1
|
De Luisa A, Cesaroni CA, Pollazzon M, Spagnoli C, Caraffi SG, Leon A, Rizzi S, Frattini D, Cavalli A, Garavelli L, Fusco C. Sensory-Motor Polyneuropathy in an 11-year- old Girl with a Pathogenic Variant in SMC1A: A Case Report. Neuropediatrics 2025; 56:56-60. [PMID: 39542017 DOI: 10.1055/a-2447-1508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Pathogenic variants in the SMC1A gene are often dominant-negative and cause an X-linked form of Cornelia de Lange syndrome (CdLS) with growth retardation and typical facial features. However, rare SMC1A variants cause a developmental and epileptic encephalopathy (DEE) with intractable early-onset epilepsy that is absent in CdLS. Here we describe an 11-year-old girl with epilepsy, walking disorder, and neurodevelopmental disorder. A neurophysiological examination of nerve conduction velocity showed a mixed, sensory-motor, chronic 4-limb polyneuropathy. Whole-exome sequencing identified the variant c.3145C > T p.(Arg1049*) in SMC1A (NM_006306.3), which can be classified as pathogenic. To the best of our knowledge, among 79 individuals with SMC1A-related DEE reported in the literature, altered peripheral nerve conduction has never been described. In this article, we propose that severe sensory-motor polyneuropathy could be an expansion of the SMC1A-related phenotype.
Collapse
Affiliation(s)
- Angelica De Luisa
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlo A Cesaroni
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Marzia Pollazzon
- Medical Genetics Unit, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Stefano G Caraffi
- Medical Genetics Unit, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alberta Leon
- R & I Genetics, Italian National Health System, C.So Stati Uniti 4int.F, Padua, Italy
| | - Susanna Rizzi
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Daniele Frattini
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Anna Cavalli
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
2
|
Zhang F, Lee A, Freitas AV, Herb JT, Wang ZH, Gupta S, Chen Z, Xu H. A transcription network underlies the dual genomic coordination of mitochondrial biogenesis. eLife 2024; 13:RP96536. [PMID: 39727307 DOI: 10.7554/elife.96536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Mitochondrial biogenesis requires the expression of genes encoded by both the nuclear and mitochondrial genomes. However, aside from a handful transcription factors regulating specific subsets of mitochondrial genes, the overall architecture of the transcriptional control of mitochondrial biogenesis remains to be elucidated. The mechanisms coordinating these two genomes are largely unknown. We performed a targeted RNAi screen in developing eyes with reduced mitochondrial DNA content, anticipating a synergistic disruption of tissue development due to impaired mitochondrial biogenesis and mitochondrial DNA (mtDNA) deficiency. Among 638 transcription factors annotated in the Drosophila genome, 77 were identified as potential regulators of mitochondrial biogenesis. Utilizing published ChIP-seq data of positive hits, we constructed a regulatory network revealing the logic of the transcription regulation of mitochondrial biogenesis. Multiple transcription factors in core layers had extensive connections, collectively governing the expression of nearly all mitochondrial genes, whereas factors sitting on the top layer may respond to cellular cues to modulate mitochondrial biogenesis through the underlying network. CG1603, a core component of the network, was found to be indispensable for the expression of most nuclear mitochondrial genes, including those required for mtDNA maintenance and gene expression, thus coordinating nuclear genome and mtDNA activities in mitochondrial biogenesis. Additional genetic analyses validated YL-1, a transcription factor upstream of CG1603 in the network, as a regulator controlling CG1603 expression and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Fan Zhang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Annie Lee
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Anna V Freitas
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Jake T Herb
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Zong-Heng Wang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Snigdha Gupta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Zhe Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
3
|
Zhang F, Lee A, Freitas A, Herb J, Wang Z, Gupta S, Chen Z, Xu H. A transcription network underlies the dual genomic coordination of mitochondrial biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577217. [PMID: 38410491 PMCID: PMC10896348 DOI: 10.1101/2024.01.25.577217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Mitochondrial biogenesis requires the expression of genes encoded by both the nuclear and mitochondrial genomes. However, aside from a handful transcriptional factors regulating specific subsets of mitochondrial genes, the overall architecture of the transcriptional control of mitochondrial biogenesis remains to be elucidated. The mechanisms coordinating these two genomes are largely unknown. We performed a targeted RNAi screen in developing eyes with reduced mitochondrial DNA content, anticipating a synergistic disruption of tissue development due to impaired mitochondrial biogenesis and mtDNA deficiency. Among 638 transcription factors annotated in Drosophila genome, 77 were identified as potential regulators of mitochondrial biogenesis. Utilizing published ChIP-seq data of positive hits, we constructed a regulatory network revealing the logic of the transcription regulation of mitochondrial biogenesis. Multiple transcription factors in core layers had extensive connections, collectively governing the expression of nearly all mitochondrial genes, whereas factors sitting on the top layer may respond to cellular cues to modulate mitochondrial biogenesis through the underlying network. CG1603, a core component of the network, was found to be indispensable for the expression of most nuclear mitochondrial genes, including those required for mtDNA maintenance and gene expression, thus coordinating nuclear genome and mtDNA activities in mitochondrial biogenies. Additional genetics analyses validated YL-1, a transcription factor upstream of CG1603 in the network, as a regulator controlling CG1603 expression and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Fan Zhang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Annie Lee
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Freitas
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jake Herb
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zongheng Wang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Snigdha Gupta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhe Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Dutta D, Kanca O, Byeon SK, Marcogliese PC, Zuo Z, Shridharan RV, Park JH, Lin G, Ge M, Heimer G, Kohler JN, Wheeler MT, Kaipparettu BA, Pandey A, Bellen HJ. A defect in mitochondrial fatty acid synthesis impairs iron metabolism and causes elevated ceramide levels. Nat Metab 2023; 5:1595-1614. [PMID: 37653044 PMCID: PMC11151872 DOI: 10.1038/s42255-023-00873-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
In most eukaryotic cells, fatty acid synthesis (FAS) occurs in the cytoplasm and in mitochondria. However, the relative contribution of mitochondrial FAS (mtFAS) to the cellular lipidome is not well defined. Here we show that loss of function of Drosophila mitochondrial enoyl coenzyme A reductase (Mecr), which is the enzyme required for the last step of mtFAS, causes lethality, while neuronal loss of Mecr leads to progressive neurodegeneration. We observe a defect in Fe-S cluster biogenesis and increased iron levels in flies lacking mecr, leading to elevated ceramide levels. Reducing the levels of either iron or ceramide suppresses the neurodegenerative phenotypes, indicating an interplay between ceramide and iron metabolism. Mutations in human MECR cause pediatric-onset neurodegeneration, and we show that human-derived fibroblasts display similar elevated ceramide levels and impaired iron homeostasis. In summary, this study identifies a role of mecr/MECR in ceramide and iron metabolism, providing a mechanistic link between mtFAS and neurodegeneration.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Rishi V Shridharan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Guang Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ming Ge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Gali Heimer
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jennefer N Kohler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew T Wheeler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Benny A Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Manipal Academy of Higher Education, Manipal, India
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
5
|
MacPherson RA, Shankar V, Anholt RRH, Mackay TFC. Genetic and genomic analyses of Drosophila melanogaster models of chromatin modification disorders. Genetics 2023; 224:iyad061. [PMID: 37036413 PMCID: PMC10411607 DOI: 10.1093/genetics/iyad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/10/2022] [Accepted: 03/30/2023] [Indexed: 04/11/2023] Open
Abstract
Switch/sucrose nonfermentable (SWI/SNF)-related intellectual disability disorders (SSRIDDs) and Cornelia de Lange syndrome are rare syndromic neurodevelopmental disorders with overlapping clinical phenotypes. SSRIDDs are associated with the BAF (Brahma-Related Gene-1 associated factor) complex, whereas CdLS is a disorder of chromatin modification associated with the cohesin complex. Here, we used RNA interference in Drosophila melanogaster to reduce the expression of six genes (brm, osa, Snr1, SMC1, SMC3, vtd) orthologous to human genes associated with SSRIDDs and CdLS. These fly models exhibit changes in sleep, activity, startle behavior (a proxy for sensorimotor integration), and brain morphology. Whole genome RNA sequencing identified 9,657 differentially expressed genes (FDR < 0.05), 156 of which are differentially expressed in both sexes in SSRIDD- and CdLS-specific analyses, including Bap60, which is orthologous to SMARCD1, an SSRIDD-associated BAF component. k-means clustering reveals genes co-regulated within and across SSRIDD and CdLS fly models. RNAi-mediated reduction of expression of six genes co-regulated with focal genes brm, osa, and/or Snr1 recapitulated changes in the behavior of the focal genes. Based on the assumption that fundamental biological processes are evolutionarily conserved, Drosophila models can be used to understand underlying molecular effects of variants in chromatin-modification pathways and may aid in the discovery of drugs that ameliorate deleterious phenotypic effects.
Collapse
Affiliation(s)
- Rebecca A MacPherson
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Vijay Shankar
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Robert R H Anholt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Trudy F C Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| |
Collapse
|
6
|
Li P, Messina G, Lehner CF. Nuclear elongation during spermiogenesis depends on physical linkage of nuclear pore complexes to bundled microtubules by Drosophila Mst27D. PLoS Genet 2023; 19:e1010837. [PMID: 37428798 PMCID: PMC10359004 DOI: 10.1371/journal.pgen.1010837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Spermatozoa in animal species are usually highly elongated cells with a long motile tail attached to a head that contains the haploid genome in a compact and often elongated nucleus. In Drosophila melanogaster, the nucleus is compacted two hundred-fold in volume during spermiogenesis and re-modeled into a needle that is thirty-fold longer than its diameter. Nuclear elongation is preceded by a striking relocalization of nuclear pore complexes (NPCs). While NPCs are initially located throughout the nuclear envelope (NE) around the spherical nucleus of early round spermatids, they are later confined to one hemisphere. In the cytoplasm adjacent to this NPC-containing NE, the so-called dense complex with a strong bundle of microtubules is assembled. While this conspicuous proximity argued for functional significance of NPC-NE and microtubule bundle, experimental confirmation of their contributions to nuclear elongation has not yet been reported. Our functional characterization of the spermatid specific Mst27D protein now resolves this deficit. We demonstrate that Mst27D establishes physical linkage between NPC-NE and dense complex. The C-terminal region of Mst27D binds to the nuclear pore protein Nup358. The N-terminal CH domain of Mst27D, which is similar to that of EB1 family proteins, binds to microtubules. At high expression levels, Mst27D promotes bundling of microtubules in cultured cells. Microscopic analyses indicated co-localization of Mst27D with Nup358 and with the microtubule bundles of the dense complex. Time-lapse imaging revealed that nuclear elongation is accompanied by a progressive bundling of microtubules into a single elongated bundle. In Mst27D null mutants, this bundling process does not occur and nuclear elongation is abnormal. Thus, we propose that Mst27D permits normal nuclear elongation by promoting the attachment of the NPC-NE to the microtubules of the dense complex, as well as the progressive bundling of these microtubules.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Giovanni Messina
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Christian F Lehner
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
MacPherson RA, Shankar V, Anholt RRH, Mackay TFC. Genetic and Genomic Analyses of Drosophila melanogaster Models of Chromatin Modification Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534923. [PMID: 37034595 PMCID: PMC10081333 DOI: 10.1101/2023.03.30.534923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Switch/Sucrose Non-Fermentable (SWI/SNF)-related intellectual disability disorders (SSRIDDs) and Cornelia de Lange syndrome are rare syndromic neurodevelopmental disorders with overlapping clinical phenotypes. SSRIDDs are associated with the BAF (Brahma-Related Gene-1 Associated Factor) complex, whereas CdLS is a disorder of chromatin modification associated with the cohesin complex. Here, we used RNA interference in Drosophila melanogaster to reduce expression of six genes (brm, osa, Snr1, SMC1, SMC3, vtd) orthologous to human genes associated with SSRIDDs and CdLS. These fly models exhibit changes in sleep, activity, startle behavior (a proxy for sensorimotor integration) and brain morphology. Whole genome RNA sequencing identified 9,657 differentially expressed genes (FDR < 0.05), 156 of which are differentially expressed in both sexes in SSRIDD- and CdLS-specific analyses, including Bap60, which is orthologous to SMARCD1, a SSRIDD-associated BAF component, k-means clustering reveals genes co-regulated within and across SSRIDD and CdLS fly models. RNAi-mediated reduction of expression of six genes co-regulated with focal genes brm, osa, and/or Snr1 recapitulated changes in behavior of the focal genes. Based on the assumption that fundamental biological processes are evolutionarily conserved, Drosophila models can be used to understand underlying molecular effects of variants in chromatin-modification pathways and may aid in discovery of drugs that ameliorate deleterious phenotypic effects.
Collapse
Affiliation(s)
- Rebecca A. MacPherson
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Vijay Shankar
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Robert R. H. Anholt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Trudy F. C. Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| |
Collapse
|
8
|
Horsfield JA. Full circle: a brief history of cohesin and the regulation of gene expression. FEBS J 2023; 290:1670-1687. [PMID: 35048511 DOI: 10.1111/febs.16362] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
The cohesin complex has a range of crucial functions in the cell. Cohesin is essential for mediating chromatid cohesion during mitosis, for repair of double-strand DNA breaks, and for control of gene transcription. This last function has been the subject of intense research ever since the discovery of cohesin's role in the long-range regulation of the cut gene in Drosophila. Subsequent research showed that the expression of some genes is exquisitely sensitive to cohesin depletion, while others remain relatively unperturbed. Sensitivity to cohesin depletion is also remarkably cell type- and/or condition-specific. The relatively recent discovery that cohesin is integral to forming chromatin loops via loop extrusion should explain much of cohesin's gene regulatory properties, but surprisingly, loop extrusion has failed to identify a 'one size fits all' mechanism for how cohesin controls gene expression. This review will illustrate how early examples of cohesin-dependent gene expression integrate with later work on cohesin's role in genome organization to explain mechanisms by which cohesin regulates gene expression.
Collapse
Affiliation(s)
- Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, New Zealand
| |
Collapse
|
9
|
Bu S, Lau SSY, Yong WL, Zhang H, Thiagarajan S, Bashirullah A, Yu F. Polycomb group genes are required for neuronal pruning in Drosophila. BMC Biol 2023; 21:33. [PMID: 36793038 PMCID: PMC9933400 DOI: 10.1186/s12915-023-01534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Pruning that selectively eliminates unnecessary or incorrect neurites is required for proper wiring of the mature nervous system. During Drosophila metamorphosis, dendritic arbourization sensory neurons (ddaCs) and mushroom body (MB) γ neurons can selectively prune their larval dendrites and/or axons in response to the steroid hormone ecdysone. An ecdysone-induced transcriptional cascade plays a key role in initiating neuronal pruning. However, how downstream components of ecdysone signalling are induced remains not entirely understood. RESULTS Here, we identify that Scm, a component of Polycomb group (PcG) complexes, is required for dendrite pruning of ddaC neurons. We show that two PcG complexes, PRC1 and PRC2, are important for dendrite pruning. Interestingly, depletion of PRC1 strongly enhances ectopic expression of Abdominal B (Abd-B) and Sex combs reduced, whereas loss of PRC2 causes mild upregulation of Ultrabithorax and Abdominal A in ddaC neurons. Among these Hox genes, overexpression of Abd-B causes the most severe pruning defects, suggesting its dominant effect. Knockdown of the core PRC1 component Polyhomeotic (Ph) or Abd-B overexpression selectively downregulates Mical expression, thereby inhibiting ecdysone signalling. Finally, Ph is also required for axon pruning and Abd-B silencing in MB γ neurons, indicating a conserved function of PRC1 in two types of pruning. CONCLUSIONS This study demonstrates important roles of PcG and Hox genes in regulating ecdysone signalling and neuronal pruning in Drosophila. Moreover, our findings suggest a non-canonical and PRC2-independent role of PRC1 in Hox gene silencing during neuronal pruning.
Collapse
Affiliation(s)
- Shufeng Bu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Samuel Song Yuan Lau
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Wei Lin Yong
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Heng Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Sasinthiran Thiagarajan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705-2222, USA
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
10
|
Beachum AN, Hinnant TD, Williams AE, Powell AM, Ables ET. β-importin Tnpo-SR promotes germline stem cell maintenance and oocyte differentiation in female Drosophila. Dev Biol 2023; 494:1-12. [PMID: 36450333 PMCID: PMC9870978 DOI: 10.1016/j.ydbio.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Germ cell development requires interplay between factors that balance cell fate and division. Early in their development, germ cells in many organisms divide mitotically with incomplete cytokinesis. Key regulatory events then lead to the specification of mature gametes, marked by the switch to a meiotic cell cycle program. Though the regulation of germ cell proliferation and meiosis are well understood, how these events are coordinated during development remains incompletely described. Originally characterized in their role as nucleo-cytoplasmic shuttling proteins, β-importins exhibit diverse functions during male and female gametogenesis. Here, we describe novel, distinct roles for the β-importin, Transportin-Serine/Arginine rich (Tnpo-SR), as a regulator of the mitosis to meiosis transition in the Drosophila ovary. We find that Tnpo-SR is necessary for germline stem cell (GSC) establishment and self-renewal, likely by controlling the response of GSCs to bone morphogenetic proteins. Depletion of Tnpo-SR results in germ cell counting defects and loss of oocyte identity. We show that in the absence of Tnpo-SR, proteins typically suppressed in germ cells when they exit mitosis fail to be down-regulated, and oocyte-specific factors fail to accumulate. Together, these findings provide new insight into the balance between germ cell division and differentiation and identify novel roles for β-importins in germ cell development.
Collapse
Affiliation(s)
- Allison N Beachum
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Anna E Williams
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Amanda M Powell
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
11
|
Lin S. The making of the Drosophila mushroom body. Front Physiol 2023; 14:1091248. [PMID: 36711013 PMCID: PMC9880076 DOI: 10.3389/fphys.2023.1091248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
The mushroom body (MB) is a computational center in the Drosophila brain. The intricate neural circuits of the mushroom body enable it to store associative memories and process sensory and internal state information. The mushroom body is composed of diverse types of neurons that are precisely assembled during development. Tremendous efforts have been made to unravel the molecular and cellular mechanisms that build the mushroom body. However, we are still at the beginning of this challenging quest, with many key aspects of mushroom body assembly remaining unexplored. In this review, I provide an in-depth overview of our current understanding of mushroom body development and pertinent knowledge gaps.
Collapse
|
12
|
Yuh Chew L, He J, Wong JJL, Li S, Yu F. AMPK activates the Nrf2-Keap1 pathway to govern dendrite pruning via the insulin pathway in Drosophila. Development 2022; 149:275791. [DOI: 10.1242/dev.200536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/16/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
During Drosophila metamorphosis, the ddaC dendritic arborisation sensory neurons selectively prune their larval dendrites in response to steroid hormone ecdysone signalling. The Nrf2-Keap1 pathway acts downstream of ecdysone signalling to promote proteasomal degradation and thereby dendrite pruning. However, how the Nrf2-Keap1 pathway is activated remains largely unclear. Here, we demonstrate that the metabolic regulator AMP-activated protein kinase (AMPK) plays a cell-autonomous role in dendrite pruning. Importantly, AMPK is required for Mical and Headcase expression and for activation of the Nrf2-Keap1 pathway. We reveal that AMPK promotes the Nrf2-Keap1 pathway and dendrite pruning partly via inhibition of the insulin pathway. Moreover, the AMPK-insulin pathway is required for ecdysone signalling to activate the Nrf2-Keap1 pathway during dendrite pruning. Overall, this study reveals an important mechanism whereby ecdysone signalling activates the Nrf2-Keap1 pathway via the AMPK-insulin pathway to promote dendrite pruning, and further suggests that during the nonfeeding prepupal stage metabolic alterations lead to activation of the Nrf2-Keap1 pathway and dendrite pruning.
Collapse
Affiliation(s)
- Liang Yuh Chew
- 1 Research Link, National University of Singapore 1 Temasek Life Sciences Laboratory , , 117604 , Singapore
- National University of Singapore 2 Department of Biological Sciences , , 117543 , Singapore
| | - Jianzheng He
- 1 Research Link, National University of Singapore 1 Temasek Life Sciences Laboratory , , 117604 , Singapore
| | - Jack Jing Lin Wong
- 1 Research Link, National University of Singapore 1 Temasek Life Sciences Laboratory , , 117604 , Singapore
| | - Sheng Li
- Institute of Insect Science and Technology & School of Life Sciences, South China Normal University 3 Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology , , Guangzhou 510631 , China
| | - Fengwei Yu
- 1 Research Link, National University of Singapore 1 Temasek Life Sciences Laboratory , , 117604 , Singapore
- National University of Singapore 2 Department of Biological Sciences , , 117543 , Singapore
| |
Collapse
|
13
|
Boulanger A, Dura JM. Neuron-glia crosstalk in neuronal remodeling and degeneration: Neuronal signals inducing glial cell phagocytic transformation in Drosophila. Bioessays 2022; 44:e2100254. [PMID: 35315125 DOI: 10.1002/bies.202100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022]
Abstract
Neuronal remodeling is a conserved mechanism that eliminates unwanted neurites and can include the loss of cell bodies. In these processes, a key role for glial cells in events from synaptic pruning to neuron elimination has been clearly identified in the last decades. Signals sent from dying neurons or neurites to be removed are received by appropriate glial cells. After receiving these signals, glial cells infiltrate degenerating sites and then, engulf and clear neuronal debris through phagocytic mechanisms. There are few identified or proposed signals and receptors involved in neuron-glia crosstalk, which induces the transformation of glial cells to phagocytes during neuronal remodeling in Drosophila. Many of these signaling pathways are conserved in mammals. Here, we particularly emphasize the role of Orion, a recently identified neuronal CX3 C chemokine-like secreted protein, which induces astrocyte infiltration and engulfment during mushroom body neuronal remodeling. Although, chemokine signaling was not described previously in insects we propose that chemokine-like involvement in neuron/glial cell interaction is an evolutionarily ancient mechanism.
Collapse
Affiliation(s)
- Ana Boulanger
- IGH, Université de Montpellier, CNRS, Montpellier, France
| | | |
Collapse
|
14
|
Li L, Conradson DM, Bharat V, Kim MJ, Hsieh CH, Minhas PS, Papakyrikos AM, Durairaj AS, Ludlam A, Andreasson KI, Partridge L, Cianfrocco MA, Wang X. A mitochondrial membrane-bridging machinery mediates signal transduction of intramitochondrial oxidation. Nat Metab 2021; 3:1242-1258. [PMID: 34504353 PMCID: PMC8460615 DOI: 10.1038/s42255-021-00443-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Mitochondria are the main site for generating reactive oxygen species, which are key players in diverse biological processes. However, the molecular pathways of redox signal transduction from the matrix to the cytosol are poorly defined. Here we report an inside-out redox signal of mitochondria. Cysteine oxidation of MIC60, an inner mitochondrial membrane protein, triggers the formation of disulfide bonds and the physical association of MIC60 with Miro, an outer mitochondrial membrane protein. The oxidative structural change of this membrane-crossing complex ultimately elicits cellular responses that delay mitophagy, impair cellular respiration and cause oxidative stress. Blocking the MIC60-Miro interaction or reducing either protein, genetically or pharmacologically, extends lifespan and health-span of healthy fruit flies, and benefits multiple models of Parkinson's disease and Friedreich's ataxia. Our discovery provides a molecular basis for common treatment strategies against oxidative stress.
Collapse
Affiliation(s)
- Li Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Devon M Conradson
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Vinita Bharat
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Min Joo Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Chung-Han Hsieh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Paras S Minhas
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Neurosciences Intradepartmental Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Amanda M Papakyrikos
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Graduate Program in Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Anthony Ludlam
- Life Sciences Institute & Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Katrin I Andreasson
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
- Program in Immunology, Stanford University, Stanford, CA, USA
| | - Linda Partridge
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, London, UK
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Michael A Cianfrocco
- Life Sciences Institute & Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Maternal & Child Health Research Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
15
|
Tian Y, Smith-Bolton RK. Regulation of growth and cell fate during tissue regeneration by the two SWI/SNF chromatin-remodeling complexes of Drosophila. Genetics 2021; 217:1-16. [PMID: 33683366 DOI: 10.1093/genetics/iyaa028] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/10/2020] [Indexed: 11/12/2022] Open
Abstract
To regenerate, damaged tissue must heal the wound, regrow to the proper size, replace the correct cell types, and return to the normal gene-expression program. However, the mechanisms that temporally and spatially control the activation or repression of important genes during regeneration are not fully understood. To determine the role that chromatin modifiers play in regulating gene expression after tissue damage, we induced ablation in Drosophila melanogaster imaginal wing discs, and screened for chromatin regulators that are required for epithelial tissue regeneration. Here, we show that many of these genes are indeed important for promoting or constraining regeneration. Specifically, the two SWI/SNF chromatin-remodeling complexes play distinct roles in regulating different aspects of regeneration. The PBAP complex regulates regenerative growth and developmental timing, and is required for the expression of JNK signaling targets and the growth promoter Myc. By contrast, the BAP complex ensures correct patterning and cell fate by stabilizing the expression of the posterior gene engrailed. Thus, both SWI/SNF complexes are essential for proper gene expression during tissue regeneration, but they play distinct roles in regulating growth and cell fate.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rachel K Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
16
|
Chew LY, Zhang H, He J, Yu F. The Nrf2-Keap1 pathway is activated by steroid hormone signaling to govern neuronal remodeling. Cell Rep 2021; 36:109466. [PMID: 34348164 DOI: 10.1016/j.celrep.2021.109466] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022] Open
Abstract
The evolutionarily conserved Nrf2-Keap1 pathway is a key antioxidant response pathway that protects cells/organisms against detrimental effects of oxidative stress. Impaired Nrf2 function is associated with cancer and neurodegenerative diseases in humans. However, the function of the Nrf2-Keap1 pathway in the developing nervous systems has not been established. Here we demonstrate a cell-autonomous role of the Nrf2-Keap1 pathway, composed of CncC/Nrf2, Keap1, and MafS, in governing neuronal remodeling during Drosophila metamorphosis. Nrf2-Keap1 signaling is activated downstream of the steroid hormone ecdysone. Mechanistically, the Nrf2-Keap1 pathway is activated via cytoplasmic-to-nuclear translocation of CncC in an importin- and ecdysone-signaling-dependent manner. Moreover, Nrf2-Keap1 signaling regulates dendrite pruning independent of its canonical antioxidant response pathway, acting instead through proteasomal degradation. This study reveals an epistatic link between the Nrf2-Keap1 pathway and steroid hormone signaling and demonstrates an antioxidant-independent but proteasome-dependent role of the Nrf2-Keap1 pathway in neuronal remodeling.
Collapse
Affiliation(s)
- Liang Yuh Chew
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Heng Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Jianzheng He
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
17
|
García-Gutiérrez P, García-Domínguez M. BETting on a Transcriptional Deficit as the Main Cause for Cornelia de Lange Syndrome. Front Mol Biosci 2021; 8:709232. [PMID: 34386522 PMCID: PMC8353280 DOI: 10.3389/fmolb.2021.709232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is a human developmental syndrome with complex multisystem phenotypic features. It has been traditionally considered a cohesinopathy together with other phenotypically related diseases because of their association with mutations in subunits of the cohesin complex. Despite some overlap, the clinical manifestations of cohesinopathies vary considerably and, although their precise molecular mechanisms are not well defined yet, the potential pathomechanisms underlying these diverse developmental defects have been theoretically linked to alterations of the cohesin complex function. The cohesin complex plays a critical role in sister chromatid cohesion, but this function is not affected in CdLS. In the last decades, a non-cohesion-related function of this complex on transcriptional regulation has been well established and CdLS pathoetiology has been recently associated to gene expression deregulation. Up to 70% of CdLS cases are linked to mutations in the cohesin-loading factor NIPBL, which has been shown to play a prominent function on chromatin architecture and transcriptional regulation. Therefore, it has been suggested that CdLS can be considered a transcriptomopathy. Actually, CdLS-like phenotypes have been associated to mutations in chromatin-associated proteins, as KMT2A, AFF4, EP300, TAF6, SETD5, SMARCB1, MAU2, ZMYND11, MED13L, PHIP, ARID1B, NAA10, BRD4 or ANKRD11, most of which have no known direct association with cohesin. In the case of BRD4, a critical highly investigated transcriptional coregulator, an interaction with NIPBL has been recently revealed, providing evidence on their cooperation in transcriptional regulation of developmentally important genes. This new finding reinforces the notion of an altered gene expression program during development as the major etiological basis for CdLS. In this review, we intend to integrate the recent available evidence on the molecular mechanisms underlying the clinical manifestations of CdLS, highlighting data that favors a transcription-centered framework, which support the idea that CdLS could be conceptualized as a transcriptomopathy.
Collapse
Affiliation(s)
- Pablo García-Gutiérrez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
18
|
Labudina A, Horsfield JA. The three-dimensional genome in zebrafish development. Brief Funct Genomics 2021:elab008. [PMID: 33675363 DOI: 10.1093/bfgp/elab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Accepted: 01/29/2021] [Indexed: 01/01/2023] Open
Abstract
In recent years, remarkable progress has been made toward understanding the three-dimensional (3D) organisation of genomes and the influence of genome organisation on gene regulation. Although 3D genome organisation probably plays a crucial role in embryo development, animal studies addressing the developmental roles of chromosome topology are only just starting to emerge. Zebrafish, an important model system for early development, have already contributed important advances in understanding the developmental consequences of perturbation in 3D genome organisation. Zebrafish have been used to determine the effects of mutations in proteins responsible for 3D genome organisation: cohesin and CTCF. In this review, we highlight research to date from zebrafish that has provided insight into how 3D genome organisation contributes to tissue-specific gene regulation and embryo development.
Collapse
|
19
|
The histone replacement gene His4r is involved in heat stress induced chromatin rearrangement. Sci Rep 2021; 11:4878. [PMID: 33649489 PMCID: PMC7921661 DOI: 10.1038/s41598-021-84413-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
His4r is the only known variant of histone H4 in Drosophila. It is encoded by the His4r single-copy gene that is located outside of the histone gene cluster and expressed in a different pattern than H4, although the encoded polypeptides are identical. We generated a null mutant (His4rΔ42) which is homozygous viable and fertile without any apparent morphological defects. Heterozygous His4rΔ42 is a mild suppressor of position-effect variegation, suggesting that His4r has a role in the formation or maintenance of condensed chromatin. Under standard conditions loss of His4r has a modest effect on gene expression. Upon heat-stress the induction of the Heat shock protein (HSP) genes Hsp27 and Hsp68 is stronger in His4rΔ42 mutants with concordantly increased survival rate. Analysis of chromatin accessibility after heat shock at a Hsp27 regulatory region showed less condensed chromatin in the absence of His4r while there was no difference at the gene body. Interestingly, preconditioning before heat shock led to increased chromatin accessibility, HSP gene transcription and survival rate in control flies while it did not cause notable changes in His4rΔ42. Thus, our results suggest that His4r might play a role in fine tuning chromatin structure at inducible gene promoters upon environmental stress conditions.
Collapse
|
20
|
Yaniv SP, Meltzer H, Alyagor I, Schuldiner O. Developmental axon regrowth and primary neuron sprouting utilize distinct actin elongation factors. J Cell Biol 2021; 219:151569. [PMID: 32191286 PMCID: PMC7199854 DOI: 10.1083/jcb.201903181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 11/06/2019] [Accepted: 02/14/2020] [Indexed: 01/23/2023] Open
Abstract
Intrinsic neurite growth potential is a key determinant of neuronal regeneration efficiency following injury. The stereotypical remodeling of Drosophila γ-neurons includes developmental regrowth of pruned axons to form adult specific connections, thereby offering a unique system to uncover growth potential regulators. Motivated by the dynamic expression in remodeling γ-neurons, we focus here on the role of actin elongation factors as potential regulators of developmental axon regrowth. We found that regrowth in vivo requires the actin elongation factors Ena and profilin, but not the formins that are expressed in γ-neurons. In contrast, primary γ-neuron sprouting in vitro requires profilin and the formin DAAM, but not Ena. Furthermore, we demonstrate that DAAM can compensate for the loss of Ena in vivo. Similarly, DAAM mutants express invariably high levels of Ena in vitro. Thus, we show that different linear actin elongation factors function in distinct contexts even within the same cell type and that they can partially compensate for each other.
Collapse
Affiliation(s)
- Shiri P Yaniv
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Hagar Meltzer
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Idan Alyagor
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| |
Collapse
|
21
|
Regulation and dysregulation of spatial chromatin structure in the central nervous system. Anat Sci Int 2021; 96:179-186. [PMID: 33392926 DOI: 10.1007/s12565-020-00567-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022]
Abstract
Chromatin exists as a non-linear, "three-dimensional" structure in the nuclear space. The dynamic alteration of the chromatin structure leads to transcriptional changes during the formation of the neuronal network. Several studies providing evidence for the link between the dysregulation of spatial chromatin architecture and developmental disorders have accumulated. Therefore, we studied and reviewed the regulation and dysregulation of 3D genome organization in the central nervous system, with a special focus on the cohesin complex that is crucial for the formation of the chromatin loop structure. This review summarizes the function and mechanisms of spatial chromatin architecture during the development of the central nervous system. We discuss the link between the disturbances in the 3D chromatin structure and the diseases of the central nervous system. Finally, we discuss how the knowledge of 3D genome organization may lead to further advances in diagnosis and therapy for the diseases of the central nervous system.
Collapse
|
22
|
Furusawa K, Emoto K. Spatiotemporal regulation of developmental neurite pruning: Molecular and cellular insights from Drosophila models. Neurosci Res 2020; 167:54-63. [PMID: 33309868 DOI: 10.1016/j.neures.2020.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 02/02/2023]
Abstract
Developmental neurite pruning is a process by which neurons selectively eliminate unnecessary processes of axons and/or dendrites without cell death, which shapes the mature wiring of nervous systems. In this sense, developmental neurite pruning requires spatiotemporally precise control of local degradation of cellular components including cytoskeletons and membranes. The Drosophila nervous system undergoes large-scale remodeling, including axon/dendrite pruning, during metamorphosis. In addition to this unique phenomenon in the nervous system, powerful genetic tools make the Drosophila nervous system a sophisticated model to investigate spatiotemporal regulation of neural remodeling. This article reviews recent advances to our understanding of the molecular and cellular mechanisms of developmental axon/dendrite pruning, mainly focusing on studies in Drosophila sensory neurons and mushroom body neurons.
Collapse
Affiliation(s)
- Kotaro Furusawa
- Department of Biological Sciences, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kazuo Emoto
- Department of Biological Sciences, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
23
|
Kasinathan B, Colmenares SU, McConnell H, Young JM, Karpen GH, Malik HS. Innovation of heterochromatin functions drives rapid evolution of essential ZAD-ZNF genes in Drosophila. eLife 2020; 9:e63368. [PMID: 33169670 PMCID: PMC7655104 DOI: 10.7554/elife.63368] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Contrary to dogma, evolutionarily young and dynamic genes can encode essential functions. We find that evolutionarily dynamic ZAD-ZNF genes, which encode the most abundant class of insect transcription factors, are more likely to encode essential functions in Drosophila melanogaster than ancient, conserved ZAD-ZNF genes. We focus on the Nicknack ZAD-ZNF gene, which is evolutionarily young, poorly retained in Drosophila species, and evolves under strong positive selection. Yet we find that it is necessary for larval development in D. melanogaster. We show that Nicknack encodes a heterochromatin-localizing protein like its paralog Oddjob, also an evolutionarily dynamic yet essential ZAD-ZNF gene. We find that the divergent D. simulans Nicknack protein can still localize to D. melanogaster heterochromatin and rescue viability of female but not male Nicknack-null D. melanogaster. Our findings suggest that innovation for rapidly changing heterochromatin functions might generally explain the essentiality of many evolutionarily dynamic ZAD-ZNF genes in insects.
Collapse
Affiliation(s)
- Bhavatharini Kasinathan
- Medical Scientist Training Program, University of Washington School of MedicineSeattleUnited States
- Molecular and Cellular Biology Graduate program, University of Washington School of MedicineSeattleUnited States
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Serafin U Colmenares
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California at BerkeleyBerkeleyUnited States
- Innovative Genomics InstituteBerkeleyUnited States
| | - Hannah McConnell
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Gary H Karpen
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California at BerkeleyBerkeleyUnited States
- Innovative Genomics InstituteBerkeleyUnited States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
24
|
Cheng H, Zhang N, Pati D. Cohesin subunit RAD21: From biology to disease. Gene 2020; 758:144966. [PMID: 32687945 PMCID: PMC7949736 DOI: 10.1016/j.gene.2020.144966] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
RAD21 (also known as KIAA0078, NXP1, HR21, Mcd1, Scc1, and hereafter called RAD21), an essential gene, encodes a DNA double-strand break (DSB) repair protein that is evolutionarily conserved in all eukaryotes from budding yeast to humans. RAD21 protein is a structural component of the highly conserved cohesin complex consisting of RAD21, SMC1a, SMC3, and SCC3 [STAG1 (SA1) and STAG2 (SA2) in metazoans] proteins, involved in sister chromatid cohesion. This function is essential for proper chromosome segregation, post-replicative DNA repair, and prevention of inappropriate recombination between repetitive regions. In interphase, cohesin also functions in the control of gene expression by binding to numerous sites within the genome. In addition to playing roles in the normal cell cycle and DNA DSB repair, RAD21 is also linked to the apoptotic pathways. Germline heterozygous or homozygous missense mutations in RAD21 have been associated with human genetic disorders, including developmental diseases such as Cornelia de Lange syndrome (CdLS) and chronic intestinal pseudo-obstruction (CIPO) called Mungan syndrome, respectively, and collectively termed as cohesinopathies. Somatic mutations and amplification of the RAD21 have also been widely reported in both human solid and hematopoietic tumors. Considering the role of RAD21 in a broad range of cellular processes that are hot spots in neoplasm, it is not surprising that the deregulation of RAD21 has been increasingly evident in human cancers. Herein, we review the biology of RAD21 and the cellular processes that this important protein regulates and discuss the significance of RAD21 deregulation in cancer and cohesinopathies.
Collapse
Affiliation(s)
- Haizi Cheng
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Nenggang Zhang
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Debananda Pati
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
25
|
Wu Q, Liu P, Wang L. Many facades of CTCF unified by its coding for three-dimensional genome architecture. J Genet Genomics 2020; 47:407-424. [PMID: 33187878 DOI: 10.1016/j.jgg.2020.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/15/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
CCCTC-binding factor (CTCF) is a multifunctional zinc finger protein that is conserved in metazoan species. CTCF is consistently found to play an important role in many diverse biological processes. CTCF/cohesin-mediated active chromatin 'loop extrusion' architects three-dimensional (3D) genome folding. The 3D architectural role of CTCF underlies its multifarious functions, including developmental regulation of gene expression, protocadherin (Pcdh) promoter choice in the nervous system, immunoglobulin (Ig) and T-cell receptor (Tcr) V(D)J recombination in the immune system, homeobox (Hox) gene control during limb development, as well as many other aspects of biology. Here, we review the pleiotropic functions of CTCF from the perspective of its essential role in 3D genome architecture and topological promoter/enhancer selection. We envision the 3D genome as an enormous complex architecture, with tens of thousands of CTCF sites as connecting nodes and CTCF proteins as mysterious bonds that glue together genomic building parts with distinct articulation joints. In particular, we focus on the internal mechanisms by which CTCF controls higher order chromatin structures that manifest its many façades of physiological and pathological functions. We also discuss the dichotomic role of CTCF sites as intriguing 3D genome nodes for seemingly contradictory 'looping bridges' and 'topological insulators' to frame a beautiful magnificent house for a cell's nuclear home.
Collapse
Affiliation(s)
- Qiang Wu
- MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Center for Comparative Biomedicine, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China.
| | - Peifeng Liu
- MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Center for Comparative Biomedicine, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| | - Leyang Wang
- MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Center for Comparative Biomedicine, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| |
Collapse
|
26
|
Gupta A, Stocker H. FoxO suppresses endoplasmic reticulum stress to inhibit growth of Tsc1-deficient tissues under nutrient restriction. eLife 2020; 9:53159. [PMID: 32525804 PMCID: PMC7289595 DOI: 10.7554/elife.53159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/22/2020] [Indexed: 12/27/2022] Open
Abstract
The transcription factor FoxO has been shown to block proliferation and progression in mTORC1-driven tumorigenesis but the picture of the relevant FoxO target genes remains incomplete. Here, we employed RNA-seq profiling on single clones isolated using laser capture microdissection from Drosophila larval eye imaginal discs to identify FoxO targets that restrict the proliferation of Tsc1-deficient cells under nutrient restriction (NR). Transcriptomics analysis revealed downregulation of endoplasmic reticulum-associated protein degradation pathway components upon foxo knockdown. Induction of ER stress pharmacologically or by suppression of other ER stress response pathway components led to an enhanced overgrowth of Tsc1 knockdown tissue. Increase of ER stress in Tsc1 loss-of-function cells upon foxo knockdown was also confirmed by elevated expression levels of known ER stress markers. These results highlight the role of FoxO in limiting ER stress to regulate Tsc1 mutant overgrowth.
Collapse
Affiliation(s)
- Avantika Gupta
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Hugo Stocker
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
27
|
Bolus H, Crocker K, Boekhoff-Falk G, Chtarbanova S. Modeling Neurodegenerative Disorders in Drosophila melanogaster. Int J Mol Sci 2020; 21:E3055. [PMID: 32357532 PMCID: PMC7246467 DOI: 10.3390/ijms21093055] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Drosophila melanogaster provides a powerful genetic model system in which to investigate the molecular mechanisms underlying neurodegenerative diseases. In this review, we discuss recent progress in Drosophila modeling Alzheimer's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis (ALS), Huntington's Disease, Ataxia Telangiectasia, and neurodegeneration related to mitochondrial dysfunction or traumatic brain injury. We close by discussing recent progress using Drosophila models of neural regeneration and how these are likely to provide critical insights into future treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Harris Bolus
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Kassi Crocker
- Genetics Graduate Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA;
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Grace Boekhoff-Falk
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA
| | | |
Collapse
|
28
|
Rui M, Ng KS, Tang Q, Bu S, Yu F. Protein phosphatase PP2A regulates microtubule orientation and dendrite pruning in Drosophila. EMBO Rep 2020; 21:e48843. [PMID: 32187821 DOI: 10.15252/embr.201948843] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 11/09/2022] Open
Abstract
Pruning that selectively eliminates inappropriate projections is crucial for sculpting neural circuits during development. During Drosophila metamorphosis, ddaC sensory neurons undergo dendrite-specific pruning in response to the steroid hormone ecdysone. However, the understanding of the molecular mechanisms underlying dendrite pruning remains incomplete. Here, we show that protein phosphatase 2A (PP2A) is required for dendrite pruning. The catalytic (Microtubule star/Mts), scaffolding (PP2A-29B), and two regulatory subunits (Widerborst/Wdb and Twins/Tws) play important roles in dendrite pruning. Functional analyses indicate that PP2A, via Wdb, facilitates the expression of Sox14 and Mical prior to dendrite pruning. Furthermore, PP2A, via Tws, governs the minus-end-out orientation of microtubules (MTs) in the dendrites. Moreover, the levels of Klp10A, a MT depolymerase, increase when PP2A is compromised. Attenuation of Klp10A fully rescues the MT orientation defects in mts or pp2a-29b RNAi ddaC neurons, suggesting that PP2A governs dendritic MT orientation by suppressing Klp10A levels and/or function. Taken together, this study sheds light on a novel function of PP2A in regulating dendrite pruning and dendritic MT polarity in sensory neurons.
Collapse
Affiliation(s)
- Menglong Rui
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore
| | - Kay Siong Ng
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore
| | - Quan Tang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| | - Shufeng Bu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore City, Singapore.,Neuroscience and Behavioral Disorder Program, Duke-NUS Medical School Singapore, Singapore City, Singapore
| |
Collapse
|
29
|
The Drosophila Chromodomain Protein Kismet Activates Steroid Hormone Receptor Transcription to Govern Axon Pruning and Memory In Vivo. iScience 2019; 16:79-93. [PMID: 31153043 PMCID: PMC6543131 DOI: 10.1016/j.isci.2019.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/08/2019] [Accepted: 05/13/2019] [Indexed: 11/23/2022] Open
Abstract
Axon pruning is critical for sculpting precise neural circuits. Although axon pruning has been described in the literature for decades, relatively little is known about the molecular and cellular mechanisms that govern axon pruning in vivo. Here, we show that the epigenetic reader Kismet (Kis) is required for developmental axon pruning in Drosophila mushroom bodies. Kis binds to cis-regulatory elements of the steroid hormone receptor ecdysone receptor (ecr) gene and is necessary for activating expression of EcR-B1. Kis promotes the active H3K36 di- and tri-methylation and H4K16 acetylation histone marks at the ecr locus. We show that transgenic EcR-B1 can rescue axon pruning and memory defects associated with loss of Kis and that the histone deacetylase inhibitor SAHA also rescues these phenotypes. EcR protein abundance is the cell-autonomous, rate-limiting step required to initiate axon pruning in Drosophila, and our data suggest this step is under the epigenetic control of Kis.
Collapse
|
30
|
Meltzer H, Marom E, Alyagor I, Mayseless O, Berkun V, Segal-Gilboa N, Unger T, Luginbuhl D, Schuldiner O. Tissue-specific (ts)CRISPR as an efficient strategy for in vivo screening in Drosophila. Nat Commun 2019; 10:2113. [PMID: 31068592 PMCID: PMC6506539 DOI: 10.1038/s41467-019-10140-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022] Open
Abstract
Gene editing by CRISPR/Cas9 is commonly used to generate germline mutations or perform in vitro screens, but applicability for in vivo screening has so far been limited. Recently, it was shown that in Drosophila, Cas9 expression could be limited to a desired group of cells, allowing tissue-specific mutagenesis. Here, we thoroughly characterize tissue-specific (ts)CRISPR within the complex neuronal system of the Drosophila mushroom body. We report the generation of a library of gRNA-expressing plasmids and fly lines using optimized tools, which provides a valuable resource to the fly community. We demonstrate the application of our library in a large-scale in vivo screen, which reveals insights into developmental neuronal remodeling.
Collapse
Affiliation(s)
- Hagar Meltzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Efrat Marom
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Alyagor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oded Mayseless
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Victoria Berkun
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Netta Segal-Gilboa
- Structural Proteomics Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Unger
- Structural Proteomics Unit, Weizmann Institute of Science, Rehovot, Israel
| | - David Luginbuhl
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, USA
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
31
|
Neves A, Eisenman RN. Distinct gene-selective roles for a network of core promoter factors in Drosophila neural stem cell identity. Biol Open 2019; 8:8/4/bio042168. [PMID: 30948355 PMCID: PMC6504003 DOI: 10.1242/bio.042168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The transcriptional mechanisms that allow neural stem cells (NSC) to balance self-renewal with differentiation are not well understood. Employing an in vivo RNAi screen we identify here NSC-TAFs, a subset of nine TATA-binding protein associated factors (TAFs), as NSC identity genes in Drosophila We found that depletion of NSC-TAFs results in decreased NSC clone size, reduced proliferation, defective cell polarity and increased hypersensitivity to cell cycle perturbation, without affecting NSC survival. Integrated gene expression and genomic binding analyses revealed that NSC-TAFs function with both TBP and TRF2, and that NSC-TAF-TBP and NSC-TAF-TRF2 shared target genes encode different subsets of transcription factors and RNA-binding proteins with established or emerging roles in NSC identity and brain development. Taken together, our results demonstrate that core promoter factors are selectively required for NSC identity in vivo by promoting cell cycle progression and NSC cell polarity. Because pathogenic variants in a subset of TAFs have all been linked to human neurological disorders, this work may stimulate and inform future animal models of TAF-linked neurological disorders.
Collapse
Affiliation(s)
- Alexandre Neves
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Robert N Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| |
Collapse
|
32
|
Drosophila Arl8 is a general positive regulator of lysosomal fusion events. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:533-544. [DOI: 10.1016/j.bbamcr.2018.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
|
33
|
Tsai JW, Kostyleva R, Chen PL, Rivas-Serna IM, Clandinin MT, Meinertzhagen IA, Clandinin TR. Transcriptional Feedback Links Lipid Synthesis to Synaptic Vesicle Pools in Drosophila Photoreceptors. Neuron 2019; 101:721-737.e4. [PMID: 30737130 PMCID: PMC8053036 DOI: 10.1016/j.neuron.2019.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/03/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
Neurons can maintain stable synaptic connections across adult life. However, the signals that regulate expression of synaptic proteins in the mature brain are incompletely understood. Here, we describe a transcriptional feedback loop between the biosynthesis and repertoire of specific phospholipids and the synaptic vesicle pool in adult Drosophila photoreceptors. Mutations that disrupt biosynthesis of a subset of phospholipids cause degeneration of the axon terminal and loss of synaptic vesicles. Although degeneration of the axon terminal is dependent on neural activity, activation of sterol regulatory element binding protein (SREBP) is both necessary and sufficient to cause synaptic vesicle loss. Our studies demonstrate that SREBP regulates synaptic vesicle levels by interacting with tetraspanins, critical organizers of membranous organelles. SREBP is an evolutionarily conserved regulator of lipid biosynthesis in non-neuronal cells; our studies reveal a surprising role for this feedback loop in maintaining synaptic vesicle pools in the adult brain.
Collapse
Affiliation(s)
- Jessica W Tsai
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Ripsik Kostyleva
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Pei-Ling Chen
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Irma Magaly Rivas-Serna
- Department of Agriculture, Food, and Nutritional Science, Alberta Institute of Human Nutrition, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - M Thomas Clandinin
- Department of Agriculture, Food, and Nutritional Science, Alberta Institute of Human Nutrition, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
34
|
Richman EB, Luo L. Suppressing Memories by Shrinking the Vesicle Pool. Neuron 2019; 101:5-7. [PMID: 30605657 DOI: 10.1016/j.neuron.2018.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cohesin complex regulates cellular functions spanning cell division and neuronal morphogenesis. Now, Phan et al. uncover a role for the cohesin complex in regulating memory acquisition and the size of the synaptic and dense-core vesicle pool.
Collapse
Affiliation(s)
- Ethan B Richman
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Liqun Luo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
35
|
Neuert H, Deing P, Krukkert K, Naffin E, Steffes G, Risse B, Silies M, Klämbt C. The Drosophila NCAM homolog Fas2 signals independent of adhesion. Development 2019; 147:dev.181479. [DOI: 10.1242/dev.181479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
The development of tissues and organs requires close interaction of cells. To do so, cells express adhesion proteins such as the neural cell adhesion molecule (NCAM) or its Drosophila orthologue Fasciclin 2 (Fas2). Both are members of the Ig-domain superfamily of proteins that mediate homophilic adhesion. These proteins are expressed as different isoforms differing in their membrane anchorage and their cytoplasmic domains. To study the function of single isoforms we have conducted a comprehensive genetic analysis of fas2. We reveal the expression pattern of all major Fas2 isoforms, two of which are GPI-anchored. The remaining five isoforms carry transmembrane domains with variable cytoplasmic tails. We generated fas2 mutants expressing only single isoforms. In contrast to the null mutation which causes embryonic lethality, these mutants are viable, indicating redundancy among the different isoforms. Cell type specific rescue experiments showed that glial secreted Fas2 can rescue the fas2 mutant phenotype to viability. This demonstrates cytoplasmic Fas2 domains have no apparent essential functions and indicate that Fas2 has function(s) other than homophilic adhesion. In conclusion, our data propose novel mechanistic aspects of a long studied adhesion protein.
Collapse
Affiliation(s)
- Helen Neuert
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Petra Deing
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Karin Krukkert
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Elke Naffin
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Georg Steffes
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Benjamin Risse
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Marion Silies
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Christian Klämbt
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| |
Collapse
|
36
|
Phan A, Thomas CI, Chakraborty M, Berry JA, Kamasawa N, Davis RL. Stromalin Constrains Memory Acquisition by Developmentally Limiting Synaptic Vesicle Pool Size. Neuron 2018; 101:103-118.e5. [PMID: 30503644 DOI: 10.1016/j.neuron.2018.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/24/2018] [Accepted: 11/01/2018] [Indexed: 12/14/2022]
Abstract
Stromalin, a cohesin complex protein, was recently identified as a novel memory suppressor gene, but its mechanism remained unknown. Here, we show that Stromalin functions as a negative regulator of synaptic vesicle (SV) pool size in Drosophila neurons. Stromalin knockdown in dopamine neurons during a critical developmental period enhances learning and increases SV pool size without altering the number of dopamine neurons, their axons, or synapses. The developmental effect of Stromalin knockdown persists into adulthood, leading to strengthened synaptic connections and enhanced olfactory memory acquisition in adult flies. Correcting the SV content in dopamine neuron axon terminals by impairing anterograde SV trafficking motor protein Unc104/KIF1A rescues the enhanced-learning phenotype in Stromalin knockdown flies. Our results identify a new mechanism for memory suppression and reveal that the size of the SV pool is controlled genetically and independent from other aspects of neuron structure and function through Stromalin.
Collapse
Affiliation(s)
- Anna Phan
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Connon I Thomas
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Molee Chakraborty
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Jacob A Berry
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
37
|
Davis L, Onn I, Elliott E. The emerging roles for the chromatin structure regulators CTCF and cohesin in neurodevelopment and behavior. Cell Mol Life Sci 2018; 75:1205-1214. [PMID: 29110030 PMCID: PMC11105208 DOI: 10.1007/s00018-017-2706-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/09/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022]
Abstract
Recent genetic and technological advances have determined a role for chromatin structure in neurodevelopment. In particular, compounding evidence has established roles for CTCF and cohesin, two elements that are central in the establishment of chromatin structure, in proper neurodevelopment and in regulation of behavior. Genetic aberrations in CTCF, and in subunits of the cohesin complex, have been associated with neurodevelopmental disorders in human genetic studies, and subsequent animal studies have established definitive, although sometime opposing roles, for these factors in neurodevelopment and behavior. Considering the centrality of these factors in cellular processes in general, the mechanisms through which dysregulation of CTCF and cohesin leads specifically to neurological phenotypes is intriguing, although poorly understood. The connection between CTCF, cohesin, chromatin structure, and behavior is likely to be one of the next frontiers in our understanding of the development of behavior in general, and neurodevelopmental disorders in particular.
Collapse
Affiliation(s)
- Liron Davis
- Molecular and Behavioral Neurosciences Laboratory, Faculty of Medicine in the Galilee, Bar-Ilan University, Hanrietta Sold 8, 1311502, Safed, Israel
| | - Itay Onn
- Chromosome Instability and Dynamics Laboratory, Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502, Safed, Israel
| | - Evan Elliott
- Molecular and Behavioral Neurosciences Laboratory, Faculty of Medicine in the Galilee, Bar-Ilan University, Hanrietta Sold 8, 1311502, Safed, Israel.
| |
Collapse
|
38
|
Tsai PI, Lin CH, Hsieh CH, Papakyrikos AM, Kim MJ, Napolioni V, Schoor C, Couthouis J, Wu RM, Wszolek ZK, Winter D, Greicius MD, Ross OA, Wang X. PINK1 Phosphorylates MIC60/Mitofilin to Control Structural Plasticity of Mitochondrial Crista Junctions. Mol Cell 2018; 69:744-756.e6. [DOI: 10.1016/j.molcel.2018.01.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/07/2017] [Accepted: 01/19/2018] [Indexed: 01/05/2023]
|
39
|
Bettini LR, Graziola F, Fazio G, Grazioli P, Scagliotti V, Pasquini M, Cazzaniga G, Biondi A, Larizza L, Selicorni A, Gaston-Massuet C, Massa V. Rings and Bricks: Expression of Cohesin Components is Dynamic during Development and Adult Life. Int J Mol Sci 2018; 19:E438. [PMID: 29389897 PMCID: PMC5855660 DOI: 10.3390/ijms19020438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 02/07/2023] Open
Abstract
Cohesin complex components exert fundamental roles in animal cells, both canonical in cell cycle and non-canonical in gene expression regulation. Germline mutations in genes coding for cohesins result in developmental disorders named cohesinopaties, of which Cornelia de Lange syndrome (CdLS) is the best-known entity. However, a basic description of mammalian expression pattern of cohesins in a physiologic condition is still needed. Hence, we report a detailed analysis of expression in murine and human tissues of cohesin genes defective in CdLS. Using both quantitative and qualitative methods in fetal and adult tissues, cohesin genes were found to be ubiquitously and differentially expressed in human tissues. In particular, abundant expression was observed in hematopoietic and central nervous system organs. Findings of the present study indicate tissues which should be particularly sensitive to mutations, germline and/or somatic, in cohesin genes. Hence, this expression analysis in physiological conditions may represent a first core reference for cohesinopathies.
Collapse
Affiliation(s)
- Laura Rachele Bettini
- Dipartimento di Scienze Della Salute, San Paolo Hospital Medical School, Università degli Studi di Milano, 20142 Milan, Italy.
- Clinica Pediatrica, Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy.
| | - Federica Graziola
- Dipartimento di Scienze Della Salute, San Paolo Hospital Medical School, Università degli Studi di Milano, 20142 Milan, Italy.
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Grazia Fazio
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy.
| | - Paolo Grazioli
- Dipartimento di Scienze Della Salute, San Paolo Hospital Medical School, Università degli Studi di Milano, 20142 Milan, Italy.
| | - Valeria Scagliotti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Mariavittoria Pasquini
- Dipartimento di Scienze Della Salute, San Paolo Hospital Medical School, Università degli Studi di Milano, 20142 Milan, Italy.
| | - Giovanni Cazzaniga
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy.
| | - Andrea Biondi
- Clinica Pediatrica, Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy.
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy.
| | - Lidia Larizza
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20154 Milan, Italy.
| | | | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Valentina Massa
- Dipartimento di Scienze Della Salute, San Paolo Hospital Medical School, Università degli Studi di Milano, 20142 Milan, Italy.
| |
Collapse
|
40
|
Anderson C, Reiss I, Zhou C, Cho A, Siddiqi H, Mormann B, Avelis CM, Deford P, Bergland A, Roberts E, Taylor J, Vasiliauskas D, Johnston RJ. Natural variation in stochastic photoreceptor specification and color preference in Drosophila. eLife 2017; 6:29593. [PMID: 29251595 PMCID: PMC5745083 DOI: 10.7554/elife.29593] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/15/2017] [Indexed: 11/25/2022] Open
Abstract
Each individual perceives the world in a unique way, but little is known about the genetic basis of variation in sensory perception. In the fly eye, the random mosaic of color-detecting R7 photoreceptor subtypes is determined by stochastic on/off expression of the transcription factor Spineless (Ss). In a genome-wide association study, we identified a naturally occurring insertion in a regulatory DNA element in ss that lowers the ratio of SsON to SsOFF cells. This change in photoreceptor fates shifts the innate color preference of flies from green to blue. The genetic variant increases the binding affinity for Klumpfuss (Klu), a zinc finger transcriptional repressor that regulates ss expression. Klu is expressed at intermediate levels to determine the normal ratio of SsON to SsOFF cells. Thus, binding site affinity and transcription factor levels are finely tuned to regulate stochastic expression, setting the ratio of alternative fates and ultimately determining color preference.
Collapse
Affiliation(s)
- Caitlin Anderson
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - India Reiss
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Cyrus Zhou
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Annie Cho
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Haziq Siddiqi
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Benjamin Mormann
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Cameron M Avelis
- Department of Biophysics, Johns Hopkins University, Baltimore, United States
| | - Peter Deford
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Alan Bergland
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Elijah Roberts
- Department of Biophysics, Johns Hopkins University, Baltimore, United States
| | - James Taylor
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Daniel Vasiliauskas
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifque, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
41
|
Nagy P, Szatmári Z, Sándor GO, Lippai M, Hegedűs K, Juhász G. Drosophila Atg16 promotes enteroendocrine cell differentiation via regulation of intestinal Slit/Robo signaling. Development 2017; 144:3990-4001. [PMID: 28982685 DOI: 10.1242/dev.147033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 09/25/2017] [Indexed: 12/22/2022]
Abstract
Genetic variations of Atg16l1, Slit2 and Rab19 predispose to the development of inflammatory bowel disease (IBD), but the relationship between these mutations is unclear. Here we show that in Drosophila guts lacking the WD40 domain of Atg16, pre-enteroendocrine (pre-EE) cells accumulate that fail to differentiate into properly functioning secretory EE cells. Mechanistically, loss of Atg16 or its binding partner Rab19 impairs Slit production, which normally inhibits EE cell generation by activating Robo signaling in stem cells. Importantly, loss of Atg16 or decreased Slit/Robo signaling triggers an intestinal inflammatory response. Surprisingly, analysis of Rab19 and domain-specific Atg16 mutants indicates that their stem cell niche regulatory function is independent of autophagy. Our study reveals how mutations in these different genes may contribute to IBD.
Collapse
Affiliation(s)
- Péter Nagy
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest, H-1117 Hungary
| | - Zsuzsanna Szatmári
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest, H-1117 Hungary
| | - Gyöngyvér O Sándor
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest, H-1117 Hungary
| | - Mónika Lippai
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest, H-1117 Hungary
| | - Krisztina Hegedűs
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest, H-1117 Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány s. 1/C, Budapest, H-1117 Hungary
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, H-6726 Hungary
| |
Collapse
|
42
|
Drosophila Histone Demethylase KDM4A Has Enzymatic and Non-enzymatic Roles in Controlling Heterochromatin Integrity. Dev Cell 2017; 42:156-169.e5. [PMID: 28743002 DOI: 10.1016/j.devcel.2017.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 03/21/2017] [Accepted: 06/16/2017] [Indexed: 11/23/2022]
Abstract
Eukaryotic genomes are broadly divided between gene-rich euchromatin and the highly repetitive heterochromatin domain, which is enriched for proteins critical for genome stability and transcriptional silencing. This study shows that Drosophila KDM4A (dKDM4A), previously characterized as a euchromatic histone H3 K36 demethylase and transcriptional regulator, predominantly localizes to heterochromatin and regulates heterochromatin position-effect variegation (PEV), organization of repetitive DNAs, and DNA repair. We demonstrate that dKDM4A demethylase activity is dispensable for PEV. In contrast, dKDM4A enzymatic activity is required to relocate heterochromatic double-strand breaks outside the domain, as well as for organismal survival when DNA repair is compromised. Finally, DNA damage triggers dKDM4A-dependent changes in the levels of H3K56me3, suggesting that dKDM4A demethylates this heterochromatic mark to facilitate repair. We conclude that dKDM4A, in addition to its previously characterized role in euchromatin, utilizes both enzymatic and structural mechanisms to regulate heterochromatin organization and functions.
Collapse
|
43
|
Tsai PI, Papakyrikos AM, Hsieh CH, Wang X. Drosophila MIC60/mitofilin conducts dual roles in mitochondrial motility and crista structure. Mol Biol Cell 2017; 28:3471-3479. [PMID: 28904209 PMCID: PMC5683758 DOI: 10.1091/mbc.e17-03-0177] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/16/2017] [Accepted: 09/08/2017] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are crucial organelles for providing energy for a cell. It is known that MIC60/mitofilin is important for maintaining mitochondrial structure in dissociated cells; however, its physiological roles in an intact animal are less clear. In this study, we unravel the functional consequences of deleting MIC60/mitofilin in fruit flies. MIC60/mitofilin constitutes a hetero-oligomeric complex on the inner mitochondrial membranes to maintain crista structure. However, little is known about its physiological functions. Here, by characterizing Drosophila MIC60 mutants, we define its roles in vivo. We discover that MIC60 performs dual functions to maintain mitochondrial homeostasis. In addition to its canonical role in crista membrane structure, MIC60 regulates mitochondrial motility, likely by influencing protein levels of the outer mitochondrial membrane protein Miro that anchors mitochondria to the microtubule motors. Loss of MIC60 causes loss of Miro and mitochondrial arrest. At a cellular level, loss of MIC60 disrupts synaptic structure and function at the neuromuscular junctions. The dual roles of MIC60 in both mitochondrial crista structure and motility position it as a crucial player for cellular integrity and survival.
Collapse
Affiliation(s)
- Pei-I Tsai
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Amanda M Papakyrikos
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305.,Graduate Program in Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Chung-Han Hsieh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
44
|
Richier B, Vijandi CDM, Mackensen S, Salecker I. Lapsyn controls branch extension and positioning of astrocyte-like glia in the Drosophila optic lobe. Nat Commun 2017; 8:317. [PMID: 28827667 PMCID: PMC5567088 DOI: 10.1038/s41467-017-00384-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 06/21/2017] [Indexed: 11/09/2022] Open
Abstract
Astrocytes have diverse, remarkably complex shapes in different brain regions. Their branches closely associate with neurons. Despite the importance of this heterogeneous glial cell type for brain development and function, the molecular cues controlling astrocyte branch morphogenesis and positioning during neural circuit assembly remain largely unknown. We found that in the Drosophila visual system, astrocyte-like medulla neuropil glia (mng) variants acquire stereotypic morphologies with columnar and layered branching patterns in a stepwise fashion from mid-metamorphosis onwards. Using knockdown and loss-of-function analyses, we uncovered a previously unrecognized role for the transmembrane leucine-rich repeat protein Lapsyn in regulating mng development. lapsyn is expressed in mng and cell-autonomously required for branch extension into the synaptic neuropil and anchoring of cell bodies at the neuropil border. Lapsyn works in concert with the fibroblast growth factor (FGF) pathway to promote branch morphogenesis, while correct positioning is essential for mng survival mediated by gliotrophic FGF signaling. How glial cells, such as astrocytes, acquire their characteristic morphology during development is poorly understood. Here the authors describe the morphogenesis of astrocyte-like glia in the Drosophila optic lobe, and through a RNAi screen, they identify a transmembrane LRR protein–Lapsyn–that plays a critical role in this process.
Collapse
Affiliation(s)
- Benjamin Richier
- The Francis Crick Institute, Visual Circuit Assembly Laboratory, 1 Midland Road, London, NW1 1AT, UK.,The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | | | - Stefanie Mackensen
- The Francis Crick Institute, Visual Circuit Assembly Laboratory, 1 Midland Road, London, NW1 1AT, UK.,University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, 48149, Muenster, Germany
| | - Iris Salecker
- The Francis Crick Institute, Visual Circuit Assembly Laboratory, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
45
|
Cheng MH, Andrejka L, Vorster PJ, Hinman A, Lipsick JS. The Drosophila LIN54 homolog Mip120 controls two aspects of oogenesis. Biol Open 2017; 6:967-978. [PMID: 28522430 PMCID: PMC5550918 DOI: 10.1242/bio.025825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The conserved multi-protein MuvB core associates with the Myb oncoproteins and with the RB-E2F-DP tumor suppressor proteins in complexes that regulate cell proliferation, differentiation, and apoptosis. Drosophila Mip120, a homolog of LIN54, is a sequence-specific DNA-binding protein within the MuvB core. A mutant of Drosophilamip120 was previously shown to cause female and male sterility. We now show that Mip120 regulates two different aspects of oogenesis. First, in the absence of the Mip120 protein, egg chambers arrest during the transition from stage 7 to 8 with a failure of the normal program of chromosomal dynamics in the ovarian nurse cells. Specifically, the decondensation, disassembly and dispersion of the endoreplicated polytene chromosomes fail to occur without Mip120. The conserved carboxy-terminal DNA-binding and protein-protein interaction domains of Mip120 are necessary but not sufficient for this process. Second, we show that a lack of Mip120 causes a dramatic increase in the expression of benign gonial cell neoplasm (bgcn), a gene that is normally expressed in only a small number of cells within the ovary including the germline stem cells. Summary:Drosophila Mip120/LIN54, regulates ovarian nurse cell chromosome disassembly and germline-specific gene expression. These functions of Mip120 require its less conserved N-terminus in addition to its CXC DNA-binding and HCH protein-interaction domains.
Collapse
Affiliation(s)
- Mei-Hsin Cheng
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Laura Andrejka
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Paul J Vorster
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Albert Hinman
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Joseph S Lipsick
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| |
Collapse
|
46
|
Palu RA, Praggastis SA, Thummel CS. Parental obesity leads to metabolic changes in the F2 generation in Drosophila. Mol Metab 2017; 6:631-639. [PMID: 28702320 PMCID: PMC5485226 DOI: 10.1016/j.molmet.2017.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE A significant portion of the heritable risk for complex metabolic disorders cannot be attributed to classic Mendelian genetic factors. At least some of this missing heritability is thought to be due to the epigenetic influence of parental and grandparental metabolic state on offspring health. Previous work suggests that this transgenerational phenomenon is evolutionarily conserved in Drosophila. These studies, however, have all depended on dietary paradigms to alter parental metabolic state, which can have inconsistent heritable effects on the metabolism of offspring. METHODS Here we use AKHR null alleles to induce obesity in the parental generation and then score both metabolic parameters and genome-wide transcriptional responses in AKHR heterozygote F1 progeny and genetically wild-type F2 progeny. RESULTS Unexpectedly, we observe elevated glycogen levels and changes in gene expression in AKHR heterozygotes due to haploinsufficiency at this locus. We also show that genetic manipulation of parental metabolism using AKHR mutations results in significant physiological changes in F2 wild-type offspring of the grandpaternal/maternal lineage. CONCLUSIONS Our results demonstrate that genetic manipulation of parental metabolism in Drosophila can have an effect on the health of F2 progeny, providing a non-dietary paradigm to better understand the mechanisms behind the transgenerational inheritance of metabolic state.
Collapse
Affiliation(s)
| | | | - Carl S. Thummel
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E Rm 5100, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
47
|
Fujita Y, Masuda K, Bando M, Nakato R, Katou Y, Tanaka T, Nakayama M, Takao K, Miyakawa T, Tanaka T, Ago Y, Hashimoto H, Shirahige K, Yamashita T. Decreased cohesin in the brain leads to defective synapse development and anxiety-related behavior. J Exp Med 2017; 214:1431-1452. [PMID: 28408410 PMCID: PMC5413336 DOI: 10.1084/jem.20161517] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/14/2017] [Accepted: 03/03/2017] [Indexed: 11/21/2022] Open
Abstract
Abnormal epigenetic regulation can cause the nervous system to develop abnormally. Here, we sought to understand the mechanism by which this occurs by investigating the protein complex cohesin, which is considered to regulate gene expression and, when defective, is associated with higher-level brain dysfunction and the developmental disorder Cornelia de Lange syndrome (CdLS). We generated conditional Smc3-knockout mice and observed greater dendritic complexity and larger numbers of immature synapses in the cerebral cortex of Smc3+/- mice. Smc3+/- mice also exhibited more anxiety-related behavior, which is a symptom of CdLS. Further, a gene ontology analysis after RNA-sequencing suggested the enrichment of immune processes, particularly the response to interferons, in the Smc3+/- mice. Indeed, fewer synapses formed in their cortical neurons, and this phenotype was rescued by STAT1 knockdown. Thus, low levels of cohesin expression in the developing brain lead to changes in gene expression that in turn lead to a specific and abnormal neuronal and behavioral phenotype.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Koji Masuda
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Masashige Bando
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Ryuichiro Nakato
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuki Katou
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Takashi Tanaka
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masahiro Nakayama
- Department of Pathology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka 594-1101, Japan
| | - Keizo Takao
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Tsuyoshi Miyakawa
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Aichi 470-1192, Japan
| | - Tatsunori Tanaka
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Division of Bioscience, Institute for Datability Science, Osaka University, Osaka 565-0871, Japan
- iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka 565-0871, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
48
|
Fisher YE, Yang HH, Isaacman-Beck J, Xie M, Gohl DM, Clandinin TR. FlpStop, a tool for conditional gene control in Drosophila. eLife 2017; 6:e22279. [PMID: 28211790 PMCID: PMC5342825 DOI: 10.7554/elife.22279] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/13/2017] [Indexed: 12/15/2022] Open
Abstract
Manipulating gene function cell type-specifically is a common experimental goal in Drosophila research and has been central to studies of neural development, circuit computation, and behavior. However, current cell type-specific gene disruption techniques in flies often reduce gene activity incompletely or rely on cell division. Here we describe FlpStop, a generalizable tool for conditional gene disruption and rescue in post-mitotic cells. In proof-of-principle experiments, we manipulated apterous, a regulator of wing development. Next, we produced conditional null alleles of Glutamic acid decarboxylase 1 (Gad1) and Resistant to dieldrin (Rdl), genes vital for GABAergic neurotransmission, as well as cacophony (cac) and paralytic (para), voltage-gated ion channels central to neuronal excitability. To demonstrate the utility of this approach, we manipulated cac in a specific visual interneuron type and discovered differential regulation of calcium signals across subcellular compartments. Thus, FlpStop will facilitate investigations into the interactions between genes, circuits, and computation.
Collapse
Affiliation(s)
- Yvette E Fisher
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Helen H Yang
- Department of Neurobiology, Stanford University, Stanford, United States
| | | | - Marjorie Xie
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Daryl M Gohl
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, United States
| |
Collapse
|
49
|
Kowalec P, Fronk J, Kurlandzka A. The Irr1/Scc3 protein implicated in chromosome segregation in Saccharomyces cerevisiae has a dual nuclear-cytoplasmic localization. Cell Div 2017; 12:1. [PMID: 28077952 PMCID: PMC5223379 DOI: 10.1186/s13008-016-0027-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Correct chromosome segregation depends on the sister chromatid cohesion complex. The essential, evolutionarily conserved regulatory protein Irr1/Scc3, is responsible for the complex loading onto DNA and for its removal. We found that, unexpectedly, Irr1 is present not only in the nucleus but also in the cytoplasm. RESULTS We show that Irr1 protein is enriched in the cytoplasm upon arrest of yeast cells in G1 phase following nitrogen starvation, diauxic shift or α-factor action, and also during normal cell cycle. Despite the presence of numerous Crm1-dependent export signals, the cytoplasmic pool of Irr1 is not derived through export from the nucleus but instead is simply retained in the cytoplasm. Cytoplasmic Irr1 interacts with the Imi1 protein implicated in glutathione homeostasis and mitochondrial integrity. CONCLUSIONS Besides regulation of the sister chromatid cohesion complex in the nucleus Irr1 appears to have an additional role in the cytoplasm, possibly through interaction with the cytoplasmic protein Imi1.
Collapse
Affiliation(s)
- Piotr Kowalec
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Jan Fronk
- Department of Molecular Biology, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Kurlandzka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
50
|
Gupta P, Lavagnolli T, Mira-Bontenbal H, Merkenschlager M. Analysis of Cohesin Function in Gene Regulation and Chromatin Organization in Interphase. Methods Mol Biol 2017; 1515:197-216. [PMID: 27797081 DOI: 10.1007/978-1-4939-6545-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Cohesin is essential for the maintenance of chromosomes through the cell cycle. In addition, cohesin contributes to the regulation of gene expression and the organization of chromatin in interphase cells. To study cohesin's role in gene expression and chromatin organization, it is necessary to avoid secondary effects due to disruption of vital cohesin functions in the cell cycle. Here we describe experimental approaches to achieve this and the methods applied to define cohesin's role in interphase.
Collapse
Affiliation(s)
- Preksha Gupta
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Thais Lavagnolli
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Hegias Mira-Bontenbal
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Department of Developmental Biology, Erasmus MC, University Medical Centre, 3015 CN, Rotterdam, The Netherlands
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|