1
|
Zhang F, Chen Y, Shen J, Zhang J. The Ubiquitin Conjugating Enzyme UbcD1 is Required for Notch Signaling Activation During Drosophila Wing Development. Front Genet 2021; 12:770853. [PMID: 34712275 PMCID: PMC8546230 DOI: 10.3389/fgene.2021.770853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Notch signaling pathway plays crucial roles in animal development. Protein ubiquitination contributes to Notch signaling regulation by governing the stability and activity of major signaling components. Studies in Drosophila have identified multiple ubiquitin ligases and deubiquitinating enzymes that modify Notch ligand and receptor proteins. The fate of ubiquitinated substrates depend on topologies of the attached ubiquitin chains, which are determined by the ubiquitin conjugating enzymes (E2 enzymes). However, which E2 enzymes participate in Notch signal transduction remain elusive. Here, we report that the E2 enzyme UbcD1 is required for Notch signaling activation during Drosophila wing development. Mutations of UbcD1 lead to marginal nicks in the adult wing and reduction of Notch signaling targets expression in the wing imaginal disc. Genetic analysis reveal that UbcD1 functions in the signaling receiving cells prior to cleavage of the Notch protein. We provide further evidence suggesting that UbcD1 is likely involved in endocytic trafficking of Notch protein. Our results demonstrate that UbcD1 positively regulates Notch signaling and thus reveal a novel role of UbcD1 in development.
Collapse
Affiliation(s)
- Fengchao Zhang
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yao Chen
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junzheng Zhang
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Seib E, Klein T. The role of ligand endocytosis in notch signalling. Biol Cell 2021; 113:401-418. [PMID: 34038572 DOI: 10.1111/boc.202100009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
The Notch signalling receptor is a mechanoreceptor that is activated by force. This force elicits a conformational change in Notch that results in the release of its intracellular domain into the cytosol by two consecutive proteolytic cleavages. In most cases, the force is generated by pulling of the ligands on the receptor upon their endocytosis. In this review, we summarise recent work that shed a more detailed light on the role of endocytosis during ligand-dependent Notch activation and discuss the role of ubiquitylation of the ligands during this process.
Collapse
Affiliation(s)
- Ekaterina Seib
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, Duesseldorf, 40225, Germany
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, Duesseldorf, 40225, Germany
| |
Collapse
|
3
|
Phosphatidic acid increases Notch signalling by affecting Sanpodo trafficking during Drosophila sensory organ development. Sci Rep 2020; 10:21731. [PMID: 33303974 PMCID: PMC7729928 DOI: 10.1038/s41598-020-78831-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/27/2020] [Indexed: 11/08/2022] Open
Abstract
Organ cell diversity depends on binary cell-fate decisions mediated by the Notch signalling pathway during development and tissue homeostasis. A clear example is the series of binary cell-fate decisions that take place during asymmetric cell divisions that give rise to the sensory organs of Drosophila melanogaster. The regulated trafficking of Sanpodo, a transmembrane protein that potentiates receptor activity, plays a pivotal role in this process. Membrane lipids can regulate many signalling pathways by affecting receptor and ligand trafficking. It remains unknown, however, whether phosphatidic acid regulates Notch-mediated binary cell-fate decisions during asymmetric cell divisions, and what are the cellular mechanisms involved. Here we show that increased phosphatidic acid derived from Phospholipase D leads to defects in binary cell-fate decisions that are compatible with ectopic Notch activation in precursor cells, where it is normally inactive. Null mutants of numb or the α-subunit of Adaptor Protein complex-2 enhance dominantly this phenotype while removing a copy of Notch or sanpodo suppresses it. In vivo analyses show that Sanpodo localization decreases at acidic compartments, associated with increased internalization of Notch. We propose that Phospholipase D-derived phosphatidic acid promotes ectopic Notch signalling by increasing receptor endocytosis and inhibiting Sanpodo trafficking towards acidic endosomes.
Collapse
|
4
|
Ligand-Induced Cis-Inhibition of Notch Signaling: The Role of an Extracellular Region of Serrate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:29-49. [PMID: 32072497 DOI: 10.1007/978-3-030-36422-9_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cellular development can be controlled by communication between adjacent cells mediated by the highly conserved Notch signaling system. A cell expressing the Notch receptor on one cell can be activated in trans by ligands on an adjacent cell leading to alteration of transcription and cellular fate. Ligands also have the ability to inhibit Notch signaling, and this can be accomplished when both receptor and ligands are coexpressed in cis on the same cell. The manner in which cis-inhibition is accomplished is not entirely clear but it is known to involve several different protein domains of the ligands and the receptor. Some of the protein domains involved in trans-activation are also used for cis-inhibition, but some are used uniquely for each process. In this work, the involvement of various ligand regions and the receptor are discussed in relation to their contributions to Notch signaling.
Collapse
|
5
|
Berndt N, Seib E, Kim S, Troost T, Lyga M, Langenbach J, Haensch S, Kalodimou K, Delidakis C, Klein T. Ubiquitylation-independent activation of Notch signalling by Delta. eLife 2017; 6:27346. [PMID: 28960177 PMCID: PMC5675594 DOI: 10.7554/elife.27346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/28/2017] [Indexed: 12/29/2022] Open
Abstract
Ubiquitylation (ubi) by the E3-ligases Mindbomb1 (Mib1) and Neuralized (Neur) is required for activation of the DSL ligands Delta (Dl) and Serrate (Ser) to activate Notch signalling. These ligases transfer ubiquitin to lysines of the ligands' intracellular domains (ICDs), which sends them into an Epsin-dependent endocytic pathway. Here, we have tested the requirement of ubi of Dl for signalling. We found that Dl requires ubi for its full function, but can also signal in two ubi-independent modes, one dependent and one independent of Neur. We identified two neural lateral specification processes where Dl signals in an ubi-independent manner. Neur, which is needed for these processes, was shown to be able to activate Dl in an ubi-independent manner. Our analysis suggests that one important role of DSL protein ubi by Mib1 is their release from cis-inhibitory interactions with Notch, enabling them to trans-activate Notch on adjacent cells.
Collapse
Affiliation(s)
- Nicole Berndt
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Duesseldorf, Germany
| | - Ekaterina Seib
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Duesseldorf, Germany
| | - Soya Kim
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Duesseldorf, Germany.,Molekulare Zellbiologie, Institut I für Anatomie, Uniklinik Köln, Universität zu Köln, Köln, Germany
| | - Tobias Troost
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Duesseldorf, Germany
| | - Marvin Lyga
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Duesseldorf, Germany
| | - Jessica Langenbach
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Duesseldorf, Germany
| | - Sebastian Haensch
- Center of Advanced Imaging, Heinrich-Heine-Universitaet Duesseldorf, Duesseldorf, Germany
| | - Konstantina Kalodimou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece.,Department of Biology, University of Crete, Heraklion, Greece
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece.,Department of Biology, University of Crete, Heraklion, Greece
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
6
|
Bailey MJ, Prehoda KE. Establishment of Par-Polarized Cortical Domains via Phosphoregulated Membrane Motifs. Dev Cell 2015; 35:199-210. [PMID: 26481050 DOI: 10.1016/j.devcel.2015.09.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/03/2015] [Accepted: 09/23/2015] [Indexed: 01/06/2023]
Abstract
The Par polarity complex creates mutually exclusive cortical domains in diverse animal cells. Activity of the atypical protein kinase C (aPKC) is a key output of the Par complex as phosphorylation removes substrates from the Par domain. Here, we investigate how diverse, apparently unrelated Par substrates couple phosphorylation to cortical displacement. Each protein contains a basic and hydrophobic (BH) motif that interacts directly with phospholipids and also overlaps with aPKC phosphorylation sites. Phosphorylation alters the electrostatic character of the sequence, inhibiting interaction with phospholipids and the cell cortex. We searched for overlapping BH and aPKC phosphorylation site motifs (i.e., putative phosphoregulated BH motifs) in several animal proteomes. Candidate proteins with strong PRBH signals associated with the cell cortex but were displaced into the cytoplasm by aPKC. These findings demonstrate a potentially general mechanism for exclusion of proteins from the Par cortical domain in polarized cells.
Collapse
Affiliation(s)
- Matthew J Bailey
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Kenneth E Prehoda
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
7
|
Shahab J, Baratta C, Scuric B, Godt D, Venken KJT, Ringuette MJ. Loss of SPARC dysregulates basal lamina assembly to disrupt larval fat body homeostasis in Drosophila melanogaster. Dev Dyn 2015; 244:540-52. [PMID: 25529377 DOI: 10.1002/dvdy.24243] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND SPARC is a collagen-binding glycoprotein whose functions during early development are unknown. We previously reported that SPARC is expressed in Drosophila by hemocytes and the fat body (FB) and enriched in basal laminae (BL) surrounding tissues, including adipocytes. We sought to explore if SPARC is required for proper BL assembly in the FB. RESULTS SPARC deficiency leads to larval lethality, associated with remodeling of the FB. In the absence of SPARC, FB polygonal adipocytes assume a spherical morphology. Loss-of-function clonal analyses revealed a cell-autonomous accumulation of BL components around mutant cells that include collagen IV (Col lV), Laminin, and Perlecan. Ultrastructural analyses indicate SPARC-deficient adipocytes are surrounded by an aberrant accumulation of a fibrous extracellular matrix. CONCLUSIONS Our data indicate a critical requirement for SPARC for the proper BL assembly in Drosophila FB. Since Col IV within the BL is a prime determinant of cell shape, the rounded appearance of SPARC-deficient adipocytes is due to aberrant assembly of Col IV.
Collapse
Affiliation(s)
- Jaffer Shahab
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Functional analysis of the NHR2 domain indicates that oligomerization of Neuralized regulates ubiquitination and endocytosis of Delta during Notch signaling. Mol Cell Biol 2012; 32:4933-45. [PMID: 23045391 DOI: 10.1128/mcb.00711-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Notch pathway plays an integral role in development by regulating cell fate in a wide variety of multicellular organisms. A critical step in the activation of Notch signaling is the endocytosis of the Notch ligands Delta and Serrate. Ligand endocytosis is regulated by one of two E3 ubiquitin ligases, Neuralized (Neur) or Mind bomb. Neur is comprised of a C-terminal RING domain, which is required for Delta ubiquitination, and two Neur homology repeat (NHR) domains. We have previously shown that the NHR1 domain is required for Delta trafficking. Here we show that the NHR1 domain also affects the binding and internalization of Serrate. Furthermore, we show that the NHR2 domain is required for Neur function and that a point mutation in the NHR2 domain (Gly430) abolishes Neur ubiquitination activity and affects ligand internalization. Finally, we provide evidence that Neur can form oligomers in both cultured cells and fly tissues, which regulate Neur activity and, by extension, ligand internalization.
Collapse
|
9
|
Daskalaki A, Shalaby NA, Kux K, Tsoumpekos G, Tsibidis GD, Muskavitch MAT, Delidakis C. Distinct intracellular motifs of Delta mediate its ubiquitylation and activation by Mindbomb1 and Neuralized. ACTA ACUST UNITED AC 2012; 195:1017-31. [PMID: 22162135 PMCID: PMC3241720 DOI: 10.1083/jcb.201105166] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ubiquitylation of the intracellular domain of Drosophila Delta is necessary for Notch activation. DSL proteins are transmembrane ligands of the Notch receptor. They associate with a RING (really interesting new gene) family E3 ubiquitin ligase, either Neuralized (Neur) or Mindbomb 1 (Mib1), as a prerequisite to signaling. Although Neur and Mib1 stimulate internalization of DSL ligands, it is not known how ubiquitylation contributes to signaling. We present a molecular dissection of the intracellular domain (ICD) of Drosophila melanogaster Delta (Dl), a prototype DSL protein. Using a cell-based assay, we detected ubiquitylation of Dl by both Neur and Mib1. The two enzymes use distinct docking sites and displayed different acceptor lysine preferences on the Dl ICD. We generated Dl variants that selectively perturb its interactions with Neur or Mib1 and analyzed their signaling activity in two in vivo contexts. We found an excellent correlation between the ability to undergo ubiquitylation and signaling. Therefore, ubiquitylation of the DSL ICD seems to be a necessary step in the activation of Notch.
Collapse
Affiliation(s)
- Aikaterini Daskalaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | | | | | | | | | | | | |
Collapse
|
10
|
Shah DK, Zúñiga-Pflücker JC. Notch receptor-ligand interactions during T cell development, a ligand endocytosis-driven mechanism. Curr Top Microbiol Immunol 2012; 360:19-46. [PMID: 22581027 DOI: 10.1007/82_2012_225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Notch signaling plays an important role during the development of different cell types and tissues. The role of Notch signaling in lymphocyte development, in particular in the development and commitment to the T cell lineage, has been the focus of research for many years. Notch signaling is absolutely required during the commitment and early stages of T cell development. Activation of the Notch signaling pathway is initiated by ligand-receptor interactions and appears to require active endocytosis of Notch ligands. Studies addressing the mechanism underlying endocytosis of Notch ligands have helped to identify the main players important and necessary for this process. Here, we review the Notch ligands, and the proposed models of Notch activation by Notch ligand endocytosis, highlighting key molecules involved. In particular, we discuss recent studies on Notch ligands involved in T cell development, current studies aimed at elucidating the relevance of Notch ligand endocytosis during T cell development and the identification of key players necessary for ligand endocytosis in the thymus and during T cell development.
Collapse
Affiliation(s)
- Divya K Shah
- Department of Immunology, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4 N 3M5, Canada.
| | | |
Collapse
|
11
|
Abstract
In the first volume of Developmental Cell, it was reported that the classic Drosophila neurogenic gene neuralized encodes a ubiquitin ligase that monoubiquitylates the Notch ligand Delta, thus promoting Delta endocytosis. A requirement for ligand internalization by the signal-sending cell, although counterintuitive, remains to date a feature unique to Notch signaling. Ten years and many ubiquitin ligases later, we discuss sequels to these three papers with an eye toward reviewing the development of ideas for how ligand ubiquitylation and endocytosis propel Notch signaling.
Collapse
Affiliation(s)
- Gerry Weinmaster
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, CA 90095, USA
| | | |
Collapse
|
12
|
Zahedi B, Goo HJ, Beaulieu N, Tazmini G, Kay RJ, Cornell RB. Phosphoinositide 3-kinase regulates plasma membrane targeting of the Ras-specific exchange factor RasGRP1. J Biol Chem 2011; 286:12712-23. [PMID: 21285350 DOI: 10.1074/jbc.m110.189605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor-induced targeting of exchange factors to specific cellular membranes is the predominant mechanism for initiating and compartmentalizing signal transduction by Ras GTPases. The exchange factor RasGRP1 has a C1 domain that binds the lipid diacylglycerol and thus can potentially mediate membrane localization in response to receptors that are coupled to diacylglycerol-generating phospholipase Cs. However, the C1 domain is insufficient for targeting RasGRP1 to the plasma membrane. We found that a basic/hydrophobic cluster of amino acids within the plasma membrane-targeting domain of RasGRP1 is instead responsible for plasma membrane targeting. This basic/hydrophobic cluster binds directly to phospholipid vesicles containing phosphoinositides via electrostatic interactions with polyanionic phosphoinositide headgroups and insertion of a tryptophan into the lipid bilayer. B cell antigen receptor ligation and other stimuli induce plasma membrane targeting of RasGRP1 by activating the phosphoinositide 3-kinase signaling pathway, which generates phosphoinositides within the plasma membrane. Direct detection of phosphoinositides by the basic/hydrophobic cluster of RasGRP1 provides a novel mechanism for coupling and co-compartmentalizing phosphoinositide 3-kinase and Ras signaling and, in coordination with diacylglycerol detection by the C1 domain, gives RasGRP1 the potential to serve as an integrator of converging signals from the phosphoinositide 3-kinase and phospholipase C pathways.
Collapse
Affiliation(s)
- Bari Zahedi
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3
| | | | | | | | | | | |
Collapse
|
13
|
Knoblich JA. Asymmetric cell division: recent developments and their implications for tumour biology. Nat Rev Mol Cell Biol 2010; 11:849-60. [PMID: 21102610 PMCID: PMC3941022 DOI: 10.1038/nrm3010] [Citation(s) in RCA: 446] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability of cells to divide asymmetrically is essential for generating diverse cell types during development. The past 10 years have seen tremendous progress in our understanding of this important biological process. We have learned that localized phosphorylation events are responsible for the asymmetric segregation of cell fate determinants in mitosis and that centrosomes and microtubules play important parts in this process. The relevance of asymmetric cell division for stem cell biology has added a new dimension to the field, and exciting connections between asymmetric cell division and tumorigenesis have begun to emerge.
Collapse
Affiliation(s)
- Juergen A Knoblich
- Institute of Molecular Biotechnology of Austrian Academy of Science, Doktor Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
14
|
Le Bras S, Loyer N, Le Borgne R. The multiple facets of ubiquitination in the regulation of notch signaling pathway. Traffic 2010; 12:149-61. [PMID: 21029288 DOI: 10.1111/j.1600-0854.2010.01126.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Notch signaling pathway regulates numerous aspects of metazoan development and tissue renewal. Deregulation or loss of Notch signaling is associated with a wide range of human disorders from developmental syndromes to cancer. Notch receptors and their ligands are widely expressed throughout development, yet Notch activation is robustly controlled in a spatio-temporal manner. Within the past decades, genetic screens and biochemical approaches led to the identification of more than 10 E3 ubiquitin ligases and deubiquitinating enzymes implicated in the regulation of the Notch pathway. In this review, we highlight the recent studies in Notch signaling that reveal how ubiquitination of components of the Notch pathway, ranging from degradation to regulation of membrane trafficking, impacts on the developmental control of the signaling activities of both Notch receptors and their ligands.
Collapse
Affiliation(s)
- Stéphanie Le Bras
- CNRS UMR 6061-Institut de Génétique et Développement de Rennes, 2 av du Pr. Bernard, 35000 Rennes, Université de Rennes 1, France
| | | | | |
Collapse
|
15
|
Benhra N, Vignaux F, Dussert A, Schweisguth F, Le Borgne R. Neuralized promotes basal to apical transcytosis of delta in epithelial cells. Mol Biol Cell 2010; 21:2078-86. [PMID: 20410139 PMCID: PMC2883951 DOI: 10.1091/mbc.e09-11-0926] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In this article, it is shown that a pool of Delta localizes at the basolateral membrane of sensory organ precursor cells of Drosophila and of polarized MDCK cells and that Delta is endocytosed in a Neuralized-dependent manner from this basolateral membrane to allow for relocalization to the apical domain where it can bind and activate Notch. Notch receptors mediate short-range signaling controlling many developmental decisions in metazoans. Activation of Notch requires the ubiquitin-dependent endocytosis of its ligand Delta. How ligand endocytosis in signal-sending cells regulates receptor activation in juxtaposed signal-receiving cells remains largely unknown. We show here that a pool of Delta localizes at the basolateral membrane of signal-sending sensory organ precursor cells in the dorsal thorax neuroepithelium of Drosophila and that Delta is endocytosed in a Neuralized-dependent manner from this basolateral membrane. This basolateral pool of Delta is segregated from Notch that accumulates apically. Using a compartimentalized antibody uptake assay, we show that murine Delta-like 1 is similarly internalized by mNeuralized2 from the basolateral membrane of polarized Madin-Darby canine kidney cells and that internalized ligands are transcytosed to the apical plasma membrane where mNotch1 accumulates. Thus, endocytosis of Delta by Neuralized relocalizes Delta from the basolateral to the apical membrane domain. We speculate that this Neuralized-dependent transcytosis regulates the signaling activity of Delta by relocalizing Delta from a membrane domain where it cannot interact with Notch to another membrane domain where it can bind and activate Notch.
Collapse
Affiliation(s)
- Najate Benhra
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 6061, Institut de Génétique et Développement de Rennes, Université de Rennes 1, 35000 Rennes, France
| | | | | | | | | |
Collapse
|
16
|
Abstract
Notch signaling induced by canonical Notch ligands is critical for normal embryonic development and tissue homeostasis through the regulation of a variety of cell fate decisions and cellular processes. Activation of Notch signaling is normally tightly controlled by direct interactions with ligand-expressing cells, and dysregulated Notch signaling is associated with developmental abnormalities and cancer. While canonical Notch ligands are responsible for the majority of Notch signaling, a diverse group of structurally unrelated noncanonical ligands has also been identified that activate Notch and likely contribute to the pleiotropic effects of Notch signaling. Soluble forms of both canonical and noncanonical ligands have been isolated, some of which block Notch signaling and could serve as natural inhibitors of this pathway. Ligand activity can also be indirectly regulated by other signaling pathways at the level of ligand expression, serving to spatiotemporally compartmentalize Notch signaling activity and integrate Notch signaling into a molecular network that orchestrates developmental events. Here, we review the molecular mechanisms underlying the dual role of Notch ligands as activators and inhibitors of Notch signaling. Additionally, evidence that Notch ligands function independent of Notch is presented. We also discuss how ligand posttranslational modification, endocytosis, proteolysis, and spatiotemporal expression regulate their signaling activity.
Collapse
Affiliation(s)
- Brendan D'Souza
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
17
|
Abstract
Notch signaling occurs through direct interaction between Notch, the receptor, and its ligands, presented on the surface of neighboring cells. Endocytosis has been shown to be essential for Notch signal activation in both signal-sending and signal-receiving cells, and numerous genes involved in vesicle trafficking have recently been shown to act as key regulators of the pathway. Defects in vesicle trafficking can lead to gain- or loss-of-function defects in a context-dependent manner. Here, we discuss how endocytosis and vesicle trafficking regulate Notch signaling in both signal-sending and signal-receiving cells. We will introduce the key players in different trafficking steps, and further illustrate how they impact the signal outcome. Some of these players act as general factors and modulate Notch signaling in all contexts, whereas others modulate signaling in a context-specific fashion. We also discuss Notch signaling during mechanosensory organ development in the fly to exemplify how endocytosis and vesicle trafficking are effectively used to determine correct cell fates. In summary, endocytosis plays an essential role in Notch signaling, whereas intracellular vesicle trafficking often plays a context-dependent or regulatory role, leading to divergent outcomes in different developmental contexts.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston TX, USA
| | - Wu-Lin Charng
- Program in Developmental Biology, Baylor College of Medicine, Houston TX, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston TX, USA
| |
Collapse
|
18
|
Neumüller RA, Knoblich JA. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 2009; 23:2675-99. [PMID: 19952104 DOI: 10.1101/gad.1850809] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell division is commonly thought to involve the equal distribution of cellular components into the two daughter cells. During many cell divisions, however, proteins, membrane compartments, organelles, or even DNA are asymmetrically distributed between the two daughter cells. Here, we review the various types of asymmetries that have been described in yeast and in animal cells. Asymmetric segregation of protein determinants is particularly relevant for stem cell biology. We summarize the relevance of asymmetric cell divisions in various stem cell systems and discuss why defects in asymmetric cell division can lead to the formation of tumors.
Collapse
Affiliation(s)
- Ralph A Neumüller
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | | |
Collapse
|
19
|
|
20
|
Intracellular trafficking of Notch receptors and ligands. Exp Cell Res 2009; 315:1549-55. [DOI: 10.1016/j.yexcr.2008.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 11/23/2022]
|
21
|
|
22
|
Great expectations for PIP: phosphoinositides as regulators of signaling during development and disease. Dev Cell 2009; 16:12-20. [PMID: 19154715 DOI: 10.1016/j.devcel.2008.12.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phosphoinositides function as signaling precursors as well as regulators and scaffolds of signaling molecules required for important cellular processes such as membrane trafficking. Although a picture of the biochemical and cell biological functions of phosphoinositides is emerging, less is known about how these functions impact signaling on a broader scale during development. This review summarizes recent work on the role of phosphoinositides in developmental signaling and in a number of diseases and developmental disorders.
Collapse
|
23
|
Abstract
The Notch signaling pathway regulates a diverse array of cell types and cellular processes and is tightly regulated by ligand binding. Both canonical and noncanonical Notch ligands have been identified that may account for some of the pleiotropic nature associated with Notch signaling. This review focuses on the molecular mechanisms by which Notch ligands function as signaling agonists and antagonists, and discusses different modes of activating ligands as well as findings that support intrinsic ligand signaling activity independent of Notch. Post-translational modification, proteolytic processing, endocytosis and membrane trafficking, as well as interactions with the actin cytoskeleton may contribute to the recently appreciated multifunctionality of Notch ligands. The regulation of Notch ligand expression by other signaling pathways provides a mechanism to coordinate Notch signaling with multiple cellular and developmental cues. The association of Notch ligands with inherited human disorders and cancer highlights the importance of understanding the molecular nature and activities intrinsic to Notch ligands. Oncogene (2008) 27, 5148-5167; doi:10.1038/onc.2008.229.
Collapse
Affiliation(s)
- Brendan D'souza
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Alison Miyamoto
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Gerry Weinmaster
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Molecular Biology Institute, UCLA
- Jonsson Comprehensive Cancer Center, UCLA
| |
Collapse
|
24
|
Overexpression of partner of numb induces asymmetric distribution of the PI4P 5-Kinase Skittles in mitotic sensory organ precursor cells in Drosophila. PLoS One 2008; 3:e3072. [PMID: 18728778 PMCID: PMC2516928 DOI: 10.1371/journal.pone.0003072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 05/09/2008] [Indexed: 11/19/2022] Open
Abstract
Unequal segregation of cell fate determinants at mitosis is a conserved mechanism whereby cell fate diversity can be generated during development. In Drosophila, each sensory organ precursor cell (SOP) divides asymmetrically to produce an anterior pIIb and a posterior pIIa cell. The Par6-aPKC complex localizes at the posterior pole of dividing SOPs and directs the actin-dependent localization of the cell fate determinants Numb, Partner of Numb (Pon) and Neuralized at the opposite pole. The plasma membrane lipid phosphatidylinositol (4,5)-bisphosphate (PIP2) regulates the plasma membrane localization and activity of various proteins, including several actin regulators, thereby modulating actin-based processes. Here, we have examined the distribution of PIP2 and of the PIP2-producing kinase Skittles (Sktl) in mitotic SOPs. Our analysis indicates that both Sktl and PIP2 reporters are uniformly distributed in mitotic SOPs. In the course of this study, we have observed that overexpression of full-length Pon or its localization domain (LD) fused to the Red Fluorescent Protein (RFP::PonLD) results in asymmetric distribution of Sktl and PIP2 reporters in dividing SOPs. Our observation that Pon overexpression alters polar protein distribution is relevant because RFP::PonLD is often used as a polarity marker in dividing progenitors.
Collapse
|
25
|
From endocytosis to tumors through asymmetric cell division of stem cells. Curr Opin Cell Biol 2008; 20:462-9. [PMID: 18511252 DOI: 10.1016/j.ceb.2008.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/12/2008] [Accepted: 03/13/2008] [Indexed: 12/27/2022]
Abstract
Recent studies in vertebrate and invertebrate model organisms uncover the importance of endocytosis for biased signaling during asymmetric cell division. In stem cells, perturbing polarity and asymmetric division affect their selfrenewal causing exponential proliferation, thereby giving rise to cancer. An emerging pattern is that endocytosis controls asymmetric cell division, which underlies stem cell selfrenewal and defective selfrenewal is on the basis of tumorigenesis caused by cancer stem cells.
Collapse
|
26
|
Commisso C, Boulianne GL. The neuralized homology repeat 1 domain of Drosophila neuralized mediates nuclear envelope association and delta-dependent inhibition of nuclear import. J Mol Biol 2008; 375:1125-40. [PMID: 18076903 DOI: 10.1016/j.jmb.2007.11.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 11/08/2007] [Accepted: 11/12/2007] [Indexed: 01/25/2023]
Abstract
Signaling by the Notch (N) pathway is critical for many developmental processes and requires complex trafficking of both the N receptor and its transmembrane ligands, Delta (Dl) and Serrate. neuralized encodes an E3 ubiquitin ligase required for N ligand internalization. Neuralized (Neur) is conserved from worms to humans and comprises two Neur homology repeat (NHR) domains, NHR1 and NHR2, and a carboxyl-terminal RING domain. We have previously shown that the RING domain is required for ubiquitin ligase activity and that NHR1 mediates binding to Dl, a ubiquitination target. In Drosophila, Neur associates with the plasma membrane and hepatocyte responsive serum phosphoprotein-positive endosomes. Here we demonstrate that Neur also exhibits nuclear envelope localization. We have determined that Neur subcellular localization is regulated by nuclear trafficking and that inhibition of chromosome region maintenance 1, a nuclear export receptor, interferes with Neur nuclear export, trapping Neur in the nucleus. Moreover, we demonstrate that nuclear envelope localization is mediated by the Neur NHR1 domain. Interestingly, Dl expression in Schneider cells is sufficient to inhibit Neur nuclear import and inhibition occurs in an NHR1-dependent manner, suggesting that Neur nuclear localization occurs in contexts where Dl expression is either low or absent. Consistent with this, we found that Neur exhibits nuclear trafficking and associates with the nuclear envelope in the secretory cells of the larval salivary gland and that overexpression of Dl can reduce Neur localization to the nucleus. Altogether, our data demonstrate that Neur localizes to the nuclear envelope and that this localization can be negatively regulated by Dl, suggesting a possible nuclear function for Neur in Drosophila.
Collapse
Affiliation(s)
- Cosimo Commisso
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada
| | | |
Collapse
|