1
|
Okun SA, Lu D, Sew K, Subramaniam A, Lockwood WW. MET Activation in Lung Cancer and Response to Targeted Therapies. Cancers (Basel) 2025; 17:281. [PMID: 39858062 PMCID: PMC11764361 DOI: 10.3390/cancers17020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The hepatocyte growth factor receptor (MET) is a receptor tyrosine kinase (RTK) that mediates the activity of a variety of downstream pathways upon its activation. These pathways regulate various physiological processes within the cell, including growth, survival, proliferation, and motility. Under normal physiological conditions, this allows MET to regulate various development and regenerative processes; however, mutations resulting in aberrant MET activity and the consequent dysregulation of downstream signaling can contribute to cellular pathophysiology. Mutations within MET have been identified in a variety of cancers and have been shown to mediate tumorigenesis by increasing RTK activity and downstream signaling. In lung cancer specifically, a number of patients have been identified as possessing MET alterations, commonly receptor amplification (METamp) or splice site mutations resulting in loss of exon 14 (METex14). Due to MET's role in mediating oncogenesis, it has become an attractive clinical target and has led to the development of various targeted therapies, including MET tyrosine kinase inhibitors (TKIs). Unfortunately, these TKIs have demonstrated limited clinical efficacy, as patients often present with either primary or acquired resistance to these therapies. Mechanisms of resistance vary but often occur through off-target or bypass mechanisms that render downstream signaling pathways insensitive to MET inhibition. This review provides an overview of the therapeutic landscape for MET-positive cancers and explores the various mechanisms that contribute to therapeutic resistance in these cases.
Collapse
Affiliation(s)
- Sarah Anna Okun
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.A.O.); (K.S.); (A.S.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Lu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Katherine Sew
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.A.O.); (K.S.); (A.S.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Asha Subramaniam
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.A.O.); (K.S.); (A.S.)
- Department of Pathology and Laboratory Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - William W. Lockwood
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.A.O.); (K.S.); (A.S.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology and Laboratory Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
2
|
Gallo S, Folco CB, Crepaldi T. The MET Oncogene: An Update on Targeting Strategies. Pharmaceuticals (Basel) 2024; 17:1473. [PMID: 39598385 PMCID: PMC11597589 DOI: 10.3390/ph17111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
The MET receptor, commonly known as HGF (hepatocyte growth factor) receptor, is a focus of extensive scientific research. MET has been linked to embryonic development, tissue regeneration following injury, tumorigenesis, and cancer metastasis. These functions underscore its involvement in numerous cellular processes, including stemness, proliferation, motility, cell dissociation, and survival. However, the enigmatic nature of MET becomes apparent in the context of cancer. When MET remains persistently activated, since its gene undergoes genetic alterations, it initiates a complex signaling cascade setting in motion an aggressive and metastatic program that is characteristic of malignant cells and is known as "invasive growth". The expanding knowledge of MET signaling has opened up numerous opportunities for therapeutic interventions, particularly in the realm of oncology. Targeting MET presents a promising strategy for developing novel anti-cancer treatments. In this review, we provide an updated overview of drugs designed to modulate MET signaling, highlighting MET kinase inhibitors, degraders, anti-MET/HGF monoclonal antibodies, and MET-targeted antibody-drug conjugates. Through this review, we aim to contribute to the ongoing advancement of therapeutic strategies targeting MET signaling.
Collapse
Affiliation(s)
- Simona Gallo
- Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy; (S.G.); (C.B.F.)
- Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy
| | - Consolata Beatrice Folco
- Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy; (S.G.); (C.B.F.)
- Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy
| | - Tiziana Crepaldi
- Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy; (S.G.); (C.B.F.)
- Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy
| |
Collapse
|
3
|
Garcia Delgado L, Derome A, Longpré S, Giroux-Dansereau M, Basbous G, Lavoie C, Saucier C, Denault JB. Spatiotemporal regulation of the hepatocyte growth factor receptor MET activity by sorting nexins 1/2 in HCT116 colorectal cancer cells. Biosci Rep 2024; 44:BSR20240182. [PMID: 38836326 PMCID: PMC11196213 DOI: 10.1042/bsr20240182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024] Open
Abstract
Cumulative research findings support the idea that endocytic trafficking is crucial in regulating receptor signaling and associated diseases. Specifically, strong evidence points to the involvement of sorting nexins (SNXs), particularly SNX1 and SNX2, in the signaling and trafficking of the receptor tyrosine kinase (RTK) MET in colorectal cancer (CRC). Activation of hepatocyte growth factor (HGF) receptor MET is a key driver of CRC progression. In the present study, we utilized human HCT116 CRC cells with SNX1 and SNX2 genes knocked out to demonstrate that their absence leads to a delay in MET entering early endosomes. This delay results in increased phosphorylation of both MET and AKT upon HGF stimulation, while ERK1/2 (extracellular signal-regulated kinases 1 and 2) phosphorylation remains unaffected. Despite these changes, HGF-induced cell proliferation, scattering, and migration remain similar between the parental and the SNX1/2 knockout cells. However, in the absence of SNX1 and SNX2, these cells exhibit increased resistance to TRAIL-induced apoptosis. This research underscores the intricate relationship between intracellular trafficking, receptor signaling, and cellular responses and demonstrates for the first time that the modulation of MET trafficking by SNX1 and SNX2 is critical for receptor signaling that may exacerbate the disease.
Collapse
Affiliation(s)
- Laiyen Garcia Delgado
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Amélie Derome
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Samantha Longpré
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
| | | | - Ghenwa Basbous
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences
| | - Christine Lavoie
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Centre de Recherche Clinique CHUS
| | - Caroline Saucier
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences
- Centre de Recherche Clinique CHUS
| | - Jean-Bernard Denault
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences
| |
Collapse
|
4
|
Fletcher KA, Alkurashi MH, Lindsay AJ. Endosomal recycling inhibitors downregulate estrogen receptor-alpha and synergise with endocrine therapies. Breast Cancer Res Treat 2024; 204:631-642. [PMID: 38228924 PMCID: PMC10959794 DOI: 10.1007/s10549-023-07225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE Breast cancer (BC) accounts for roughly 30% of new cancers diagnosed in women each year; thus, this cancer type represents a substantial burden for people and health care systems. Despite the existence of effective therapies to treat BC, drug resistance remains a problem and is a major cause of treatment failure. Therefore, new drugs and treatment regimens are urgently required to overcome resistance. Recent research indicates that inhibition of the endosomal recycling pathway, an intracellular membrane trafficking pathway that returns endocytosed proteins back to the plasma membrane, may be a promising strategy to downregulate clinically relevant cell surface proteins such as HER2 and HER3, and to overcome drug resistance. METHODS To investigate the molecular mechanism of action of an endosomal recycling inhibitor (ERI) called primaquine, we performed a reverse-phase protein array (RPPA) assay using a HER2-positive breast cancer cell line. The RPPA findings were confirmed by Western blot and RT-qPCR in several BC cell lines. Novel drug combinations were tested by MTT cell viability and clonogenic assays. RESULTS Among the signalling molecules downregulated by ERIs were estrogen receptor-alpha (ER-α) and androgen receptor. We confirmed this finding in other breast cancer cell lines and show that downregulation occurs at the transcriptional level. We also found that ERIs synergise with tamoxifen, a standard-of-care therapy for breast cancer. DISCUSSION Our data suggest that combining ERIs with hormone receptor antagonists may enhance their efficacy and reduce the emergence of drug resistance.
Collapse
Affiliation(s)
- Kelsey A Fletcher
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Mai H Alkurashi
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Andrew J Lindsay
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland.
| |
Collapse
|
5
|
Fletcher KA, Alkurashi MH, Lindsay AJ. Endosomal recycling inhibitors downregulate the androgen receptor and synergise with enzalutamide. Invest New Drugs 2024; 42:14-23. [PMID: 37957513 DOI: 10.1007/s10637-023-01407-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Prostate cancer is the second most frequent cancer diagnosed in men, and accounts for one-fifth of cancer associated deaths worldwide. Despite the availability of effective prostate cancer therapies, if it is not cured by radical local treatment, progression to drug resistant metastatic prostate cancer is inevitable. Therefore, new drugs and treatment regimens are urgently required to overcome resistance. We have recently published research demonstrating that targeting the endosomal recycling pathway, a membrane transport pathway that recycles internalised cell surface proteins back to the plasma membrane, may be a novel means to downregulate clinically relevant cell surface proteins and potentially overcome drug resistance. A reverse phase protein array (RPPA) assay of breast cancer cells treated with an endosomal recycling inhibitor identified the androgen receptor (AR) as one of the top downregulated proteins. We confirmed that endosomal recycling inhibitors also downregulated AR in prostate cancer cells and show that this occurs at the transcriptional level. We also found that endosomal recycling inhibitors synergise with enzalutamide, a standard-of-care therapy for prostate cancer. Our data suggest that combining recycling inhibitors with hormone receptor antagonists may enhance their efficacy and reduce the emergence of drug resistance.
Collapse
Affiliation(s)
- Kelsey A Fletcher
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Mai H Alkurashi
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Andrew J Lindsay
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland.
| |
Collapse
|
6
|
Sittewelle M, Royle SJ. Passive diffusion accounts for the majority of intracellular nanovesicle transport. Life Sci Alliance 2024; 7:e202302406. [PMID: 37857498 PMCID: PMC10587482 DOI: 10.26508/lsa.202302406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
During membrane trafficking, a vesicle formed at the donor compartment must travel to the acceptor membrane before fusing. For large carriers, it is established that this transport is motor-driven; however, the mode by which small vesicles, which outnumber larger carriers, are transported is poorly characterized. Here, we show that intracellular nanovesicles (INVs), a substantial class of small vesicles, are highly mobile within cells and that this mobility depends almost entirely on passive diffusion (0.1-0.3 μm2 s-1). Using single particle tracking, we describe how other small trafficking vesicles have a similar diffusive mode of transport that contrasts with the motor-dependent movement of larger endolysosomal carriers. We also demonstrate that a subset of INVs is involved in exocytosis and that delivery of cargo to the plasma membrane during exocytosis is decreased when diffusion of INVs is specifically restricted. Our results suggest that passive diffusion is sufficient to explain the majority of small vesicle transport.
Collapse
Affiliation(s)
- Méghane Sittewelle
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
7
|
Gimple RC, Zhang G, Wang S, Huang T, Lee J, Taori S, Lv D, Dixit D, Halbert ME, Morton AR, Kidwell RL, Dong Z, Prager BC, Kim LJ, Qiu Z, Zhao L, Xie Q, Wu Q, Agnihotri S, Rich JN. Sorting nexin 10 sustains PDGF receptor signaling in glioblastoma stem cells via endosomal protein sorting. JCI Insight 2023; 8:158077. [PMID: 36795488 PMCID: PMC10070110 DOI: 10.1172/jci.insight.158077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Glioblastoma is the most malignant primary brain tumor, the prognosis of which remains dismal even with aggressive surgical, medical, and radiation therapies. Glioblastoma stem cells (GSCs) promote therapeutic resistance and cellular heterogeneity due to their self-renewal properties and capacity for plasticity. To understand the molecular processes essential for maintaining GSCs, we performed an integrative analysis comparing active enhancer landscapes, transcriptional profiles, and functional genomics profiles of GSCs and non-neoplastic neural stem cells (NSCs). We identified sorting nexin 10 (SNX10), an endosomal protein sorting factor, as selectively expressed in GSCs compared with NSCs and essential for GSC survival. Targeting SNX10 impaired GSC viability and proliferation, induced apoptosis, and reduced self-renewal capacity. Mechanistically, GSCs utilized endosomal protein sorting to promote platelet-derived growth factor receptor β (PDGFRβ) proliferative and stem cell signaling pathways through posttranscriptional regulation of the PDGFR tyrosine kinase. Targeting SNX10 expression extended survival of orthotopic xenograft-bearing mice, and high SNX10 expression correlated with poor glioblastoma patient prognosis, suggesting its potential clinical importance. Thus, our study reveals an essential connection between endosomal protein sorting and oncogenic receptor tyrosine kinase signaling and suggests that targeting endosomal sorting may represent a promising therapeutic approach for glioblastoma treatment.
Collapse
Affiliation(s)
- Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Shuai Wang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Tengfei Huang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Jina Lee
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Suchet Taori
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Deguan Lv
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Deobrat Dixit
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Matthew E Halbert
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew R Morton
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Reilly L Kidwell
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Zhen Dong
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Leo Jy Kim
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Zhixin Qiu
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Qi Xie
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qiulian Wu
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Sameer Agnihotri
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurosciences, UCSD, La Jolla, California, USA
| |
Collapse
|
8
|
Pathmanathan S, Yao Z, Coelho P, Valla R, Drecun L, Benz C, Snider J, Saraon P, Grozavu I, Kotlyar M, Jurisica I, Park M, Stagljar I. B cell linker protein (BLNK) is a regulator of Met receptor signaling and trafficking in non-small cell lung cancer. iScience 2022; 25:105419. [DOI: 10.1016/j.isci.2022.105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/16/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
|
9
|
Francis CR, Kincross H, Kushner EJ. Rab35 governs apicobasal polarity through regulation of actin dynamics during sprouting angiogenesis. Nat Commun 2022; 13:5276. [PMID: 36075898 PMCID: PMC9458672 DOI: 10.1038/s41467-022-32853-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022] Open
Abstract
In early blood vessel development, trafficking programs, such as those using Rab GTPases, are tasked with delivering vesicular cargo with high spatiotemporal accuracy. However, the function of many Rab trafficking proteins remain ill-defined in endothelial tissue; therefore, their relevance to blood vessel development is unknown. Rab35 has been shown to play an enigmatic role in cellular behaviors which differs greatly between tissue-type and organism. Importantly, Rab35 has never been characterized for its potential contribution in sprouting angiogenesis; thus, our goal was to map Rab35’s primary function in angiogenesis. Our results demonstrate that Rab35 is critical for sprout formation; in its absence, apicobasal polarity is entirely lost in vitro and in vivo. To determine mechanism, we systematically explored established Rab35 effectors and show that none are operative in endothelial cells. However, we find that Rab35 partners with DENNd1c, an evolutionarily divergent guanine exchange factor, to localize to actin. Here, Rab35 regulates actin polymerization through limiting Rac1 and RhoA activity, which is required to set up proper apicobasal polarity during sprout formation. Our findings establish that Rab35 is a potent brake of actin remodeling during blood vessel development. The promiscuous GTPase Rab35 has been shown to be involved in many important cellular functions. In this article, Francis et al. illustrate how Rab35 acts as a critical brake to actin remodeling during sprouting angiogenesis and how it is necessary for proper blood vessel development.
Collapse
Affiliation(s)
- Caitlin R Francis
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Hayle Kincross
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, USA.
| |
Collapse
|
10
|
Endosomal LC3C-pathway selectively targets plasma membrane cargo for autophagic degradation. Nat Commun 2022; 13:3812. [PMID: 35780247 PMCID: PMC9250516 DOI: 10.1038/s41467-022-31465-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/17/2022] [Indexed: 12/30/2022] Open
Abstract
Autophagy selectively targets cargo for degradation, yet mechanistic understanding remains incomplete. The ATG8-family plays key roles in autophagic cargo recruitment. Here by mapping the proximal interactome of ATG8-paralogs, LC3B and LC3C, we uncover a LC3C-Endocytic-Associated-Pathway (LEAP) that selectively recruits plasma-membrane (PM) cargo to autophagosomes. We show that LC3C localizes to peripheral endosomes and engages proteins that traffic between PM, endosomes and autophagosomes, including the SNARE-VAMP3 and ATG9, a transmembrane protein essential for autophagy. We establish that endocytic LC3C binds cargo internalized from the PM, including the Met receptor tyrosine kinase and transferrin receptor, and is necessary for their recruitment into ATG9 vesicles targeted to sites of autophagosome initiation. Structure-function analysis identified that LC3C-endocytic localization and engagement with PM-cargo requires the extended carboxy-tail unique to LC3C, the TBK1 kinase, and TBK1-phosphosites on LC3C. These findings identify LEAP as an unexpected LC3C-dependent pathway, providing new understanding of selective coupling of PM signalling with autophagic degradation.
Collapse
|
11
|
The Rab11-regulated endocytic pathway and BDNF/TrkB signaling: Roles in plasticity changes and neurodegenerative diseases. Neurobiol Dis 2022; 171:105796. [PMID: 35728773 DOI: 10.1016/j.nbd.2022.105796] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023] Open
Abstract
Neurons are highly polarized cells that rely on the intracellular transport of organelles. This process is regulated by molecular motors such as dynein and kinesins and the Rab family of monomeric GTPases that together help move cargo along microtubules in dendrites, somas, and axons. Rab5-Rab11 GTPases regulate receptor trafficking along early-recycling endosomes, which is a process that determines the intracellular signaling output of different signaling pathways, including those triggered by BDNF binding to its tyrosine kinase receptor TrkB. BDNF is a well-recognized neurotrophic factor that regulates experience-dependent plasticity in different circuits in the brain. The internalization of the BDNF/TrkB complex results in signaling endosomes that allow local signaling in dendrites and presynaptic terminals, nuclear signaling in somas and dynein-mediated long-distance signaling from axons to cell bodies. In this review, we briefly discuss the organization of the endocytic pathway and how Rab11-recycling endosomes interact with other endomembrane systems. We further expand upon the roles of the Rab11-recycling pathway in neuronal plasticity. Then, we discuss the BDNF/TrkB signaling pathways and their functional relationships with the postendocytic trafficking of BDNF, including axonal transport, emphasizing the role of BDNF signaling endosomes, particularly Rab5-Rab11 endosomes, in neuronal plasticity. Finally, we discuss the evidence indicating that the dysfunction of the early-recycling pathway impairs BDNF signaling, contributing to several neurodegenerative diseases.
Collapse
|
12
|
Tagliatti E, Cortese K. Imaging Endocytosis Dynamics in Health and Disease. MEMBRANES 2022; 12:membranes12040393. [PMID: 35448364 PMCID: PMC9028293 DOI: 10.3390/membranes12040393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
Endocytosis is a critical process for cell growth and viability. It mediates nutrient uptake, guarantees plasma membrane homeostasis, and generates intracellular signaling cascades. Moreover, it plays an important role in dead cell clearance and defense against external microbes. Finally, endocytosis is an important cellular route for the delivery of nanomedicines for therapeutic treatments. Thus, it is not surprising that both environmental and genetic perturbation of endocytosis have been associated with several human conditions such as cancer, neurological disorders, and virus infections, among others. Over the last decades, a lot of research has been focused on developing advanced imaging methods to monitor endocytosis events with high resolution in living cells and tissues. These include fluorescence imaging, electron microscopy, and correlative and super-resolution microscopy. In this review, we outline the major endocytic pathways and briefly discuss how defects in the molecular machinery of these pathways lead to disease. We then discuss the current imaging methodologies used to study endocytosis in different contexts, highlighting strengths and weaknesses.
Collapse
Affiliation(s)
- Erica Tagliatti
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Milano, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1E 6BT, UK
- Correspondence: (E.T.); (K.C.)
| | - Katia Cortese
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine (DIMES), Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132 Genova, Italy
- Correspondence: (E.T.); (K.C.)
| |
Collapse
|
13
|
Lu D, Nagelberg A, Chow JLM, Chen YT, Michalchuk Q, Somwar R, Lockwood WW. MET Exon 14 Splice-Site Mutations Preferentially Activate KRAS Signaling to Drive Tumourigenesis. Cancers (Basel) 2022; 14:cancers14061378. [PMID: 35326531 PMCID: PMC8946549 DOI: 10.3390/cancers14061378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary MET exon 14 splice-site mutations occur in ~3–4% of lung adenocarcinoma cases, defining a cohort of patients which might benefit from anti-MET targeted therapy. Such therapies have yielded mixed results, however, pointing to the need for better treatment design. Our study sought to aid this by characterizing key changes in mutant MET signaling behaviour. We first compared the transcriptional profiles of lung tumours with either METΔex14 or wild-type MET-amplification. METΔex14-mutant tumours exhibited increased activation of the Ras-MAPK pathway, consistent with our observations in an isogenic model system. Furthermore, sustained activity of this pathway is necessary for proliferation and maintenance of METΔex14 tumours, while forced reactivation of this pathway is sufficient to restore growth in the absence of MET activity. Our findings suggest that the MAPK pathway represents a main effector of METΔex14-driven cancer, lending credence to the possibility of combined MET-MAPK inhibition to improve therapeutic outcomes. Abstract Targeted therapies for MET exon 14-skipping (METΔex14)-driven lung cancers have generated some promising results but response rates remain below that seen for other kinase-driven cancers. One strategy for improving treatment outcomes is to employ rational combination therapies to enhance the suppression of tumour growth and delay or prevent the emergence of resistance. To this end, we profiled the transcriptomes of MET-addicted lung tumours and cell lines and identified the RAS-mitogen-activated protein kinase (MAPK) pathway as a critical effector required for METΔex14-dependent growth. Ectopic expression of MET in an isogenic cell line model showed that overexpression of the mutant MET receptor led to higher levels of MAPK phosphorylation and nuclear import, resulting in increased expression and phosphorylation of nuclear MAPK targets. In comparison, other known MET effectors were unaffected. Inhibition of this pathway by KRAS knockdown in MET-addicted cells in vitro led to decreased viability in only the METΔex14-mutant cells. Conversely, decoupling RAS-MAPK axis, but not other effector pathways, from MET activity via the introduction of constitutively active mutants conferred resistance to MET inhibitors in vitro. Our results suggest that aberrant hyperactivity of the MET receptor caused by the exon 14-skipping mutation does not uniformly upregulate all known downstream effectors, rather gaining a predilection for aberrantly activating and subsequently relying on the RAS-MAPK pathway. These findings provide a rationale for the co-targeting of the RAS-MAPK pathway alongside MET to prolong therapeutic response and circumvent resistance to improve patient survival.
Collapse
Affiliation(s)
- Daniel Lu
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (D.L.); (A.N.); (J.L.C.); (Y.T.C.); (Q.M.)
- Department of Interdisciplinary Oncology, University of British Columbia, Vancouver, BC V5Z 1L3, Canada
| | - Amy Nagelberg
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (D.L.); (A.N.); (J.L.C.); (Y.T.C.); (Q.M.)
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Justine LM Chow
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (D.L.); (A.N.); (J.L.C.); (Y.T.C.); (Q.M.)
| | - Yankuan T Chen
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (D.L.); (A.N.); (J.L.C.); (Y.T.C.); (Q.M.)
- Department of Interdisciplinary Oncology, University of British Columbia, Vancouver, BC V5Z 1L3, Canada
| | - Quentin Michalchuk
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (D.L.); (A.N.); (J.L.C.); (Y.T.C.); (Q.M.)
| | - Romel Somwar
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - William W. Lockwood
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (D.L.); (A.N.); (J.L.C.); (Y.T.C.); (Q.M.)
- Department of Interdisciplinary Oncology, University of British Columbia, Vancouver, BC V5Z 1L3, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
- Correspondence:
| |
Collapse
|
14
|
Mishra A, Hourigan D, Lindsay AJ. Inhibition of the endosomal recycling pathway downregulates HER2 activation and overcomes resistance to tyrosine kinase inhibitors in HER2-positive breast cancer. Cancer Lett 2022; 529:153-167. [PMID: 35007696 DOI: 10.1016/j.canlet.2022.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
The development of HER2-targeted therapies has led to a dramatic improvement in outcomes for breast cancer patients. However, nearly all patients with metastatic HER2-positive breast cancer will eventually progress on these therapies due to innate or acquired resistance. Recent evidence suggests that the endosomal recycling of HER2 plays an important role in regulating its oncogenic signalling. Here we report that the expression of Rab coupling protein (RCP), a key regulator of endosomal recycling, positively correlates with that of HER2 and HER3 in breast tumours, and high RCP expression is predictive of poor relapse-free and overall survival in patients with HER2-amplified breast cancer. Chemical and genetic inhibition of endosomal recycling leads to a reduction in the total cellular levels of HER2 and HER3 and inhibits the activation of their downstream signalling pathways. We find that HER2 and HER3 that have been internalised from the plasma membrane are diverted to lysosomes for degradation when endosomal recycling is blocked. Primaquine (PQ), a small molecule inhibitor of the endosomal recycling pathway, synergises with HER2-targeting tyrosine kinase inhibitors and overcomes innate and acquired resistance to these TKIs. Moreover, TKI-induced drug tolerant persister cells are vulnerable to endosomal recycling inhibitors. These findings suggest that inhibition of endosomal recycling represents a promising therapeutic strategy for treating drug resistant HER2-positive breast cancer.
Collapse
Affiliation(s)
- Anurag Mishra
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - David Hourigan
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Andrew J Lindsay
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland.
| |
Collapse
|
15
|
Stanislovas J, Kermorgant S. c-Met-integrin cooperation: Mechanisms, tumorigenic effects, and therapeutic relevance. Front Cell Dev Biol 2022; 10:994528. [PMID: 36330337 PMCID: PMC9624249 DOI: 10.3389/fcell.2022.994528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
c-Met is a receptor tyrosine kinase which upon activation by its ligand, the hepatocyte growth factor, mediates many important signalling pathways that regulate cellular functions such as survival, proliferation, and migration. Its oncogenic and tumorigenic signalling mechanisms, greatly contributing to cancer development and progression, are well documented. Integrins, heterogeneous adhesion receptors which facilitate cell-extracellular matrix interactions, are important in biomechanically sensitive cell adhesion and motility but also modulate diverse cell behaviour. Here we review the studies which reported cooperation between c-Met and several integrins, particularly β1 and β4, in various cell models including many tumour cell types. From the various experimental models and results analysed, we propose that c-Met-integrin cooperation occurs via inside-out or outside-in signalling. Thus, either c-Met activation triggers integrin activation and cell adhesion or integrin adhesion to its extracellular ligand triggers c-Met activation. These two modes of cooperation require the adhesive function of integrins and mostly lead to cell migration and invasion. In a third, less conventional, mode of cooperation, the integrin plays the role of a signalling adaptor for c-Met, independently from its adhesive property, leading to anchorage independent survival. Recent studies have revealed the influence of endocytic trafficking in c-Met-integrin cooperation including the adaptor function of integrin occurring on endomembranes, triggering an inside-in signalling, believed to promote survival of metastatic cells. We present the evidence of the cooperation in vivo and in human tissues and highlight its therapeutic relevance. A better understanding of the mechanisms regulating c-Met-integrin cooperation in cancer progression could lead to the design of new therapies targeting this cooperation, providing more effective therapeutic approaches than c-Met or integrin inhibitors as monotherapies used in the clinic.
Collapse
Affiliation(s)
- Justas Stanislovas
- Spatial Signalling Group, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Stéphanie Kermorgant
- Spatial Signalling Group, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
16
|
Nacke M, Sandilands E, Nikolatou K, Román-Fernández Á, Mason S, Patel R, Lilla S, Yelland T, Galbraith LCA, Freckmann EC, McGarry L, Morton JP, Shanks E, Leung HY, Markert E, Ismail S, Zanivan S, Blyth K, Bryant DM. An ARF GTPase module promoting invasion and metastasis through regulating phosphoinositide metabolism. Nat Commun 2021; 12:1623. [PMID: 33712589 PMCID: PMC7955138 DOI: 10.1038/s41467-021-21847-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
The signalling pathways underpinning cell growth and invasion use overlapping components, yet how mutually exclusive cellular responses occur is unclear. Here, we report development of 3-Dimensional culture analyses to separately quantify growth and invasion. We identify that alternate variants of IQSEC1, an ARF GTPase Exchange Factor, act as switches to promote invasion over growth by controlling phosphoinositide metabolism. All IQSEC1 variants activate ARF5- and ARF6-dependent PIP5-kinase to promote PI(3,4,5)P3-AKT signalling and growth. In contrast, select pro-invasive IQSEC1 variants promote PI(3,4,5)P3 production to form invasion-driving protrusions. Inhibition of IQSEC1 attenuates invasion in vitro and metastasis in vivo. Induction of pro-invasive IQSEC1 variants and elevated IQSEC1 expression occurs in a number of tumour types and is associated with higher-grade metastatic cancer, activation of PI(3,4,5)P3 signalling, and predicts long-term poor outcome across multiple cancers. IQSEC1-regulated phosphoinositide metabolism therefore is a switch to induce invasion over growth in response to the same external signal. Targeting IQSEC1 as the central regulator of this switch may represent a therapeutic vulnerability to stop metastasis.
Collapse
Affiliation(s)
- Marisa Nacke
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Emma Sandilands
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Konstantina Nikolatou
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Álvaro Román-Fernández
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | | | | | | | | | | | - Eva C Freckmann
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | | | - Jennifer P Morton
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | | | - Hing Y Leung
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | | | - Shehab Ismail
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
- Department of Chemistry, KU Leuven, Celestijnenlaan, Belgium
| | - Sara Zanivan
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Karen Blyth
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - David M Bryant
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- The CRUK Beatson Institute, Glasgow, UK.
| |
Collapse
|
17
|
von Zastrow M, Sorkin A. Mechanisms for Regulating and Organizing Receptor Signaling by Endocytosis. Annu Rev Biochem 2021; 90:709-737. [PMID: 33606955 DOI: 10.1146/annurev-biochem-081820-092427] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intricate relationships between endocytosis and cellular signaling, first recognized nearly 40 years ago through the study of tyrosine kinase growth factor receptors, are now known to exist for multiple receptor classes and to affect myriad physiological and developmental processes. This review summarizes our present understanding of how endocytosis orchestrates cellular signaling networks, with an emphasis on mechanistic underpinnings and focusing on two receptor classes-tyrosine kinase and G protein-coupled receptors-that have been investigated in particular detail. Together, these examples provide a useful survey of the current consensus, uncertainties, and controversies in this rapidly advancing area of cell biology.
Collapse
Affiliation(s)
- Mark von Zastrow
- Department of Psychiatry, University of California, San Francisco, California 94143, USA;
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
| |
Collapse
|
18
|
Al-Akhrass H, Conway JRW, Poulsen ASA, Paatero I, Kaivola J, Padzik A, Andersen OM, Ivaska J. A feed-forward loop between SorLA and HER3 determines heregulin response and neratinib resistance. Oncogene 2021; 40:1300-1317. [PMID: 33420373 PMCID: PMC7892347 DOI: 10.1038/s41388-020-01604-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023]
Abstract
Current evidence indicates that resistance to the tyrosine kinase-type cell surface receptor (HER2)-targeted therapies is frequently associated with HER3 and active signaling via HER2-HER3 dimers, particularly in the context of breast cancer. Thus, understanding the response to HER2-HER3 signaling and the regulation of the dimer is essential to decipher therapy relapse mechanisms. Here, we investigate a bidirectional relationship between HER2-HER3 signaling and a type-1 transmembrane sorting receptor, sortilin-related receptor (SorLA; SORL1). We demonstrate that heregulin-mediated signaling supports SorLA transcription downstream of the mitogen-activated protein kinase pathway. In addition, we demonstrate that SorLA interacts directly with HER3, forming a trimeric complex with HER2 and HER3 to attenuate lysosomal degradation of the dimer in a Ras-related protein Rab4-dependent manner. In line with a role for SorLA in supporting the stability of the HER2 and HER3 receptors, loss of SorLA compromised heregulin-induced cell proliferation and sensitized metastatic anti-HER2 therapy-resistant breast cancer cells to neratinib in cancer spheroids in vitro and in vivo in a zebrafish brain xenograft model.
Collapse
Affiliation(s)
- Hussein Al-Akhrass
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.
| | - James R W Conway
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Annemarie Svane Aavild Poulsen
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of biomedicine, Aarhus University, Aarhus, Denmark
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Artur Padzik
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Olav M Andersen
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of biomedicine, Aarhus University, Aarhus, Denmark
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.
| |
Collapse
|
19
|
Wang X, Chen Y, Zhu J, Yang Z, Gong X, Hui R, Huang G, Jin J. A comprehensive screening method for investigating the potential binding targets of doxorubicin based on protein microarray. Eur J Pharmacol 2021; 896:173896. [PMID: 33508279 DOI: 10.1016/j.ejphar.2021.173896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 11/28/2022]
Abstract
With the development of precision therapy, pharmacological research pays more and more attention to seek and confirm the target of drugs in order to understand the mechanism of drug action and reduce side effects. Screening candidate proteins can be effectively used to predict potential drug targets and toxicity. Therefore, a high-throughput drug-binding protein screening method based on protein microarray which contains over 21,000 human proteins was introduced in this investigation. Doxorubicin, a classical chemotherapeutic agent widely used in clinical treatment, was taken as a drug example in our protein screening study. Through microarray and bioinformatics analysis, more potential targets were found with different binding affinity to doxorubicin, and HRAS stands out as a critical protein from candidate proteins. In addition, the results revealed that the formation of the HRAS-RAF complex is promoted by doxorubicin. It is our expectation that the outcomes could benefit to understand the various effect of the doxorubicin and push the protein microarray screening to apply in the comprehensive pharmacological and toxicological investigation of other drugs.
Collapse
Affiliation(s)
- Xu Wang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China.
| | - Yun Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China.
| | - Jingyu Zhu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China.
| | - Zhaoqi Yang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China.
| | - Xiaohai Gong
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China.
| | - Renjie Hui
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Jian Jin
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
20
|
Duhamel S, Zaoui K. Real-time Three-dimensional Tracking of Endocytic Vesicles. Bio Protoc 2020; 10:e3794. [PMID: 33659448 DOI: 10.21769/bioprotoc.3794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/16/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
Endocytic trafficking and recycling are fundamental cellular processes that control essential functions such as signaling protein complexes transport and membrane identity. The small GTPase Rabs are indispensable component of the endosomal recycling machinery. The Rabs bind to effectors to mediate their functions, such as protein sorting and degradation, membrane tethering or lipid modification, and organelle motility. Due to the complex and dynamic nature of endosomal compartments and tracking route, detailed multiparametric analyses of three-dimensional data by quantitative methods are challenging. Here, we describe a detailed time-lapse imaging protocol designed for the quantitative tracking of single endosomal vesicles, using GFP-Rab4-positive recycling endosomes. This method permits automated tracking of single endocytic vesicles in three-dimensional live cell imaging, allowing the study of multiple parameters such as abundance, speed, directionality, and subcellular localization, as well as protein colocalization. This protocol can be broadly used in any kind of cellular models, under various contexts, including growth factors stimulation, gene knockdowns, drug treatments, and is suitable for high throughput screens.
Collapse
Affiliation(s)
- Stephanie Duhamel
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Kossay Zaoui
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Ibuchi K, Fukaya M, Shinohara T, Hara Y, Shiroshima T, Sugawara T, Sakagami H. The Vps52 subunit of the GARP and EARP complexes is a novel Arf6-interacting protein that negatively regulates neurite outgrowth of hippocampal neurons. Brain Res 2020; 1745:146905. [PMID: 32473257 DOI: 10.1016/j.brainres.2020.146905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 01/05/2023]
Abstract
ADP ribosylation factor 6 (Arf6) is a small GTP-binding protein implicated in neuronal morphogenesis through endosomal trafficking and actin remodeling. In this study, we identified Vps52, a core subunit of the Golgi-associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes, as a novel Arf6-binding protein by yeast two-hybrid screening. Vps52 interacted specifically with GTP-bound Arf6 among the Arf family. Immunohistochemical analyses of hippocampal pyramidal cells revealed that fine punctate immunolabeling for Vps52 was distributed throughout neuronal compartments, most densely in the cell body and dendritic shafts, and was largely associated with trans-Golgi network and vesicular endomembranes. In cultured hippocampal neurons, knockdown of Vps52 increased total length of axons and dendrites; these phenotypes were completely restored by co-expression of shRNA-resistant full-length Vps52. However, co-expression of a Vps52 mutant lacking the ability to interact with Arf6 restored only the Vps52-knockdown phenotype of the dendritic length. The present findings suggest that Vps52 is a novel Arf6-interacting protein that regulates neurite outgrowth in hippocampal neurons.
Collapse
Affiliation(s)
- Kanta Ibuchi
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Tetsuro Shinohara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Tomoko Shiroshima
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan.
| |
Collapse
|
22
|
Zaoui K, Smith HW, Park M, Duhamel S. ARF6 controls RHOB targeting to endosomes regulating cancer cell invasion. Mol Cell Oncol 2020; 7:1766932. [PMID: 32944628 DOI: 10.1080/23723556.2020.1766932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endocytic trafficking has emerged as an essential mechanism to spatiotemporally coordinate signaling protein complexes that control cytoskeletal dynamics and cell motility. Our study established an unexpected regulatory mechanism whereby ADP ribosylation factors 6 (ARF6) controls the stability and endosomal localization of RAS homologous protein B (RHOB) to regulate cell invasion downstream of the oncogenic receptor tyrosine kinase, MET.
Collapse
Affiliation(s)
- Kossay Zaoui
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec Canada.,Department of Biochemistry, McGill University, Montreal, Quebec Canada
| | - Harvey Wilmore Smith
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec Canada.,Department of Biochemistry, McGill University, Montreal, Quebec Canada.,Departments of Oncology, McGill University, Montreal, Quebec, Canada.,Medicine, McGill University, Montreal, Quebec Canada
| | - Stéphanie Duhamel
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec Canada
| |
Collapse
|
23
|
LC3C-Mediated Autophagy Selectively Regulates the Met RTK and HGF-Stimulated Migration and Invasion. Cell Rep 2020; 29:4053-4068.e6. [PMID: 31851933 DOI: 10.1016/j.celrep.2019.11.063] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/18/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
The Met/hepatocyte growth factor (HGF) receptor tyrosine kinase (RTK) is deregulated in many cancers and is a recognized target for cancer therapies. Following HGF stimulation, the signaling output of Met is tightly controlled by receptor internalization and sorting for degradation or recycling. Here, we uncover a role for autophagy in selective degradation of Met and regulation of Met-dependent cell migration and invasion. Met engagement with the autophagic pathway is dependent on complex formation with the mammalian ATG8 family member MAP1LC3C. LC3C deletion abrogates Met entry into the autophagy-dependent degradative pathway, allowing identification of LC3C domains required for rescue. Cancer cells with low LC3C levels show enhanced Met stability, signaling, and cell invasion. These findings provide mechanistic insight into RTK recruitment to autophagosomes and establish distinct roles for ATG8 proteins in this process, supporting that differential expression of ATG8 proteins can shape the functional consequences of autophagy in cancer development and progression.
Collapse
|
24
|
RET isoforms contribute differentially to invasive processes in pancreatic ductal adenocarcinoma. Oncogene 2020; 39:6493-6510. [PMID: 32884116 DOI: 10.1038/s41388-020-01448-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a therapeutically challenging disease with poor survival rates, owing to late diagnosis and early dissemination. These tumors frequently undergo perineural invasion, spreading along nerves regionally and to distant sites. The RET receptor tyrosine kinase is implicated in increased aggressiveness, local invasion, and metastasis in multiple cancers, including PDAC. RET mediates directional motility and invasion towards sources of its neurotrophic factor ligands, suggesting that it may enhance perineural invasion of tumor cells towards nerves. RET is expressed as two main isoforms, RET9 and RET51, which differ in their protein interactions and oncogenic potentials, however, the contributions of RET isoforms to neural invasion have not been investigated. In this study, we generated total RET and isoform-specific knockdown PDAC cell lines and assessed the contributions of RET isoforms to PDAC invasive spread. Our data show that RET activity induces cell polarization and actin remodeling through activation of CDC42 and RHOA GTPases to promote directional motility in PDAC cells. Further, we show that RET interacts with the adaptor protein TKS5 to induce invadopodia formation, enhance matrix degradation and promote tumor cell invasion through a SRC and GRB2-dependent mechanism. Finally, we show that RET51 is the predominant isoform contributing to these RET-mediated invasive processes in PDAC. Together, our work suggests that RET expression in pancreatic cancers may enhance tumor aggressiveness by promoting perineural invasion, and that RET expression may be a valuable marker of invasiveness, and a potential therapeutic target in the treatment of these cancers.
Collapse
|
25
|
GGA3 interacts with L-type prostaglandin D synthase and regulates the recycling and signaling of the DP1 receptor for prostaglandin D2 in a Rab4-dependent mechanism. Cell Signal 2020; 72:109641. [DOI: 10.1016/j.cellsig.2020.109641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022]
|
26
|
The c-MET oncoprotein: Function, mechanisms of degradation and its targeting by novel anti-cancer agents. Biochim Biophys Acta Gen Subj 2020; 1864:129650. [PMID: 32522525 DOI: 10.1016/j.bbagen.2020.129650] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The c-MET oncoprotein drives cancer progression in a variety of tumors through its signaling transduction pathways. This oncoprotein is also degraded by multiple mechanisms involving the lysosome, proteasome and cleavage by proteases. Targeting c-MET degradation pathways may result in effective therapeutic strategies. SCOPE OF REVIEW Since the discovery of oncogenic functions of c-MET, there has been a great deal of effort to develop anti-cancer drugs targeting this oncoprotein. Unexpectedly, novel di-2-pyridylketone thiosemicarbazones that demonstrate marked anti-tumor activity, down-regulate c-MET through their ability to bind intracellular iron and via mechanisms including, down-regulation of MET mRNA, enhanced lysosomal processing and increased metalloprotease-mediated cleavage. MAJOR CONCLUSIONS The c-MET oncoprotein regulation and degradation pathways are complex. However, with increasing understanding of its degradation mechanisms, there is also greater opportunities to therapeutically target these pathways. GENERAL SIGNIFICANCE Understanding the mechanisms of degradation of c-MET protein and its regulation could lead to novel therapeutics.
Collapse
|
27
|
Ovarian BDNF promotes survival, migration, and attachment of tumor precursors originated from p53 mutant fallopian tube epithelial cells. Oncogenesis 2020; 9:55. [PMID: 32471985 PMCID: PMC7260207 DOI: 10.1038/s41389-020-0243-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecological malignancy. New evidence supports a hypothesis that HGSOC can originate from fallopian tube epithelium (FTE). It is unclear how genetic alterations and pathophysiological processes drive the progression of FTE tumor precursors into widespread HGSOCs. In this study, we uncovered that brain-derived neurotrophic factor (BDNF) in the follicular fluid stimulates the tropomyosin receptor kinase B (TrkB)-expressing FTE cells to promote their survival, migration, and attachment. Using in vitro and in vivo models, we further identified that the acquisition of common TP53 gain-of-function (GOF) mutations in FTE cells led to enhanced BDNF/TrkB signaling compared to that of FTE cells with TP53 loss-of-function (LOF) mutations. Different mutant p53 proteins can either increase TrkB transcription or enhance TrkB endocytic recycling. Our findings have demonstrated possible interplays between genetic alterations in FTE tumor precursors (i.e., p53 GOF mutations) and pathophysiological processes (i.e., the release of follicular fluid upon ovulation) during the initiation of HGSOC from the fallopian tube. Our data revealed molecular events underlying the link between HGSOC tumorigenesis and ovulation, a physiological process that has been associated with risk factors of HGSOC.
Collapse
|
28
|
Kosciuk T, Price IR, Zhang X, Zhu C, Johnson KN, Zhang S, Halaby SL, Komaniecki GP, Yang M, DeHart CJ, Thomas PM, Kelleher NL, Fromme JC, Lin H. NMT1 and NMT2 are lysine myristoyltransferases regulating the ARF6 GTPase cycle. Nat Commun 2020; 11:1067. [PMID: 32103017 PMCID: PMC7044312 DOI: 10.1038/s41467-020-14893-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
Lysine fatty acylation in mammalian cells was discovered nearly three decades ago, yet the enzymes catalyzing it remain unknown. Unexpectedly, we find that human N-terminal glycine myristoyltransferases (NMT) 1 and 2 can efficiently myristoylate specific lysine residues. They modify ADP-ribosylation factor 6 (ARF6) on lysine 3 allowing it to remain on membranes during the GTPase cycle. We demonstrate that the NAD+-dependent deacylase SIRT2 removes the myristoyl group, and our evidence suggests that NMT prefers the GTP-bound while SIRT2 prefers the GDP-bound ARF6. This allows the lysine myrisotylation-demyristoylation cycle to couple to and promote the GTPase cycle of ARF6. Our study provides an explanation for the puzzling dissimilarity of ARF6 to other ARFs and suggests the existence of other substrates regulated by this previously unknown function of NMT. Furthermore, we identified a NMT/SIRT2-ARF6 regulatory axis, which may offer new ways to treat human diseases.
Collapse
Affiliation(s)
- Tatsiana Kosciuk
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ian R Price
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaoyu Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Chengliang Zhu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Kayla N Johnson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Shuai Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Steve L Halaby
- Department of Molecular Biology and Genetics; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Garrison P Komaniecki
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Min Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Caroline J DeHart
- National Resource for Translational and Developmental Proteomics, Departments of Chemistry and Molecular Biosciences and the Feinberg School of Medicine, Northwestern University, Evanston, IL, 60208, USA
| | - Paul M Thomas
- National Resource for Translational and Developmental Proteomics, Departments of Chemistry and Molecular Biosciences and the Feinberg School of Medicine, Northwestern University, Evanston, IL, 60208, USA
| | - Neil L Kelleher
- National Resource for Translational and Developmental Proteomics, Departments of Chemistry and Molecular Biosciences and the Feinberg School of Medicine, Northwestern University, Evanston, IL, 60208, USA
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
29
|
DaSilva JO, Yang K, Perez Bay AE, Andreev J, Ngoi P, Pyles E, Franklin MC, Dudgeon D, Rafique A, Dore A, Delfino FJ, Potocky TB, Babb R, Chen G, MacDonald D, Olson WC, Thurston G, Daly C. A Biparatopic Antibody That Modulates MET Trafficking Exhibits Enhanced Efficacy Compared with Parental Antibodies in MET-Driven Tumor Models. Clin Cancer Res 2019; 26:1408-1419. [PMID: 31848185 DOI: 10.1158/1078-0432.ccr-19-2428] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/01/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Recent clinical data demonstrate that tumors harboring MET genetic alterations (exon 14 skip mutations and/or gene amplification) respond to small-molecule tyrosine kinase inhibitors, validating MET as a therapeutic target. Although antibody-mediated blockade of the MET pathway has not been successful in the clinic, the failures are likely the result of inadequate patient selection strategies as well as suboptimal antibody design. Thus, our goal was to generate a novel MET blocking antibody with enhanced efficacy. EXPERIMENTAL DESIGN Here, we describe the activity of a biparatopic MET×MET antibody that recognizes two distinct epitopes in the MET Sema domain. We use a combination of in vitro assays and tumor models to characterize the effect of our antibody on MET signaling, MET intracellular trafficking, and the growth of MET-dependent cells/tumors. RESULTS In MET-driven tumor models, our biparatopic antibody exhibits significantly better activity than either of the parental antibodies or the mixture of the two parental antibodies and outperforms several clinical-stage MET antibodies. Mechanistically, the biparatopic antibody inhibits MET recycling, thereby promoting lysosomal trafficking and degradation of MET. In contrast to the parental antibodies, the biparatopic antibody fails to activate MET-dependent biological responses, consistent with the observation that it recycles inefficiently and induces very transient downstream signaling. CONCLUSIONS Our results provide strong support for the notion that biparatopic antibodies are a promising therapeutic modality, potentially having greater efficacy than that predicted from the properties of the parental antibodies.
Collapse
Affiliation(s)
| | - Katie Yang
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | - Peter Ngoi
- UC Santa Cruz, Program for Biomedical Sciences and Engineering, Santa Cruz, California
| | - Erica Pyles
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Drew Dudgeon
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Anthony Dore
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | - Robert Babb
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Gang Chen
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | | | | |
Collapse
|
30
|
Chen JJ, Sun X, Mao QQ, Jiang XY, Zhao XG, Xu WJ, Zhong L. Increased expression of hematological and neurological expressed 1 (HN1) is associated with a poor prognosis of hepatocellular carcinoma and its knockdown inhibits cell growth and migration partly by down-regulation of c-Met. Kaohsiung J Med Sci 2019; 36:196-205. [PMID: 31749294 DOI: 10.1002/kjm2.12156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
Hematologic and neurological expression 1 (HN1) has been reported to involved in certain cancers, but its role in hepatocellular carcinoma (HCC) is largely unknown. The contribution of HN1 to HCC progression was investigated in the present study. We found that HN1 was significantly up-regulated in HCC tissues, compared with normal tissues, by analyzing the Oncomine and Human Protein Atlas database; and found that high expression of HN1 was markedly associated with worse overall survival, relapse-free survival, progression- free survival and disease-specific survival in HCC patients via exploring the Kaplan-Meier plotter database. Functional assays revealed that HN1 knockdown by siRNA induced G1 cell cycle arrest, and inhibited the growth and migration of HCC cells; accordingly, HN1 over-expression promoted HCC cells proliferation and migration. Further studies indicated that HN1 knockdown reduced the expression of cyclin D1 and CDK4, while upregulated the cell cycle inhibitor p21WAF1/Cip1. Moreover, HN1 knockdown decreased c-Met (receptor tyrosine kinase of hepatocyte growth factor) expression, and suppressed ERK activation, which is a common downstream signaling pathway triggered by c-Met; consistently, HN1 over-expression reversed these effects. Meanwhile, down-regulation of c-Met partly eliminated the effect of HN1 over-expression in HCC cells. Thus, the present findings suggested that HN1 promotes the progression of HCC to some extent by up-regulating the expression of c-Met, and may act as a potential biomarker and therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Jia-Jie Chen
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xu Sun
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Qi-Qi Mao
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xiao-Yun Jiang
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xian-Guang Zhao
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Wei-Jia Xu
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Liang Zhong
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Uemura T, Waguri S. Emerging roles of Golgi/endosome-localizing monomeric clathrin adaptors GGAs. Anat Sci Int 2019; 95:12-21. [DOI: 10.1007/s12565-019-00505-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/10/2019] [Indexed: 01/13/2023]
|
32
|
Crupi MJF, Maritan SM, Reyes-Alvarez E, Lian EY, Hyndman BD, Rekab AN, Moodley S, Antonescu CN, Mulligan LM. GGA3-mediated recycling of the RET receptor tyrosine kinase contributes to cell migration and invasion. Oncogene 2019; 39:1361-1377. [DOI: 10.1038/s41388-019-1068-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022]
|
33
|
Zaoui K, Rajadurai CV, Duhamel S, Park M. Arf6 regulates RhoB subcellular localization to control cancer cell invasion. J Cell Biol 2019; 218:3812-3826. [PMID: 31591185 PMCID: PMC6829653 DOI: 10.1083/jcb.201806111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/21/2018] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
The ADP-ribosylation factor 6 (Arf6) is a small GTPase that regulates endocytic recycling processes in concert with various effectors. Arf6 controls cytoskeletal organization and membrane trafficking; however, the detailed mechanisms of regulation remain poorly understood. Here, we report that Arf6 forms a complex with RhoB. The interaction between RhoB and Arf6 is mediated by the GCI (glycine, cysteine, and isoleucine) residues (188-190) of RhoB. Specific targeting of Arf6 to plasma membrane or mitochondrial membranes promotes recruitment and colocalization of RhoB to these membrane microdomains. Arf6 depletion promotes the loss of RhoB from endosomal membranes and leads to RhoB degradation through an endolysosomal pathway. This results in defective actin and focal adhesion dynamics and increased 3D cell migration upon activation of the Met receptor tyrosine kinase. Our findings identify a novel regulatory mechanism for RhoB localization and stability by Arf6 and establish the strict requirement of Arf6 for RhoB-specific subcellular targeting to endosomes and biological functions.
Collapse
Affiliation(s)
- Kossay Zaoui
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Charles V Rajadurai
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Stéphanie Duhamel
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada .,Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Yasukochi Y, Sakuma J, Takeuchi I, Kato K, Oguri M, Fujimaki T, Horibe H, Yamada Y. Evolutionary history of disease-susceptibility loci identified in longitudinal exome-wide association studies. Mol Genet Genomic Med 2019; 7:e925. [PMID: 31402603 PMCID: PMC6732299 DOI: 10.1002/mgg3.925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/12/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
Background Our longitudinal exome‐wide association studies previously detected various genetic determinants of complex disorders using ~26,000 single‐nucleotide polymorphisms (SNPs) that passed quality control and longitudinal medical examination data (mean follow‐up period, 5 years) in 4884–6022 Japanese subjects. We found that allele frequencies of several identified SNPs were remarkably different among four ethnic groups. Elucidating the evolutionary history of disease‐susceptibility loci may help us uncover the pathogenesis of the related complex disorders. Methods In the present study, we conducted evolutionary analyses such as extended haplotype homozygosity, focusing on genomic regions containing disease‐susceptibility loci and based on genotyping data of our previous studies and datasets from the 1000 Genomes Project. Results Our evolutionary analyses suggest that derived alleles of rs78338345 of GGA3, rs7656604 at 4q13.3, rs34902660 of SLC17A3, and six SNPs closely located at 12q24.1 associated with type 2 diabetes mellitus, obesity, dyslipidemia, and three complex disorders (hypertension, hyperuricemia, and dyslipidemia), respectively, rapidly expanded after the human dispersion from Africa (Out‐of‐Africa). Allele frequencies of GGA3 and six SNPs at 12q24.1 appeared to have remarkably changed in East Asians, whereas the derived alleles of rs34902660 of SLC17A3 and rs7656604 at 4q13.3 might have spread across Japanese and non‐Africans, respectively, although we cannot completely exclude the possibility that allele frequencies of disease‐associated loci may be affected by demographic events. Conclusion Our findings indicate that derived allele frequencies of nine disease‐associated SNPs (rs78338345 of GGA3, rs7656604 at 4q13.3, rs34902660 of SLC17A3, and six SNPs at 12q24.1) identified in the longitudinal exome‐wide association studies largely increased in non‐Africans after Out‐of‐Africa.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,Computer Science Department, College of Information Science, University of Tsukuba, Tsukuba, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.,Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Internal Medicine, Meitoh Hospital, Nagoya, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Cardiology, Kasugai Municipal Hospital, Kasugai, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
35
|
Ma Y, Zhang M, Wang J, Huang X, Kuai X, Zhu X, Chen Y, Jia L, Feng Z, Tang Q, Liu Z. High-Affinity Human Anti-c-Met IgG Conjugated to Oxaliplatin as Targeted Chemotherapy for Hepatocellular Carcinoma. Front Oncol 2019; 9:717. [PMID: 31428584 PMCID: PMC6688309 DOI: 10.3389/fonc.2019.00717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/18/2019] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most mortality-causing solid cancers globally and the second largest cause of death among malignancies. Oxaliplatin, a platinum-based drug, has been widely utilized in the treatment of malignancies such as colorectal cancer and hepatocellular carcinoma, yet its usage is limited because of severe side effects of cytotoxicity to normal tissues. c-Met, a receptor tyrosine kinase, is expressed aberrantly on the surface of HCC. The purpose of this study was to synthesise a humanized antibody against c-Met (anti-c-Met IgG) and conjugate it to oxaliplatin to develop a novel antibody-drug conjugate (ADC). Anti-c-Met IgG was detected to be loaded with ~4.35 moles oxaliplatin per mole of antibody. ELISA and FCM confirmed that ADC retained a high and selective binding affinity for c-Met protein and c-Met-positive HepG2 cells. In vitro, the cytotoxicity tests and biological function assay indicated that ADC showed much higher cytotoxicity and functioning in c-Met-positive HepG2 cells, compared with shMet-HepG2 cells expressing lower levels of c-Met. Furthermore, compared with free oxaliplatin, ADC significantly improved cytotoxicity to c-Met-positive tumours and avoided off-target cell toxicity in vivo. In conclusion, by targeting c-Met-expressing hepatoma cells, ADC can provide a platform to reduce drug toxicity and improve drug efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Yilan Ma
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mingjiong Zhang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jiayan Wang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaochen Huang
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Xingwang Kuai
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Xiaojuan Zhu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Chen
- Otorhinolaryngological Department, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lizhou Jia
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Zhenqing Feng
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qi Tang
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
| | - Zheng Liu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Sahgal P, Alanko J, Icha J, Paatero I, Hamidi H, Arjonen A, Pietilä M, Rokka A, Ivaska J. GGA2 and RAB13 promote activity-dependent β1-integrin recycling. J Cell Sci 2019; 132:jcs.233387. [PMID: 31076515 DOI: 10.1242/jcs.233387] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
β1-integrins mediate cell-matrix interactions and their trafficking is important in the dynamic regulation of cell adhesion, migration and malignant processes, including cancer cell invasion. Here, we employ an RNAi screen to characterize regulators of integrin traffic and identify the association of Golgi-localized gamma ear-containing Arf-binding protein 2 (GGA2) with β1-integrin, and its role in recycling of active but not inactive β1-integrin receptors. Silencing of GGA2 limits active β1-integrin levels in focal adhesions and decreases cancer cell migration and invasion, which is in agreement with its ability to regulate the dynamics of active integrins. By using the proximity-dependent biotin identification (BioID) method, we identified two RAB family small GTPases, i.e. RAB13 and RAB10, as novel interactors of GGA2. Functionally, RAB13 silencing triggers the intracellular accumulation of active β1-integrin, and reduces integrin activity in focal adhesions and cell migration similarly to GGA2 depletion, indicating that both facilitate active β1-integrin recycling to the plasma membrane. Thus, GGA2 and RAB13 are important specificity determinants for integrin activity-dependent traffic.
Collapse
Affiliation(s)
- Pranshu Sahgal
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Jonna Alanko
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Jaroslav Icha
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Hellyeh Hamidi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Antti Arjonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Mika Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland .,Department of Biochemistry and Food Chemistry, University of Turku, Turku FIN-20520, Finland
| |
Collapse
|
37
|
Tsygankova OM, Keen JH. A unique role for clathrin light chain A in cell spreading and migration. J Cell Sci 2019; 132:jcs.224030. [PMID: 30975920 DOI: 10.1242/jcs.224030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Clathrin heavy chain is the structural component of the clathrin triskelion, but unique functions for the two distinct and highly conserved clathrin light chains (CLCa and CLCb, also known as CLTA and CLTB, respectively) have been elusive. Here, we show that following detachment and replating, CLCa is uniquely responsible for promoting efficient cell spreading and migration. Selective depletion of CLCa, but not of CLCb, reduced the initial phase of isotropic spreading of HeLa, H1299 and HEK293 cells by 60-80% compared to siRNA controls, and wound closure and motility by ∼50%. Surface levels of β1-integrins were unaffected by CLCa depletion. However, CLCa was required for effective targeting of FAK (also known as PTK2) and paxillin to the adherent surface of spreading cells, for integrin-mediated activation of Src, FAK and paxillin, and for maturation of focal adhesions, but not their microtubule-based turnover. Depletion of CLCa also blocked the interaction of clathrin with the nucleation-promoting factor WAVE complex, and altered actin distribution. Furthermore, preferential recruitment of CLCa to budding protrusions was also observed. These results comprise the first identification of CLCa-specific functions, with implications for normal and neoplastic integrin-based signaling and cell migration.
Collapse
Affiliation(s)
- Oxana M Tsygankova
- Department of Biochemistry and Molecular Biology, Cell Biology and Signaling Program of the Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - James H Keen
- Department of Biochemistry and Molecular Biology, Cell Biology and Signaling Program of the Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
38
|
Zaoui K, Duhamel S, Parachoniak CA, Park M. CLIP-170 spatially modulates receptor tyrosine kinase recycling to coordinate cell migration. Traffic 2019; 20:187-201. [PMID: 30537020 PMCID: PMC6519375 DOI: 10.1111/tra.12629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
Abstract
Endocytic sorting of activated receptor tyrosine kinases (RTKs), alternating between recycling and degradative processes, controls signal duration, location and surface complement of RTKs. The microtubule (MT) plus-end tracking proteins (+TIPs) play essential roles in various cellular activities including translocation of intracellular cargo. However, mechanisms through which RTKs recycle back to the plasma membrane following internalization in response to ligand remain poorly understood. We report that net outward-directed movement of endocytic vesicles containing the hepatocyte growth factor (HGF) Met RTK, requires recruitment of the +TIP, CLIP-170, as well as the association of CLIP-170 to MT plus-ends. In response to HGF, entry of Met into Rab4-positive endosomes results in Golgi-localized γ-ear-containing Arf-binding protein 3 (GGA3) and CLIP-170 recruitment to an activated Met RTK complex. We conclude that CLIP-170 co-ordinates the recycling and the transport of Met-positive endocytic vesicles to plus-ends of MTs towards the cell cortex, including the plasma membrane and the lamellipodia, thereby promoting cell migration.
Collapse
Affiliation(s)
- Kossay Zaoui
- Department of BiochemistryMcGill UniversityMontrealQuebecCanada
- Rosalind and Morris Goodman Cancer Research CentreMcGill UniversityMontrealQuebecCanada
| | - Stephanie Duhamel
- Rosalind and Morris Goodman Cancer Research CentreMcGill UniversityMontrealQuebecCanada
| | - Christine A. Parachoniak
- Department of BiochemistryMcGill UniversityMontrealQuebecCanada
- Rosalind and Morris Goodman Cancer Research CentreMcGill UniversityMontrealQuebecCanada
| | - Morag Park
- Department of BiochemistryMcGill UniversityMontrealQuebecCanada
- Rosalind and Morris Goodman Cancer Research CentreMcGill UniversityMontrealQuebecCanada
- Department of MedicineMcGill UniversityMontrealQuebecCanada
- Department of OncologyMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
39
|
Integrative Genomic Analyses Identifies GGA2 as a Cooperative Driver of EGFR-Mediated Lung Tumorigenesis. J Thorac Oncol 2018; 14:656-671. [PMID: 30578931 DOI: 10.1016/j.jtho.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Targeted therapies for lung adenocarcinoma (LUAD) have improved patient outcomes; however, drug resistance remains a major problem. One strategy to achieve durable response is to develop combination-based therapies that target both mutated oncogenes and key modifiers of oncogene-driven tumorigenesis. This is based on the premise that mutated oncogenes, although necessary, are not sufficient for malignant transformation. We aimed to uncover genetic alterations that cooperate with mutant EGFR during LUAD development. METHODS We performed integrative genomic analyses, combining copy number, gene expression and mutational information for over 500 LUAD tumors. Co-immunoprecipitation and Western blot analysis were performed in LUAD cell lines to confirm candidate interactions while RNA interference and gene overexpression were used for in vitro and in vivo functional assessment. RESULTS We identified frequent amplifications/deletions of chromosomal regions affecting the activity of genes specifically in the context of EGFR mutation, including amplification of the mutant EGFR allele and deletion of dual specificity phosphatase 4 (DUSP4), which have both previously been reported. In addition, we identified the novel amplification of a segment of chromosome arm 16p in mutant-EGFR tumors corresponding to increased expression of Golgi Associated, Gamma Adaptin Ear Containing, ARF Binding Protein 2 (GGA2), which functions in protein trafficking and sorting. We found that GGA2 interacts with EGFR, increases EGFR protein levels and modifies EGFR degradation after ligand stimulation. Furthermore, we show that overexpression of GGA2 enhances EGFR mediated transformation while GGA2 knockdown reduces the colony and tumor forming ability of EGFR mutant LUAD. CONCLUSIONS These data suggest that overexpression of GGA2 in LUAD tumors results in the accumulation of EGFR protein and increased EGFR signaling, which helps drive tumor progression. Thus, GGA2 plays a cooperative role with EGFR during LUAD development and is a potential therapeutic target for combination-based strategies in LUAD.
Collapse
|
40
|
Ratcliffe CDH, Siddiqui N, Coelho PP, Laterreur N, Cookey TN, Sonenberg N, Park M. HGF-induced migration depends on the PI(3,4,5)P 3-binding microexon-spliced variant of the Arf6 exchange factor cytohesin-1. J Cell Biol 2018; 218:285-298. [PMID: 30404949 PMCID: PMC6314551 DOI: 10.1083/jcb.201804106] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/19/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
Splice variants of the Arf6 guanine exchange factor cytohesin-1 display differential affinity for PI(4,5)P2 and PI(3,4,5)P3. Ratcliffe et al. show that the specific lipid binding of the diglycine variant of cytohesin-1 is needed for HGF-dependent cell migration and establishment of the leading edge, thereby regulating cancer cell migration following activation of the proto-oncogenic receptor tyrosine kinase Met. Differential inclusion or skipping of microexons is an increasingly recognized class of alternative splicing events. However, the functional significance of microexons and their contribution to signaling diversity is poorly understood. The Met receptor tyrosine kinase (RTK) modulates invasive growth and migration in development and cancer. Here, we show that microexon switching in the Arf6 guanine nucleotide exchange factor cytohesin-1 controls Met-dependent cell migration. Cytohesin-1 isoforms, differing by the inclusion of an evolutionarily conserved three-nucleotide microexon in the pleckstrin homology domain, display differential affinity for PI(4,5)P2 (triglycine) and PI(3,4,5)P3 (diglycine). We show that selective phosphoinositide recognition by cytohesin-1 isoforms promotes distinct subcellular localizations, whereby the triglycine isoform localizes to the plasma membrane and the diglycine to the leading edge. These data highlight microexon skipping as a mechanism to spatially restrict signaling and provide a mechanistic link between RTK-initiated phosphoinositide microdomains and Arf6 during signal transduction and cancer cell migration.
Collapse
Affiliation(s)
- Colin D H Ratcliffe
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Nadeem Siddiqui
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Paula P Coelho
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Nancy Laterreur
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Tumini N Cookey
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Nahum Sonenberg
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada .,Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
41
|
UEMURA T, SAWADA N, SAKABA T, KAMETAKA S, YAMAMOTO M, WAGURI S. Intracellular localization of GGA accessory protein p56 in cell lines and central nervous system neurons . Biomed Res 2018; 39:179-187. [DOI: 10.2220/biomedres.39.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Takefumi UEMURA
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine
| | - Naoki SAWADA
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine
| | - Takao SAKABA
- Department of Plastic and Reconstructive Surgery, Fukushima Medical University School of Medicine
| | - Satoshi KAMETAKA
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine
| | - Masaya YAMAMOTO
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine
| | - Satoshi WAGURI
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine
| |
Collapse
|
42
|
Finicle BT, Ramirez MU, Liu G, Selwan EM, McCracken AN, Yu J, Joo Y, Nguyen J, Ou K, Roy SG, Mendoza VD, Corrales DV, Edinger AL. Sphingolipids inhibit endosomal recycling of nutrient transporters by inactivating ARF6. J Cell Sci 2018; 131:jcs.213314. [PMID: 29848659 DOI: 10.1242/jcs.213314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/21/2018] [Indexed: 12/15/2022] Open
Abstract
Endogenous sphingolipids (ceramide) and related synthetic molecules (FTY720, SH-BC-893) reduce nutrient access by decreasing cell surface expression of a subset of nutrient transporter proteins. Here, we report that these sphingolipids disrupt endocytic recycling by inactivating the small GTPase ARF6. Consistent with reported roles for ARF6 in maintaining the tubular recycling endosome, MICAL-L1-positive tubules were lost from sphingolipid-treated cells. We propose that ARF6 inactivation may occur downstream of PP2A activation since: (1) sphingolipids that fail to activate PP2A did not reduce ARF6-GTP levels; (2) a structurally unrelated PP2A activator disrupted tubular recycling endosome morphology and transporter localization; and (3) overexpression of a phosphomimetic mutant of the ARF6 GEF GRP1 prevented nutrient transporter loss. ARF6 inhibition alone was not toxic; however, the ARF6 inhibitors SecinH3 and NAV2729 dramatically enhanced the killing of cancer cells by SH-BC-893 without increasing toxicity to peripheral blood mononuclear cells, suggesting that ARF6 inactivation contributes to the anti-neoplastic actions of sphingolipids. Taken together, these studies provide mechanistic insight into how ceramide and sphingolipid-like molecules limit nutrient access and suppress tumor cell growth and survival.
Collapse
Affiliation(s)
- Brendan T Finicle
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Manuel U Ramirez
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Gang Liu
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Elizabeth M Selwan
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Alison N McCracken
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Jingwen Yu
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Yoosun Joo
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Jannett Nguyen
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Kevin Ou
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Saurabh Ghosh Roy
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Victor D Mendoza
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Dania Virginia Corrales
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
43
|
Spatial regulation of signaling by the coordinated action of the protein tyrosine kinases MET and FER. Cell Signal 2018; 50:100-110. [PMID: 29920310 DOI: 10.1016/j.cellsig.2018.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
A critical aspect of understanding the regulation of signal transduction is not only to identify the protein-protein interactions that govern assembly of signaling pathways, but also to understand how those pathways are regulated in time and space. In this report, we have applied both gain-of-function and loss-of-function analyses to assess the role of the non-receptor protein tyrosine kinase FER in activation of the HGF Receptor protein tyrosine kinase MET. Overexpression of FER led to direct phosphorylation of several signaling sites in MET, including Tyr1349, but not the activation loop residues Tyr1234/5; in contrast, suppression of FER by RNAi revealed that phosphorylation of both a C-terminal signaling site (Tyr1349) and the activation loop (Tyr1234/5) were influenced by the function of this kinase. Adaptin β, a component of the adaptor protein complex 2 (AP-2) that links clathrin to receptors in coated vesicles, was recruited to MET following FER-mediated phosphorylation. Furthermore, we provide evidence to support a role of FER in maintaining plasma membrane distribution of MET and thereby delaying protein-tyrosine phosphatase PTP1B-mediated inactivation of the receptor. Simultaneous up-regulation of FER and down-regulation of PTP1B observed in ovarian carcinoma-derived cell lines would be expected to contribute to persistent activation of HGF-MET signaling, suggesting that targeting of both FER and MET may be an effective strategy for therapeutic intervention in ovarian cancer.
Collapse
|
44
|
Coleman DT, Gray AL, Kridel SJ, Cardelli JA. Palmitoylation regulates the intracellular trafficking and stability of c-Met. Oncotarget 2018; 7:32664-77. [PMID: 27081699 PMCID: PMC5078042 DOI: 10.18632/oncotarget.8706] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/28/2016] [Indexed: 01/08/2023] Open
Abstract
c-Met is a receptor tyrosine kinase whose activity can promote both mitogenic and motogenic phenotypes involved in tissue development and cancer progression. Herein, we report the first evidence that c-Met is palmitoylated and that palmitoylation facilitates its trafficking and stability. Inhibition of palmitoylation reduced the expression of c-Met in multiple cancer cell lines post-transcriptionally. Using surface biotinylation, confocal microscopy, and metabolic labeling we determined that inhibition of palmitoylation reduces the stability of newly synthesized c-Met and causes accumulation at the Golgi. Acyl-biotin exchange and click chemistry-based palmitate labeling indicated the c-Met β-chain is palmitoylated, and site-directed mutagenesis revealed two likely cysteine palmitoylation sites. Moreover, by monitoring palmitoylation kinetics during the biosynthesis and trafficking of c-Met, we revealed that stable palmitoylation occurs in the endoplasmic reticulum prior to cleavage of the 170 kDa c-Met precursor to the mature 140 kDa form. Our data suggest palmitoylation is required for egress from the Golgi for transport to the plasma membrane. These findings introduce palmitoylation as a critical modification of c-Met, providing a novel therapeutic target for c-Met-driven cancers.
Collapse
Affiliation(s)
- David T Coleman
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Alana L Gray
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Steven J Kridel
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 25157, USA
| | - James A Cardelli
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
45
|
GGA2 interacts with EGFR cytoplasmic domain to stabilize the receptor expression and promote cell growth. Sci Rep 2018; 8:1368. [PMID: 29358589 PMCID: PMC5778047 DOI: 10.1038/s41598-018-19542-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/03/2018] [Indexed: 12/29/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signaling and its downregulation upon ligand binding have been extensively documented. However, the mechanisms by which cells maintain steady-state EGFR expression remain poorly understood. Here, we report a novel role of Golgi-localized, γ-adaptin ear-containing, ADP ribosylation factor-binding protein 2 (GGA2) in the control of EGFR turnover. Whereas GGA1- or GGA3-depletion increased EGFR expression, GGA2-depletion by RNAi greatly reduced steady-state expression of EGFR, reflecting enhanced lysosomal degradation of EGFR. Subsequent pull-down assays showed interactions of VHS-GAT domains from three GGAs with the cytoplasmic juxtamembrane region (jxt) of EGFR, which was dependent on N108 in the VHS domain. Proximity ligation assay also revealed the steady-state interaction between GGA2 and EGFR in situ. Moreover, reduced expression of EGFR in GGA2-depleted cells was reversed by additional depletion of GGA1 or GGA3, suggesting that GGA1 and GGA3 promote EGFR degradation. In addition, GGA2-depleted cells had reduced EGF signaling and cell proliferation in cell culture and xenograft experiments. Finally, GGA2 was upregulated in 30.8% of human hepatocellular carcinomas and 23.3% of colorectal cancers. Together, these results indicate that GGA2 supports cell growth by interacting with EGFR for sustaining the receptor expression.
Collapse
|
46
|
Moore R, Pujol MG, Zhu Z, Smythe E. Interplay of Endocytosis and Growth Factor Receptor Signalling. ENDOCYTOSIS AND SIGNALING 2018; 57:181-202. [DOI: 10.1007/978-3-319-96704-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Regulation of HGF-induced hepatocyte proliferation by the small GTPase Arf6 through the PIP 2-producing enzyme PIP5K1A. Sci Rep 2017; 7:9438. [PMID: 28842595 PMCID: PMC5572707 DOI: 10.1038/s41598-017-09633-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022] Open
Abstract
HGF and its receptor c-Met are critical molecules in various biological processes. Others and we have previously shown that the small GTPase Arf6 plays a pivotal role in HGF signaling in hepatocytes. However, the molecular mechanism of how Arf6 regulates HGF signaling is unclear. Here, we show that Arf6 plays an important role in HGF-stimulated hepatocyte proliferation and liver regeneration through the phosphatidylinositol 4,5-bisphosphate (PIP2)-producing enzyme PIP5K1A. We find that knockdown of Arf6 and PIP5K1A in HepG2 cells inhibits HGF-stimulated proliferation, Akt activation, and generation of phosphatidylinositol 3,4,5-trisphosphate (PIP3) and its precursor PIP2. Interestingly, PIP5K1A is recruited to c-Met upon HGF stimulation in an Arf6 activity-dependent manner. Finally, we show that hepatocyte proliferation and liver regeneration after partial hepatectomy are suppressed in Pip5k1a knockout mice. These results provide insight into the molecular mechanism for HGF-stimulated hepatocyte proliferation and liver regeneration: Arf6 recruits PIP5K1A to c-Met and activates it upon HGF stimulation to produce PIP2 and subsequently PIP3, which in turn activates Akt to promote hepatocyte proliferation, thereby accelerating liver regeneration after liver injury.
Collapse
|
48
|
Hu CT, Wu JR, Cheng CC, Wu WS. The Therapeutic Targeting of HGF/c-Met Signaling in Hepatocellular Carcinoma: Alternative Approaches. Cancers (Basel) 2017; 9:cancers9060058. [PMID: 28587113 PMCID: PMC5483877 DOI: 10.3390/cancers9060058] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/23/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022] Open
Abstract
The poor prognosis of hepatocellular carcinoma (HCC), one of the most devastating cancers worldwide, is due to frequent recurrence and metastasis. Among the metastatic factors in the tumor microenvironment, hepatocyte growth factor (HGF) has been well known to play critical roles in tumor progression, including HCC. Therefore, c-Met is now regarded as the most promising therapeutic target for the treatment of HCC. However, there are still concerns about resistance and the side effects of using conventional inhibitors of c-Met, such as tyrosine kinase inhibitors. Recently, many alternative strategies of c-Met targeting have been emerging. These include targeting the downstream effectors of c-Met, such as hydrogen peroxide-inducible clone 5 (Hic-5), to block the reactive oxygen species (ROS)-mediated signaling for HCC progression. Also, inhibition of endosomal regulators, such as PKCε and GGA3, may perturb the c-Met endosomal signaling for HCC cell migration. On the other hand, many herbal antagonists of c-Met-dependent signaling, such as saponin, resveratrol, and LZ-8, were identified. Taken together, it can be anticipated that more effective and safer c-Met targeting strategies for preventing HCC progression can be established in the future.
Collapse
Affiliation(s)
- Chi-Tan Hu
- Research Centre for Hepatology, Department of Internal Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien 970, Taiwan.
| | - Jia-Ru Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Chuan-Chu Cheng
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Wen-Sheng Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
49
|
Grossmann AH, Zhao H, Jenkins N, Zhu W, Richards JR, Yoo JH, Winter JM, Rich B, Mleynek TM, Li DY, Odelberg SJ. The small GTPase ARF6 regulates protein trafficking to control cellular function during development and in disease. Small GTPases 2016; 10:1-12. [PMID: 28001501 DOI: 10.1080/21541248.2016.1259710] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The activation of the small GTPase ARF6 has been implicated in promoting several pathological processes related to vascular instability and tumor formation, growth, and metastasis. ARF6 also plays a vital role during embryonic development. Recent studies have suggested that ARF6 carries out these disparate functions primarily by controlling protein trafficking within the cell. ARF6 helps direct proteins to intracellular or extracellular locations where they function in normal cellular responses during development and in pathological processes later in life. This transport of proteins is accomplished through a variety of mechanisms, including endocytosis and recycling, microvesicle release, and as yet uncharacterized processes. This Commentary will explore the functions of ARF6, while focusing on the role of this small GTPase in development and postnatal physiology, regulating barrier function and diseases associated with its loss, and tumor formation, growth, and metastasis.
Collapse
Affiliation(s)
- Allie H Grossmann
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA.,b Department of Pathology , University of Utah , Salt Lake City , UT , USA.,c ARUP Laboratories, University of Utah , Salt Lake City , UT , USA
| | - Helong Zhao
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA
| | - Noah Jenkins
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA
| | - Weiquan Zhu
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA.,d Department of Medicine , Division of Cardiovascular Medicine, University of Utah , Salt Lake City , UT , USA
| | - Jackson R Richards
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA.,e Department of Oncological Sciences , University of Utah , Salt Lake City , UT , USA
| | - Jae Hyuk Yoo
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA.,e Department of Oncological Sciences , University of Utah , Salt Lake City , UT , USA
| | - Jacob M Winter
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA
| | - Bianca Rich
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA
| | - Tara M Mleynek
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA
| | - Dean Y Li
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA.,d Department of Medicine , Division of Cardiovascular Medicine, University of Utah , Salt Lake City , UT , USA.,e Department of Oncological Sciences , University of Utah , Salt Lake City , UT , USA.,f Department of Human Genetics , University of Utah , Salt Lake City , UT , USA.,g Sichuan Provincial Key Laboratory for Human Disease Gene Study , Sichuan Provincial People's Hospital, Chinese Academy of Sciences , Chengdu , China.,h Department of Cardiology , VA Salt Lake City Health Care System , Salt Lake City , UT , USA.,i Navigen Inc. , Salt Lake City , UT , USA
| | - Shannon J Odelberg
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA.,d Department of Medicine , Division of Cardiovascular Medicine, University of Utah , Salt Lake City , UT , USA.,j Department of Neurobiology and Anatomy , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|
50
|
Regulation of α 2B-Adrenergic Receptor Cell Surface Transport by GGA1 and GGA2. Sci Rep 2016; 6:37921. [PMID: 27901063 PMCID: PMC5128807 DOI: 10.1038/srep37921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 11/02/2016] [Indexed: 01/09/2023] Open
Abstract
The molecular mechanisms that control the targeting of newly synthesized G protein-coupled receptors (GPCRs) to the functional destinations remain poorly elucidated. Here, we have determined the role of Golgi-localized, γ-adaptin ear domain homology, ADP ribosylation factor-binding proteins 1 and 2 (GGA1 and GGA2) in the cell surface transport of α2B-adrenergic receptor (α2B-AR), a prototypic GPCR, and studied the underlying mechanisms. We demonstrated that knockdown of GGA1 and GGA2 by shRNA and siRNA significantly reduced the cell surface expression of inducibly expressed α2B-AR and arrested the receptor in the perinuclear region. Knockdown of each GGA markedly inhibited the dendritic expression of α2B-AR in primary cortical neurons. Consistently, depleting GGA1 and GGA2 attenuated receptor-mediated signal transduction measured as ERK1/2 activation and cAMP inhibition. Although full length α2B-AR associated with GGA2 but not GGA1, its third intracellular loop was found to directly interact with both GGA1 and GGA2. More interestingly, further mapping of interaction domains showed that the GGA1 hinge region and the GGA2 GAE domain bound to multiple subdomains of the loop. These studies have identified an important function and revealed novel mechanisms of the GGA family proteins in the forward trafficking of a cell surface GPCR.
Collapse
|