1
|
Ishikawa Y, Fukue H, Iwakami R, Ikeda M, Iemura K, Tanaka K. Fibrous corona is reduced in cancer cell lines that attenuate microtubule nucleation from kinetochores. Cancer Sci 2025; 116:420-431. [PMID: 39604214 PMCID: PMC11786318 DOI: 10.1111/cas.16406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Most cancer cells show increased chromosome missegregation, known as chromosomal instability (CIN), which promotes cancer progression and drug resistance. The underlying causes of CIN in cancer cells are not fully understood. Here we found that breast cancer cell lines show a reduced kinetochore localization of ROD, ZW10, and Zwilch, components of the fibrous corona, compared with non-transformed breast epithelial cell lines. The fibrous corona is a structure formed on kinetochores before their end-on attachment to microtubules and plays a role in efficient kinetochore capture and the spindle assembly checkpoint. The reduction in the fibrous corona was not due to reduced expression levels of the fibrous corona components or to a reduction in outer kinetochore components. Kinetochore localization of Bub1 and CENP-E, which play a role in the recruitment of the fibrous corona to kinetochores, was reduced in cancer cell lines, presumably due to reduced activity of Mps1, which is required for their recruitment to kinetochores through phosphorylating KNL1. Increasing kinetochore localization of Bub1 and CENP-E in cancer cells restored the level of the fibrous corona. Cancer cell lines showed a reduced capacity to nucleate microtubules from kinetochores, which was recently shown to be dependent on the fibrous corona, and increasing kinetochore localization of Bub1 and CENP-E restored the microtubule nucleation capacity on kinetochores. Our study revealed a distinct feature of cancer cell lines that may be related to CIN.
Collapse
Grants
- 18H04896 Ministry of Education, Culture, Sports, Science and Technology
- 21H05738 Ministry of Education, Culture, Sports, Science and Technology
- 23H04272 Ministry of Education, Culture, Sports, Science and Technology
- Yamaguchi Educational and Scholarship Foundation
- Mochida Memorial Foundation for Medical and Pharmaceutical Research
- JPMJAX2112 Japan Science and Technology Agency
- Takeda Science Foundation
- The Pharmacological Research Foundation. Tokyo
- 15H04368 Japan Society for the Promotion of Science
- 16H06635 Japan Society for the Promotion of Science
- 16K14604 Japan Society for the Promotion of Science
- 18H02434 Japan Society for the Promotion of Science
- 18K15234 Japan Society for the Promotion of Science
- 22H02614 Japan Society for the Promotion of Science
- 23K05629 Japan Society for the Promotion of Science
- Ministry of Education, Culture, Sports, Science and Technology
- Mochida Memorial Foundation for Medical and Pharmaceutical Research
- Japan Science and Technology Agency
- Takeda Science Foundation
- Japan Society for the Promotion of Science
Collapse
Affiliation(s)
- Yudai Ishikawa
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Hirotaka Fukue
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Runa Iwakami
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Masanori Ikeda
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of MedicineTohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
2
|
Li S, Kasciukovic T, Tanaka TU. Kinetochore-microtubule error correction for biorientation: lessons from yeast. Biochem Soc Trans 2024; 52:29-39. [PMID: 38305688 PMCID: PMC10903472 DOI: 10.1042/bst20221261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
Accurate chromosome segregation in mitosis relies on sister kinetochores forming stable attachments to microtubules (MTs) extending from opposite spindle poles and establishing biorientation. To achieve this, erroneous kinetochore-MT interactions must be resolved through a process called error correction, which dissolves improper kinetochore-MT attachment and allows new interactions until biorientation is achieved. The Aurora B kinase plays key roles in driving error correction by phosphorylating Dam1 and Ndc80 complexes, while Mps1 kinase, Stu2 MT polymerase and phosphatases also regulate this process. Once biorientation is formed, tension is applied to kinetochore-MT interaction, stabilizing it. In this review article, we discuss the mechanisms of kinetochore-MT interaction, error correction and biorientation. We focus mainly on recent insights from budding yeast, where the attachment of a single MT to a single kinetochore during biorientation simplifies the analysis of error correction mechanisms.
Collapse
Affiliation(s)
- Shuyu Li
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Taciana Kasciukovic
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Tomoyuki U. Tanaka
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| |
Collapse
|
3
|
Zhu Z, Becam I, Tovey CA, Elfarkouchi A, Yen EC, Bernard F, Guichet A, Conduit PT. Multifaceted modes of γ-tubulin complex recruitment and microtubule nucleation at mitotic centrosomes. J Cell Biol 2023; 222:e202212043. [PMID: 37698931 PMCID: PMC10497398 DOI: 10.1083/jcb.202212043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/18/2023] [Accepted: 07/24/2023] [Indexed: 09/14/2023] Open
Abstract
Microtubule nucleation is mediated by γ-tubulin ring complexes (γ-TuRCs). In most eukaryotes, a GCP4/5/4/6 "core" complex promotes γ-tubulin small complex (γ-TuSC) association to generate cytosolic γ-TuRCs. Unlike γ-TuSCs, however, this core complex is non-essential in various species and absent from budding yeasts. In Drosophila, Spindle defective-2 (Spd-2) and Centrosomin (Cnn) redundantly recruit γ-tubulin complexes to mitotic centrosomes. Here, we show that Spd-2 recruits γ-TuRCs formed via the GCP4/5/4/6 core, but Cnn can recruit γ-TuSCs directly via its well-conserved CM1 domain, similar to its homologs in budding yeast. When centrosomes fail to recruit γ-tubulin complexes, they still nucleate microtubules via the TOG domain protein Mini-spindles (Msps), but these microtubules have different dynamic properties. Our data, therefore, help explain the dispensability of the GCP4/5/4/6 core and highlight the robustness of centrosomes as microtubule organizing centers. They also suggest that the dynamic properties of microtubules are influenced by how they are nucleated.
Collapse
Affiliation(s)
- Zihan Zhu
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Isabelle Becam
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Corinne A. Tovey
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Abir Elfarkouchi
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Eugenie C. Yen
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Fred Bernard
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Paul T. Conduit
- Department of Zoology, University of Cambridge, Cambridge, UK
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
4
|
Kraus J, Alfaro-Aco R, Gouveia B, Petry S. Microtubule nucleation for spindle assembly: one molecule at a time. Trends Biochem Sci 2023; 48:761-775. [PMID: 37482516 PMCID: PMC10789498 DOI: 10.1016/j.tibs.2023.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023]
Abstract
The cell orchestrates the dance of chromosome segregation with remarkable speed and fidelity. The mitotic spindle is built from scratch after interphase through microtubule (MT) nucleation, which is dependent on the γ-tubulin ring complex (γ-TuRC), the universal MT template. Although several MT nucleation pathways build the spindle framework, the question of when and how γ-TuRC is targeted to these nucleation sites in the spindle and subsequently activated remains an active area of investigation. Recent advances facilitated the discovery of new MT nucleation effectors and their mechanisms of action. In this review, we illuminate each spindle assembly pathway and subsequently consider how the pathways are merged to build a spindle.
Collapse
Affiliation(s)
- Jodi Kraus
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Bernardo Gouveia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
5
|
Gouveia B, Setru SU, King MR, Hamlin A, Stone HA, Shaevitz JW, Petry S. Acentrosomal spindles assemble from branching microtubule nucleation near chromosomes in Xenopus laevis egg extract. Nat Commun 2023; 14:3696. [PMID: 37344488 PMCID: PMC10284841 DOI: 10.1038/s41467-023-39041-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Microtubules are generated at centrosomes, chromosomes, and within spindles during cell division. Whereas microtubule nucleation at the centrosome is well characterized, much remains unknown about where, when, and how microtubules are nucleated at chromosomes. To address these questions, we reconstitute microtubule nucleation from purified chromosomes in meiotic Xenopus egg extract and find that chromosomes alone can form spindles. We visualize microtubule nucleation near chromosomes using total internal reflection fluorescence microscopy to find that this occurs through branching microtubule nucleation. By inhibiting molecular motors, we find that the organization of the resultant polar branched networks is consistent with a theoretical model where the effectors for branching nucleation are released by chromosomes, forming a concentration gradient that spatially biases branching microtbule nucleation. In the presence of motors, these branched networks are ultimately organized into functional spindles, where the number of emergent spindle poles scales with the number of chromosomes and total chromatin area.
Collapse
Affiliation(s)
- Bernardo Gouveia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Sagar U Setru
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Matthew R King
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Aaron Hamlin
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Joshua W Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
6
|
Wu J, Larreategui-Aparicio A, Lambers MLA, Bodor DL, Klaasen SJ, Tollenaar E, de Ruijter-Villani M, Kops GJPL. Microtubule nucleation from the fibrous corona by LIC1-pericentrin promotes chromosome congression. Curr Biol 2023; 33:912-925.e6. [PMID: 36720222 PMCID: PMC10017265 DOI: 10.1016/j.cub.2023.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/17/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023]
Abstract
Error-free chromosome segregation in mitosis and meiosis relies on the assembly of a microtubule-based spindle that interacts with kinetochores to guide chromosomes to the cell equator before segregation in anaphase. Microtubules sprout from nucleation sites such as centrosomes, but kinetochores can also promote microtubule formation. It is unclear, however, how kinetochore-derived microtubules are generated and what their role is in chromosome segregation. Here, we show that the transient outer-kinetochore meshwork known as the fibrous corona serves as an autonomous microtubule nucleation platform. The fibrous corona is essential for the nucleation of kinetochore-derived microtubules, and when dissociated from the core kinetochore, it retains microtubule nucleation capacity. Nucleation relies on a fibrous-corona-bound pool of the LIC1 subunit of the dynein motor complex, which interacts with the γ-tubulin-tethering protein pericentrin (PCNT). PCNT is essential for microtubule nucleation from fibrous coronas, and in centrosome-depleted cells, where nearly all mitotic nucleation occurs at fibrous coronas, chromosome congression is fully dependent on PCNT. We further show that chromosomes in bovine oocytes, which naturally lack centrosomes, have highly expanded fibrous coronas that drive chromosome-derived microtubule nucleation. Preventing fibrous corona expansion in these cells impairs chromosome congression and causes spindle assembly defects. Our results show that fibrous coronas are autonomous microtubule-organizing centers that are important for spindle assembly, which may be especially relevant in acentrosomal cells such as oocytes.
Collapse
Affiliation(s)
- Jingchao Wu
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands
| | - Ainhoa Larreategui-Aparicio
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, the Netherlands
| | - Maaike L A Lambers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands
| | - Dani L Bodor
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands
| | - Sjoerd J Klaasen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands
| | - Eveline Tollenaar
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, the Netherlands
| | - Marta de Ruijter-Villani
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, the Netherlands; Division of Woman and Baby, Department of Obstetrics and Gynecology, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Geert J P L Kops
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands.
| |
Collapse
|
7
|
Renda F, Khodjakov A. Cell biology: Kinetochores nucleate their own microtubules. Curr Biol 2023; 33:R187-R190. [PMID: 36917941 DOI: 10.1016/j.cub.2023.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The origin of microtubules that tether the chromosomes' kinetochores to spindle poles has remained a mystery for several decades. A new study identifies the 'fibrous corona' as an autonomous microtubule nucleation site, and reveals the molecular cascade responsible for this process.
Collapse
Affiliation(s)
- Fioranna Renda
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
8
|
Popova JV, Pavlova GA, Razuvaeva AV, Yarinich LA, Andreyeva EN, Anders AF, Galimova YA, Renda F, Somma MP, Pindyurin AV, Gatti M. Genetic Control of Kinetochore-Driven Microtubule Growth in Drosophila Mitosis. Cells 2022; 11:cells11142127. [PMID: 35883570 PMCID: PMC9323100 DOI: 10.3390/cells11142127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 01/08/2023] Open
Abstract
Centrosome-containing cells assemble their spindles exploiting three main classes of microtubules (MTs): MTs nucleated by the centrosomes, MTs generated near the chromosomes/kinetochores, and MTs nucleated within the spindle by the augmin-dependent pathway. Mammalian and Drosophila cells lacking the centrosomes generate MTs at kinetochores and eventually form functional bipolar spindles. However, the mechanisms underlying kinetochore-driven MT formation are poorly understood. One of the ways to elucidate these mechanisms is the analysis of spindle reassembly following MT depolymerization. Here, we used an RNA interference (RNAi)-based reverse genetics approach to dissect the process of kinetochore-driven MT regrowth (KDMTR) after colcemid-induced MT depolymerization. This MT depolymerization procedure allows a clear assessment of KDMTR, as colcemid disrupts centrosome-driven MT regrowth but not KDMTR. We examined KDMTR in normal Drosophila S2 cells and in S2 cells subjected to RNAi against conserved genes involved in mitotic spindle assembly: mast/orbit/chb (CLASP1), mei-38 (TPX2), mars (HURP), dgt6 (HAUS6), Eb1 (MAPRE1/EB1), Patronin (CAMSAP2), asp (ASPM), and Klp10A (KIF2A). RNAi-mediated depletion of Mast/Orbit, Mei-38, Mars, Dgt6, and Eb1 caused a significant delay in KDMTR, while loss of Patronin had a milder negative effect on this process. In contrast, Asp or Klp10A deficiency increased the rate of KDMTR. These results coupled with the analysis of GFP-tagged proteins (Mast/Orbit, Mei-38, Mars, Eb1, Patronin, and Asp) localization during KDMTR suggested a model for kinetochore-dependent spindle reassembly. We propose that kinetochores capture the plus ends of MTs nucleated in their vicinity and that these MTs elongate at kinetochores through the action of Mast/Orbit. The Asp protein binds the MT minus ends since the beginning of KDMTR, preventing excessive and disorganized MT regrowth. Mei-38, Mars, Dgt6, Eb1, and Patronin positively regulate polymerization, bundling, and stabilization of regrowing MTs until a bipolar spindle is reformed.
Collapse
Affiliation(s)
- Julia V. Popova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
| | - Gera A. Pavlova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Alyona V. Razuvaeva
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Lyubov A. Yarinich
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Evgeniya N. Andreyeva
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
| | - Alina F. Anders
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
| | - Yuliya A. Galimova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
| | - Fioranna Renda
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (M.P.S.)
| | - Maria Patrizia Somma
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (M.P.S.)
| | - Alexey V. Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Correspondence: (A.V.P.); (M.G.)
| | - Maurizio Gatti
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (M.P.S.)
- Correspondence: (A.V.P.); (M.G.)
| |
Collapse
|
9
|
SWAP, SWITCH, and STABILIZE: Mechanisms of Kinetochore–Microtubule Error Correction. Cells 2022; 11:cells11091462. [PMID: 35563768 PMCID: PMC9104000 DOI: 10.3390/cells11091462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
For correct chromosome segregation in mitosis, eukaryotic cells must establish chromosome biorientation where sister kinetochores attach to microtubules extending from opposite spindle poles. To establish biorientation, any aberrant kinetochore–microtubule interactions must be resolved in the process called error correction. For resolution of the aberrant interactions in error correction, kinetochore–microtubule interactions must be exchanged until biorientation is formed (the SWAP process). At initiation of biorientation, the state of weak kinetochore–microtubule interactions should be converted to the state of stable interactions (the SWITCH process)—the conundrum of this conversion is called the initiation problem of biorientation. Once biorientation is established, tension is applied on kinetochore–microtubule interactions, which stabilizes the interactions (the STABILIZE process). Aurora B kinase plays central roles in promoting error correction, and Mps1 kinase and Stu2 microtubule polymerase also play important roles. In this article, we review mechanisms of error correction by considering the SWAP, SWITCH, and STABILIZE processes. We mainly focus on mechanisms found in budding yeast, where only one microtubule attaches to a single kinetochore at biorientation, making the error correction mechanisms relatively simpler.
Collapse
|
10
|
Doodhi H, Tanaka TU. Swap and stop - Kinetochores play error correction with microtubules: Mechanisms of kinetochore-microtubule error correction: Mechanisms of kinetochore-microtubule error correction. Bioessays 2022; 44:e2100246. [PMID: 35261042 PMCID: PMC9344824 DOI: 10.1002/bies.202100246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/30/2022]
Abstract
Correct chromosome segregation in mitosis relies on chromosome biorientation, in which sister kinetochores attach to microtubules from opposite spindle poles prior to segregation. To establish biorientation, aberrant kinetochore–microtubule interactions must be resolved through the error correction process. During error correction, kinetochore–microtubule interactions are exchanged (swapped) if aberrant, but the exchange must stop when biorientation is established. In this article, we discuss recent findings in budding yeast, which have revealed fundamental molecular mechanisms promoting this “swap and stop” process for error correction. Where relevant, we also compare the findings in budding yeast with mechanisms in higher eukaryotes. Evidence suggests that Aurora B kinase differentially regulates kinetochore attachments to the microtubule end and its lateral side and switches relative strength of the two kinetochore–microtubule attachment modes, which drives the exchange of kinetochore–microtubule interactions to resolve aberrant interactions. However, Aurora B kinase, recruited to centromeres and inner kinetochores, cannot reach its targets at kinetochore–microtubule interface when tension causes kinetochore stretching, which stops the kinetochore–microtubule exchange once biorientation is established.
Collapse
Affiliation(s)
- Harinath Doodhi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
11
|
Nuclear Isoforms of Neurofibromin Are Required for Proper Spindle Organization and Chromosome Segregation. Cells 2020; 9:cells9112348. [PMID: 33114250 PMCID: PMC7690890 DOI: 10.3390/cells9112348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
Mitotic spindles are highly organized, microtubule (MT)-based, transient structures that serve the fundamental function of unerring chromosome segregation during cell division and thus of genomic stability during tissue morphogenesis and homeostasis. Hence, a multitude of MT-associated proteins (MAPs) regulates the dynamic assembly of MTs in preparation for mitosis. Some tumor suppressors, normally functioning to prevent tumor development, have now emerged as significant MAPs. Among those, neurofibromin, the product of the Neurofibromatosis-1 gene (NF1), a major Ras GTPase activating protein (RasGAP) in neural cells, controls also the critical function of chromosome congression in astrocytic cellular contexts. Cell type- and development-regulated splicings may lead to the inclusion or exclusion of NF1exon51, which bears a nuclear localization sequence (NLS) for nuclear import at G2; yet the functions of the produced NLS and ΔNLS neurofibromin isoforms have not been previously addressed. By using a lentiviral shRNA system, we have generated glioblastoma SF268 cell lines with conditional knockdown of NLS or ΔNLS transcripts. In dissecting the roles of NLS or ΔNLS neurofibromins, we found that NLS-neurofibromin knockdown led to increased density of cytosolic MTs but loss of MT intersections, anastral spindles featuring large hollows and abnormal chromosome positioning, and finally abnormal chromosome segregation and increased micronuclei frequency. Therefore, we propose that NLS neurofibromin isoforms exert prominent mitotic functions.
Collapse
|
12
|
Amin MA, Agarwal S, Varma D. Mapping the kinetochore MAP functions required for stabilizing microtubule attachments to chromosomes during metaphase. Cytoskeleton (Hoboken) 2019; 76:398-412. [PMID: 31454167 DOI: 10.1002/cm.21559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022]
Abstract
In mitosis, faithful chromosome segregation is orchestrated by the dynamic interactions between the spindle microtubules (MTs) emanating from the opposite poles and the kinetochores of the chromosomes. However, the precise mechanism that coordinates the coupling of the kinetochore components to dynamic MTs has been a long-standing question. Microtubule-associated proteins (MAPs) regulate MT nucleation and dynamics, MT-mediated transport and MT cross-linking in cells. During mitosis, MAPs play an essential role not only in determining spindle length, position, and orientation but also in facilitating robust kinetochore-microtubule (kMT) attachments by linking the kinetochores to spindle MTs efficiently. The stability of MTs imparted by the MAPs is critical to ensure accurate chromosome segregation. This review primarily focuses on the specific function of nonmotor kinetochore MAPs, their recruitment to kinetochores and their MT-binding properties. We also attempt to synthesize and strengthen our understanding of how these MAPs work in coordination with the kinetochore-bound Ndc80 complex (the key component at the MT-binding interface in metaphase and anaphase) to establish stable kMT attachments and control accurate chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Mohammed A Amin
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Shivangi Agarwal
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dileep Varma
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
13
|
Spindle assembly without spindle pole body insertion into the nuclear envelope in fission yeast meiosis. Chromosoma 2019; 128:267-277. [PMID: 31152193 DOI: 10.1007/s00412-019-00710-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 01/23/2023]
Abstract
Centrosomes represent the major microtubule organizing center (MTOC) in eukaryotic cells and are responsible for nucleation of the spindle, the vehicle of chromosome segregation. In human female meiosis, however, spindle assembly occurs in the absence of centrosomes or other MTOCs and microtubules are nucleated around chromosomes. In yeast, spindle formation in mitosis and meiosis depends on the activity of spindle pole bodies (SPBs), the functional equivalents of centrosomes; thus, SPBs and centrosomes use similar machineries to assemble spindles. Here, we develop a system to explore the molecular mechanisms supporting acentrosomal spindle formation using fission yeast meiosis as a model scenario. We achieve this situation by removing access of the SPBs to the nucleus after their duplication. Under these conditions, we observe self-assembly-based spindle formation in the nuclear environment, conferring an ability to segregate chromosomes independently of the SPBs. Our results open the possibility to utilize the experimental advantages of fission yeast for insights into the molecular basis of acentrosomal spindle formation in meiosis.
Collapse
|
14
|
Sarkar A, Rieger H, Paul R. Search and Capture Efficiency of Dynamic Microtubules for Centrosome Relocation during IS Formation. Biophys J 2019; 116:2079-2091. [PMID: 31084903 DOI: 10.1016/j.bpj.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/08/2019] [Indexed: 11/29/2022] Open
Abstract
Upon contact with antigen-presenting cells, cytotoxic T lymphocytes (T cells) establish a highly organized contact zone denoted as the immunological synapse (IS). The formation of the IS implies relocation of the microtubule organizing center (MTOC) toward the contact zone, which necessitates a proper connection between the MTOC and the IS via dynamic microtubules (MTs). The efficiency of the MTs finding the IS within the relevant timescale is, however, still illusive. We investigate how MTs search the three-dimensional constrained cellular volume for the IS and bind upon encounter to dynein anchored at the IS cortex. The search efficiency is estimated by calculating the time required for the MTs to reach the dynein-enriched region of the IS. In this study, we develop simple mathematical and numerical models incorporating relevant components of a cell and propose an optimal search strategy. Using the mathematical model, we have quantified the average search time for a wide range of model parameters and proposed an optimized set of values leading to the minimal capture time. Our results show that search times are minimal when the IS formed at the nearest or at the farthest sites on the cell surface with respect to the perinuclear MTOC. The search time increases monotonically away from these two specific sites and is maximal at an intermediate position near the equator of the cell. We observed that search time strongly depends on the number of searching MTs and distance of the MTOC from the nuclear surface.
Collapse
Affiliation(s)
- Apurba Sarkar
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India.
| | - Heiko Rieger
- Department of Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| | - Raja Paul
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India.
| |
Collapse
|
15
|
Microtubule nucleation by γ-tubulin complexes and beyond. Essays Biochem 2018; 62:765-780. [PMID: 30315097 PMCID: PMC6281477 DOI: 10.1042/ebc20180028] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
Abstract
In this short review, we give an overview of microtubule nucleation within cells. It is nearly 30 years since the discovery of γ-tubulin, a member of the tubulin superfamily essential for proper microtubule nucleation in all eukaryotes. γ-tubulin associates with other proteins to form multiprotein γ-tubulin ring complexes (γ-TuRCs) that template and catalyse the otherwise kinetically unfavourable assembly of microtubule filaments. These filaments can be dynamic or stable and they perform diverse functions, such as chromosome separation during mitosis and intracellular transport in neurons. The field has come a long way in understanding γ-TuRC biology but several important and unanswered questions remain, and we are still far from understanding the regulation of microtubule nucleation in a multicellular context. Here, we review the current literature on γ-TuRC assembly, recruitment, and activation and discuss the potential importance of γ-TuRC heterogeneity, the role of non-γ-TuRC proteins in microtubule nucleation, and whether γ-TuRCs could serve as good drug targets for cancer therapy.
Collapse
|
16
|
Silva RD, Mirkovic M, Guilgur LG, Rathore OS, Martinho RG, Oliveira RA. Absence of the Spindle Assembly Checkpoint Restores Mitotic Fidelity upon Loss of Sister Chromatid Cohesion. Curr Biol 2018; 28:2837-2844.e3. [PMID: 30122528 PMCID: PMC6191932 DOI: 10.1016/j.cub.2018.06.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/30/2018] [Accepted: 06/22/2018] [Indexed: 12/28/2022]
Abstract
The fidelity of mitosis depends on cohesive forces that keep sister chromatids together. This is mediated by cohesin that embraces sister chromatid fibers from the time of their replication until the subsequent mitosis [1, 2, 3]. Cleavage of cohesin marks anaphase onset, where single chromatids are dragged to the poles by the mitotic spindle [4, 5, 6]. Cohesin cleavage should only occur when all chromosomes are properly bio-oriented to ensure equal genome distribution and prevent random chromosome segregation. Unscheduled loss of sister chromatid cohesion is prevented by a safeguard mechanism known as the spindle assembly checkpoint (SAC) [7, 8]. To identify specific conditions capable of restoring defects associated with cohesion loss, we screened for genes whose depletion modulates Drosophila wing development when sister chromatid cohesion is impaired. Cohesion deficiency was induced by knockdown of the acetyltransferase separation anxiety (San)/Naa50, a cohesin complex stabilizer [9, 10, 11, 12]. Several genes whose function impacts wing development upon cohesion loss were identified. Surprisingly, knockdown of key SAC proteins, Mad2 and Mps1, suppressed developmental defects associated with San depletion. SAC impairment upon cohesin removal, triggered by San depletion or artificial removal of the cohesin complex, prevented extensive genome shuffling, reduced segregation defects, and restored cell survival. This counterintuitive phenotypic suppression was caused by an intrinsic bias for efficient chromosome biorientation at mitotic entry, coupled with slow engagement of error-correction reactions. Thus, in contrast to SAC’s role as a safeguard mechanism for mitotic fidelity, removal of this checkpoint alleviates mitotic errors when sister chromatid cohesion is compromised. A Drosophila screen identifies SAC genes as suppressors of cohesion-related defects SAC removal enhances mitotic fidelity upon premature cohesion loss SAC inactivation enhances cell survival and tissue homeostasis upon cohesion loss
Collapse
Affiliation(s)
- Rui D Silva
- Departamento de Ciências Biomédicas e Medicina and Center for Biomedical Research, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Mihailo Mirkovic
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Leonardo G Guilgur
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Om S Rathore
- Departamento de Ciências Biomédicas e Medicina and Center for Biomedical Research, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Rui Gonçalo Martinho
- Departamento de Ciências Biomédicas e Medicina and Center for Biomedical Research, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Institute of Biomedicine-iBiMED and Department of Medical Sciences, University of Aveiro, Campus Universitario de Santiago, Agra do Crasto-Ed. 30, 3810-193 Aveiro, Portugal.
| | - Raquel A Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
17
|
Jelenić I, Selmecki A, Laan L, Pavin N. Spindle Dynamics Model Explains Chromosome Loss Rates in Yeast Polyploid Cells. Front Genet 2018; 9:296. [PMID: 30131823 PMCID: PMC6091489 DOI: 10.3389/fgene.2018.00296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/13/2018] [Indexed: 01/14/2023] Open
Abstract
Faithful chromosome segregation, driven by the mitotic spindle, is essential for organismal survival. Neopolyploid cells from diverse species exhibit a significant increase in mitotic errors relative to their diploid progenitors, resulting in chromosome nondisjunction. In the model system Saccharomyces cerevisiae, the rate of chromosome loss in haploid and diploid cells is measured to be one thousand times lower than the rate of loss in isogenic tetraploid cells. Currently it is unknown what constrains the number of chromosomes that can be segregated with high fidelity in an organism. Here we developed a simple mathematical model to study how different rates of chromosome loss in cells with different ploidy can arise from changes in (1) spindle dynamics and (2) a maximum duration of mitotic arrest, after which cells enter anaphase. We apply this model to S. cerevisiae to show that this model can explain the observed rates of chromosome loss in S. cerevisiae cells of different ploidy. Our model describes how small increases in spindle assembly time can result in dramatic differences in the rate of chromosomes loss between cells of increasing ploidy and predicts the maximum duration of mitotic arrest.
Collapse
Affiliation(s)
- Ivan Jelenić
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Anna Selmecki
- Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, NE, United States
| | - Liedewij Laan
- Department of Bionanoscience, Faculty of Applied Sciences, Kavli Institute of NanoScience, Delft University of Technology, Delft, Netherlands
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
18
|
Greenlee M, Alonso A, Rahman M, Meednu N, Davis K, Tabb V, Cook R, Miller RK. The TOG protein Stu2/XMAP215 interacts covalently and noncovalently with SUMO. Cytoskeleton (Hoboken) 2018; 75:290-306. [PMID: 29729126 PMCID: PMC6712953 DOI: 10.1002/cm.21449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/21/2023]
Abstract
Stu2p is the yeast member of the XMAP215/Dis1/ch‐TOG family of microtubule‐associated proteins that promote microtubule polymerization. However, the factors that regulate its activity are not clearly understood. Here we report that Stu2p in the budding yeast Saccharomyces cerevisiae interacts with SUMO by covalent and noncovalent mechanisms. Stu2p interacted by two‐hybrid analysis with the yeast SUMO Smt3p, its E2 Ubc9p, and the E3 Nfi1p. A region of Stu2p containing the dimerization domain was both necessary and sufficient for interaction with SUMO and Ubc9p. Stu2p was found to be sumoylated both in vitro and in vivo. Stu2p copurified with SUMO in a pull‐down assay and vice versa. Stu2p also bound to a nonconjugatable form of SUMO, suggesting that Stu2p can interact noncovalently with SUMO. In addition, Stu2p interacted with the STUbL enzyme Ris1p. Stu2p also copurified with ubiquitin in a pull‐down assay, suggesting that it can be modified by both SUMO and ubiquitin. Tubulin, a major binding partner of Stu2p, also interacted noncovalently with SUMO. By two‐hybrid analysis, the beta‐tubulin Tub2p interacted with SUMO independently of the microtubule stressor, benomyl. Together, these findings raise the possibility that the microtubule polymerization activities mediated by Stu2p are regulated through sumoylation pathways.
Collapse
Affiliation(s)
- Matt Greenlee
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Annabel Alonso
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Maliha Rahman
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Nida Meednu
- Department of Biology, University of Rochester, Rochester, New York, 14627
| | - Kayla Davis
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Victoria Tabb
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - River Cook
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Rita K Miller
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| |
Collapse
|
19
|
Sikirzhytski V, Renda F, Tikhonenko I, Magidson V, McEwen BF, Khodjakov A. Microtubules assemble near most kinetochores during early prometaphase in human cells. J Cell Biol 2018; 217:2647-2659. [PMID: 29907657 PMCID: PMC6080938 DOI: 10.1083/jcb.201710094] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/15/2018] [Accepted: 05/21/2018] [Indexed: 11/22/2022] Open
Abstract
Correlative light electron microscopy reveals microtubule assembly near most kinetochores at the onset of mitosis in human cells. Conversion of the initially lateral interactions between these microtubules and kinetochores into end-on attachments is facilitated by the kinesin CenpE. This work suggests that kinetochore fibers predominately form via capture of locally nucleated noncentrosomal microtubules. For proper segregation during cell division, each chromosome must connect to the poles of the spindle via microtubule bundles termed kinetochore fibers (K-fibers). K-fibers form by two distinct mechanisms: (1) capture of astral microtubules nucleated at the centrosome by the chromosomes’ kinetochores or (2) attachment of kinetochores to noncentrosomal microtubules with subsequent transport of the minus ends of these microtubules toward the spindle poles. The relative contributions of these alternative mechanisms to normal spindle assembly remain unknown. In this study, we report that most kinetochores in human cells develop K-fibers via the second mechanism. Correlative light electron microscopy demonstrates that from the onset of spindle assembly, short randomly oriented noncentrosomal microtubules appear in the immediate vicinity of the kinetochores. Initially, these microtubules interact with the kinetochores laterally, but end-on attachments form rapidly in the first 3 min of prometaphase. Conversion from lateral to end-on interactions is impeded upon inhibition of the plus end–directed kinetochore-associated kinesin CenpE.
Collapse
Affiliation(s)
| | - Fioranna Renda
- Wadsworth Center, New York State Department of Health, Albany, NY
| | - Irina Tikhonenko
- Wadsworth Center, New York State Department of Health, Albany, NY
| | | | - Bruce F McEwen
- Wadsworth Center, New York State Department of Health, Albany, NY
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY .,Rensselaer Polytechnic Institute, Troy, NY
| |
Collapse
|
20
|
Lu A, Zhou CJ, Wang DH, Han Z, Kong XW, Ma YZ, Yun ZZ, Liang CG. Cytoskeleton-associated protein 5 and clathrin heavy chain binding regulates spindle assembly in mouse oocytes. Oncotarget 2017; 8:17491-17503. [PMID: 28177917 PMCID: PMC5392264 DOI: 10.18632/oncotarget.15097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
Mammalian oocyte meiotic maturation is the precondition of early embryo development. Lots of microtubules (MT)-associated proteins participate in oocyte maturation process. Cytoskeleton-associated protein 5 (CKAP5) is a member of the XMAP215 family that regulates microtubule dynamics during mitosis. However, its role in meiosis has not been fully studied. Here, we investigated the function of CKAP5 in mouse oocyte meiotic maturation and early embryo development. Western blot showed that CKAP5 expression increased from GVBD, maintaining at high level at metaphase, and decreased after late 1-cell stage. Confocal microscopy showed there is no specific accumulation of CKAP5 at interphase (GV, PN or 2-cell stage). However, once cells enter into meiotic or mitotic division, CKAP5 was localized at the whole spindle apparatus. Treatment of oocytes with the tubulin-disturbing reagents nocodazole (induces MTs depolymerization) or taxol (prevents MTs depolymerization) did not affect CKAP5 expression but led to a rearrangement of CKAP5. Further, knock-down of CKAP5 resulted in a failure of first polar body extrusion, serious defects in spindle assembly, and failure of chromosome alignment. Loss of CKAP5 also decreased early embryo development potential. Furthermore, co-immunoprecipitation showed that CKAP5 bound to clathrin heavy chain 1 (CLTC). Taken together, our results demonstrate that CKAP5 is important in oocyte maturation and early embryo development, and CKAP5 might work together with CLTC in mouse oocyte maturation.
Collapse
Affiliation(s)
- Angeleem Lu
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Cheng-Jie Zhou
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Dong-Hui Wang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Zhe Han
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Xiang-Wei Kong
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Yu-Zhen Ma
- Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, People's Republic of China
| | - Zhi-Zhong Yun
- Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, People's Republic of China
| | - Cheng-Guang Liang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| |
Collapse
|
21
|
Roostalu J, Surrey T. Microtubule nucleation: beyond the template. Nat Rev Mol Cell Biol 2017; 18:702-710. [PMID: 28831203 DOI: 10.1038/nrm.2017.75] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cytoskeletal filaments central to a wide range of essential cellular functions in eukaryotic cells. Consequently, cells need to exert tight control over when, where and how many microtubules are being made. Whereas the regulation of microtubule dynamics is well studied, the molecular mechanisms of microtubule nucleation are still poorly understood. Next to the established master template of nucleation, the γ-tubulin ring complex, other microtubule-associated proteins that affect microtubule dynamic properties have recently been found to contribute to nucleation. It has begun to emerge that the nucleation efficiency is controlled not only by template activity but also by, either additionally or alternatively, the stabilization of the nascent microtubule 'nucleus'. This suggests a simple conceptual framework for the mechanisms regulating microtubule nucleation in cells.
Collapse
Affiliation(s)
| | - Thomas Surrey
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
22
|
Yue Z, Komoto S, Gierlinski M, Pasquali D, Kitamura E, Tanaka TU. Mechanisms mitigating problems associated with multiple kinetochores on one microtubule in early mitosis. J Cell Sci 2017; 130:2266-2276. [PMID: 28546446 PMCID: PMC5536920 DOI: 10.1242/jcs.203000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/22/2017] [Indexed: 12/02/2022] Open
Abstract
Proper chromosome segregation in mitosis relies on correct kinetochore interaction with spindle microtubules. In early mitosis, each kinetochore usually interacts with the lateral side of each microtubule and is subsequently tethered at the microtubule end. However, since eukaryotic cells carry multiple chromosomes, multiple kinetochores could occasionally interact with a single microtubule. The consequence of this is unknown. Here, we find that, although two kinetochores (two pairs of sister kinetochores) can interact with the lateral side of one microtubule, only one kinetochore can form a sustained attachment to the microtubule end in budding yeast (Saccharomyces cerevisiae). This leads to detachment of the other kinetochore from the microtubule end (or a location in its proximity). Intriguingly, in this context, kinetochore sliding along a microtubule towards a spindle pole delays and diminishes discernible kinetochore detachment. This effect expedites collection of the entire set of kinetochores to a spindle pole. We propose that cells are equipped with the kinetochore-sliding mechanism to mitigate problems associated with multiple kinetochores on one microtubule in early mitosis. Summary: Given that eukaryotic cells carry multiple chromosomes, multiple kinetochores could occasionally interact with a single microtubule. We identify problems associated with this situation and find mechanisms mitigating these problems.
Collapse
Affiliation(s)
- Zuojun Yue
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Shinya Komoto
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Marek Gierlinski
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.,Data Analysis Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Debora Pasquali
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Etsushi Kitamura
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
23
|
C. elegans chromosomes connect to centrosomes by anchoring into the spindle network. Nat Commun 2017; 8:15288. [PMID: 28492281 PMCID: PMC5437269 DOI: 10.1038/ncomms15288] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/10/2017] [Indexed: 11/19/2022] Open
Abstract
The mitotic spindle ensures the faithful segregation of chromosomes. Here we combine the first large-scale serial electron tomography of whole mitotic spindles in early C. elegans embryos with live-cell imaging to reconstruct all microtubules in 3D and identify their plus- and minus-ends. We classify them as kinetochore (KMTs), spindle (SMTs) or astral microtubules (AMTs) according to their positions, and quantify distinct properties of each class. While our light microscopy and mutant studies show that microtubules are nucleated from the centrosomes, we find only a few KMTs directly connected to the centrosomes. Indeed, by quantitatively analysing several models of microtubule growth, we conclude that minus-ends of KMTs have selectively detached and depolymerized from the centrosome. In toto, our results show that the connection between centrosomes and chromosomes is mediated by an anchoring into the entire spindle network and that any direct connections through KMTs are few and likely very transient. A connection between centrosomes and chromosomes is a key feature of mitotic spindles. Here the authors generate 3D reconstructions of whole mitotic spindles in early C. elegans embryos and show that chromosomes are anchored by the entire spindle network and that connections through kinetochore microtubules are few and likely very transient.
Collapse
|
24
|
Vasileva V, Gierlinski M, Yue Z, O'Reilly N, Kitamura E, Tanaka TU. Molecular mechanisms facilitating the initial kinetochore encounter with spindle microtubules. J Cell Biol 2017; 216:1609-1622. [PMID: 28446512 PMCID: PMC5461016 DOI: 10.1083/jcb.201608122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/15/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022] Open
Abstract
The initial kinetochore (KT) encounter with a spindle microtubule (MT) is one of the rate-limiting steps in establishing proper KT–MT interaction during mitosis. This study reveals how multiple factors cooperate to facilitate the KT encounter with a spindle MT. In particular, it highlights the important roles of KT-derived MTs in this process. The initial kinetochore (KT) encounter with a spindle microtubule (MT; KT capture) is one of the rate-limiting steps in establishing proper KT–MT interaction during mitosis. KT capture is facilitated by multiple factors, such as MT extension in various directions, KT diffusion, and MT pivoting. In addition, KTs generate short MTs, which subsequently interact with a spindle MT. KT-derived MTs may facilitate KT capture, but their contribution is elusive. In this study, we find that Stu1 recruits Stu2 to budding yeast KTs, which promotes MT generation there. By removing Stu2 specifically from KTs, we show that KT-derived MTs shorten the half-life of noncaptured KTs from 48–49 s to 28–34 s. Using computational simulation, we found that multiple factors facilitate KT capture redundantly or synergistically. In particular, KT-derived MTs play important roles both by making a significant contribution on their own and by synergistically enhancing the effects of KT diffusion and MT pivoting. Our study reveals fundamental mechanisms facilitating the initial KT encounter with spindle MTs.
Collapse
Affiliation(s)
- Vanya Vasileva
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Marek Gierlinski
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.,Data Analysis Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Zuojun Yue
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Nicola O'Reilly
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London WC2A 3LY, England, UK
| | - Etsushi Kitamura
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
25
|
Mechanisms of Chromosome Congression during Mitosis. BIOLOGY 2017; 6:biology6010013. [PMID: 28218637 PMCID: PMC5372006 DOI: 10.3390/biology6010013] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/07/2017] [Accepted: 01/28/2017] [Indexed: 12/13/2022]
Abstract
Chromosome congression during prometaphase culminates with the establishment of a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than 100 years of research on this topic have attempted to explain chromosome congression based on the balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores are not required for chromosome congression, whereas the mechanisms of chromosome congression are not necessarily involved in the maintenance of chromosome alignment after congression. Thus, chromosome congression and maintenance of alignment are determined by different principles. Moreover, it is now clear that not all chromosomes use the same mechanism for congressing to the spindle equator. Those chromosomes that are favorably positioned between both poles when the nuclear envelope breaks down use the so-called "direct congression" pathway in which chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces along chromosome arms that drive chromosome oscillatory movements during and after congression. The other pathway, which we call "peripheral congression", is independent of end-on kinetochore microtubule-attachments and relies on the dominant and coordinated action of the kinetochore motors Dynein and Centromere Protein E (CENP-E) that mediate the lateral transport of peripheral chromosomes along microtubules, first towards the poles and subsequently towards the equator. How the opposite polarities of kinetochore motors are regulated in space and time to drive congression of peripheral chromosomes only now starts to be understood. This appears to be regulated by position-dependent phosphorylation of both Dynein and CENP-E and by spindle microtubule diversity by means of tubulin post-translational modifications. This so-called "tubulin code" might work as a navigation system that selectively guides kinetochore motors with opposite polarities along specific spindle microtubule populations, ultimately leading to the congression of peripheral chromosomes. We propose an integrated model of chromosome congression in mammalian cells that depends essentially on the following parameters: (1) chromosome position relative to the spindle poles after nuclear envelope breakdown; (2) establishment of stable end-on kinetochore-microtubule attachments and bi-orientation; (3) coordination between kinetochore- and arm-associated motors; and (4) spatial signatures associated with post-translational modifications of specific spindle microtubule populations. The physiological consequences of abnormal chromosome congression, as well as the therapeutic potential of inhibiting chromosome congression are also discussed.
Collapse
|
26
|
Blackwell R, Sweezy-Schindler O, Edelmaier C, Gergely ZR, Flynn PJ, Montes S, Crapo A, Doostan A, McIntosh JR, Glaser MA, Betterton MD. Contributions of Microtubule Dynamic Instability and Rotational Diffusion to Kinetochore Capture. Biophys J 2016; 112:552-563. [PMID: 27692365 DOI: 10.1016/j.bpj.2016.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/08/2016] [Accepted: 09/06/2016] [Indexed: 11/27/2022] Open
Abstract
Microtubule dynamic instability allows search and capture of kinetochores during spindle formation, an important process for accurate chromosome segregation during cell division. Recent work has found that microtubule rotational diffusion about minus-end attachment points contributes to kinetochore capture in fission yeast, but the relative contributions of dynamic instability and rotational diffusion are not well understood. We have developed a biophysical model of kinetochore capture in small fission-yeast nuclei using hybrid Brownian dynamics/kinetic Monte Carlo simulation techniques. With this model, we have studied the importance of dynamic instability and microtubule rotational diffusion for kinetochore capture, both to the lateral surface of a microtubule and at or near its end. Over a range of biologically relevant parameters, microtubule rotational diffusion decreased capture time, but made a relatively small contribution compared to dynamic instability. At most, rotational diffusion reduced capture time by 25%. Our results suggest that while microtubule rotational diffusion can speed up kinetochore capture, it is unlikely to be the dominant physical mechanism for typical conditions in fission yeast. In addition, we found that when microtubules undergo dynamic instability, lateral captures predominate even in the absence of rotational diffusion. Counterintuitively, adding rotational diffusion to a dynamic microtubule increases the probability of end-on capture.
Collapse
Affiliation(s)
- Robert Blackwell
- Department of Physics, University of Colorado, Boulder, Colorado
| | | | | | - Zachary R Gergely
- Department of Physics, University of Colorado, Boulder, Colorado; Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Patrick J Flynn
- Department of Physics, University of Colorado, Boulder, Colorado
| | - Salvador Montes
- Department of Physics, University of Colorado, Boulder, Colorado
| | - Ammon Crapo
- Department of Physics, University of Colorado, Boulder, Colorado
| | - Alireza Doostan
- Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado
| | - J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Matthew A Glaser
- Department of Physics, University of Colorado, Boulder, Colorado
| | - Meredith D Betterton
- Department of Physics, University of Colorado, Boulder, Colorado; Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado.
| |
Collapse
|
27
|
Abstract
SUMMARYAll eukaryotic cells prepare for cell division by forming a "mitotic spindle"-a bipolar machine made from microtubules (MTs) and many associated proteins. This device organizes the already duplicated DNA so one copy of each chromosome attaches to each end of the spindle. Both formation and function of the spindle require controlled MT dynamics, as well as the actions of multiple motor enzymes. Spindle-driven motions separate the duplicated chromosomes into two distinct sets that are then moved toward opposite ends of the cell. The two cells that subsequently form by cytokinesis, therefore, contain all the genes needed to grow and divide again.
Collapse
Affiliation(s)
- J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347
| |
Collapse
|
28
|
Affiliation(s)
- Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Iva M. Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| |
Collapse
|
29
|
Paired arrangement of kinetochores together with microtubule pivoting and dynamics drive kinetochore capture in meiosis I. Sci Rep 2016; 6:25736. [PMID: 27166749 PMCID: PMC4863148 DOI: 10.1038/srep25736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/21/2016] [Indexed: 11/11/2022] Open
Abstract
Kinetochores are protein complexes on the chromosomes, whose function as linkers between spindle microtubules and chromosomes is crucial for proper cell division. The mechanisms that facilitate kinetochore capture by microtubules are still unclear. In the present study, we combine experiments and theory to explore the mechanisms of kinetochore capture at the onset of meiosis I in fission yeast. We show that kinetochores on homologous chromosomes move together, microtubules are dynamic and pivot around the spindle pole, and the average capture time is 3–4 minutes. Our theory describes paired kinetochores on homologous chromosomes as a single object, as well as angular movement of microtubules and their dynamics. For the experimentally measured parameters, the model reproduces the measured capture kinetics and shows that the paired configuration of kinetochores accelerates capture, whereas microtubule pivoting and dynamics have a smaller contribution. Kinetochore pairing may be a general feature that increases capture efficiency in meiotic cells.
Collapse
|
30
|
Miller MP, Asbury CL, Biggins S. A TOG Protein Confers Tension Sensitivity to Kinetochore-Microtubule Attachments. Cell 2016; 165:1428-1439. [PMID: 27156448 DOI: 10.1016/j.cell.2016.04.030] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/25/2016] [Accepted: 04/07/2016] [Indexed: 01/10/2023]
Abstract
The development and survival of all organisms depends on equal partitioning of their genomes during cell division. Accurate chromosome segregation requires selective stabilization of kinetochore-microtubule attachments that come under tension due to opposing pulling forces exerted on sister kinetochores by dynamic microtubule tips. Here, we show that the XMAP215 family member, Stu2, makes a major contribution to kinetochore-microtubule coupling. Stu2 and its human ortholog, ch-TOG, exhibit a conserved interaction with the Ndc80 kinetochore complex that strengthens its attachment to microtubule tips. Strikingly, Stu2 can either stabilize or destabilize kinetochore attachments, depending on the level of kinetochore tension and whether the microtubule tip is assembling or disassembling. These dichotomous effects of Stu2 are independent of its previously studied regulation of microtubule dynamics. Altogether, our results demonstrate how a kinetochore-associated factor can confer opposing, tension-dependent effects to selectively stabilize tension-bearing attachments, providing mechanistic insight into the basis for accuracy during chromosome segregation.
Collapse
Affiliation(s)
- Matthew P Miller
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Charles L Asbury
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA.
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
31
|
Meunier S, Vernos I. Acentrosomal Microtubule Assembly in Mitosis: The Where, When, and How. Trends Cell Biol 2015; 26:80-87. [PMID: 26475655 DOI: 10.1016/j.tcb.2015.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 01/08/2023]
Abstract
In mitosis the cell assembles the bipolar spindle, a microtubule (MT)-based apparatus that segregates the duplicated chromosomes into two daughter cells. Most animal cells enter mitosis with duplicated centrosomes that provide an active source of dynamic MTs. However, it is now established that spindle assembly relies on the nucleation of acentrosomal MTs occurring around the chromosomes after nuclear envelope breakdown, and on pre-existing microtubules. Where chromosome-dependent MT nucleation occurs, when MT amplification takes place and how the two pathways function are still key questions that generate some controversies. We reconcile the data and present an integrated model accounting for acentrosomal microtubule assembly in the dividing cell.
Collapse
Affiliation(s)
- Sylvain Meunier
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig de Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
32
|
Kakui Y, Sato M. Differentiating the roles of microtubule-associated proteins at meiotic kinetochores during chromosome segregation. Chromosoma 2015; 125:309-20. [PMID: 26383111 DOI: 10.1007/s00412-015-0541-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/06/2015] [Accepted: 09/08/2015] [Indexed: 11/30/2022]
Abstract
Meiosis is a specialised cell division process for generating gametes. In contrast to mitosis, meiosis involves recombination followed by two consecutive rounds of cell division, meiosis I and II. A vast field of research has been devoted to understanding the differences between mitotic and meiotic cell divisions from the viewpoint of chromosome behaviour. For faithful inheritance of paternal and maternal genetic information to offspring, two events are indispensable: meiotic recombination, which generates a physical link between homologous chromosomes, and reductional segregation, in which homologous chromosomes move towards opposite poles, thereby halving the ploidy. The cytoskeleton and its regulators play specialised roles in meiosis to accomplish these divisions. Recent studies have shown that microtubule-associated proteins (MAPs), including tumour overexpressed gene (TOG), play unique roles during meiosis. Furthermore, the conserved mitotic protein kinase Polo modulates MAP localisation in meiosis I. As Polo is a well-known regulator of reductional segregation in meiosis, the evidence suggests that Polo constitutes a plausible link between meiosis-specific MAP functions and reductional segregation. Here, we review the latest findings on how the localisation and regulation of MAPs in meiosis differ from those in mitosis, and we discuss conservation of the system between yeast and higher eukaryotes.
Collapse
Affiliation(s)
- Yasutaka Kakui
- Chromosome Segregation Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK.
| | - Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo, 162-0056, Japan.
| |
Collapse
|
33
|
Abstract
Chromosomes are not only carriers of the genetic material, but also actively regulate the assembly of complex intracellular architectures. During mitosis, chromosome-induced microtubule polymerisation ensures spindle assembly in cells without centrosomes and plays a supportive role in centrosome-containing cells. Chromosomal signals also mediate post-mitotic nuclear envelope (NE) re-formation. Recent studies using novel approaches to manipulate histones in oocytes, where functions can be analysed in the absence of transcription, have established that nucleosomes, but not DNA alone, mediate the chromosomal regulation of spindle assembly and NE formation. Both processes require the generation of RanGTP by RCC1 recruited to nucleosomes but nucleosomes also acquire cell cycle stage specific regulators, Aurora B in mitosis and ELYS, the initiator of nuclear pore complex assembly, at mitotic exit. Here, we review the mechanisms by which nucleosomes control assembly and functions of the spindle and the NE, and discuss their implications for genome maintenance.
Collapse
Affiliation(s)
- Christian Zierhut
- Laboratory of Chromosome and Cell Biology, Rockefeller University, New York, NY, USA
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, Rockefeller University, New York, NY, USA
| |
Collapse
|
34
|
A sensitised RNAi screen reveals a ch-TOG genetic interaction network required for spindle assembly. Sci Rep 2015; 5:10564. [PMID: 26037491 PMCID: PMC4453164 DOI: 10.1038/srep10564] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/20/2015] [Indexed: 02/06/2023] Open
Abstract
How multiple spindle assembly pathways are integrated to drive bipolar spindle assembly is poorly understood. We performed an image-based double RNAi screen to identify genes encoding Microtubule-Associated Proteins (MAPs) that interact with the highly conserved ch-TOG gene to regulate bipolar spindle assembly in human cells. We identified a ch-TOG centred network of genetic interactions which promotes ensures centrosome-mediated microtubule polymerisation, leading to the incorporation of microtubules polymerised by all pathways into a bipolar structure. Our genetic screen also reveals that ch-TOG maintains a dynamic microtubule population, in part, through modulating HSET activity. ch-TOG ensures that spindle assembly is robust to perturbation but sufficiently dynamic such that spindles can explore a diverse shape space in search of structures that can align chromosomes.
Collapse
|
35
|
Targeting of γ-tubulin complexes to microtubule organizing centers: conservation and divergence. Trends Cell Biol 2015; 25:296-307. [DOI: 10.1016/j.tcb.2014.12.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 11/29/2022]
|
36
|
Connecting the microtubule attachment status of each kinetochore to cell cycle arrest through the spindle assembly checkpoint. Chromosoma 2015; 124:463-80. [PMID: 25917595 DOI: 10.1007/s00412-015-0515-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/12/2022]
Abstract
Kinetochores generate a signal that inhibits anaphase progression until every kinetochore makes proper attachments to spindle microtubules. This spindle assembly checkpoint (SAC) increases the fidelity of chromosome segregation. We will review the molecular mechanisms by which kinetochores generate the SAC and extinguish the signal after making proper attachments, with the goal of identifying unanswered questions and new research directions. We will emphasize recent breakthroughs in how phosphorylation changes drive the activation and inhibition of the signal. We will also emphasize the dramatic changes in kinetochore structure that occur after attaching to microtubules and how these coordinate SAC function with microtubule attachment status. Finally, we will review the emerging cross talk between the DNA damage response and the SAC.
Collapse
|
37
|
Kalantzaki M, Kitamura E, Zhang T, Mino A, Novák B, Tanaka TU. Kinetochore-microtubule error correction is driven by differentially regulated interaction modes. Nat Cell Biol 2015; 17:421-33. [PMID: 25751138 PMCID: PMC4380510 DOI: 10.1038/ncb3128] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/28/2015] [Indexed: 01/10/2023]
Abstract
For proper chromosome segregation, sister kinetochores must interact with microtubules from opposite spindle poles (bi-orientation). To establish bi-orientation, aberrant kinetochore-microtubule attachments are disrupted (error correction) by aurora B kinase (Ipl1 in budding yeast). Paradoxically, during this disruption, new attachments are still formed efficiently to enable fresh attempts at bi-orientation. How this is possible remains an enigma. Here we show that kinetochore attachment to the microtubule lattice (lateral attachment) is impervious to aurora B regulation, but attachment to the microtubule plus end (end-on attachment) is disrupted by this kinase. Thus, a new lateral attachment is formed without interference, then converted to end-on attachment and released if incorrect. This process continues until bi-orientation is established and stabilized by tension across sister kinetochores. We reveal how aurora B specifically promotes disruption of the end-on attachment through phospho-regulation of kinetochore components Dam1 and Ndc80. Our results reveal fundamental mechanisms for promoting error correction for bi-orientation.
Collapse
Affiliation(s)
- Maria Kalantzaki
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Etsushi Kitamura
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Tongli Zhang
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Akihisa Mino
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Béla Novák
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Tomoyuki U. Tanaka
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
38
|
Abstract
During eukaryotic cell division, chromosomes must be precisely partitioned to daughter cells. This relies on a mechanism to move chromosomes in defined directions within the parental cell. While sister chromatids are segregated from one another in mitosis and meiosis II, specific adaptations enable the segregation of homologous chromosomes during meiosis I to reduce ploidy for gamete production. Many of the factors that drive these directed chromosome movements are known, and their molecular mechanism has started to be uncovered. Here we review the mechanisms of eukaryotic chromosome segregation, with a particular emphasis on the modifications that ensure the segregation of homologous chromosomes during meiosis I.
Collapse
Affiliation(s)
- Eris Duro
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Adèle L Marston
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
39
|
Erb ML, Kraemer JA, Coker JKC, Chaikeeratisak V, Nonejuie P, Agard DA, Pogliano J. A bacteriophage tubulin harnesses dynamic instability to center DNA in infected cells. eLife 2014; 3. [PMID: 25429514 PMCID: PMC4244570 DOI: 10.7554/elife.03197] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 10/22/2014] [Indexed: 11/13/2022] Open
Abstract
Dynamic instability, polarity, and spatiotemporal organization are hallmarks of the microtubule cytoskeleton that allow formation of complex structures such as the eukaryotic spindle. No similar structure has been identified in prokaryotes. The bacteriophage-encoded tubulin PhuZ is required to position DNA at mid-cell, without which infectivity is compromised. Here, we show that PhuZ filaments, like microtubules, stochastically switch from growing in a distinctly polar manner to catastrophic depolymerization (dynamic instability) both in vitro and in vivo. One end of each PhuZ filament is stably anchored near the cell pole to form a spindle-like array that orients the growing ends toward the phage nucleoid so as to position it near mid-cell. Our results demonstrate how a bacteriophage can harness the properties of a tubulin-like cytoskeleton for efficient propagation. This represents the first identification of a prokaryotic tubulin with the dynamic instability of microtubules and the ability to form a simplified bipolar spindle.
Collapse
Affiliation(s)
- Marcella L Erb
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - James A Kraemer
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Joanna K C Coker
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Poochit Nonejuie
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - David A Agard
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
40
|
Funk C, Schmeiser V, Ortiz J, Lechner J. A TOGL domain specifically targets yeast CLASP to kinetochores to stabilize kinetochore microtubules. ACTA ACUST UNITED AC 2014; 205:555-71. [PMID: 24862575 PMCID: PMC4033772 DOI: 10.1083/jcb.201310018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The two different TOGL domains of the budding yeast CLASP Stu1 are responsible for its distinct mitotic activities, and these activities are only partially mediated by tight microtubule binding. Cytoplasmic linker–associated proteins (CLASPs) are proposed to function in cell division based on their ability to bind tubulin via arrayed tumor overexpressed gene (TOG)–like (TOGL) domains. Structure predictions suggest that CLASPs have at least two TOGL domains. We show that only TOGL2 of Saccharomyces cerevisiae CLASP Stu1 binds to tubulin and is required for polymerization of spindle microtubules (MTs) in vivo. In contrast, TOGL1 recruits Stu1 to kinetochores (KTs), where it is essential for the stability and tension-dependent regulation of KT MTs. Stu1 is also recruited to spindle MTs by different mechanisms depending on the mitotic phase: in metaphase, Stu1 binds directly to the MT lattice, whereas in anaphase, it is localized indirectly to the spindle midzone. In both phases, the activity of TOGL2 is essential for interpolar MT stability, whereas TOGL1 is not involved. Thus, the two TOGL domains of yeast CLASP have different activities and execute distinct mitotic functions.
Collapse
Affiliation(s)
- Caroline Funk
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany
| | - Verena Schmeiser
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany
| | - Jennifer Ortiz
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany
| | - Johannes Lechner
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
41
|
Yamamoto A. Gathering up meiotic telomeres: a novel function of the microtubule-organizing center. Cell Mol Life Sci 2014; 71:2119-34. [PMID: 24413667 PMCID: PMC11113538 DOI: 10.1007/s00018-013-1548-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 11/26/2022]
Abstract
During meiosis, telomeres cluster and promote homologous chromosome pairing. Telomere clustering depends on conserved SUN and KASH domain nuclear membrane proteins, which form a complex called the linker of nucleoskeleton and cytoskeleton (LINC) and connect telomeres with the cytoskeleton. It has been thought that LINC-mediated cytoskeletal forces induce telomere clustering. However, how cytoskeletal forces induce telomere clustering is not fully understood. Recent study of fission yeast has shown that the LINC complex forms the microtubule-organizing center (MTOC) at the telomere, which has been designated as the "telocentrosome", and that microtubule motors gather telomeres via telocentrosome-nucleated microtubules. This MTOC-dependent telomere clustering might be conserved in other eukaryotes. Furthermore, the MTOC-dependent clustering mechanism appears to function in various other biological events. This review presents an overview of the current understanding of the mechanism of meiotic telomere clustering and discusses the universality of the MTOC-dependent clustering mechanism.
Collapse
Affiliation(s)
- Ayumu Yamamoto
- Department of Chemistry, Graduate School of Science, Shizuoka University, 836 Ohya, Suruga-ku, Sizuoka, 422-8529, Japan,
| |
Collapse
|
42
|
Abstract
The propagation of all organisms depends on the accurate and orderly segregation of chromosomes in mitosis and meiosis. Budding yeast has long served as an outstanding model organism to identify the components and underlying mechanisms that regulate chromosome segregation. This review focuses on the kinetochore, the macromolecular protein complex that assembles on centromeric chromatin and maintains persistent load-bearing attachments to the dynamic tips of spindle microtubules. The kinetochore also serves as a regulatory hub for the spindle checkpoint, ensuring that cell cycle progression is coupled to the achievement of proper microtubule-kinetochore attachments. Progress in understanding the composition and overall architecture of the kinetochore, as well as its properties in making and regulating microtubule attachments and the spindle checkpoint, is discussed.
Collapse
|
43
|
Pavin N, Tolić-Nørrelykke IM. Swinging a sword: how microtubules search for their targets. SYSTEMS AND SYNTHETIC BIOLOGY 2014; 8:179-86. [PMID: 25136379 PMCID: PMC4127178 DOI: 10.1007/s11693-014-9134-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
The cell interior is in constant movement, which is to a large extent determined by microtubules, thin and long filaments that permeate the cytoplasm. To move large objects, microtubules need to connect them to the site of their destination. For example, during cell division, microtubules connect chromosomes with the spindle poles via kinetochores, protein complexes on the chromosomes. A general question is how microtubules, while being bound to one structure, find the target that needs to be connected to this structure. Here we review the mechanisms of how microtubules search for kinetochores, with emphasis on the recently discovered microtubule feature to explore space by pivoting around the spindle pole. In addition to accelerating the search for kinetochores, pivoting helps the microtubules to search for cortical anchors, as well as to self-organize into parallel arrays and asters to target specific regions of the cell. Thus, microtubule pivoting constitutes a mechanism by which they locate targets in different cellular contexts.
Collapse
Affiliation(s)
- Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička 32, 10000 Zagreb, Croatia
| | - Iva M Tolić-Nørrelykke
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany ; Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
44
|
Jiang H, He X, Wang S, Jia J, Wan Y, Wang Y, Zeng R, Yates J, Zhu X, Zheng Y. A microtubule-associated zinc finger protein, BuGZ, regulates mitotic chromosome alignment by ensuring Bub3 stability and kinetochore targeting. Dev Cell 2014; 28:268-81. [PMID: 24462186 DOI: 10.1016/j.devcel.2013.12.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/09/2013] [Accepted: 12/20/2013] [Indexed: 11/28/2022]
Abstract
Equal chromosome segregation requires proper assembly of many proteins, including Bub3, onto kinetochores to promote kinetochore-microtubule interactions. By screening for mitotic regulators in the spindle envelope and matrix (Spemix), we identify a conserved Bub3 interacting and GLE-2-binding sequence (GLEBS) containing ZNF207 (BuGZ) that associates with spindle microtubules and regulates chromosome alignment. Using its conserved GLEBS, BuGZ directly binds and stabilizes Bub3. BuGZ also uses its microtubule-binding domain to enhance the loading of Bub3 to kinetochores that have assumed initial interactions with microtubules in prometaphase. This enhanced Bub3 loading is required for proper chromosome alignment and metaphase to anaphase progression. Interestingly, we show that microtubules are required for the highest kinetochore loading of Bub3, BubR1, and CENP-E during prometaphase. These findings suggest that BuGZ not only serves as a molecular chaperone for Bub3 but also enhances its loading onto kinetochores during prometaphase in a microtubule-dependent manner to promote chromosome alignment.
Collapse
Affiliation(s)
- Hao Jiang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, MD 21218, USA
| | - Xiaonan He
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shusheng Wang
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, MD 21218, USA
| | - Junling Jia
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, MD 21218, USA
| | - Yihan Wan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, MD 21218, USA
| | - Yueju Wang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rong Zeng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - John Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, MD 21218, USA.
| |
Collapse
|
45
|
Marston AL. Chromosome segregation in budding yeast: sister chromatid cohesion and related mechanisms. Genetics 2014; 196:31-63. [PMID: 24395824 PMCID: PMC3872193 DOI: 10.1534/genetics.112.145144] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/18/2013] [Indexed: 12/28/2022] Open
Abstract
Studies on budding yeast have exposed the highly conserved mechanisms by which duplicated chromosomes are evenly distributed to daughter cells at the metaphase-anaphase transition. The establishment of proteinaceous bridges between sister chromatids, a function provided by a ring-shaped complex known as cohesin, is central to accurate segregation. It is the destruction of this cohesin that triggers the segregation of chromosomes following their proper attachment to microtubules. Since it is irreversible, this process must be tightly controlled and driven to completion. Furthermore, during meiosis, modifications must be put in place to allow the segregation of maternal and paternal chromosomes in the first division for gamete formation. Here, I review the pioneering work from budding yeast that has led to a molecular understanding of the establishment and destruction of cohesion.
Collapse
Affiliation(s)
- Adele L Marston
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
46
|
Gombos L, Neuner A, Berynskyy M, Fava LL, Wade RC, Sachse C, Schiebel E. GTP regulates the microtubule nucleation activity of γ-tubulin. Nat Cell Biol 2013; 15:1317-27. [PMID: 24161932 DOI: 10.1038/ncb2863] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 09/19/2013] [Indexed: 12/25/2022]
Abstract
Both subunits of αβ-tubulin that comprise the core components of microtubules bind GTP. GTP binding to α-tubulin has a structural role, whereas β-tubulin binds and hydrolyses GTP to regulate microtubule dynamics. γ-tubulin, another member of the tubulin superfamily that seeds microtubule nucleation at microtubule-organizing centres, also binds GTP; however, the importance of this association remains elusive. To address the role of GTP binding to γ-tubulin, we systematically mutagenized the GTP contact residues in the yeast γ-tubulin Tub4. Tub4(GTP)-mutant proteins that exhibited greatly reduced GTP affinity still assembled into the small γ-tubulin complex. However, tub4(GTP) mutants were no longer viable, and had defects in interaction between γ-tubulin and αβ-tubulin, decreased microtubule nucleation and defects in microtubule organization. In vitro and in vivo data show that only γ-tubulin loaded with GTP nucleates microtubules. Our results suggest that GTP recruitment to γ-tubulin enhances its interaction with αβ-tubulin similarly to GTP recruitment to β-tubulin.
Collapse
Affiliation(s)
- Linda Gombos
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), ZMBH-DKFZ Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Moreno D, Neller J, Kestler HA, Kraus J, Dünkler A, Johnsson N. A fluorescent reporter for mapping cellular protein-protein interactions in time and space. Mol Syst Biol 2013; 9:647. [PMID: 23511205 PMCID: PMC3619943 DOI: 10.1038/msb.2013.3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/28/2013] [Indexed: 11/24/2022] Open
Abstract
A method based on a combination of the Split-Ubiquitin system with two spectrally different fluorescent proteins (SPLIFF) is shown to enable measurement of protein interactions in vivo with high spatial and temporal resolution in yeast. ![]()
SPLIFF visualizes protein interactions with high spatial and temporal resolution. Spc72p and Kar9p interact with the MAP Stu2p at opposite poles of microtubules. Histone chaperone Nap1p and Kcc4 kinase interact preferentially at the bud site. F-BAR protein Hof1p associates with the polarisome during cell fusion and cytokinesis.
We introduce a fluorescent reporter for monitoring protein–protein interactions in living cells. The method is based on the Split-Ubiquitin method and uses the ratio of two auto-fluorescent reporter proteins as signal for interaction (SPLIFF). The mating of two haploid yeast cells initiates the analysis and the interactions are followed online by two-channel time-lapse microscopy of the diploid cells during their first cell cycle. Using this approach we could with high spatio-temporal resolution visualize the differences between the interactions of the microtubule binding protein Stu2p with two of its binding partners, monitor the transient association of a Ran-GTPase with its receptors at the nuclear pore, and distinguish between protein interactions at the polar cortical domain at different phases of polar growth. These examples further demonstrate that protein–protein interactions identified from large-scale screens can be effectively followed up by high-resolution single-cell analysis.
Collapse
Affiliation(s)
- Daniel Moreno
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | | | | | | | | | | |
Collapse
|
48
|
The growth speed of microtubules with XMAP215-coated beads coupled to their ends is increased by tensile force. Proc Natl Acad Sci U S A 2013; 110:14670-5. [PMID: 23964126 DOI: 10.1073/pnas.1218053110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The generation of pulling and pushing forces is one of the important functions of microtubules, which are dynamic and polarized structures. The ends of dynamic microtubules are able to form relatively stable links to cellular structures, so that when a microtubule grows it can exert a pushing force and when it shrinks it can exert a pulling force. Microtubule growth and shrinkage are tightly regulated by microtubule-associated proteins (MAPs) that bind to microtubule ends. Given their localization, MAPs may be exposed to compressive and tensile forces. The effect of such forces on MAP function, however, is poorly understood. Here we show that beads coated with the microtubule polymerizing protein XMAP215, the Xenopus homolog of Dis1 and chTOG, are able to link stably to the plus ends of microtubules, even when the ends are growing or shrinking; at growing ends, the beads increase the polymerization rate. Using optical tweezers, we found that tensile force further increased the microtubule polymerization rate. These results show that physical forces can regulate the activity of MAPs. Furthermore, our results show that XMAP215 can be used as a handle to sense and mechanically manipulate the dynamics of the microtubule tip.
Collapse
|
49
|
Kakui Y, Sato M, Okada N, Toda T, Yamamoto M. Microtubules and Alp7-Alp14 (TACC-TOG) reposition chromosomes before meiotic segregation. Nat Cell Biol 2013; 15:786-96. [PMID: 23770679 DOI: 10.1038/ncb2782] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 05/10/2013] [Indexed: 12/11/2022]
Abstract
Tethering kinetochores at spindle poles facilitates their efficient capture and segregation by microtubules at mitotic onset in yeast. During meiotic prophase of fission yeast, however, kinetochores are detached from the poles, which facilitates meiotic recombination but may cause a risk of chromosome mis-segregation during meiosis. How cells circumvent this dilemma remains unclear. Here we show that an extensive microtubule array assembles from the poles at meiosis I onset and retrieves scattered kinetochores towards the poles to prevent chromosome drift. Moreover, the microtubule-associated protein complex Alp7-Alp14 (the fission yeast orthologues of mammalian TACC-TOG) is phosphorylated by Polo kinase, which promotes its meiosis-specific association to the outer kinetochore complex Nuf2-Ndc80 of scattered kinetochores, thereby assisting in capturing remote kinetochores. Although TOG was recently characterized as a microtubule polymerase, Dis1 (the other TOG orthologue in fission yeast), together with the Dam1 complex, plays a role in microtubule shortening to pull kinetochores polewards. Thus, microtubules and their binding proteins uniquely reconstitute chromosome configuration during meiosis.
Collapse
Affiliation(s)
- Yasutaka Kakui
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
50
|
Tanaka K. Regulatory mechanisms of kinetochore-microtubule interaction in mitosis. Cell Mol Life Sci 2013; 70:559-79. [PMID: 22752158 PMCID: PMC11113415 DOI: 10.1007/s00018-012-1057-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 05/29/2012] [Accepted: 06/11/2012] [Indexed: 12/17/2022]
Abstract
Interaction of microtubules with kinetochores is fundamental to chromosome segregation. Kinetochores initially associate with lateral surfaces of microtubules and subsequently become attached to microtubule ends. During these interactions, kinetochores can move by sliding along microtubules or by moving together with depolymerizing microtubule ends. The interplay between kinetochores and microtubules leads to the establishment of bi-orientation, which is the attachment of sister kinetochores to microtubules from opposite spindle poles, and subsequent chromosome segregation. Molecular mechanisms underlying these processes have been intensively studied over the past 10 years. Emerging evidence suggests that the KNL1-Mis12-Ndc80 (KMN) network plays a central role in connecting kinetochores to microtubules, which is under fine regulation by a mitotic kinase, Aurora B. However, a growing number of additional molecules are being shown to be involved in the kinetochore-microtubule interaction. Here I overview the current range of regulatory mechanisms of the kinetochore-microtubule interaction, and discuss how these multiple molecules contribute cooperatively to allow faithful chromosome segregation.
Collapse
Affiliation(s)
- Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Miyagi, Japan.
| |
Collapse
|