1
|
Tam R, Harris TJ. Centrosome-organized plasma membrane infoldings linked to growth of a cortical actin domain. J Cell Biol 2024; 223:e202403115. [PMID: 38935075 PMCID: PMC11215285 DOI: 10.1083/jcb.202403115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Regulated cell shape change requires the induction of cortical cytoskeletal domains. Often, local changes to plasma membrane (PM) topography are involved. Centrosomes organize cortical domains and can affect PM topography by locally pulling the PM inward. Are these centrosome effects coupled? At the syncytial Drosophila embryo cortex, centrosome-induced actin caps grow into dome-like compartments for mitoses. We found the nascent cap to be a collection of PM folds and tubules formed over the astral centrosomal MT array. The localized infoldings require centrosome and dynein activities, and myosin-based surface tension prevents them elsewhere. Centrosome-engaged PM infoldings become specifically enriched with an Arp2/3 induction pathway. Arp2/3 actin network growth between the infoldings counterbalances centrosomal pulling forces and disperses the folds for actin cap expansion. Abnormal domain topography with either centrosome or Arp2/3 disruption correlates with decreased exocytic vesicle association. Together, our data implicate centrosome-organized PM infoldings in coordinating Arp2/3 network growth and exocytosis for cortical domain assembly.
Collapse
Affiliation(s)
- Rebecca Tam
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Tony J.C. Harris
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Tam R, Harris TJC. Reshaping the Syncytial Drosophila Embryo with Cortical Actin Networks: Four Main Steps of Early Development. Results Probl Cell Differ 2024; 71:67-90. [PMID: 37996673 DOI: 10.1007/978-3-031-37936-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Drosophila development begins as a syncytium. The large size of the one-cell embryo makes it ideal for studying the structure, regulation, and effects of the cortical actin cytoskeleton. We review four main steps of early development that depend on the actin cortex. At each step, dynamic remodelling of the cortex has specific effects on nuclei within the syncytium. During axial expansion, a cortical actomyosin network assembles and disassembles with the cell cycle, generating cytoplasmic flows that evenly distribute nuclei along the ovoid cell. When nuclei move to the cell periphery, they seed Arp2/3-based actin caps which grow into an array of dome-like compartments that house the nuclei as they divide at the cell cortex. To separate germline nuclei from the soma, posterior germ plasm induces full cleavage of mono-nucleated primordial germ cells from the syncytium. Finally, zygotic gene expression triggers formation of the blastoderm epithelium via cellularization and simultaneous division of ~6000 mono-nucleated cells from a single internal yolk cell. During these steps, the cortex is regulated in space and time, gains domain and sub-domain structure, and undergoes mesoscale interactions that lay a structural foundation of animal development.
Collapse
Affiliation(s)
- Rebecca Tam
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Tony J C Harris
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Yeh AR, Hoeprich GJ, Goode BL, Martin AC. Bitesize bundles F-actin and influences actin remodeling in syncytial Drosophila embryo development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537198. [PMID: 37131807 PMCID: PMC10153138 DOI: 10.1101/2023.04.17.537198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Actin networks undergo rearrangements that influence cell and tissue shape. Actin network assembly and organization is regulated in space and time by a host of actin binding proteins. The Drosophila Synaptotagmin-like protein, Bitesize (Btsz), is known to organize actin at epithelial cell apical junctions in a manner that depends on its interaction with the actin-binding protein, Moesin. Here, we showed that Btsz functions in actin reorganization at earlier, syncytial stages of Drosophila embryo development. Btsz was required for the formation of stable metaphase pseudocleavage furrows that prevented spindle collisions and nuclear fallout prior to cellularization. While previous studies focused on Btsz isoforms containing the Moesin Binding Domain (MBD), we found that isoforms lacking the MBD also function in actin remodeling. Consistent with this, we found that the C-terminal half of BtszB cooperatively binds to and bundles F-actin, suggesting a direct mechanism for Synaptotagmin-like proteins regulating actin organization during animal development.
Collapse
|
4
|
Sokac AM, Biel N, De Renzis S. Membrane-actin interactions in morphogenesis: Lessons learned from Drosophila cellularization. Semin Cell Dev Biol 2023; 133:107-122. [PMID: 35396167 PMCID: PMC9532467 DOI: 10.1016/j.semcdb.2022.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/12/2023]
Abstract
During morphogenesis, changes in the shapes of individual cells are harnessed to mold an entire tissue. These changes in cell shapes require the coupled remodeling of the plasma membrane and underlying actin cytoskeleton. In this review, we highlight cellularization of the Drosophila embryo as a model system to uncover principles of how membrane and actin dynamics are co-regulated in space and time to drive morphogenesis.
Collapse
Affiliation(s)
- Anna Marie Sokac
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA; Graduate Program in Integrative and Molecular Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Natalie Biel
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA; Graduate Program in Integrative and Molecular Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stefano De Renzis
- European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
| |
Collapse
|
5
|
Vazquez-Pianzola P, Beuchle D, Saro G, Hernández G, Maldonado G, Brunßen D, Meister P, Suter B. Female meiosis II and pronuclear fusion require the microtubule transport factor Bicaudal D. Development 2022; 149:275749. [DOI: 10.1242/dev.199944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/25/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Bicaudal D (BicD) is a dynein adaptor that transports different cargoes along microtubules. Reducing the activity of BicD specifically in freshly laid Drosophila eggs by acute protein degradation revealed that BicD is needed to produce normal female meiosis II products, to prevent female meiotic products from re-entering the cell cycle, and for pronuclear fusion. Given that BicD is required to localize the spindle assembly checkpoint (SAC) components Mad2 and BubR1 to the female meiotic products, it appears that BicD functions to localize these components to control metaphase arrest of polar bodies. BicD interacts with Clathrin heavy chain (Chc), and both proteins localize to centrosomes, mitotic spindles and the tandem spindles during female meiosis II. Furthermore, BicD is required to localize clathrin and the microtubule-stabilizing factors transforming acidic coiled-coil protein (D-TACC/Tacc) and Mini spindles (Msps) correctly to the meiosis II spindles, suggesting that failure to localize these proteins may perturb SAC function. Furthermore, immediately after the establishment of the female pronucleus, D-TACC and Caenorhabditis elegans BicD, tacc and Chc are also needed for pronuclear fusion, suggesting that the underlying mechanism might be more widely used across species.
Collapse
Affiliation(s)
| | - Dirk Beuchle
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Gabriella Saro
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Greco Hernández
- Instituto Nacional de Cancerología (INCan) 2 Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer , , 14080-Tlalpan, Mexico City , Mexico
| | - Giovanna Maldonado
- Instituto Nacional de Cancerología (INCan) 2 Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer , , 14080-Tlalpan, Mexico City , Mexico
| | - Dominique Brunßen
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Peter Meister
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Beat Suter
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| |
Collapse
|
6
|
Falo-Sanjuan J, Bray SJ. Membrane architecture and adherens junctions contribute to strong Notch pathway activation. Development 2021; 148:272068. [PMID: 34486648 PMCID: PMC8543148 DOI: 10.1242/dev.199831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022]
Abstract
The Notch pathway mediates cell-to-cell communication in a variety of tissues, developmental stages and organisms. Pathway activation relies on the interaction between transmembrane ligands and receptors on adjacent cells. As such, pathway activity could be influenced by the size, composition or dynamics of contacts between membranes. The initiation of Notch signalling in the Drosophila embryo occurs during cellularization, when lateral cell membranes and adherens junctions are first being deposited, allowing us to investigate the importance of membrane architecture and specific junctional domains for signalling. By measuring Notch-dependent transcription in live embryos, we established that it initiates while lateral membranes are growing and that signalling onset correlates with a specific phase in their formation. However, the length of the lateral membranes per se was not limiting. Rather, the adherens junctions, which assemble concurrently with membrane deposition, contributed to the high levels of signalling required for transcription, as indicated by the consequences of α-Catenin depletion. Together, these results demonstrate that the establishment of lateral membrane contacts can be limiting for Notch trans-activation and suggest that adherens junctions play an important role in modulating Notch activity. Summary: Measuring Notch-dependent transcription in live embryos reveals that features associated with lateral membranes are required for initiation of Notch signalling. Perturbing membrane growth or adherens junctions prevents normal activation.
Collapse
Affiliation(s)
- Julia Falo-Sanjuan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
7
|
Mahapatra A, Uysalel C, Rangamani P. The Mechanics and Thermodynamics of Tubule Formation in Biological Membranes. J Membr Biol 2021; 254:273-291. [PMID: 33462667 PMCID: PMC8184589 DOI: 10.1007/s00232-020-00164-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Membrane tubulation is a ubiquitous process that occurs both at the plasma membrane and on the membranes of intracellular organelles. These tubulation events are known to be mediated by forces applied on the membrane either due to motor proteins, by polymerization of the cytoskeleton, or due to the interactions between membrane proteins binding onto the membrane. The numerous experimental observations of tube formation have been amply supported by mathematical modeling of the associated membrane mechanics and have provided insights into the force-displacement relationships of membrane tubes. Recent advances in quantitative biophysical measurements of membrane-protein interactions and tubule formation have necessitated the need for advances in modeling that will account for the interplay of multiple aspects of physics that occur simultaneously. Here, we present a comprehensive review of experimental observations of tubule formation and provide context from the framework of continuum modeling. Finally, we explore the scope for future research in this area with an emphasis on iterative modeling and experimental measurements that will enable us to expand our mechanistic understanding of tubulation processes in cells.
Collapse
Affiliation(s)
- Arijit Mahapatra
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Can Uysalel
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
8
|
Nakamura M, Verboon JM, Allen TE, Abreu-Blanco MT, Liu R, Dominguez ANM, Delrow JJ, Parkhurst SM. Autocrine insulin pathway signaling regulates actin dynamics in cell wound repair. PLoS Genet 2020; 16:e1009186. [PMID: 33306674 PMCID: PMC7758051 DOI: 10.1371/journal.pgen.1009186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/23/2020] [Accepted: 10/09/2020] [Indexed: 01/13/2023] Open
Abstract
Cells are exposed to frequent mechanical and/or chemical stressors that can compromise the integrity of the plasma membrane and underlying cortical cytoskeleton. The molecular mechanisms driving the immediate repair response launched to restore the cell cortex and circumvent cell death are largely unknown. Using microarrays and drug-inhibition studies to assess gene expression, we find that initiation of cell wound repair in the Drosophila model is dependent on translation, whereas transcription is required for subsequent steps. We identified 253 genes whose expression is up-regulated (80) or down-regulated (173) in response to laser wounding. A subset of these genes were validated using RNAi knockdowns and exhibit aberrant actomyosin ring assembly and/or actin remodeling defects. Strikingly, we find that the canonical insulin signaling pathway controls actin dynamics through the actin regulators Girdin and Chickadee (profilin), and its disruption leads to abnormal wound repair. Our results provide new insight for understanding how cell wound repair proceeds in healthy individuals and those with diseases involving wound healing deficiencies.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Jeffrey M. Verboon
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Tessa E. Allen
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Maria Teresa Abreu-Blanco
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Raymond Liu
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Andrew N. M. Dominguez
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Jeffrey J. Delrow
- Genomics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Susan M. Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| |
Collapse
|
9
|
Peng H, Qiao R, Dong B. Polarity Establishment and Maintenance in Ascidian Notochord. Front Cell Dev Biol 2020; 8:597446. [PMID: 33195278 PMCID: PMC7661463 DOI: 10.3389/fcell.2020.597446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022] Open
Abstract
Cell and tissue polarity due to the extracellular signaling and intracellular gene cascades, in turn, signals the directed cell behaviors and asymmetric tissue architectures that play a crucial role in organogenesis and embryogenesis. The notochord is a characteristic midline organ in chordate embryos that supports the body structure and produces positioning signaling. This review summarizes cellular and tissue-level polarities during notochord development in ascidians. At the early stage, planar cell polarity (PCP) is initialized, which drives cell convergence extension and migration to form a rod-like structure. Subsequently, the notochord undergoes a mesenchymal-epithelial transition, becoming an unusual epithelium in which cells have two opposing apical domains facing the extracellular lumen deposited between adjacent notochord cells controlled by apical-basal (AB) polarity. Cytoskeleton distribution is one of the main downstream events of cell polarity. Some cytoskeleton polarity patterns are a consequence of PCP: however, an additional polarized cytoskeleton, together with Rho signaling, might serve as a guide for correct AB polarity initiation in the notochord. In addition, the notochord's mechanical properties are associated with polarity establishment and transformation, which bridge signaling regulation and tissue mechanical properties that enable the coordinated organogenesis during embryo development.
Collapse
Affiliation(s)
- Hongzhe Peng
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Runyu Qiao
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bo Dong
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
10
|
Carter TY, Gadwala S, Chougule AB, Bui APN, Sanders AC, Chaerkady R, Cormier N, Cole RN, Thomas JH. Actomyosin contraction during cellularization is regulated in part by Src64 control of Actin 5C protein levels. Genesis 2019; 57:e23297. [PMID: 30974046 DOI: 10.1002/dvg.23297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 11/09/2022]
Abstract
Src64 is required for actomyosin contraction during cellularization of the Drosophila embryonic blastoderm. The mechanism of actomyosin ring constriction is poorly understood even though a number of cytoskeletal regulators have been implicated in the assembly, organization, and contraction of these microfilament rings. How these cytoskeletal processes are regulated during development is even less well understood. To investigate the role of Src64 as an upstream regulator of actomyosin contraction, we conducted a proteomics screen to identify proteins whose expression levels are controlled by src64. Global levels of actin are reduced in src64 mutant embryos. Furthermore, we show that reduction of the actin isoform Actin 5C causes defects in actomyosin contraction during cellularization similar to those caused by src64 mutation, indicating that a relatively high level of Actin 5C is required for normal actomyosin contraction and furrow canal structure. However, reduction of Actin 5C levels only slows down actomyosin ring constriction rather than preventing it, suggesting that src64 acts not only to modulate actin levels, but also to regulate the actomyosin cytoskeleton by other means.
Collapse
Affiliation(s)
- Tammy Y Carter
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Swetha Gadwala
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Ashish B Chougule
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Anh P N Bui
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Alex C Sanders
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Raghothama Chaerkady
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nathaly Cormier
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Robert N Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeffrey H Thomas
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
11
|
Blake-Hedges C, Megraw TL. Coordination of Embryogenesis by the Centrosome in Drosophila melanogaster. Results Probl Cell Differ 2019; 67:277-321. [PMID: 31435800 PMCID: PMC11725063 DOI: 10.1007/978-3-030-23173-6_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The first 3 h of Drosophila melanogaster embryo development are exemplified by rapid nuclear divisions within a large syncytium, transforming the zygote to the cellular blastoderm after 13 successive cleavage divisions. As the syncytial embryo develops, it relies on centrosomes and cytoskeletal dynamics to transport nuclei, maintain uniform nuclear distribution throughout cleavage cycles, ensure generation of germ cells, and coordinate cellularization. For the sake of this review, we classify six early embryo stages that rely on processes coordinated by the centrosome and its regulation of the cytoskeleton. The first stage features migration of one of the female pronuclei toward the male pronucleus following maturation of the first embryonic centrosomes. Two subsequent stages distribute the nuclei first axially and then radially in the embryo. The remaining three stages involve centrosome-actin dynamics that control cortical plasma membrane morphogenesis. In this review, we highlight the dynamics of the centrosome and its role in controlling the six stages that culminate in the cellularization of the blastoderm embryo.
Collapse
Affiliation(s)
- Caitlyn Blake-Hedges
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| | - Timothy L Megraw
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
12
|
Abstract
In this extra view, we comment on our recent work concerning the mRNA localization of the gene slow as molasses (slam). slam is a gene essential for the polarized invagination of the plasma membrane and separation of basal and lateral cortical domains during cellularization as well as for germ cell migration in later embryogenesis. We have demonstrated an intimate relationship between slam RNA and its encoded protein. Slam RNA co-localizes and forms a complex with its encoded protein. Slam mRNA localization not only is required for reaching full levels of functional Slam protein but also depends on Slam protein. The translation of slam mRNA is subject to tight spatio-temporal regulation leading to a rapid accumulation of Slam protein and zygotic slam RNA at the furrow canal. In this extra view, we first discuss the mechanism controlling localization and translation of slam RNA. In addition, we document in detail the maternal and zygotic expression of slam RNA and protein and provide data for a function in membrane stabilization. Furthermore, we mapped the region of Slam protein mediating cortical localization in cultured cells.
Collapse
Affiliation(s)
- Shuling Yan
- a Institute for Developmental Biochemistry, Medical School , University of Göttingen , Göttingen , Germany
| | - Jörg Großhans
- a Institute for Developmental Biochemistry, Medical School , University of Göttingen , Göttingen , Germany
| |
Collapse
|
13
|
Schmidt A, Grosshans J. Dynamics of cortical domains in early Drosophila development. J Cell Sci 2018; 131:131/7/jcs212795. [DOI: 10.1242/jcs.212795] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Underlying the plasma membrane of eukaryotic cells is an actin cortex that includes actin filaments and associated proteins. A special feature of all polarized and epithelial cells are cortical domains, each of which is characterized by specific sets of proteins. Typically, an epithelial cell contains apical, subapical, lateral and basal domains. The domain-specific protein sets contain evolutionarily conserved proteins, as well as cell-type-specific factors. Among the conserved proteins are, the Par proteins, Crumbs complex and the lateral proteins Scribbled and Discs large 1. Organization of the plasma membrane into cortical domains is dynamic and depends on cell type, differentiation and developmental stage. The dynamics of cortical organization is strikingly visible in early Drosophila embryos, which increase the number of distinct cortical domains from one, during the pre-blastoderm stage, to two in syncytial blastoderm embryos, before finally acquiring the four domains that are typical for epithelial cells during cellularization. In this Review, we will describe the dynamics of cortical organization in early Drosophila embryos and discuss the processes and mechanisms underlying cortical remodeling.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, 37077 Göttingen, Germany
| | - Jörg Grosshans
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
14
|
Romani P, Duchi S, Gargiulo G, Cavaliere V. Evidence for a novel function of Awd in maintenance of genomic stability. Sci Rep 2017; 7:16820. [PMID: 29203880 PMCID: PMC5714947 DOI: 10.1038/s41598-017-17217-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/20/2017] [Indexed: 01/07/2023] Open
Abstract
The abnormal wing discs (awd) gene encodes the Drosophila homolog of NME1/NME2 metastasis suppressor genes. Awd acts in multiple tissues where its function is critical in establishing and maintaining epithelial integrity. Here, we analysed awd gene function in Drosophila epithelial cells using transgene-mediated RNA interference and genetic mosaic analysis. We show that awd knockdown in larval wing disc epithelium leads to chromosomal instability (CIN) and induces apoptosis mediated by activation of c-Jun N-terminal kinase. Forced maintenance of Awd depleted cells, by expressing the cell death inhibitor p35, downregulates atypical protein kinase C and DE-Cadherin. Consistent with their loss of cell polarity and enhanced level of matrix metalloproteinase 1, cells delaminate from wing disc epithelium. Furthermore, the DNA content profile of these cells indicates that they are aneuploid. Overall, our data demonstrate a novel function for awd in maintenance of genomic stability. Our results are consistent with other studies reporting that NME1 down-regulation induces CIN in human cell lines and suggest that Drosophila model could be successfully used to study in vivo the impact of NME/Awd - induced genomic instability on tumour development and metastasis formation.
Collapse
Affiliation(s)
- Patrizia Romani
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, 40126, Italy. .,Dipartimento di Medicina Molecolare, Università di Padova, Padova, 35131, Italy.
| | - Serena Duchi
- Laboratorio di Patologia Ortopedica e Rigenerazione Tissutale Osteoarticolare, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Giuseppe Gargiulo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, 40126, Italy
| | - Valeria Cavaliere
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, 40126, Italy.
| |
Collapse
|
15
|
Xue Z, Sokac AM. -Back-to-back mechanisms drive actomyosin ring closure during Drosophila embryo cleavage. J Cell Biol 2016; 215:335-344. [PMID: 27799369 PMCID: PMC5100295 DOI: 10.1083/jcb.201608025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/10/2016] [Indexed: 12/30/2022] Open
Abstract
The mechanisms mediating actomyosin ring contraction during Drosophila cellularization, a developmental division that resembles cytokinesis, are unclear. Xue and Sokac delineate the contribution of cytoskeletal motors and actin-binding proteins to actomyosin ring constriction as Drosophila embryos undergo cleavage. Contraction of actomyosin rings during cytokinesis is typically attributed to actin filaments sliding toward each other via Myosin-2 motor activity. However, rings constrict in some cells in the absence of Myosin-2 activity. Thus, ring closure uses Myosin-2–dependent and –independent mechanisms. But what the Myosin-2–independent mechanisms are, and to what extent they are sufficient to drive closure, remains unclear. During cleavage in Drosophila melanogaster embryos, actomyosin rings constrict in two sequential and mechanistically distinct phases. We show that these phases differ in constriction speed and are genetically and pharmacologically separable. Further, Myosin-2 activity is required for slow constriction in “phase 1” but is largely dispensable for fast constriction in “phase 2,” and F-actin disassembly is only required for fast constriction in phase 2. Switching from phase 1 to phase 2 seemingly relies on the spatial organization of F-actin as controlled by Cofilin, Anillin, and Septin. Our work shows that fly embryos present a singular opportunity to compare separable ring constriction mechanisms, with varying Myosin-2 dependencies, in one cell type and in vivo.
Collapse
Affiliation(s)
- Zenghui Xue
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Anna Marie Sokac
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
16
|
He B, Martin A, Wieschaus E. Flow-dependent myosin recruitment during Drosophila cellularization requires zygotic dunk activity. Development 2016; 143:2417-30. [PMID: 27226317 PMCID: PMC4958320 DOI: 10.1242/dev.131334] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 05/18/2016] [Indexed: 12/12/2022]
Abstract
Actomyosin contractility underlies force generation in morphogenesis ranging from cytokinesis to epithelial extension or invagination. In Drosophila, the cleavage of the syncytial blastoderm is initiated by an actomyosin network at the base of membrane furrows that invaginate from the surface of the embryo. It remains unclear how this network forms and how it affects tissue mechanics. Here, we show that during Drosophila cleavage, myosin recruitment to the cleavage furrows proceeds in temporally distinct phases of tension-driven cortical flow and direct recruitment, regulated by different zygotic genes. We identify the gene dunk, which we show is transiently transcribed when cellularization starts and functions to maintain cortical myosin during the flow phase. The subsequent direct myosin recruitment, however, is Dunk-independent but requires Slam. The Slam-dependent direct recruitment of myosin is sufficient to drive cleavage in the dunk mutant, and the subsequent development of the mutant is normal. In the dunk mutant, cortical myosin loss triggers misdirected flow and disrupts the hexagonal packing of the ingressing furrows. Computer simulation coupled with laser ablation suggests that Dunk-dependent maintenance of cortical myosin enables mechanical tension build-up, thereby providing a mechanism to guide myosin flow and define the hexagonal symmetry of the furrows. Summary: During Drosophila cellularisation, myosin recruitment to the cleavage furrows proceeds in temporally and mechanistically distinct phases separately regulated by dunk and slam.
Collapse
Affiliation(s)
- Bing He
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Adam Martin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA HHMI, Princeton University, Princeton, NJ 08544, USA
| | - Eric Wieschaus
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA HHMI, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
17
|
Sherlekar A, Rikhy R. Syndapin promotes pseudocleavage furrow formation by actin organization in the syncytial Drosophila embryo. Mol Biol Cell 2016; 27:2064-79. [PMID: 27146115 PMCID: PMC4927280 DOI: 10.1091/mbc.e15-09-0656] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/26/2016] [Indexed: 12/03/2022] Open
Abstract
F-BAR domain–containing proteins link the actin cytoskeleton to the membrane during membrane remodeling. Syndapin associates with the pseudocleavage furrow membrane and is essential for furrow morphology, actin organization, and extension downstream of initiation factor RhoGEF2. Coordinated membrane and cytoskeletal remodeling activities are required for membrane extension in processes such as cytokinesis and syncytial nuclear division cycles in Drosophila. Pseudocleavage furrow membranes in the syncytial Drosophila blastoderm embryo show rapid extension and retraction regulated by actin-remodeling proteins. The F-BAR domain protein Syndapin (Synd) is involved in membrane tubulation, endocytosis, and, uniquely, in F-actin stability. Here we report a role for Synd in actin-regulated pseudocleavage furrow formation. Synd localized to these furrows, and its loss resulted in short, disorganized furrows. Synd presence was important for the recruitment of the septin Peanut and distribution of Diaphanous and F-actin at furrows. Synd and Peanut were both absent in furrow-initiation mutants of RhoGEF2 and Diaphanous and in furrow-progression mutants of Anillin. Synd overexpression in rhogef2 mutants reversed its furrow-extension phenotypes, Peanut and Diaphanous recruitment, and F-actin organization. We conclude that Synd plays an important role in pseudocleavage furrow extension, and this role is also likely to be crucial in cleavage furrow formation during cell division.
Collapse
Affiliation(s)
- Aparna Sherlekar
- Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| |
Collapse
|
18
|
Drak Is Required for Actomyosin Organization During Drosophila Cellularization. G3-GENES GENOMES GENETICS 2016; 6:819-28. [PMID: 26818071 PMCID: PMC4825652 DOI: 10.1534/g3.115.026401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The generation of force by actomyosin contraction is critical for a variety of cellular and developmental processes. Nonmuscle myosin II is the motor that drives actomyosin contraction, and its activity is largely regulated by phosphorylation of the myosin regulatory light chain. During the formation of the Drosophila cellular blastoderm, actomyosin contraction drives constriction of microfilament rings, modified cytokinesis rings. Here, we find that Drak is necessary for most of the phosphorylation of the myosin regulatory light chain during cellularization. We show that Drak is required for organization of myosin II within the microfilament rings. Proper actomyosin contraction of the microfilament rings during cellularization also requires Drak activity. Constitutive activation of myosin regulatory light chain bypasses the requirement for Drak, suggesting that actomyosin organization and contraction are mediated through Drak's regulation of myosin activity. Drak is also involved in the maintenance of furrow canal structure and lateral plasma membrane integrity during cellularization. Together, our observations suggest that Drak is the primary regulator of actomyosin dynamics during cellularization.
Collapse
|
19
|
Mavor LM, Miao H, Zuo Z, Holly RM, Xie Y, Loerke D, Blankenship JT. Rab8 directs furrow ingression and membrane addition during epithelial formation in Drosophila melanogaster. Development 2016; 143:892-903. [PMID: 26839362 PMCID: PMC4813336 DOI: 10.1242/dev.128876] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/25/2016] [Indexed: 01/31/2023]
Abstract
One of the most fundamental changes in cell morphology is the ingression of a plasma membrane furrow. The Drosophila embryo undergoes several cycles of rapid furrow ingression during early development that culminate in the formation of an epithelial sheet. Previous studies have demonstrated the requirement for intracellular trafficking pathways in furrow ingression; however, the pathways that link compartmental behaviors with cortical furrow ingression events are unclear. Here, we show that Rab8 has striking dynamic behaviors in vivo. As furrows ingress, cytoplasmic Rab8 puncta are depleted and Rab8 accumulates at the plasma membrane in a location that coincides with known regions of directed membrane addition. We additionally use CRISPR/Cas9 technology to N-terminally tag Rab8, which is then used to address endogenous localization and function. Endogenous Rab8 displays partial coincidence with Rab11 and the Golgi, and this colocalization is enriched during the fast phase of cellularization. When Rab8 function is disrupted, furrow formation in the early embryo is completely abolished. We also demonstrate that Rab8 behaviors require the function of the exocyst complex subunit Sec5 as well as the recycling endosome protein Rab11. Active, GTP-locked Rab8 is primarily associated with dynamic membrane compartments and the plasma membrane, whereas GDP-locked Rab8 forms large cytoplasmic aggregates. These studies suggest a model in which active Rab8 populations direct furrow ingression by guiding the targeted delivery of cytoplasmic membrane stores to the cell surface through interactions with the exocyst tethering complex.
Collapse
Affiliation(s)
- Lauren M Mavor
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Hui Miao
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Zhongyuan Zuo
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Ryan M Holly
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Yi Xie
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Dinah Loerke
- Department of Physics, University of Denver, Denver, CO 80208, USA
| | - J Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
20
|
Holly RM, Mavor LM, Zuo Z, Blankenship JT. A rapid, membrane-dependent pathway directs furrow formation through RalA in the early Drosophila embryo. Development 2015; 142:2316-28. [PMID: 26092850 DOI: 10.1242/dev.120998] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/13/2015] [Indexed: 01/31/2023]
Abstract
Plasma membrane furrow formation is crucial in cell division and cytokinesis. Furrow formation in early syncytial Drosophila embryos is exceptionally rapid, with furrows forming in as little as 3.75 min. Here, we use 4D imaging to identify furrow formation, stabilization, and regression periods, and identify a rapid, membrane-dependent pathway that is essential for plasma membrane furrow formation in vivo. Myosin II function is thought to provide the ingression force for cytokinetic furrows, but the role of membrane trafficking pathways in guiding furrow formation is less clear. We demonstrate that a membrane trafficking pathway centered on Ras-like protein A (RalA) is required for fast furrow ingression in the early fly embryo. RalA function is absolutely required for furrow formation and initiation. In the absence of RalA and furrow function, chromosomal segregation is aberrant and polyploid nuclei are observed. RalA localizes to syncytial furrows, and mediates the movement of exocytic vesicles to the plasma membrane. Sec5, which is an exocyst complex subunit and localizes to ingressing furrows in wild-type embryos, becomes punctate and loses its cortical association in the absence of RalA function. Rab8 also fails to traffic to the plasma membrane and accumulates aberrantly in the cytoplasm in RalA disrupted embryos. RalA localization precedes F-actin recruitment to the furrow tip, suggesting that membrane trafficking might function upstream of cytoskeletal remodeling. These studies identify a pathway, which stretches from Rab8 to RalA and the exocyst complex, that mediates rapid furrow formation in early Drosophila embryos.
Collapse
Affiliation(s)
- Ryan M Holly
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Lauren M Mavor
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Zhongyuan Zuo
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - J Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
21
|
Zang Y, Wan M, Liu M, Ke H, Ma S, Liu LP, Ni JQ, Pastor-Pareja JC. Plasma membrane overgrowth causes fibrotic collagen accumulation and immune activation in Drosophila adipocytes. eLife 2015; 4:e07187. [PMID: 26090908 PMCID: PMC4490375 DOI: 10.7554/elife.07187] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/18/2015] [Indexed: 12/13/2022] Open
Abstract
Many chronic diseases are associated with fibrotic deposition of Collagen and other matrix proteins. Little is known about the factors that determine preferential onset of fibrosis in particular tissues. Here we show that plasma membrane (PM) overgrowth causes pericellular Collagen accumulation in Drosophila adipocytes. We found that loss of Dynamin and other endocytic components causes pericellular trapping of outgoing Collagen IV due to dramatic cortex expansion when endocytic removal of PM is prevented. Deposits also form in the absence of negative Toll immune regulator Cactus, excess PM being caused in this case by increased secretion. Finally, we show that trimeric Collagen accumulation, downstream of Toll or endocytic defects, activates a tissue damage response. Our work indicates that traffic imbalances and PM topology may contribute to fibrosis. It also places fibrotic deposits both downstream and upstream of immune signaling, consistent with the chronic character of fibrotic diseases.
Collapse
Affiliation(s)
- Yiran Zang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ming Wan
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Min Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Hongmei Ke
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuangchun Ma
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Lu-Ping Liu
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, China
| | - Jian-Quan Ni
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, China
| | | |
Collapse
|
22
|
van der Zee M, Benton MA, Vazquez-Faci T, Lamers GEM, Jacobs CGC, Rabouille C. Innexin7a forms junctions that stabilize the basal membrane during cellularization of the blastoderm in Tribolium castaneum. Development 2015; 142:2173-83. [DOI: 10.1242/dev.097113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/21/2015] [Indexed: 01/24/2023]
Abstract
In insects, the fertilized egg undergoes a series of rapid nuclear divisions before the syncytial blastoderm starts to cellularize. Cellularization has been extensively studied in Drosophilamelanogaster, but its thick columnar blastoderm is unusual among insects. We therefore set out to describe cellularization in the beetle Tribolium castaneum, the embryos of which exhibit a thin blastoderm of cuboidal cells, like most insects. Using immunohistochemistry, live imaging and transmission electron microscopy, we describe several striking differences to cellularization in Drosophila, including the formation of junctions between the forming basal membrane and the yolk plasmalemma. To identify the nature of this novel junction, we used the parental RNAi technique for a small-scale screen of junction proteins. We find that maternal knockdown of Triboliuminnexin7a (Tc-inx7a), an ortholog of the Drosophila gap junction gene Innexin 7, leads to failure of cellularization. In Inx7a-depleted eggs, the invaginated plasma membrane retracts when basal cell closure normally begins. Furthermore, transiently expressed tagged Inx7a localizes to the nascent basal membrane of the forming cells in wild-type eggs. We propose that Inx7a forms the newly identified junctions that stabilize the forming basal membrane and enable basal cell closure. We put forward Tribolium as a model for studying a more ancestral mode of cellularization in insects.
Collapse
Affiliation(s)
- Maurijn van der Zee
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Matthew A. Benton
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Tania Vazquez-Faci
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Gerda E. M. Lamers
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Chris G. C. Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Catherine Rabouille
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
- Department of Cell Biology, UMC Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
23
|
Spencer AK, Siddiqui BA, Thomas JH. Cell shape change and invagination of the cephalic furrow involves reorganization of F-actin. Dev Biol 2015; 402:192-207. [PMID: 25929228 DOI: 10.1016/j.ydbio.2015.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 11/26/2022]
Abstract
Invagination of epithelial sheets to form furrows is a fundamental morphogenetic movement and is found in a variety of developmental events including gastrulation and vertebrate neural tube formation. The cephalic furrow is a deep epithelial invagination that forms during Drosophila gastrulation. In the first phase of cephalic furrow formation, the initiator cells that will lead invagination undergo apicobasal shortening and apical constriction in the absence of epithelial invagination. In the second phase of cephalic furrow formation, the epithelium starts to invaginate, accompanied by both basal expansion and continued apicobasal shortening of the initiator cells. The cells adjacent to the initiator cells also adopt wedge shapes, but only after invagination is well underway. Myosin II does not appear to drive apical constriction in cephalic furrow formation. However, cortical F-actin is increased in the apices of the initiator cells and in invaginating cells during both phases of cephalic furrow formation. These findings suggest that a novel mechanism for epithelial invagination is involved in cephalic furrow formation.
Collapse
Affiliation(s)
- Allison K Spencer
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, STOP 6540, Lubbock, TX 79430, United States
| | - Bilal A Siddiqui
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, STOP 6540, Lubbock, TX 79430, United States
| | - Jeffrey H Thomas
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, STOP 6540, Lubbock, TX 79430, United States.
| |
Collapse
|
24
|
Dahlberg O, Shilkova O, Tang M, Holmqvist PH, Mannervik M. P-TEFb, the super elongation complex and mediator regulate a subset of non-paused genes during early Drosophila embryo development. PLoS Genet 2015; 11:e1004971. [PMID: 25679530 PMCID: PMC4334199 DOI: 10.1371/journal.pgen.1004971] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 12/22/2014] [Indexed: 02/07/2023] Open
Abstract
Positive Transcription Elongation Factor b (P-TEFb) is a kinase consisting of Cdk9 and Cyclin T that releases RNA Polymerase II (Pol II) into active elongation. It can assemble into a larger Super Elongation Complex (SEC) consisting of additional elongation factors. Here, we use a miRNA-based approach to knock down the maternal contribution of P-TEFb and SEC components in early Drosophila embryos. P-TEFb or SEC depletion results in loss of cells from the embryo posterior and in cellularization defects. Interestingly, the expression of many patterning genes containing promoter-proximal paused Pol II is relatively normal in P-TEFb embryos. Instead, P-TEFb and SEC are required for expression of some non-paused, rapidly transcribed genes in pre-cellular embryos, including the cellularization gene Serendipity-α. We also demonstrate that another P-TEFb regulated gene, terminus, has an essential function in embryo development. Similar morphological and gene expression phenotypes were observed upon knock down of Mediator subunits, providing in vivo evidence that P-TEFb, the SEC and Mediator collaborate in transcription control. Surprisingly, P-TEFb depletion does not affect the ratio of Pol II at the promoter versus the 3’ end, despite affecting global Pol II Ser2 phosphorylation levels. Instead, Pol II occupancy is reduced at P-TEFb down-regulated genes. We conclude that a subset of non-paused, pre-cellular genes are among the most susceptible to reduced P-TEFb, SEC and Mediator levels in Drosophila embryos. Embryo development involves formation of various cell types through the regulation of gene transcription, resulting in expression of cell type specific RNAs and proteins. A key regulatory step in transcription of animal genes involves the transition of RNA polymerase II (Pol II) into active elongation. At many genes, Pol II is transiently paused approximately 50 basepairs downstream of the transcription start site. Release from this promoter-proximal pausing involves the kinase P-TEFb, which phosphorylates negative elongation factors, allowing Pol II to enter into productive elongation. In this work, we have depleted a considerable amount of P-TEFb from early Drosophila embryos. We find that several genes with paused Pol II can be expressed relatively normally in P-TEFb depleted embryos, whereas expression of some non-paused genes is substantially reduced. This result suggests that also non-paused genes transit through a P-TEFb-dependent checkpoint before entering active elongation. Unexpectedly, we find less Pol II associated with these non-paused genes in P-TEFb embryos. We demonstrate that a protein complex involved in recruitment of Pol II to promoters, the Mediator complex, show the same morphological and gene expression phenotypes as P-TEFb. We propose that Mediator and P-TEFb function together in recruiting Pol II to a subset of developmental genes.
Collapse
Affiliation(s)
- Olle Dahlberg
- Dept. Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Olga Shilkova
- Dept. Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Min Tang
- Dept. Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Dept. Biochemistry & Biology, South China University, Hengyang, Hunan Province, China
| | - Per-Henrik Holmqvist
- Dept. Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mattias Mannervik
- Dept. Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
25
|
Rikhy R, Mavrakis M, Lippincott-Schwartz J. Dynamin regulates metaphase furrow formation and plasma membrane compartmentalization in the syncytial Drosophila embryo. Biol Open 2015; 4:301-11. [PMID: 25661871 PMCID: PMC4359736 DOI: 10.1242/bio.20149936] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The successive nuclear division cycles in the syncytial Drosophila embryo are accompanied by ingression and regression of plasma membrane furrows, which surround individual nuclei at the embryo periphery, playing a central role in embryo compartmentalization prior to cellularization. Here, we demonstrate that cell cycle changes in dynamin localization and activity at the plasma membrane (PM) regulate metaphase furrow formation and PM organization in the syncytial embryo. Dynamin was localized on short PM furrows during interphase, mediating endocytosis of PM components. Dynamin redistributed off ingressed PM furrows in metaphase, correlating with stabilized PM components and the associated actin regulatory machinery on long furrows. Acute inhibition of dynamin in the temperature sensitive shibire mutant embryo resulted in morphogenetic consequences in the syncytial division cycle. These included inhibition of metaphase furrow ingression, randomization of proteins normally polarized to intercap PM and disruption of the diffusion barrier separating PM domains above nuclei. Based on these findings, we propose that cell cycle changes in dynamin orchestrate recruitment of actin regulatory machinery for PM furrow dynamics during the early mitotic cycles in the Drosophila embryo.
Collapse
Affiliation(s)
- Richa Rikhy
- Cell Biology and Metabolism Program, NICHD, NIH, Building 18T, 101, 18 Library Drive, Bethesda, MD, USA. Present address: Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune, 411008, India.
| | - Manos Mavrakis
- Institut de Biologie du Développement de Marseille, CNRS UMR7288, Aix-Marseille Université, 13288 Marseille, France
| | | |
Collapse
|
26
|
Lye CM, Naylor HW, Sanson B. Subcellular localisations of the CPTI collection of YFP-tagged proteins in Drosophila embryos. Development 2014; 141:4006-17. [PMID: 25294944 PMCID: PMC4197698 DOI: 10.1242/dev.111310] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/20/2014] [Indexed: 12/18/2022]
Abstract
A key challenge in the post-genomic area is to identify the function of the genes discovered, with many still uncharacterised in all metazoans. A first step is transcription pattern characterisation, for which we now have near whole-genome coverage in Drosophila. However, we have much more limited information about the expression and subcellular localisation of the corresponding proteins. The Cambridge Protein Trap Consortium generated, via piggyBac transposition, over 600 novel YFP-trap proteins tagging just under 400 Drosophila loci. Here, we characterise the subcellular localisations and expression patterns of these insertions, called the CPTI lines, in Drosophila embryos. We have systematically analysed subcellular localisations at cellularisation (stage 5) and recorded expression patterns at stage 5, at mid-embryogenesis (stage 11) and at late embryogenesis (stages 15-17). At stage 5, 31% of the nuclear lines (41) and 26% of the cytoplasmic lines (67) show discrete localisations that provide clues on the function of the protein and markers for organelles or regions, including nucleoli, the nuclear envelope, nuclear speckles, centrosomes, mitochondria, the endoplasmic reticulum, Golgi, lysosomes and peroxisomes. We characterised the membranous/cortical lines (102) throughout stage 5 to 10 during epithelial morphogenesis, documenting their apico-basal position and identifying those secreted in the extracellular space. We identified the tricellular vertices as a specialized membrane domain marked by the integral membrane protein Sidekick. Finally, we categorised the localisation of the membranous/cortical proteins during cytokinesis.
Collapse
Affiliation(s)
- Claire M Lye
- The Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Huw W Naylor
- The Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Bénédicte Sanson
- The Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
27
|
Hain D, Langlands A, Sonnenberg HC, Bailey C, Bullock SL, Müller HAJ. The Drosophila MAST kinase Drop out is required to initiate membrane compartmentalisation during cellularisation and regulates dynein-based transport. Development 2014; 141:2119-30. [PMID: 24803657 PMCID: PMC4011086 DOI: 10.1242/dev.104711] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cellularisation of the Drosophila syncytial blastoderm embryo into the polarised blastoderm epithelium provides an excellent model with which to determine how cortical plasma membrane asymmetry is generated during development. Many components of the molecular machinery driving cellularisation have been identified, but cell signalling events acting at the onset of membrane asymmetry are poorly understood. Here we show that mutations in drop out (dop) disturb the segregation of membrane cortical compartments and the clustering of E-cadherin into basal adherens junctions in early cellularisation. dop is required for normal furrow formation and controls the tight localisation of furrow canal proteins and the formation of F-actin foci at the incipient furrows. We show that dop encodes the single Drosophila homologue of microtubule-associated Ser/Thr (MAST) kinases. dop interacts genetically with components of the dynein/dynactin complex and promotes dynein-dependent transport in the embryo. Loss of dop function reduces phosphorylation of Dynein intermediate chain, suggesting that dop is involved in regulating cytoplasmic dynein activity through direct or indirect mechanisms. These data suggest that Dop impinges upon the initiation of furrow formation through developmental regulation of cytoplasmic dynein.
Collapse
Affiliation(s)
- Daniel Hain
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
28
|
Reversi A, Loeser E, Subramanian D, Schultz C, De Renzis S. Plasma membrane phosphoinositide balance regulates cell shape during Drosophila embryo morphogenesis. ACTA ACUST UNITED AC 2014; 205:395-408. [PMID: 24798734 PMCID: PMC4018783 DOI: 10.1083/jcb.201309079] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ratio of different phosphoinositide species coordinates actomyosin contractility and plasma membrane expansion during tissue morphogenesis, thus ensuring proper cell shape. Remodeling of cell shape during morphogenesis is driven by the coordinated expansion and contraction of specific plasma membrane domains. Loss of this coordination results in abnormal cell shape and embryonic lethality. Here, we show that plasma membrane lipid composition plays a key role in coordinating plasma membrane contraction during expansion. We found that an increase in PI(4,5)P2 levels caused premature actomyosin contraction, resulting in the formation of shortened cells. Conversely, acute depletion of PI(4,5)P2 blocked plasma membrane expansion and led to premature actomyosin disassembly. PI(4,5)P2-mediated contractility is counteracted by PI(3,4,5)P3 and the zygotic gene bottleneck, which acts by limiting myosin recruitment during plasma membrane expansion. Collectively, these data support a model in which the ratio of PI(4,5)P2/PI(3,4,5)P3 coordinates actomyosin contractility and plasma membrane expansion during tissue morphogenesis, thus ensuring proper cell shape.
Collapse
Affiliation(s)
- Alessandra Reversi
- European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
29
|
Lee DM, Harris TJC. Coordinating the cytoskeleton and endocytosis for regulated plasma membrane growth in the early Drosophila embryo. BIOARCHITECTURE 2014; 4:68-74. [PMID: 24874871 PMCID: PMC4199814 DOI: 10.4161/bioa.28949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasma membrane organization is under the control of cytoskeletal networks and endocytic mechanisms, and a growing literature is showing how closely these influences are interconnected. Here, we review how plasma membranes are formed around individual nuclei of the syncytial Drosophila embryo. Specifically, we outline the pathways that promote and maintain the growth of pseudocleavage and cellularization furrows, as well as specific pathways that keep furrow growth in check. This system has become important for studies of actin regulators, such as Rho1, Diaphanous, non-muscle myosin II and Arp2/3, and endocytic regulators, such as a cytohesin Arf-GEF (Steppke), clathrin, Amphiphysin and dynamin. More generally, it provides a model for understanding how cytoskeletal-endocytic cross-talk regulates the assembly of a cell.
Collapse
Affiliation(s)
- Donghoon M Lee
- Department of Cell and Systems Biology; University of Toronto; Toronto, ON CA
| | - Tony J C Harris
- Department of Cell and Systems Biology; University of Toronto; Toronto, ON CA
| |
Collapse
|
30
|
Simpson DA, Thompson AJ, Kowarsky M, Zeeshan NF, Barson MSJ, Hall LT, Yan Y, Kaufmann S, Johnson BC, Ohshima T, Caruso F, Scholten RE, Saint RB, Murray MJ, Hollenberg LCL. In vivo imaging and tracking of individual nanodiamonds in drosophila melanogaster embryos. BIOMEDICAL OPTICS EXPRESS 2014; 5:1250-61. [PMID: 24761304 PMCID: PMC3985983 DOI: 10.1364/boe.5.001250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/11/2014] [Accepted: 03/18/2014] [Indexed: 05/23/2023]
Abstract
In this work, we incorporate and image individual fluorescent nanodiamonds in the powerful genetic model system Drosophila melanogaster. Fluorescence correlation spectroscopy and wide-field imaging techniques are applied to individual fluorescent nanodiamonds in blastoderm cells during stage 5 of development, up to a depth of 40 µm. The majority of nanodiamonds in the blastoderm cells during cellularization exhibit free diffusion with an average diffusion coefficient of (6 ± 3) × 10(-3) µm(2)/s, (mean ± SD). Driven motion in the blastoderm cells was also observed with an average velocity of 0.13 ± 0.10 µm/s (mean ± SD) µm/s and an average applied force of 0.07 ± 0.05 pN (mean ± SD). Nanodiamonds in the periplasm between the nuclei and yolk were also found to undergo free diffusion with a significantly larger diffusion coefficient of (63 ± 35) × 10(-3) µm(2)/s (mean ± SD). Driven motion in this region exhibited similar average velocities and applied forces compared to the blastoderm cells indicating the transport dynamics in the two cytoplasmic regions are analogous.
Collapse
Affiliation(s)
- David A. Simpson
- School of Physics, The University of Melbourne, Victoria 3010, Australia
- Centre for Quantum Computation and Communication Technology, School of Physics, The University of Melbourne, Victoria 3010, Australia
| | - Amelia J. Thompson
- Department of Genetics, The University of Melbourne, Victoria 3010, Australia
| | - Mark Kowarsky
- School of Physics, The University of Melbourne, Victoria 3010, Australia
| | - Nida F. Zeeshan
- Department of Genetics, The University of Melbourne, Victoria 3010, Australia
| | | | - Liam T. Hall
- School of Physics, The University of Melbourne, Victoria 3010, Australia
- Centre for Quantum Computation and Communication Technology, School of Physics, The University of Melbourne, Victoria 3010, Australia
| | - Yan Yan
- Department of Chemical and Bio-molecular Engineering, University of Melbourne, Victoria 3010, Australia
| | - Stefan Kaufmann
- School of Physics, The University of Melbourne, Victoria 3010, Australia
| | - Brett C. Johnson
- School of Physics, The University of Melbourne, Victoria 3010, Australia
- Radiation Effects Group, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292, Japan
| | - Takeshi Ohshima
- Radiation Effects Group, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292, Japan
| | - Frank Caruso
- Department of Chemical and Bio-molecular Engineering, University of Melbourne, Victoria 3010, Australia
| | - Robert E. Scholten
- School of Physics, The University of Melbourne, Victoria 3010, Australia
- Centre for Coherent X-ray Science, School of Physics, University of Melbourne, Victoria 3010, Australia
| | - Robert B. Saint
- Department of Genetics, The University of Melbourne, Victoria 3010, Australia
| | - Michael J. Murray
- Department of Genetics, The University of Melbourne, Victoria 3010, Australia
| | - Lloyd C. L. Hollenberg
- School of Physics, The University of Melbourne, Victoria 3010, Australia
- Centre for Quantum Computation and Communication Technology, School of Physics, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
31
|
Tubular endocytosis drives remodelling of the apical surface during epithelial morphogenesis in Drosophila. Nat Commun 2014; 4:2244. [PMID: 23921440 PMCID: PMC3753550 DOI: 10.1038/ncomms3244] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/04/2013] [Indexed: 11/23/2022] Open
Abstract
During morphogenesis, remodelling of cell shape requires the expansion or contraction of plasma membrane domains. Here we identify a mechanism underlying the restructuring of the apical surface during epithelial morphogenesis in Drosophila. We show that the retraction of villous protrusions and subsequent apical plasma membrane flattening is an endocytosis-driven morphogenetic process. Quantitation of endogenously tagged GFP::Rab5 dynamics reveals a massive increase in apical endocytosis that correlates with changes in apical morphology. This increase is accompanied by the formation of tubular plasma membrane invaginations that serve as platforms for the de novo generation of Rab5-positive endosomes. We identify the Rab5-effector Rabankyrin-5 as a regulator of this pathway and demonstrate that blocking dynamin activity results in the complete inhibition of tubular endocytosis, in the disappearance of Rab5 endosomes, and in the inhibition of surface flattening. These data collectively demonstrate a requirement for endocytosis in morphogenetic remodelling during epithelial development. During epithelial morphogenesis in Drosophila, the villous apical cell surface is flattened. Fabrowski et al. show that this flattening depends on a dramatic increase in endocytosis associated with the formation of tubular invaginations, revealing a role for membrane trafficking in morphological remodelling.
Collapse
|
32
|
Renshaw MJ, Liu J, Lavoie BD, Wilde A. Anillin-dependent organization of septin filaments promotes intercellular bridge elongation and Chmp4B targeting to the abscission site. Open Biol 2014; 4:130190. [PMID: 24451548 PMCID: PMC3909275 DOI: 10.1098/rsob.130190] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The final step of cytokinesis is abscission when the intercellular bridge (ICB) linking the two new daughter cells is broken. Correct construction of the ICB is crucial for the assembly of factors involved in abscission, a failure in which results in aneuploidy. Using live imaging and subdiffraction microscopy, we identify new anillin–septin cytoskeleton-dependent stages in ICB formation and maturation. We show that after the formation of an initial ICB, septin filaments drive ICB elongation during which tubules containing anillin–septin rings are extruded from the ICB. Septins then generate sites of further constriction within the mature ICB from which they are subsequently removed. The action of the anillin–septin complex during ICB maturation also primes the ICB for the future assembly of the ESCRT III component Chmp4B at the abscission site. These studies suggest that the sequential action of distinct contractile machineries coordinates the formation of the abscission site and the successful completion of cytokinesis.
Collapse
Affiliation(s)
- Matthew J Renshaw
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|
33
|
Function and dynamics of slam in furrow formation in early Drosophila embryo. Dev Biol 2013; 386:371-84. [PMID: 24368071 DOI: 10.1016/j.ydbio.2013.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 12/31/2022]
Abstract
The Drosophila embryo undergoes a developmental transition in the blastoderm stage switching from syncytial to cellular development. The cleavage furrow, which encloses nuclei into cells, is a prominent morphological feature of this transition. It is not clear how the pattern of the furrow array is defined and how zygotic genes trigger the formation and invagination of interphase furrows. A key to these questions is provided by the gene slam, which has been previously implicated in controlling furrow invagination. Here we investigate the null phenotype of slam, the dynamics of Slam protein, and its control by the recycling endosome. We find that slam is essential for furrow invagination during cellularisation and together with nullo, for specification of the furrow. During cellularisation, Slam marks first the furrow, which is derived from the metaphase furrow of the previous mitosis. Slightly later, Slam accumulates at new furrows between daughter cells early in interphase. Slam is stably associated with the furrow canal except for the onset of cellularisation as revealed by FRAP experiments. Restriction of Slam to the furrow canal and Slam mobility during cellularisation is controlled by the recycling endosome and centrosomes. We propose a three step model. The retracting metaphase furrow leaves an initial mark. This mark and the border between corresponding daughter nuclei are refined by vesicular transport away from pericentrosomal recycling endosome towards the margins of the somatic buds. Following the onset of zygotic gene expression, Slam and Nullo together stabilise this mark and Slam triggers invagination of the cleavage furrow.
Collapse
|
34
|
Figard L, Xu H, Garcia HG, Golding I, Sokac AM. The plasma membrane flattens out to fuel cell-surface growth during Drosophila cellularization. Dev Cell 2013; 27:648-55. [PMID: 24316147 DOI: 10.1016/j.devcel.2013.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/29/2013] [Accepted: 11/06/2013] [Indexed: 10/25/2022]
Abstract
Cell-shape change demands cell-surface growth, but how growth is fueled and choreographed is still debated. Here we use cellularization, the first complete cytokinetic event in Drosophila embryos, to show that cleavage furrow ingression is kinetically coupled to the loss of surface microvilli. We modulate furrow kinetics with RNAi against the Rho1-GTPase regulator slam and show that furrow ingression controls the rate of microvillar depletion. Finally, we directly track the microvillar membrane and see it move along the cell surface and into ingressing furrows, independent of endocytosis. Together, our results demonstrate that the kinetics of the ingressing furrow regulate the utilization of a microvillar membrane reservoir. Because membranes of the furrow and microvilli are contiguous, we suggest that ingression drives unfolding of the microvilli and incorporation of microvillar membrane into the furrow. We conclude that plasma membrane folding/unfolding can contribute to the cell-shape changes that promote embryonic morphogenesis.
Collapse
Affiliation(s)
- Lauren Figard
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Heng Xu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hernan G Garcia
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Ido Golding
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Anna Marie Sokac
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
35
|
The maternal-to-zygotic transition targets actin to promote robustness during morphogenesis. PLoS Genet 2013; 9:e1003901. [PMID: 24244181 PMCID: PMC3820746 DOI: 10.1371/journal.pgen.1003901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/06/2013] [Indexed: 11/26/2022] Open
Abstract
Robustness is a property built into biological systems to ensure stereotypical outcomes despite fluctuating inputs from gene dosage, biochemical noise, and the environment. During development, robustness safeguards embryos against structural and functional defects. Yet, our understanding of how robustness is achieved in embryos is limited. While much attention has been paid to the role of gene and signaling networks in promoting robust cell fate determination, little has been done to rigorously assay how mechanical processes like morphogenesis are designed to buffer against variable conditions. Here we show that the cell shape changes that drive morphogenesis can be made robust by mechanisms targeting the actin cytoskeleton. We identified two novel members of the Vinculin/α-Catenin Superfamily that work together to promote robustness during Drosophila cellularization, the dramatic tissue-building event that generates the primary epithelium of the embryo. We find that zygotically-expressed Serendipity-α (Sry-α) and maternally-loaded Spitting Image (Spt) share a redundant, actin-regulating activity during cellularization. Spt alone is sufficient for cellularization at an optimal temperature, but both Spt plus Sry-α are required at high temperature and when actin assembly is compromised by genetic perturbation. Our results offer a clear example of how the maternal and zygotic genomes interact to promote the robustness of early developmental events. Specifically, the Spt and Sry-α collaboration is informative when it comes to genes that show both a maternal and zygotic requirement during a given morphogenetic process. For the cellularization of Drosophilids, Sry-α and its expression profile may represent a genetic adaptive trait with the sole purpose of making this extreme event more reliable. Since all morphogenesis depends on cytoskeletal remodeling, both in embryos and adults, we suggest that robustness-promoting mechanisms aimed at actin could be effective at all life stages. Every embryo develops under its own unique set of circumstances, with variable inputs coming from mother, father, and the environment. To then ensure a reliable outcome, mechanisms are built into development to buffer against challenges like genetic deficiency, maternal fever, alcohol exposure, etc. This buffering, called “robustness”, can be overwhelmed, ending in miscarriage, pre-mature birth, and structural and functional birth defects. Thus, we need to understand how robustness arises in order to define an embryo's susceptibilities to genetic background and environment; and to ultimately promote healthy reproduction. In this work we provide new insight into how morphogenesis, the process of tissue building in embryos, is made more robust. First, we show that early gene expression by the embryo, or zygote, supplements the stockpile of proteins already supplied by the mother to ensure the robustness of early morphogenesis. Specifically, our data suggests that a specific gene, sry-α, and its expression by the embryo at the maternal-to-zygotic transition, is a genetic adaptation with the sole function of making the first tissue building event in the fruit fly more robust. In addition, we show that the robustness of this morphogenetic event is promoted by mechanisms regulating the actin cytoskeleton.
Collapse
|
36
|
Lee DM, Harris TJC. An Arf-GEF regulates antagonism between endocytosis and the cytoskeleton for Drosophila blastoderm development. Curr Biol 2013; 23:2110-20. [PMID: 24120639 DOI: 10.1016/j.cub.2013.08.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 08/15/2013] [Accepted: 08/27/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Actin cytoskeletal networks push and pull the plasma membrane (PM) to control cell structure and behavior. Endocytosis also regulates the PM and can be promoted or inhibited by cytoskeletal networks. However, endocytic regulation of the general membrane cytoskeleton is undocumented. RESULTS Here, we provide evidence for endocytic inhibition of actomyosin networks. Specifically, we find that Steppke, a cytohesin Arf-guanine nucleotide exchange factor (GEF), controls initial PM furrow ingression during the syncytial nuclear divisions and cellularization of the Drosophila embryo. Acting at the tips of ingressing furrows, Steppke promotes local endocytic events through its Arf-GEF activity and in cooperation with the AP-2 clathrin adaptor complex. These Steppke activities appear to reduce local Rho1 protein levels and ultimately restrain actomyosin networks. Without Steppke, Rho1 pathways linked to actin polymerization and myosin activation abnormally expand the membrane cytoskeleton into taut sheets emanating perpendicularly from the furrow tips. These expansions lead to premature cellularization and abnormal expulsions of nuclei from the forming blastoderm. Finally, consistent with earlier reports, we also find that actomyosin activity can act reciprocally to inhibit the endocytosis at furrow tips. CONCLUSIONS We propose that Steppke-dependent endocytosis keeps the cytoskeleton in check as early PM furrows form. Specifically, a cytohesin Arf-GEF-Arf G protein-AP-2 endocytic axis appears to antagonize Rho1 cytoskeletal pathways to restrain the membrane cytoskeleton. However, as furrows lengthen during cellularization, the cytoskeleton gains strength, blocks the endocytic inhibition, and finally closes off the base of each cell to form the blastoderm.
Collapse
Affiliation(s)
- Donghoon M Lee
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | | |
Collapse
|
37
|
Mason FM, Tworoger M, Martin AC. Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction. Nat Cell Biol 2013; 15:926-36. [PMID: 23831726 PMCID: PMC3736338 DOI: 10.1038/ncb2796] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/29/2013] [Indexed: 12/14/2022]
Abstract
Apical constriction promotes epithelia folding, which changes tissue architecture. During Drosophila gastrulation, mesoderm cells exhibit repeated contractile pulses that are stabilized such that cells apically constrict like a ratchet. The transcription factor Twist is required to stabilize cell shape. However, it is unknown how Twist spatially coordinates downstream signals to prevent cell relaxation. We find that during constriction, Rho-associated kinase (Rok) is polarized to the middle of the apical domain (medioapical cortex), separate from adherens junctions. Rok recruits or stabilizes medioapical myosin II (Myo-II), which contracts dynamic medioapical actin cables. The formin Diaphanous mediates apical actin assembly to suppress medioapical E-cadherin localization and form stable connections between the medioapical contractile network and adherens junctions. Twist is not required for apical Rok recruitment, but instead polarizes Rok medioapically. Therefore, Twist establishes radial cell polarity of Rok/Myo-II and E-cadherin and promotes medioapical actin assembly in mesoderm cells to stabilize cell shape fluctuations.
Collapse
Affiliation(s)
- Frank M Mason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
38
|
Su J, Chow B, Boulianne GL, Wilde A. The BAR domain of amphiphysin is required for cleavage furrow tip-tubule formation during cellularization in Drosophila embryos. Mol Biol Cell 2013; 24:1444-53. [PMID: 23447705 PMCID: PMC3639055 DOI: 10.1091/mbc.e12-12-0878] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
De novo formation of cells in the Drosophila embryo is achieved when each nucleus is surrounded by a furrow of plasma membrane. Remodeling of the plasma membrane during cleavage furrow ingression involves the exocytic and endocytic pathways, including endocytic tubules that form at cleavage furrow tips (CFT-tubules). The tubules are marked by amphiphysin but are otherwise poorly understood. Here we identify the septin family of GTPases as new tubule markers. Septins do not decorate CFT-tubules homogeneously: instead, novel septin complexes decorate different CFT-tubules or different domains of the same CFT-tubule. Using these new tubule markers, we determine that all CFT-tubule formation requires the BAR domain of amphiphysin. In contrast, dynamin activity is preferentially required for the formation of the subset of CFT-tubules containing the septin Peanut. The absence of tubules in amphiphysin-null embryos correlates with faster cleavage furrow ingression rates. In contrast, upon inhibition of dynamin, longer tubules formed, which correlated with slower cleavage furrow ingression rates. These data suggest that regulating the recycling of membrane within the embryo is important in supporting timely furrow ingression.
Collapse
Affiliation(s)
- Jing Su
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | | |
Collapse
|
39
|
Yan S, Lv Z, Winterhoff M, Wenzl C, Zobel T, Faix J, Bogdan S, Grosshans J. The F-BAR protein Cip4/Toca-1 antagonizes the formin Diaphanous in membrane stabilization and compartmentalization. J Cell Sci 2013; 126:1796-805. [PMID: 23424199 PMCID: PMC3706074 DOI: 10.1242/jcs.118422] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During Drosophila embryogenesis, the first epithelium with defined cortical compartments is established during cellularization. Actin polymerization is required for the separation of lateral and basal domains as well as suppression of tubular extensions in the basal domain. The actin nucleator mediating this function is unknown. We found that the formin Diaphanous (Dia) is required for establishing and maintaining distinct lateral and basal domains during cellularization. In dia mutant embryos lateral marker proteins, such as Discs-large and Armadillo/β-Catenin spread into the basal compartment. Furthermore, high-resolution and live-imaging analysis of dia mutant embryos revealed an increased number of membrane extensions and endocytic activity at the basal domain, indicating a suppressing function of dia on membrane invaginations. Dia function might be based on an antagonistic interaction with the F-BAR protein Cip4/Toca-1, a known activator of the WASP/WAVE-Arp2/3 pathway. Dia and Cip4 physically and functionally interact and overexpression of Cip4 phenocopies dia loss-of-function. In vitro, Cip4 inhibits mainly actin nucleation by Dia. Thus, our data support a model in which linear actin filaments induced by Dia stabilize cortical compartmentalization by antagonizing membrane turnover induced by WASP/WAVE-Arp2/3.
Collapse
Affiliation(s)
- Shuling Yan
- Institut für Biochemie, Universitätsmedizin, Universität Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Drosophila embryo syncytial blastoderm cellular architecture and morphogen gradient dynamics: Is there a correlation? ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-011-1160-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
41
|
Strong TC, Kaur G, Thomas JH. Mutations in the catalytic loop HRD motif alter the activity and function of Drosophila Src64. PLoS One 2011; 6:e28100. [PMID: 22132220 PMCID: PMC3223231 DOI: 10.1371/journal.pone.0028100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 11/01/2011] [Indexed: 11/18/2022] Open
Abstract
The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele.
Collapse
Affiliation(s)
- Taylor C. Strong
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Gurvinder Kaur
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Jeffrey H. Thomas
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
42
|
Laprise P, Tepass U. Novel insights into epithelial polarity proteins in Drosophila. Trends Cell Biol 2011; 21:401-8. [DOI: 10.1016/j.tcb.2011.03.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/18/2011] [Accepted: 03/21/2011] [Indexed: 01/04/2023]
|
43
|
Sun Y, Yan Y, Denef N, Schüpbach T. Regulation of somatic myosin activity by protein phosphatase 1β controls Drosophila oocyte polarization. Development 2011; 138:1991-2001. [PMID: 21490061 PMCID: PMC3082304 DOI: 10.1242/dev.062190] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2011] [Indexed: 11/20/2022]
Abstract
The Drosophila body axes are established in the oocyte during oogenesis. Oocyte polarization is initiated by Gurken, which signals from the germline through the epidermal growth factor receptor (Egfr) to the posterior follicle cells (PFCs). In response the PFCs generate an unidentified polarizing signal that regulates oocyte polarity. We have identified a loss-of-function mutation of flapwing, which encodes the catalytic subunit of protein phosphatase 1β (PP1β) that disrupts oocyte polarization. We show that PP1β, by regulating myosin activity, controls the generation of the polarizing signal. Excessive myosin activity in the PFCs causes oocyte mispolarization and defective Notch signaling and endocytosis in the PFCs. The integrated activation of JAK/STAT and Egfr signaling results in the sensitivity of PFCs to defective Notch. Interestingly, our results also demonstrate a role of PP1β in generating the polarizing signal independently of Notch, indicating a direct involvement of somatic myosin activity in axis formation.
Collapse
Affiliation(s)
- Yi Sun
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | - Natalie Denef
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Trudi Schüpbach
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
44
|
Wenzl C, Yan S, Laupsien P, Großhans J. Localization of RhoGEF2 during Drosophila cellularization is developmentally controlled by slam. Mech Dev 2010; 127:371-84. [DOI: 10.1016/j.mod.2010.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 01/04/2010] [Indexed: 11/29/2022]
|
45
|
Webb RL, Rozov O, Watkins SC, McCartney BM. Using total internal reflection fluorescence (TIRF) microscopy to visualize cortical actin and microtubules in the Drosophila syncytial embryo. Dev Dyn 2010; 238:2622-32. [PMID: 19718762 DOI: 10.1002/dvdy.22076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Drosophila syncytial embryo is a powerful developmental model system for studying dynamic coordinated cytoskeletal rearrangements. Confocal microscopy has begun to reveal more about the cytoskeletal changes that occur during embryogenesis. Total internal reflection fluorescence (TIRF) microscopy provides a promising new approach for the visualization of cortical events with heightened axial resolution. We have applied TIRF microscopy to the Drosophila embryo to visualize cortical microtubule and actin dynamics in the syncytial blastoderm. Here, we describe the details of this technique, and report qualitative assessments of cortical microtubules and actin in the Drosophila syncytial embryo. In addition, we identified a peak of cortical microtubules during anaphase of each nuclear cycle in the syncytial blastoderm, and using images generated by TIRF microscopy, we quantitatively analyzed microtubule dynamics during this time.
Collapse
Affiliation(s)
- Rebecca L Webb
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
46
|
Pulsation and stabilization: contractile forces that underlie morphogenesis. Dev Biol 2009; 341:114-25. [PMID: 19874815 DOI: 10.1016/j.ydbio.2009.10.031] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/18/2009] [Accepted: 10/20/2009] [Indexed: 11/20/2022]
Abstract
Embryonic development involves global changes in tissue shape and architecture that are driven by cell shape changes and rearrangements within cohesive cell sheets. Morphogenetic changes at the cell and tissue level require that cells generate forces and that these forces are transmitted between the cells of a coherent tissue. Contractile forces generated by the actin-myosin cytoskeleton are critical for morphogenesis, but the cellular and molecular mechanisms of contraction have been elusive for many cell shape changes and movements. Recent studies that have combined live imaging with computational and biophysical approaches have provided new insights into how contractile forces are generated and coordinated between cells and tissues. In this review, we discuss our current understanding of the mechanical forces that shape cells, tissues, and embryos, emphasizing the different modes of actomyosin contraction that generate various temporal and spatial patterns of force generation.
Collapse
|
47
|
Robertson AS, Smythe E, Ayscough KR. Functions of actin in endocytosis. Cell Mol Life Sci 2009; 66:2049-65. [PMID: 19290477 PMCID: PMC11115948 DOI: 10.1007/s00018-009-0001-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/10/2009] [Accepted: 02/13/2009] [Indexed: 12/30/2022]
Abstract
Endocytosis is a fundamental eukaryotic process required for remodelling plasma-membrane lipids and protein to ensure appropriate membrane composition. Increasing evidence from a number of cell types reveals that actin plays an active, and often essential, role at key endocytic stages. Much of our current mechanistic understanding of the endocytic process has come from studies in budding yeast and has been facilitated by yeast's genetic amenability and by technological advances in live cell imaging. While endocytosis in metazoans is likely to be subject to a greater array of regulatory signals, recent reports indicate that spatiotemporal aspects of vesicle formation requiring actin are likely to be conserved across eukaryotic evolution. In this review we focus on the 'modular' model of endocytosis in yeast before highlighting comparisons with other cell types. Our discussion is limited to endocytosis involving clathrin as other types of endocytosis have not been demonstrated in yeast.
Collapse
Affiliation(s)
- Alastair S. Robertson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN UK
| | - Elizabeth Smythe
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN UK
| | - Kathryn R. Ayscough
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN UK
| |
Collapse
|
48
|
Mavrakis M, Rikhy R, Lippincott-Schwartz J. Plasma membrane polarity and compartmentalization are established before cellularization in the fly embryo. Dev Cell 2009; 16:93-104. [PMID: 19154721 PMCID: PMC2684963 DOI: 10.1016/j.devcel.2008.11.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 08/27/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
Abstract
Patterning in the Drosophila embryo requires local activation and dynamics of proteins in the plasma membrane (PM). We used in vivo fluorescence imaging to characterize the organization and diffusional properties of the PM in the early embryonic syncytium. Before cellularization, the PM is polarized into discrete domains having epithelial-like characteristics. One domain resides above individual nuclei and has apical-like characteristics, while the other domain is lateral to nuclei and contains markers associated with basolateral membranes and junctions. Pulse-chase photoconversion experiments show that molecules can diffuse within each domain but do not exchange between PM regions above adjacent nuclei. Drug-induced F-actin depolymerization disrupted both the apicobasal-like polarity and the diffusion barriers within the syncytial PM. These events correlated with perturbations in the spatial pattern of dorsoventral Toll signaling. We propose that epithelial-like properties and an intact F-actin network compartmentalize the PM and shape morphogen gradients in the syncytial embryo.
Collapse
Affiliation(s)
- Manos Mavrakis
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 18T, 18 Library Drive, Bethesda, MD 20892, USA
| | - Richa Rikhy
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 18T, 18 Library Drive, Bethesda, MD 20892, USA
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 18T, 18 Library Drive, Bethesda, MD 20892, USA
| |
Collapse
|
49
|
Harris TJ, Sawyer JK, Peifer M. Chapter 3 How the Cytoskeleton Helps Build the Embryonic Body Plan. Curr Top Dev Biol 2009; 89:55-85. [DOI: 10.1016/s0070-2153(09)89003-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Sokac AM, Wieschaus E. Zygotically controlled F-actin establishes cortical compartments to stabilize furrows during Drosophila cellularization. J Cell Sci 2008; 121:1815-24. [PMID: 18460582 PMCID: PMC2728442 DOI: 10.1242/jcs.025171] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cortical compartments partition proteins and membrane at the cell surface to define regions of specialized function. Here we ask how cortical compartments arise along the plasma membrane furrows that cellularize the early Drosophila embryo, and investigate the influence that this compartmentalization has on furrow ingression. We find that the zygotic gene product Nullo aids the establishment of discrete cortical compartments, called furrow canals, which form at the tip of incipient furrows. Upon nullo loss-of-function, proteins that are normally restricted to adjacent lateral regions of the furrow, such as Neurotactin and Discs large, spread into the furrow canals. At the same time, cortical components that should concentrate in furrow canals, such as Myosin 2 (Zipper) and Anillin (Scraps), are missing from some furrows. Depletion of these cortical components from the furrow canal compartments precipitates furrow regression. Contrary to previous models, we find that furrow compartmentalization does not require cell-cell junctions that border the furrow canals. Instead, compartmentalization is disrupted by treatments that reduce levels of cortical F-actin. Because the earliest uniform phenotype detected in nullo mutants is reduced levels of F-actin at furrow canals, we propose that Nullo compartmentalizes furrows via its regulation of F-actin, thus stabilizing furrows and insuring their ingression to complete cellularization.
Collapse
Affiliation(s)
- Anna Marie Sokac
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|