosciences, LOB, Ecole Polytechnique, CNRS, Inserm, Université Paris-Saclay, 91128, Palaiseau, France
| | - Vincent M Borderie
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Centre Hospitalier, National d'Ophtalmologie des 15-20, 75571, Paris, France; Groupe de Recherche Clinique 32, Sorbonne Université, Paris, France.
| |
Collapse
|
30
|
Resveratrol Rescues Human Corneal Epithelial Cells Cultured in Hyperosmolar Conditions: Potential for Dry Eye Disease Treatment. Cornea 2020; 39:1520-1532. [DOI: 10.1097/ico.0000000000002495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
González S, Halabi M, Ju D, Tsai M, Deng SX. Role of Jagged1-mediated Notch Signaling Activation in the Differentiation and Stratification of the Human Limbal Epithelium. Cells 2020; 9:cells9091945. [PMID: 32842657 PMCID: PMC7564045 DOI: 10.3390/cells9091945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
The Notch signaling pathway plays a key role in proliferation and differentiation. We investigated the effect of Jagged 1 (Jag1)-mediated Notch signaling activation in the human limbal stem/progenitor cell (LSC) population and the stratification of the limbal epithelium in vitro. After Notch signaling activation, there was a reduction in the amount of the stem/progenitor cell population, epithelial stratification, and expression of proliferation markers. There was also an increase of the corneal epithelial differentiation. In the presence of Jag1, asymmetric divisions were decreased, and the expression pattern of the polarity protein Par3, normally present at the apical-lateral membrane of basal cells, was dispersed in the cells. We propose a mechanism in which Notch activation by Jag1 decreases p63 expression at the basal layer, which in turn reduces stratification by decreasing the number of asymmetric divisions and increases differentiation.
Collapse
|
32
|
Cutaneous Effects of Notch Inhibitor Therapy: A Report of Two Cases. Case Rep Dermatol Med 2020; 2020:8842242. [PMID: 32695530 PMCID: PMC7352146 DOI: 10.1155/2020/8842242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
As aberrant Notch signaling has been linked to cancerous growth, Notch inhibitors represent a novel category of targeted oncological therapy. Notch pathways in tumor cells may contribute to proliferation or limit apoptosis and differentiation. Healthy skin differentiation and homeostasis are reliant on normal Notch expression, and disruption of this signaling has been implicated in dermatological conditions such as hidradenitis suppurativa, psoriasis, atopic dermatitis, and lichen planus. Here, we describe two cases of patients with cutaneous side effects from Notch inhibitor treatment for adenoid cyst carcinoma (ACC) and review the role of Notch signaling in skin disease. By illuminating connections between medication side effects and disease pathogenesis, our goal is to increase awareness of the cutaneous side effects of Notch inhibitor treatment.
Collapse
|
33
|
He J, Ou S, Ren J, Sun H, He X, Zhao Z, Wu H, Qu Y, Liu T, Jeyalatha V, Zhang L, Li Q, Reinach PS, Quantock A, Hao J, Liu Z, Li W. Tissue engineered corneal epithelium derived from clinical-grade human embryonic stem cells. Ocul Surf 2020; 18:672-680. [PMID: 32710961 DOI: 10.1016/j.jtos.2020.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To construct tissue engineered corneal epithelium from a clinical-grade human embryonic stem cells (hESCs) and investigate the dynamic gene profile and phenotypic transition in the process of differentiation. METHODS A stepwise protocol was applied to induce differentiation of clinical-grade hESCs Q-CTS-hESC-1 and construct tissue engineered corneal epithelium. Single cell RNA sequencing (scRNA-seq) analysis was performed to monitor gene expression and phenotypic changes at different differentiation stages. Immunostaining, real-time quantitative PCR and Western blot analysis were conducted to detect gene and protein expressions. After subcutaneous transplantation into nude mice to test the biosafety, the epithelial construct was transplanted in a rabbit corneal limbal stem cell deficiency (LSCD) model and followed up for eight weeks. RESULTS The hESCs were successfully induced into epithelial cells. scRNA-seq analysis revealed upregulation of ocular surface epithelial cell lineage related genes such as TP63, Pax6, KRT14, and activation of Wnt, Notch, Hippo, and Hedgehog signaling pathways during the differentiation process. Tissue engineered epithelial cell sheet derived from hESCs showed stratified structure and normal corneal epithelial phenotype with presence of clonogenic progenitor cells. Eight weeks after grafting the cell sheet onto the ocular surface of LSCD rabbit model, a full-thickness continuous corneal epithelium developed to fully cover the damaged areas with normal limbal and corneal epithelial phenotype. CONCLUSION The tissue engineered corneal epithelium generated from a clinical-grade hESCs may be feasible in the treatment of limbal stem cell deficiency.
Collapse
Affiliation(s)
- Jia He
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Shangkun Ou
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Jun Ren
- School of Informatics, Xiamen University, Xiamen, Fujian, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, China
| | - Huimin Sun
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Xin He
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Zhongyang Zhao
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Han Wu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Yangluowa Qu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Tingting Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Vimalin Jeyalatha
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Liying Zhang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Qiyuan Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Peter Sol Reinach
- Wenzhou Medical University, Department of Ophthalmology, Wenzhou, Zhejiang, China; Wenzhou Medical University, Department of Optometry, Wenzhou, Zhejiang, China
| | - Andrew Quantock
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China.
| | - Zuguo Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China.; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian, China.
| | - Wei Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China.; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian, China.
| |
Collapse
|
34
|
Hu X, Zhu S, Liu R, Miller JD, Merkley K, Tilton RG, Liu H. Sirt6 deficiency impairs corneal epithelial wound healing. Aging (Albany NY) 2019; 10:1932-1946. [PMID: 30070973 PMCID: PMC6128418 DOI: 10.18632/aging.101513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/29/2018] [Indexed: 12/19/2022]
Abstract
Corneal transparency, dependent on the integrity of epithelial cells, is essential for vision. Corneal epithelial damage is one of the most commonly observed ocular conditions and proper wound healing is necessary for corneal transparency. Sirt6, a histone deacetylase, has been shown to regulate many cellular events including aging and inflammation. However, its specific role in corneal epithelial wound healing remains unknown. Here we demonstrated that Sirt6 was expressed in corneal epithelial cells and its expression decreased with age. In an in vivo corneal epithelial wound healing model, Sirt6 deficiency resulted in delayed and incomplete wound healing and was associated excessive inflammation in the corneal stroma and dysfunction of Notch signaling, leading to keratinization of the corneal epithelium and corneal opacity. Aging Sirt6-deficient mice spontaneously developed corneal keratitis with extensive infiltration of inflammatory cells into the cornea. In vitro experiments demonstrated that primary corneal epithelial cells with Sirt6 downregulation expressed increased basal levels of inflammatory genes and exhibited hyper-inflammatory reactivity to IL-1β and TNFα treatment. These results provide compelling evidence that Sirt6 is a critical regulator of inflammation in the cornea, and is responsible for corneal epithelial wound healing, thus contributing to the maintenance of epithelial integrity and corneal transparency.
Collapse
Affiliation(s)
- Xiaobing Hu
- Wuhan Hanyang Eyegood Ophthalmic Hospital, Wuhan, China.,Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shuang Zhu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rong Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jordan D Miller
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin Merkley
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ronald G Tilton
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.,Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
35
|
Expression of retinoic acid signaling components ADH7 and ALDH1A1 is reduced in aniridia limbal epithelial cells and a siRNA primary cell based aniridia model. Exp Eye Res 2019; 179:8-17. [DOI: 10.1016/j.exer.2018.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/29/2018] [Accepted: 10/03/2018] [Indexed: 01/31/2023]
|
36
|
Vicente A, Byström B, Pedrosa Domellöf F. Altered Signaling Pathways in Aniridia-Related Keratopathy. ACTA ACUST UNITED AC 2018; 59:5531-5541. [DOI: 10.1167/iovs.18-25175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- André Vicente
- Department of Clinical Science, Ophthalmology, Umeå University, Umeå, Sweden
| | - Berit Byström
- Department of Clinical Science, Ophthalmology, Umeå University, Umeå, Sweden
| | - Fátima Pedrosa Domellöf
- Department of Clinical Science, Ophthalmology, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| |
Collapse
|
37
|
Limbal Stem Cell Transplantation: Clinical Results, Limits, and Perspectives. Stem Cells Int 2018; 2018:8086269. [PMID: 30405723 PMCID: PMC6201383 DOI: 10.1155/2018/8086269] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/10/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022] Open
Abstract
Limbal stem cell deficiency (LSCD) is a clinical condition characterized by damage of cornea limbal stem cells, which results in an impairment of corneal epithelium turnover and in an invasion of the cornea by the conjunctival epithelium. In these patients, the conjunctivalization of the cornea is associated with visual impairment and cornea transplantation has poor prognosis for recurrence of the conjunctivalization. Current treatments of LSCD are aimed at replacing the damaged corneal stem cells in order to restore a healthy corneal epithelium. The autotransplantation of limbal tissue from the healthy, fellow eye is effective in unilateral LSCD but leads to depauperation of the stem cell reservoir. In the last decades, novel techniques such as cultivated limbal epithelial transplantation (CLET) have been proposed in order to reduce the damage of the healthy fellow eye. Clinical and experimental evidence showed that CLET is effective in inducing long-term regeneration of a healthy corneal epithelium in patients with LSCD with a success rate of 70%–80%. Current limitations for the treatment of LSCD are represented by the lack of a marker able to unequivocally identify limbal stem cells and the treatment of total, bilateral LSCD which requires other sources of stem cells for ocular surface reconstruction.
Collapse
|
38
|
Patrad E, Niapour A, Farassati F, Amani M. Combination treatment of all-trans retinoic acid (ATRA) and γ-secretase inhibitor (DAPT) cause growth inhibition and apoptosis induction in the human gastric cancer cell line. Cytotechnology 2018; 70:865-877. [PMID: 29417442 PMCID: PMC5851978 DOI: 10.1007/s10616-018-0199-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/24/2018] [Indexed: 01/26/2023] Open
Abstract
Current medication for gastric cancer patients has a low success rate with resistance and side effects. According to recent studies, γ-secretase inhibitors is used as therapeutic drugs in cancer. Moreover, all-trans retinoic acid (ATRA) is a natural compound proposed for the treatment/chemo-prevention of cancers. The aim of this study was to explore the effects of ATRA in combination with N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester (DAPT) as γ-secretase inhibitor on viability and apoptosis of the AGS and MKN-45 derived from human gastric cancer. AGS and MKN-45 gastric cancer cell lines were treated with different concentrations of ATRA or DAPT alone or ATRA plus DAPT. The viability, death detection and apoptosis of cells was examined by MTT assay and Ethidium bromide/acridine orange staining. The distribution of cells in different phases of cell cycle was also evaluated through flow cytometry analyses. In addition, caspase 3/7 activity and the expression of caspase-3 and bcl-2 were examined. DAPT and ATRA alone decreased gastric cancer cells viability in a concentration dependent manner. The combination of DAPT and ATRA exhibited significant synergistic inhibitory effects. The greater percentage of cells were accumulated in G0/G1 phase of cell cycle in combination treatment. The combination of DAPT and ATRA effectively increased the proportion of apoptotic cells and the level of caspase 3/7 activities compared to single treatment. Moreover, augmented caspase-3 up-regulation and bcl-2 down-regulation were found following combined application of DAPT and ATRA. The combination of DAPT and ATRA led to more reduction in viability and apoptosis in respect to DAPT or ATRA alone in the investigated cell lines.
Collapse
Affiliation(s)
- Elham Patrad
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Faris Farassati
- Molecular Medicine Laboratory, Department of Medicine, The University of Kansas Medical School (KUMC), Kansas City, KS, USA
| | - Mojtaba Amani
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
39
|
Nasser W, Amitai-Lange A, Soteriou D, Hanna R, Tiosano B, Fuchs Y, Shalom-Feuerstein R. Corneal-Committed Cells Restore the Stem Cell Pool and Tissue Boundary following Injury. Cell Rep 2018; 22:323-331. [DOI: 10.1016/j.celrep.2017.12.040] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022] Open
|
40
|
Mehtani A, Agarwal MC, Sharma S, Chaudhary S. Diagnosis of limbal stem cell deficiency based on corneal epithelial thickness measured on anterior segment optical coherence tomography. Indian J Ophthalmol 2017; 65:1120-1126. [PMID: 29133636 PMCID: PMC5700578 DOI: 10.4103/ijo.ijo_218_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
PURPOSE The purpose of this study is to investigate the epithelial thickness in the cornea and limbus in limbal stem cell deficiency (LSCD) using anterior segment optical coherence tomography (AS-OCT). METHODS This was a cross-sectional, comparative study. OCT images of 30 eyes of 19 patients with LSCD collected by AS-OCT were scanned. Corneal epithelial thickness was recorded at the central cornea and the superior, nasal, inferior, and temporal limbus. Measurment of the same region of 30 normal eyes served as control. Epithelial thickness in all locations was measured by 2 independent observers. RESULTS The mean epithelial layer thickness was 61.3 ± 2.9 μ in the central cornea and 62.7 ± 4.3 μ in the limbus in the control. The epithelial thickness in LSCD patients was found to be 41.33 ± 2.8 μ. An average reduction of 22.2% in the central cornea and 32.15% in the limbus was found in patients with LSCD (P < 0.05). Epithelial thinning correlated with the severity of LSCD in both cornea and limbus. In eyes with sectoral LSCD, a similar degree of epithelial thinning was also detected in the clinically unaffected limbal regions. CONCLUSION Both corneal and limbal epithelia become progressively thinner in LSCD. Epithelial thickness assessment using AS-OCT as a noninvasive tool could be used as a diagnostic measure of LSCD.
Collapse
Affiliation(s)
- Amit Mehtani
- Department of Ophthalmology, Deen Dayal Upadhyay, Hospital Hari Nagar, New Delhi, India
| | | | - Sushant Sharma
- Department of Ophthalmology, Deen Dayal Upadhyay, Hospital Hari Nagar, New Delhi, India
| | | |
Collapse
|
41
|
Argüeso P. Proteolytic activity in the meibomian gland: Implications to health and disease. Exp Eye Res 2017; 163:53-57. [PMID: 28284957 DOI: 10.1016/j.exer.2017.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/23/2017] [Accepted: 03/06/2017] [Indexed: 12/23/2022]
Abstract
The function of the meibomian gland in the upper and lower eyelids is critical to maintaining homeostasis at the ocular surface. Highly specialized meibocytes within the gland must differentiate and accumulate intracellular lipid droplets that are released into the tear film following rupture of the cell membrane. Proteases and their inhibitors have been recognized as key players in remodeling extracellular matrices and promoting the normal integrity of glandular tissue. They modulate a wide range of biological processes, such as cell proliferation and differentiation, and can contribute to disease when aberrantly expressed. Deciphering the role of proteolytic activity in the meibomian gland offers an opportunity to gain a more comprehensive and fundamental understanding of the developmental, physiological, and pathological processes associated with this gland.
Collapse
Affiliation(s)
- Pablo Argüeso
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
42
|
Abstract
The Notch signalling cascade is an evolutionarily conserved pathway that has a crucial role in regulating development and homeostasis in various tissues. The cellular processes and events that it controls are diverse, and continued investigation over recent decades has revealed how the role of Notch signalling is multifaceted and highly context dependent. Consistent with the far-reaching impact that Notch has on development and homeostasis, aberrant activity of the pathway is also linked to the initiation and progression of several malignancies, and Notch can in fact be either oncogenic or tumour suppressive depending on the tissue and cellular context. The Notch pathway therefore represents an important target for therapeutic agents designed to treat many types of cancer. In this Review, we focus on the latest developments relating specifically to the tumour-suppressor activity of Notch signalling and discuss the potential mechanisms by which Notch can inhibit carcinogenesis in various tissues. Potential therapeutic strategies aimed at restoring or augmenting Notch-mediated tumour suppression will also be highlighted.
Collapse
Affiliation(s)
- Craig S Nowell
- CMU, Department for Pathology and Immunology, University of Geneva, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Vaud 1015, Switzerland
| |
Collapse
|
43
|
Abstract
The corneal epithelium acts as a protective barrier on the anterior ocular surface and is essential for maintaining transparency of the cornea and thus visual acuity. During both homeostasis and repair, the corneal epithelium is maintained by self-renewing stem cells, which persist throughout the lifetime of the organism. Importantly, as in other self-renewing tissues, the functional activity of corneal epithelial stem cells (CSCEs) is tightly regulated by the surrounding microenvironment, or niche, which provides a range of cues that maintain the stem cell population. This Cell Science at a Glance article and the accompanying poster will therefore aim to summarise our current understanding of the corneal epithelial stem cell niche and its role in regulating stem cell activity during homeostasis, repair and disease.
Collapse
Affiliation(s)
- Craig S Nowell
- CMU, Department for Pathology and Immunology, Rue Michel Servet, 1211 Geneva, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Vaud, 1015, Switzerland
| |
Collapse
|
44
|
Ehrmann C, Schneider MR. Genetically modified laboratory mice with sebaceous glands abnormalities. Cell Mol Life Sci 2016; 73:4623-4642. [PMID: 27457558 PMCID: PMC11108334 DOI: 10.1007/s00018-016-2312-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022]
Abstract
Sebaceous glands (SG) are exocrine glands that release their product by holocrine secretion, meaning that the whole cell becomes a secretion following disruption of the membrane. SG may be found in association with a hair follicle, forming the pilosebaceous unit, or as modified SG at different body sites such as the eyelids (Meibomian glands) or the preputial glands. Depending on their location, SG fulfill a number of functions, including protection of the skin and fur, thermoregulation, formation of the tear lipid film, and pheromone-based communication. Accordingly, SG abnormalities are associated with several diseases such as acne, cicatricial alopecia, and dry eye disease. An increasing number of genetically modified laboratory mouse lines develop SG abnormalities, and their study may provide important clues regarding the molecular pathways regulating SG development, physiology, and pathology. Here, we summarize in tabulated form the available mouse lines with SG abnormalities and, focusing on selected examples, discuss the insights they provide into SG biology and pathology. We hope this survey will become a helpful information source for researchers with a primary interest in SG but also as for researchers from unrelated fields that are unexpectedly confronted with a SG phenotype in newly generated mouse lines.
Collapse
Affiliation(s)
- Carmen Ehrmann
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany.
| |
Collapse
|
45
|
Sakamoto K. Notch signaling in oral squamous neoplasia. Pathol Int 2016; 66:609-617. [PMID: 27671927 DOI: 10.1111/pin.12461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/15/2016] [Accepted: 08/26/2016] [Indexed: 12/14/2022]
Abstract
Notch signaling is involved in cell-cell communication. It is an evolutionarily ancient mechanism and plays a fundamental role in development. The typical function of Notch signaling is the regulation of cell fate segregation at asymmetric division; however, a role in tumorigenesis has also been suggested. Inactivating mutations of NOTCH1 are present in about 10 % of cases of squamous cell carcinoma of the skin, oral cavity, esophagus, and lung, rendering it one of the most frequently mutated genes in squamous cell carcinoma. Mouse knockout studies have demonstrated that Notch1 is imperative for early development but is dispensable for formation of the squamous epithelium. However, loss of Notch signaling predisposes the epidermis to hyperplasia and increases tumor incidence. This tumor-inducing effect resulting from the loss of Notch signaling is associated with non-cell-autonomous effects that are elicited by subtle alteration of epithelial cell features, generating a wound-like microenvironment in the underlying stroma. We found that Notch1 was expressed specifically in the basal cells of the oral squamous epithelium. In cancer and oral epithelial dysplasia, it was significantly downregulated, suggesting that reduced Notch activity plays a distinct role in oral neoplasia.
Collapse
Affiliation(s)
- Kei Sakamoto
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
46
|
Epidermal stem cells (ESCs) accelerate diabetic wound healing via the Notch signalling pathway. Biosci Rep 2016; 36:BSR20160034. [PMID: 27129289 PMCID: PMC4974596 DOI: 10.1042/bsr20160034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/22/2016] [Indexed: 01/08/2023] Open
Abstract
Epidermal stem cells (ESCs) accelerate diabetic wound healing via the Notch signalling pathway. Chronic, non-healing wounds are a major complication of diabetes. Recently, various cell therapies have been reported for promotion of diabetic wound healing. Epidermal stem cells (ESCs) are considered a powerful tool for tissue therapy. However, the effect and the mechanism of the therapeutic properties of ESCs in the diabetic wound healing are unclear. Herein, to determine the ability of ESCs to diabetic wound healing, a dorsal skin defect in a streptozotocin (STZ)-induced diabetes mellitus (DM) mouse model was used. ESCs were isolated from mouse skin. We found that both the mRNA and protein levels of a Notch ligand Jagged1 (Jag1), Notch1 and Notch target gene Hairy Enhancer of Split-1 (Hes1) were significantly increased at the wound margins. In addition, we observed that Jag1 was high expressed in ESCs. Overexpression of Jag1 promotes ESCs migration, whereas knockdown Jag1 resulted in a significant reduction in ESCs migration in vitro. Importantly, Jag1 overexpression improves diabetic wound healing in vivo. These results provide evidence that ESCs accelerate diabetic wound healing via the Notch signalling pathway, and provide a promising potential for activation of the Notch pathway for the treatment of diabetic wound.
Collapse
|
47
|
Gidfar S, Afsharkhamseh N, Sanjari S, Djalilian AR. Notch Signaling in Meibomian Gland Epithelial Cell Differentiation. Invest Ophthalmol Vis Sci 2016; 57:859-65. [PMID: 26943148 PMCID: PMC4782822 DOI: 10.1167/iovs.15-18319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Notch1 was previously shown to play a critical role in murine meibomian gland function and maintenance. In this study, we have examined the expression and activation of Notch pathway in human meibomian gland epithelial cells in vitro. Methods An immortalized human meibomian gland epithelial cell (HMGEC) line was cultured under proliferative and differentiative conditions. Expression of Notch receptors and ligands were evaluated by quantitative PCR and Western blot. The effect of Notch inhibition and induction on oil production was also assessed. Results Human meibomian gland epithelial cell expressed Notch1, Notch2, Notch3, Jagged1, Jagged2, Delta-like 1, and Delta-like 3. The level of cleaved (activated) Notch1 strongly increased with differentiation. The expression of Notch3 was inversely correlated with proliferation. Induction and inhibition of Notch1 led to an increase and decrease in the amount of oil production, respectively. Conclusions Notch signaling appears to play an important role in human meibomian gland epithelial differentiation and oil production. This may provide a potential therapeutic pathway for treating meibomian gland dysfunction.
Collapse
|
48
|
Quan Y, Zhang X, Xu S, Li K, Zhu F, Li Q, Cai X, Lu R. Tcf7l2 localization of putative stem/progenitor cells in mouse conjunctiva. Am J Physiol Cell Physiol 2016; 311:C246-54. [PMID: 27281479 DOI: 10.1152/ajpcell.00014.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/02/2016] [Indexed: 12/23/2022]
Abstract
Conjunctival integrity and preservation is indispensable for vision. The self-renewing capacity of conjunctival cells controls conjunctival homeostasis and regeneration; however, the source of conjunctival self-renewal and the underlying mechanism is currently unclear. Here, we characterize the biochemical phenotype and proliferative potential of conjunctival epithelial cells in adult mouse by detecting proliferation-related signatures and conducting clonal analysis. Further, we show that transcription factor 7-like 2 (T-cell-specific transcription factor 4), a DNA binding protein expressed in multiple types of adult stem cells, is highly correlated with proliferative signatures in basal conjunctival epithelia. Clonal studies demonstrated that Transcription factor 7-like 2 (Tcf7l2) was coexpressed with p63α and proliferating cell nuclear antigen (PCNA) in propagative colonies. Furthermore, Tcf7l2 was actively transcribed concurrently with conjunctival epithelial proliferation in vitro. Collectively, we suggest that Tcf7l2 may be involved in maintenance of stem/progenitor cells properties of conjunctival epithelial stem/progenitor cells, and with the fornix as the optimal site to isolate highly proliferative conjunctival epithelial cells in adult mice.
Collapse
Affiliation(s)
- Yadan Quan
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, China; and
| | - Xinchun Zhang
- Hospital of Stomatology, Guanghua College of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Siying Xu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, China; and
| | - Kang Li
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, China; and
| | - Feng Zhu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, China; and
| | - Qian Li
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, China; and
| | - Xianxian Cai
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, China; and
| | - Rong Lu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, China; and
| |
Collapse
|
49
|
Grisanti L, Revenkova E, Gordon RE, Iomini C. Primary cilia maintain corneal epithelial homeostasis by regulation of the Notch signaling pathway. Development 2016; 143:2160-71. [PMID: 27122169 DOI: 10.1242/dev.132704] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/11/2016] [Indexed: 01/10/2023]
Abstract
Primary cilia have been linked to signaling pathways involved in cell proliferation, cell motility and cell polarity. Defects in ciliary function result in developmental abnormalities and multiple ciliopathies. Patients affected by severe ciliopathies, such as Meckel syndrome, present several ocular surface disease conditions of unclear pathogenesis. Here, we show that primary cilia are predominantly present on basal cells of the mouse corneal epithelium (CE) throughout development and in the adult. Conditional ablation of cilia in the CE leads to an increase in proliferation and vertical migration of basal corneal epithelial cells (CECs). A consequent increase in cell density of suprabasal layers results in a thicker than normal CE. Surprisingly, in cilia-deficient CE, cilia-mediated signaling pathways, including Hh and Wnt pathways, were not affected but the intensity of Notch signaling was severely diminished. Although Notch1 and Notch2 receptors were expressed normally, nuclear Notch1 intracellular domain (N1ICD) expression was severely reduced. Postnatal development analysis revealed that in cilia-deficient CECs downregulation of the Notch pathway precedes cell proliferation defects. Thus, we have uncovered a function of the primary cilium in maintaining homeostasis of the CE by balancing proliferation and vertical migration of basal CECs through modulation of Notch signaling.
Collapse
Affiliation(s)
- Laura Grisanti
- Department of Ophthalmology and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ekaterina Revenkova
- Department of Ophthalmology and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ronald E Gordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Carlo Iomini
- Department of Ophthalmology and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
50
|
Sartaj R, Chee RI, Yang J, Wan P, Liu A, Guaiquil V, Fuchs E, Rosenblatt MI. LIM Homeobox Domain 2 Is Required for Corneal Epithelial Homeostasis. Stem Cells 2016; 34:493-503. [PMID: 26661907 PMCID: PMC4834794 DOI: 10.1002/stem.2257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/15/2015] [Accepted: 08/06/2015] [Indexed: 11/09/2022]
Abstract
The cornea requires constant epithelial renewal to maintain clarity for appropriate vision. A subset of stem cells residing at the limbus is primarily responsible for maintaining corneal epithelium homeostasis. Trauma and disease may lead to stem cell deficiency and therapeutic targeting to replenish the stemness capacity has been stalled by the lack of reliable corneal epithelial stem cell markers. Here we identified the location of Lhx2 in mice (mLhx2) cornea and conjunctival tissue using an Lhx2eGFP reporter model and in human tissues (hLHX2). Lhx2 localized to the basal cells of central cornea, the conjunctiva and the entire limbal epithelium in humans and mice. To ascribe a functional role we generated Lhx2 conditional knockout (cKO) mice and the phenotypic effects in corneas were analyzed by slit lamp microscopy, in cell‐based assays and in a model of corneal epithelium debridement. Immunodetection on corneal sections were used to visualize conjunctivalization, a sign of limbal barrier failure. Lhx2cKO mice produced reduced body hair and spontaneous epithelial defects in the cornea that included neovascularization, perforation with formation of scar tissue and opacification. Cell based assays showed that Lhx2cKO derived corneal epithelial cells have a significantly lower capacity to form colonies over time and delayed wound‐healing recovery when compared to wildtype cells. Repeated corneal epithelial wounding resulted in decreased re‐epithelialization and multiple cornea lesions in Lhx2cKO mice compared to normal recovery seen in wildtype mice. We conclude that Lhx2 is required for maintenance of the corneal epithelial cell compartment and the limbal barrier. Stem Cells2016;34:493–503
Collapse
Affiliation(s)
- Rachel Sartaj
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ru-ik Chee
- Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Jing Yang
- Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Pengxia Wan
- Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Aihong Liu
- Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Victor Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology Development, The Rockefeller University, New York, New York, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|