1
|
Aquino AP, Li W, Lele A, Lazureanu D, Hampton MF, Do RM, Lafrades MC, Barajas MG, Batres AA, McNally FJ. Inward transport of organelles drives outward migration of the spindle during C. elegans meiosis. Cell Rep 2025; 44:115458. [PMID: 40121661 PMCID: PMC12077383 DOI: 10.1016/j.celrep.2025.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/29/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025] Open
Abstract
Cortical positioning of the meiotic spindle within an oocyte is required to expel chromosomes into polar bodies to generate a zygote with the correct number of chromosomes. In C. elegans, yolk granules and mitochondria are packed inward, away from the cortex, while the spindle moves outward, both in a kinesin-dependent manner. The kinesin-dependent inward packing of yolk granules suggests the existence of microtubules with minus ends at the cortex and plus ends extending inward, making it unclear how kinesin moves the spindle outward. We hypothesize that the inward packing of organelles might indirectly force the spindle outward by volume exclusion. To test this hypothesis, we generate a strain in which the only kinesin consists of motor domains with no cargo-binding tail optogenetically attached to mitochondria. This mitochondria-only kinesin packs mitochondria into a tight ball and efficiently moves the meiotic spindle to the cortex, supporting the volume exclusion hypothesis.
Collapse
Affiliation(s)
- Alma P Aquino
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Wenzhe Li
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Aastha Lele
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Denisa Lazureanu
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Megan F Hampton
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Rebecca M Do
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Melissa C Lafrades
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Maria G Barajas
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Antonio A Batres
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Bloom J, Green R, Desai A, Oegema K, Rifkin SA. Hybrid incompatibility emerges at the one-cell stage in interspecies Caenorhabditis embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619171. [PMID: 39484375 PMCID: PMC11526918 DOI: 10.1101/2024.10.19.619171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Intrinsic reproductive isolation occurs when genetic differences between populations disrupt the development of hybrid organisms, preventing gene flow and enforcing speciation.1-4 While prior studies have examined the genetic origins of hybrid incompatibility,5-18 the effects of incompatible factors on development remain poorly understood. Here, we investigate the mechanistic basis of hybrid incompatibility in Caenorhabditis nematodes by capitalizing on the ability of C. brenneri females to produce embryos after mating with males from several other species. Contrary to expectations, hybrid incompatibility was evident immediately after fertilization, suggesting that post-fertilization barriers to hybridization originate from physical incompatibility between sperm and oocyte-derived factors rather than from zygotic transcription, which starts after the 4-cell stage.19-22 Sperm deliver chromatin, which expands to form a pronucleus, and a pair of centrioles, which form centrosomes that attach to the sperm-derived pronucleus and signal to establish the embryo's anterior-posterior axis.23,24 In C. brenneri oocytes fertilized with C. elegans sperm, sperm pronuclear expansion was compromised, frequent centrosome detachment was observed, and cortical polarity was disrupted. Live imaging revealed that defective polar body extrusion contributes to defects in mitotic spindle morphology. C. brenneri oocytes fertilized with C. remanei or C. sp. 48 sperm showed similar defects, and their severity and frequency increased with phylogenetic distance. Defective expansion of the sperm-derived pronucleus and unreliable polar body extrusion immediately after fertilization generally underlie the inviability of hybrid embryos in this clade. These results indicate that physical mismatches between sperm and oocyte-derived structures may be a primary mechanism of hybrid incompatibility.
Collapse
Affiliation(s)
- Jessica Bloom
- Department of Ecology, Behavior, and Evolution, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rebecca Green
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arshad Desai
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Karen Oegema
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Scott A. Rifkin
- Department of Ecology, Behavior, and Evolution, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Narula JG, Wignall SM. Polo-like kinase 1 prevents excess microtubule polymerization in C. elegans oocytes to ensure faithful meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.03.606476. [PMID: 39131294 PMCID: PMC11312516 DOI: 10.1101/2024.08.03.606476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Sexual reproduction relies on meiosis, a specialized cell division program that produces haploid gametes. Oocytes of most organisms lack centrosomes, and therefore chromosome segregation is mediated by acentrosomal spindles. Here, we explore the role of Polo-like kinase 1 (PLK-1) in C. elegans oocytes, revealing mechanisms that ensure the fidelity of this unique form of cell division. Previously, PLK-1 was shown to be required for nuclear envelope breakdown and chromosome segregation in oocytes. We now find that PLK-1 is also required for establishing and maintaining acentrosomal spindle organization and for preventing excess microtubule polymerization in these cells. Additionally, our studies revealed an unexpected new role for this essential kinase. While PLK-1 is known to be required for centrosome maturation during mitosis, we found that removal of this kinase from oocytes caused premature recruitment of pericentriolar material to the sperm-provided centrioles following fertilization. Thus, PLK-1 suppresses centrosome maturation during oocyte meiosis, which is opposite to its role in mitosis. Taken together, our work reveals multiple new roles for PLK-1 in oocytes, identifying PLK-1 as a key player that promotes faithful acentrosomal meiosis.
Collapse
Affiliation(s)
- Juhi G Narula
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
4
|
Beath EA, Bailey C, Mahantesh Magadam M, Qiu S, McNally KL, McNally FJ. Katanin, kinesin-13, and ataxin-2 inhibit premature interaction between maternal and paternal genomes in C. elegans zygotes. eLife 2024; 13:RP97812. [PMID: 39078879 PMCID: PMC11288632 DOI: 10.7554/elife.97812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Fertilization occurs before the completion of oocyte meiosis in the majority of animal species and sperm contents move long distances within the zygotes of mouse and C. elegans. If incorporated into the meiotic spindle, paternal chromosomes could be expelled into a polar body resulting in lethal monosomy. Through live imaging of fertilization in C. elegans, we found that the microtubule disassembling enzymes, katanin and kinesin-13 limit long-range movement of sperm contents and that maternal ataxin-2 maintains paternal DNA and paternal mitochondria as a cohesive unit that moves together. Depletion of katanin or double depletion of kinesin-13 and ataxin-2 resulted in the capture of the sperm contents by the meiotic spindle. Thus limiting movement of sperm contents and maintaining cohesion of sperm contents within the zygote both contribute to preventing premature interaction between maternal and paternal genomes.
Collapse
Affiliation(s)
- Elizabeth A Beath
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| | - Cynthia Bailey
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| | | | - Shuyan Qiu
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| | - Karen L McNally
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| |
Collapse
|
5
|
Beath EA, Bailey C, Magadum MM, Qiu S, McNally KL, McNally FJ. Katanin, kinesin-13 and ataxin-2 inhibit premature interaction between maternal and paternal genomes in C. elegans zygotes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584242. [PMID: 38559153 PMCID: PMC10979973 DOI: 10.1101/2024.03.12.584242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Fertilization occurs before completion of oocyte meiosis in the majority of animal species and sperm contents move long distances within zygotes of mouse and C. elegans. If incorporated into the meiotic spindle, paternal chromosomes could be expelled into a polar body resulting in lethal monosomy. Through live imaging of fertilization in C. elegans, we found that the microtubule disassembling enzymes, katanin and kinesin-13 limit long range movement of sperm contents and that maternal ataxin-2 maintains paternal DNA and paternal mitochondria as a cohesive unit that moves together. Depletion of katanin or double depletion of kinesin-13 and ataxin-2 resulted in capture of the sperm contents by the meiotic spindle. Thus limiting movement of sperm contents and maintaining cohesion of sperm contents within the zygote both contribute to preventing premature interaction between maternal and paternal genomes.
Collapse
Affiliation(s)
- Elizabeth A Beath
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| | - Cynthia Bailey
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| | | | - Shuyan Qiu
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| | - Karen L McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| |
Collapse
|
6
|
Rosfelter A, de Labbey G, Chenevert J, Dumollard R, Schaub S, Machaty Z, Besnardeau L, Gonzalez Suarez D, Hebras C, Turlier H, Burgess DR, McDougall A. Reduction of cortical pulling at mitotic entry facilitates aster centration. J Cell Sci 2024; 137:jcs262037. [PMID: 38469748 DOI: 10.1242/jcs.262037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Equal cell division relies upon astral microtubule-based centering mechanisms, yet how the interplay between mitotic entry, cortical force generation and long astral microtubules leads to symmetric cell division is not resolved. We report that a cortically located sperm aster displaying long astral microtubules that penetrate the whole zygote does not undergo centration until mitotic entry. At mitotic entry, we find that microtubule-based cortical pulling is lost. Quantitative measurements of cortical pulling and cytoplasmic pulling together with physical simulations suggested that a wavelike loss of cortical pulling at mitotic entry leads to aster centration based on cytoplasmic pulling. Cortical actin is lost from the cortex at mitotic entry coincident with a fall in cortical tension from ∼300pN/µm to ∼100pN/µm. Following the loss of cortical force generators at mitotic entry, long microtubule-based cytoplasmic pulling is sufficient to displace the aster towards the cell center. These data reveal how mitotic aster centration is coordinated with mitotic entry in chordate zygotes.
Collapse
Affiliation(s)
- Anne Rosfelter
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Ghislain de Labbey
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241 / INSERM U1050, Université PSL, 75002 Paris, France
| | - Janet Chenevert
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Rémi Dumollard
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Sebastien Schaub
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Zoltan Machaty
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Lydia Besnardeau
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Daniel Gonzalez Suarez
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Céline Hebras
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Hervé Turlier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241 / INSERM U1050, Université PSL, 75002 Paris, France
| | - David R Burgess
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Alex McDougall
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| |
Collapse
|
7
|
Cohesin is required for meiotic spindle assembly independent of its role in cohesion in C. elegans. PLoS Genet 2022; 18:e1010136. [PMID: 36279281 PMCID: PMC9632809 DOI: 10.1371/journal.pgen.1010136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Accurate chromosome segregation requires a cohesin-mediated physical attachment between chromosomes that are to be segregated apart, and a bipolar spindle with microtubule plus ends emanating from exactly two poles toward the paired chromosomes. We asked whether the striking bipolar structure of C. elegans meiotic chromosomes is required for bipolarity of acentriolar female meiotic spindles by time-lapse imaging of mutants that lack cohesion between chromosomes. Both a spo-11 rec-8 coh-4 coh-3 quadruple mutant and a spo-11 rec-8 double mutant entered M phase with separated sister chromatids lacking any cohesion. However, the quadruple mutant formed an apolar spindle whereas the double mutant formed a bipolar spindle that segregated chromatids into two roughly equal masses. Residual non-cohesive COH-3/4-dependent cohesin on separated sister chromatids of the double mutant was sufficient to recruit haspin-dependent Aurora B kinase, which mediated bipolar spindle assembly in the apparent absence of chromosomal bipolarity. We hypothesized that cohesin-dependent Aurora B might activate or inhibit spindle assembly factors in a manner that would affect their localization on chromosomes and found that the chromosomal localization patterns of KLP-7 and CLS-2 correlated with Aurora B loading on chromosomes. These results demonstrate that cohesin is essential for spindle assembly and chromosome segregation independent of its role in sister chromatid cohesion.
Collapse
|
8
|
Hannaford MR, Liu R, Billington N, Swider ZT, Galletta BJ, Fagerstrom CJ, Combs C, Sellers JR, Rusan NM. Pericentrin interacts with Kinesin-1 to drive centriole motility. J Cell Biol 2022; 221:e202112097. [PMID: 35929834 PMCID: PMC9361567 DOI: 10.1083/jcb.202112097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/02/2022] [Accepted: 07/12/2022] [Indexed: 12/23/2022] Open
Abstract
Centrosome positioning is essential for their function. Typically, centrosomes are transported to various cellular locations through the interaction of centrosomal microtubules (MTs) with motor proteins anchored at the cortex or the nuclear surface. However, it remains unknown how centrioles migrate in cellular contexts in which they do not nucleate MTs. Here, we demonstrate that during interphase, inactive centrioles move directly along the interphase MT network as Kinesin-1 cargo. We identify Pericentrin-Like-Protein (PLP) as a novel Kinesin-1 interacting molecule essential for centriole motility. In vitro assays show that PLP directly interacts with the cargo binding domain of Kinesin-1, allowing PLP to migrate on MTs. Binding assays using purified proteins revealed that relief of Kinesin-1 autoinhibition is critical for its interaction with PLP. Finally, our studies of neural stem cell asymmetric divisions in the Drosophila brain show that the PLP-Kinesin-1 interaction is essential for the timely separation of centrioles, the asymmetry of centrosome activity, and the age-dependent centrosome inheritance.
Collapse
Affiliation(s)
- Matthew R. Hannaford
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Rong Liu
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Neil Billington
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Zachary T. Swider
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Brian J. Galletta
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Carey J. Fagerstrom
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Christian Combs
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - James R. Sellers
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
9
|
Murph M, Singh S, Schvarzstein M. A combined in silico and in vivo approach to the structure-function annotation of SPD-2 provides mechanistic insight into its functional diversity. Cell Cycle 2022; 21:1958-1979. [PMID: 35678569 PMCID: PMC9415446 DOI: 10.1080/15384101.2022.2078458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/10/2022] [Accepted: 05/04/2022] [Indexed: 11/03/2022] Open
Abstract
Centrosomes are organelles that function as hubs of microtubule nucleation and organization, with key roles in organelle positioning, asymmetric cell division, ciliogenesis, and signaling. Aberrant centrosome number, structure or function is linked to neurodegenerative diseases, developmental abnormalities, ciliopathies, and tumor development. A major regulator of centrosome biogenesis and function in C. elegans is the conserved Spindle-defective protein 2 (SPD-2), a homolog of the human CEP-192 protein. CeSPD-2 is required for centrosome maturation, centriole duplication, spindle assembly and possibly cell polarity establishment. Despite its importance, the specific molecular mechanism of CeSPD-2 regulation and function is poorly understood. Here, we combined computational analysis with cell biology approaches to uncover possible structure-function relationships of CeSPD-2 that may shed mechanistic light on its function. Domain prediction analysis corroborated and refined previously identified coiled-coils and ASH (Aspm-SPD-2 Hydin) domains and identified new domains: a GEF domain, an Ig-like domain, and a PDZ-like domain. In addition to these predicted structural features, CeSPD-2 is also predicted to be intrinsically disordered. Surface electrostatic maps identified a large basic region unique to the ASH domain of CeSPD-2. This basic region overlaps with most of the residues predicted to be involved in protein-protein interactions. In vivo, ASH::GFP localized to centrosomes and centrosome-associated microtubules. Our analysis groups ASH domains, PapD, Usher chaperone domains, and Major Sperm Protein (MSP) domains into a single superfold within the larger Immunoglobulin superfamily. This study lays the groundwork for designing rational hypothesis-based experiments to uncover the mechanisms of CeSPD-2 function in vivo.Abbreviations: AIR, Aurora kinase; ASH, Aspm-SPD-2 Hydin; ASP, Abnormal Spindle Protein; ASPM, Abnormal Spindle-like Microcephaly-associated Protein; CC, coiled-coil; CDK, Cyclin-dependent Kinase; Ce, Caenorhabditis elegans; CEP, Centrosomal Protein; CPAP, centrosomal P4.1-associated protein; D, Drosophila; GAP, GTPase activating protein; GEF, GTPase guanine nucleotide exchange factor; Hs, Homo sapiens/Human; Ig, Immunoglobulin; MAP, Microtubule associated Protein; MSP, Major Sperm Protein; MDP, Major Sperm Domain-Containing Protein; OCRL-1, Golgi endocytic trafficking protein Inositol polyphosphate 5-phosphatase; PAR, abnormal embryonic PARtitioning of the cytosol; PCM, Pericentriolar material; PCMD, pericentriolar matrix deficient; PDZ, PSD95/Dlg-1/zo-1; PLK, Polo like kinase; RMSD, Root Mean Square Deviation; SAS, Spindle assembly abnormal proteins; SPD, Spindle-defective protein; TRAPP, TRAnsport Protein Particle; Xe, Xenopus; ZYG, zygote defective protein.
Collapse
Affiliation(s)
- Mikaela Murph
- Department of Biology, City University of New York, Brooklyn College, New York, NY, USA
| | - Shaneen Singh
- Department of Biology, City University of New York, Brooklyn College, New York, NY, USA
- Department of Biology, The Graduate Center at City University of New York, New York, NY, USA
- Department Biochemistry, The Graduate Center at City University of New York, New York, NY, USA
| | - Mara Schvarzstein
- Department of Biology, City University of New York, Brooklyn College, New York, NY, USA
- Department of Biology, The Graduate Center at City University of New York, New York, NY, USA
- Department Biochemistry, The Graduate Center at City University of New York, New York, NY, USA
| |
Collapse
|
10
|
Stenzel L, Schreiner A, Zuccoli E, Üstüner S, Mehler J, Zanin E, Mikeladze-Dvali T. PCMD-1 bridges the centrioles and the pericentriolar material scaffold in C. elegans. Development 2021; 148:dev198416. [PMID: 34545391 PMCID: PMC10659035 DOI: 10.1242/dev.198416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/15/2021] [Indexed: 12/29/2022]
Abstract
Correct cell division relies on the formation of a bipolar spindle. In animal cells, microtubule nucleation at the spindle poles is facilitated by the pericentriolar material (PCM), which assembles around a pair of centrioles. Although centrioles are essential for PCM assembly, the proteins that anchor the PCM to the centrioles are less known. Here, we investigate the molecular function of PCMD-1 in bridging the PCM and the centrioles in Caenorhabditis elegans. We demonstrate that the centrosomal recruitment of PCMD-1 is dependent on the outer centriolar protein SAS-7. The most C-terminal part of PCMD-1 is sufficient to target it to the centrosome, and the coiled-coil domain promotes its accumulation by facilitating self-interaction. We reveal that PCMD-1 interacts with the PCM scaffold protein SPD-5, the mitotic kinase PLK-1 and the centriolar protein SAS-4. Using an ectopic translocation assay, we show that PCMD-1 can selectively recruit downstream PCM scaffold components to an ectopic location in the cell, indicating that PCMD-1 is able to anchor the PCM scaffold proteins at the centrioles. Our work suggests that PCMD-1 is an essential functional bridge between the centrioles and the PCM.
Collapse
Affiliation(s)
- Lisa Stenzel
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Alina Schreiner
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Elisa Zuccoli
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Sim Üstüner
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Judith Mehler
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Esther Zanin
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Tamara Mikeladze-Dvali
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
11
|
Magescas J, Eskinazi S, Tran MV, Feldman JL. Centriole-less pericentriolar material serves as a microtubule organizing center at the base of C. elegans sensory cilia. Curr Biol 2021; 31:2410-2417.e6. [PMID: 33798428 DOI: 10.1016/j.cub.2021.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/18/2021] [Accepted: 03/05/2021] [Indexed: 01/20/2023]
Abstract
During mitosis in animal cells, the centrosome acts as a microtubule organizing center (MTOC) to assemble the mitotic spindle. MTOC function at the centrosome is driven by proteins within the pericentriolar material (PCM), however the molecular complexity of the PCM makes it difficult to differentiate the proteins required for MTOC activity from other centrosomal functions. We used the natural spatial separation of PCM proteins during mitotic exit to identify a minimal module of proteins required for centrosomal MTOC function in C. elegans. Using tissue-specific degradation, we show that SPD-5, the functional homolog of CDK5RAP2, is essential for embryonic mitosis, while SPD-2/CEP192 and PCMD-1, which are essential in the one-cell embryo, are dispensable. Surprisingly, although the centriole is known to be degraded in the ciliated sensory neurons in C. elegans,1-3 we find evidence for "centriole-less PCM" at the base of cilia and use this structure as a minimal testbed to dissect centrosomal MTOC function. Super-resolution imaging revealed that this PCM inserts inside the lumen of the ciliary axoneme and directly nucleates the assembly of dendritic microtubules toward the cell body. Tissue-specific degradation in ciliated sensory neurons revealed a role for SPD-5 and the conserved microtubule nucleator γ-TuRC, but not SPD-2 or PCMD-1, in MTOC function at centriole-less PCM. This MTOC function was in the absence of regulation by mitotic kinases, highlighting the intrinsic ability of these proteins to drive microtubule growth and organization and further supporting a model that SPD-5 is the primary driver of MTOC function at the PCM.
Collapse
Affiliation(s)
- Jérémy Magescas
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, 94305, CA, USA.
| | - Sani Eskinazi
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, 94305, CA, USA
| | - Michael V Tran
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, 94305, CA, USA
| | - Jessica L Feldman
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, 94305, CA, USA.
| |
Collapse
|
12
|
Rödelsperger C, Ebbing A, Sharma DR, Okumura M, Sommer RJ, Korswagen HC. Spatial Transcriptomics of Nematodes Identifies Sperm Cells as a Source of Genomic Novelty and Rapid Evolution. Mol Biol Evol 2021; 38:229-243. [PMID: 32785688 PMCID: PMC8480184 DOI: 10.1093/molbev/msaa207] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Divergence of gene function and expression during development can give rise to phenotypic differences at the level of cells, tissues, organs, and ultimately whole organisms. To gain insights into the evolution of gene expression and novel genes at spatial resolution, we compared the spatially resolved transcriptomes of two distantly related nematodes, Caenorhabditis elegans and Pristionchus pacificus, that diverged 60-90 Ma. The spatial transcriptomes of adult worms show little evidence for strong conservation at the level of single genes. Instead, regional expression is largely driven by recent duplication and emergence of novel genes. Estimation of gene ages across anatomical structures revealed an enrichment of novel genes in sperm-related regions. This provides first evidence in nematodes for the "out of testis" hypothesis that has been previously postulated based on studies in Drosophila and mammals. "Out of testis" genes represent a mix of products of pervasive transcription as well as fast evolving members of ancient gene families. Strikingly, numerous novel genes have known functions during meiosis in Caenorhabditis elegans indicating that even universal processes such as meiosis may be targets of rapid evolution. Our study highlights the importance of novel genes in generating phenotypic diversity and explicitly characterizes gene origination in sperm-related regions. Furthermore, it proposes new functions for previously uncharacterized genes and establishes the spatial transcriptome of Pristionchus pacificus as a catalog for future studies on the evolution of gene expression and function.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Annabel Ebbing
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht,
The Netherlands
| | - Devansh Raj Sharma
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hendrik C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht,
The Netherlands
- Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht,
The Netherlands
| |
Collapse
|
13
|
Kimura K, Kimura A. Cytoplasmic streaming drifts the polarity cue and enables posteriorization of the Caenorhabditis elegans zygote at the side opposite of sperm entry. Mol Biol Cell 2020; 31:1765-1773. [PMID: 32459552 PMCID: PMC7521852 DOI: 10.1091/mbc.e20-01-0058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cell polarization is required to define body axes during development. The position of spatial cues for polarization is critical to direct the body axes. In Caenorhabditis elegans zygotes, the sperm-derived pronucleus/centrosome complex (SPCC) serves as the spatial cue to specify the anterior-posterior axis. Approximately 30 min after fertilization, the contractility of the cell cortex is relaxed near the SPCC, which is the earliest sign of polarization and called symmetry breaking (SB). It is unclear how the position of SPCC at SB is determined after fertilization. Here, we show that SPCC drifts dynamically through the cell-wide flow of the cytoplasm, called meiotic cytoplasmic streaming. This flow occasionally brings SPCC to the opposite side of the sperm entry site before SB. Our results demonstrate that cytoplasmic flow determines stochastically the position of the spatial cue of the body axis, even in an organism like C. elegans for which development is stereotyped.
Collapse
Affiliation(s)
- Kenji Kimura
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima 411-8540, Japan.,Department of Biological Science, Kwansei Gakuin University, Sanda 669-1337, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima 411-8540, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Mishima 411-8540, Japan
| |
Collapse
|
14
|
Meaders JL, Burgess DR. Microtubule-Based Mechanisms of Pronuclear Positioning. Cells 2020; 9:E505. [PMID: 32102180 PMCID: PMC7072840 DOI: 10.3390/cells9020505] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
The zygote is defined as a diploid cell resulting from the fusion of two haploid gametes. Union of haploid male and female pronuclei in many animals occurs through rearrangements of the microtubule cytoskeleton into a radial array of microtubules known as the sperm aster. The sperm aster nucleates from paternally-derived centrioles attached to the male pronucleus after fertilization. Nematode, echinoderm, and amphibian eggs have proven as invaluable models to investigate the biophysical principles for how the sperm aster unites male and female pronuclei with precise spatial and temporal regulation. In this review, we compare these model organisms, discussing the dynamics of sperm aster formation and the different force generating mechanism for sperm aster and pronuclear migration. Finally, we provide new mechanistic insights for how sperm aster growth may influence sperm aster positioning.
Collapse
Affiliation(s)
| | - David R Burgess
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
15
|
Reich JD, Hubatsch L, Illukkumbura R, Peglion F, Bland T, Hirani N, Goehring NW. Regulated Activation of the PAR Polarity Network Ensures a Timely and Specific Response to Spatial Cues. Curr Biol 2019; 29:1911-1923.e5. [PMID: 31155349 PMCID: PMC6584329 DOI: 10.1016/j.cub.2019.04.058] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/29/2019] [Accepted: 04/23/2019] [Indexed: 10/31/2022]
Abstract
How do cells polarize at the correct time and in response to the correct cues? In the C. elegans zygote, the timing and geometry of polarization rely on a single dominant cue-the sperm centrosome-that matures at the end of meiosis and specifies the nascent posterior. Polarization requires that the conserved PAR proteins, which specify polarity in the zygote, be poised to respond to the centrosome. Yet, how and when PAR proteins achieve this unpolarized, but responsive, state is unknown. We show that oocyte maturation initiates a fertilization-independent PAR activation program. PAR proteins are initially not competent to polarize but gradually acquire this ability following oocyte maturation. Surprisingly, this program allows symmetry breaking even in unfertilized oocytes lacking centrosomes. Thus, if PAR proteins can respond to multiple polarizing cues, how is specificity for the centrosome achieved? Specificity is enforced by Polo-like and Aurora kinases (PLK-1 and AIR-1 in C. elegans), which impose a delay in the activation of the PAR network so that it coincides with maturation of the centrosome cue. This delay suppresses polarization by non-centrosomal cues, which can otherwise trigger premature polarization and multiple or reversed polarity domains. Taken together, these findings identify a regulatory program that enforces proper polarization by synchronizing PAR network activation with cell cycle progression, thereby ensuring that PAR proteins respond specifically to the correct cue. Temporal control of polarity network activity is likely to be a common strategy to ensure robust, dynamic, and specific polarization in response to developmentally deployed cues.
Collapse
Affiliation(s)
- Jacob D Reich
- The Francis Crick Institute, Midland Road, London NW1 1AT, UK
| | - Lars Hubatsch
- The Francis Crick Institute, Midland Road, London NW1 1AT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Florent Peglion
- The Francis Crick Institute, Midland Road, London NW1 1AT, UK
| | - Tom Bland
- The Francis Crick Institute, Midland Road, London NW1 1AT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| | - Nisha Hirani
- The Francis Crick Institute, Midland Road, London NW1 1AT, UK
| | - Nathan W Goehring
- The Francis Crick Institute, Midland Road, London NW1 1AT, UK; Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
16
|
Pintard L, Bowerman B. Mitotic Cell Division in Caenorhabditis elegans. Genetics 2019; 211:35-73. [PMID: 30626640 PMCID: PMC6325691 DOI: 10.1534/genetics.118.301367] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
Mitotic cell divisions increase cell number while faithfully distributing the replicated genome at each division. The Caenorhabditis elegans embryo is a powerful model for eukaryotic cell division. Nearly all of the genes that regulate cell division in C. elegans are conserved across metazoan species, including humans. The C. elegans pathways tend to be streamlined, facilitating dissection of the more redundant human pathways. Here, we summarize the virtues of C. elegans as a model system and review our current understanding of centriole duplication, the acquisition of pericentriolar material by centrioles to form centrosomes, the assembly of kinetochores and the mitotic spindle, chromosome segregation, and cytokinesis.
Collapse
Affiliation(s)
- Lionel Pintard
- Equipe labellisée Ligue contre le Cancer, Institut Jacques Monod, Team Cell Cycle and Development UMR7592, Centre National de la Recherche Scientifique - Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
17
|
Abstract
Fertilizable eggs develop from diploid precursor cells termed oocytes. Once every menstrual cycle, an oocyte matures into a fertilizable egg in the ovary. To this end, the oocyte eliminates half of its chromosomes into a small cell termed a polar body. The egg is then released into the Fallopian tube, where it can be fertilized. Upon fertilization, the egg completes the second meiotic division, and the mitotic division of the embryo starts. This review highlights recent work that has shed light on the cytoskeletal structures that drive the meiotic divisions of the oocyte in mammals. In particular, we focus on how mammalian oocytes assemble a microtubule spindle in the absence of centrosomes, how they position the spindle in preparation for polar body extrusion, and how the spindle segregates the chromosomes. We primarily focus on mouse oocytes as a model system but also highlight recent insights from human oocytes.
Collapse
Affiliation(s)
- Binyam Mogessie
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
- Current affiliation: School of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Kathleen Scheffler
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
| |
Collapse
|
18
|
Herrera LA, Starr DA. The E3 Ubiquitin Ligase MIB-1 Is Necessary To Form the Nuclear Halo in Caenorhabditis elegans Sperm. G3 (BETHESDA, MD.) 2018; 8:2465-2470. [PMID: 29776970 PMCID: PMC6027868 DOI: 10.1534/g3.118.200426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/18/2022]
Abstract
Unlike the classical nuclear envelope with two membranes found in other eukaryotic cells, most nematode sperm nuclei are not encapsulated by membranes. Instead, they are surrounded by a nuclear halo of unknown composition. How the halo is formed and regulated is unknown. We used forward genetics to identify molecular lesions behind three classical fer (fertilization defective) mutations that disrupt the ultrastructure of the Caenorhabditis elegans sperm nuclear halo. We found fer-2 and fer-4 alleles to be nonsense mutations in mib-1. fer-3 was caused by a nonsense mutation in eri-3 GFP::MIB-1 was expressed in the germline during early spermatogenesis, but not in mature sperm. mib-1 encodes a conserved E3 ubiquitin ligase homologous to vertebrate Mib1 and Mib2, which function in Notch signaling. Here, we show that mib-1 is important for male sterility and is involved in the regulation or formation of the nuclear halo during nematode spermatogenesis.
Collapse
Affiliation(s)
- Leslie A Herrera
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| |
Collapse
|
19
|
Panzica MT, McNally FJ. Mechanisms that prevent catastrophic interactions between paternal chromosomes and the oocyte meiotic spindle. Cell Cycle 2018; 17:529-534. [PMID: 29375006 DOI: 10.1080/15384101.2018.1431495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Meiosis produces haploid gametes by accurately reducing chromosome ploidy through one round of DNA replication and two subsequent rounds of chromosome segregation and cell division. The cell divisions of female meiosis are highly asymmetric and give rise to a large egg and two very small polar bodies that do not contribute to development. These asymmetric divisions are driven by meiotic spindles that are small relative to the size of the egg and have one pole juxtaposed against the cell cortex to promote polar body extrusion. An additional unique feature of female meiosis is that fertilization occurs before extrusion of the second polar body in nearly all animal species. Thus sperm-derived chromosomes are present in the egg during female meiosis. Here, we explore the idea that the asymmetry of female meiosis spatially separates the sperm from the meiotic spindle to prevent detrimental interactions between the spindle and the paternal chromosomes.
Collapse
Affiliation(s)
- Michelle T Panzica
- a Department of Molecular and Cellular Biology , University of California , Davis , Davis , CA , USA
| | - Francis J McNally
- a Department of Molecular and Cellular Biology , University of California , Davis , Davis , CA , USA
| |
Collapse
|
20
|
Panzica MT, Marin HC, Reymann AC, McNally FJ. F-actin prevents interaction between sperm DNA and the oocyte meiotic spindle in C. elegans. J Cell Biol 2017. [PMID: 28637747 PMCID: PMC5551714 DOI: 10.1083/jcb.201702020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
After fertilization, interactions between sperm and egg DNA must be prevented before the completion of female meiosis. Panzica et al. show that cortical tethering by F-actin prevents contact between the paternal DNA and the meiotic spindle. Fertilization occurs during female meiosis in most animals, which raises the question of what prevents the sperm DNA from interacting with the meiotic spindle. In this study, we find that Caenorhabditis elegans sperm DNA stays in a fixed position at the opposite end of the embryo from the meiotic spindle while yolk granules are transported throughout the embryo by kinesin-1. In the absence of F-actin, the sperm DNA, centrioles, and organelles were transported as a unit with the yolk granules, resulting in sperm DNA within 2 µm of the meiotic spindle. F-actin imaging revealed a cytoplasmic meshwork that might restrict transport in a size-dependent manner. However, increasing yolk granule size did not slow their velocity, and the F-actin moved with the yolk granules. Instead, sperm contents connect to the cortical F-actin to prevent interaction with the meiotic spindle.
Collapse
Affiliation(s)
- Michelle T Panzica
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | - Harold C Marin
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | | | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| |
Collapse
|
21
|
Maternal MEMI Promotes Female Meiosis II in Response to Fertilization in Caenorhabditis elegans. Genetics 2016; 204:1461-1477. [PMID: 27729423 DOI: 10.1534/genetics.116.192997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022] Open
Abstract
In most animals, female meiosis completes only after fertilization. Sperm entry has been implicated in providing a signal for the initiation of the final meiotic processes; however, a maternal component required for this process has not been previously identified. We report the characterization of a novel family of three highly similar paralogs (memi-1, memi-2, memi-3) that encode oocyte-specific proteins. A hyper-morphic mutation memi-1(sb41) results in failure to exit female meiosis II properly; however, loss of all three paralogs results in a "skipped meiosis II" phenotype. Mutations that prevent fertilization, such as fer-1(hc1), also cause a skipped meiosis II phenotype, suggesting that the MEMI proteins represent a maternal component of a postfertilization signal that specifies the meiosis II program. MEMI proteins are degraded before mitosis and sensitive to ZYG-11, a substrate-specific adapter for cullin-based ubiquitin ligase activity, and the memi-1(sb41) mutation results in inappropriate persistence of the MEMI-1 protein into mitosis. Using an RNAi screen for suppressors of memi-1(sb41), we identified a sperm-specific PP1 phosphatase, GSP-3/4, as a putative sperm component of the MEMI pathway. We also found that MEMI and GSP-3/4 proteins can physically interact via co-immunoprecipitation. These results suggest that sperm-specific PP1 and maternal MEMI proteins act in the same pathway after fertilization to facilitate proper meiosis II and the transition into embryonic mitosis.
Collapse
|
22
|
McNally KP, Panzica MT, Kim T, Cortes DB, McNally FJ. A novel chromosome segregation mechanism during female meiosis. Mol Biol Cell 2016; 27:2576-89. [PMID: 27335123 PMCID: PMC4985259 DOI: 10.1091/mbc.e16-05-0331] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/14/2016] [Indexed: 01/28/2023] Open
Abstract
During conventional anaphase A, chromosomes move outward toward spindle poles. Caenorhabditis elegans meiotic spindle poles move inward toward chromosomes to achieve the same end. In a wide range of eukaryotes, chromosome segregation occurs through anaphase A, in which chromosomes move toward stationary spindle poles, anaphase B, in which chromosomes move at the same velocity as outwardly moving spindle poles, or both. In contrast, Caenorhabditis elegans female meiotic spindles initially shorten in the pole-to-pole axis such that spindle poles contact the outer kinetochore before the start of anaphase chromosome separation. Once the spindle pole-to-kinetochore contact has been made, the homologues of a 4-μm-long bivalent begin to separate. The spindle shortens an additional 0.5 μm until the chromosomes are embedded in the spindle poles. Chromosomes then separate at the same velocity as the spindle poles in an anaphase B–like movement. We conclude that the majority of meiotic chromosome movement is caused by shortening of the spindle to bring poles in contact with the chromosomes, followed by separation of chromosome-bound poles by outward sliding.
Collapse
Affiliation(s)
- Karen Perry McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Michelle T Panzica
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Taekyung Kim
- Ludwig Institute for Cancer Research, San Diego, CA 92093 Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Daniel B Cortes
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
23
|
14-3-3γ Prevents Centrosome Amplification and Neoplastic Progression. Sci Rep 2016; 6:26580. [PMID: 27253419 PMCID: PMC4890593 DOI: 10.1038/srep26580] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
More than 80% of malignant tumors show centrosome amplification and clustering. Centrosome amplification results from aberrations in the centrosome duplication cycle, which is strictly coordinated with DNA-replication-cycle. However, the relationship between cell-cycle regulators and centrosome duplicating factors is not well understood. This report demonstrates that 14-3-3γ localizes to the centrosome and 14-3-3γ loss leads to centrosome amplification. Loss of 14-3-3γ results in the phosphorylation of NPM1 at Thr-199, causing early centriole disjunction and centrosome hyper-duplication. The centrosome amplification led to aneuploidy and increased tumor formation in mice. Importantly, an increase in passage of the 14-3-3γ-knockdown cells led to an increase in the number of cells containing clustered centrosomes leading to the generation of pseudo-bipolar spindles. The increase in pseudo-bipolar spindles was reversed and an increase in the number of multi-polar spindles was observed upon expression of a constitutively active 14-3-3-binding-defective-mutant of cdc25C (S216A) in the 14-3-3γ knockdown cells. The increase in multi-polar spindle formation was associated with decreased cell viability and a decrease in tumor growth. Our findings uncover the molecular basis of regulation of centrosome duplication by 14-3-3γ and inhibition of tumor growth by premature activation of the mitotic program and the disruption of centrosome clustering.
Collapse
|
24
|
Cortes DB, McNally KL, Mains PE, McNally FJ. The asymmetry of female meiosis reduces the frequency of inheritance of unpaired chromosomes. eLife 2015; 4:e06056. [PMID: 25848744 PMCID: PMC4412107 DOI: 10.7554/elife.06056] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/03/2015] [Indexed: 11/17/2022] Open
Abstract
Trisomy, the presence of a third copy of one chromosome, is deleterious and results in inviable or defective progeny if passed through the germ line. Random segregation of an extra chromosome is predicted to result in a high frequency of trisomic offspring from a trisomic parent. Caenorhabditis elegans with trisomy of the X chromosome, however, have far fewer trisomic offspring than expected. We found that the extra X chromosome was preferentially eliminated during anaphase I of female meiosis. We utilized a mutant with a specific defect in pairing of the X chromosome as a model to investigate the apparent bias against univalent inheritance. First, univalents lagged during anaphase I and their movement was biased toward the cortex and future polar body. Second, late-lagging univalents were frequently captured by the ingressing polar body contractile ring. The asymmetry of female meiosis can thus partially correct pre-existing trisomy.
Collapse
Affiliation(s)
- Daniel B Cortes
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Karen L McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
25
|
Avidor-Reiss T, Khire A, Fishman EL, Jo KH. Atypical centrioles during sexual reproduction. Front Cell Dev Biol 2015; 3:21. [PMID: 25883936 PMCID: PMC4381714 DOI: 10.3389/fcell.2015.00021] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/13/2015] [Indexed: 01/30/2023] Open
Abstract
Centrioles are conserved, self-replicating, microtubule-based, 9-fold symmetric subcellular organelles that are essential for proper cell division and function. Most cells have two centrioles and maintaining this number of centrioles is important for animal development and physiology. However, how animals gain their first two centrioles during reproduction is only partially understood. It is well established that in most animals, the centrioles are contributed to the zygote by the sperm. However, in humans and many animals, the sperm centrioles are modified in their structure and protein composition, or they appear to be missing altogether. In these animals, the origin of the first centrioles is not clear. Here, we review various hypotheses on how centrioles are gained during reproduction and describe specialized functions of the zygotic centrioles. In particular, we discuss a new and atypical centriole found in sperm and zygote, called the proximal centriole-like structure (PCL). We also discuss another type of atypical centriole, the "zombie" centriole, which is degenerated but functional. Together, the presence of centrioles, PCL, and zombie centrioles suggests a universal mechanism of centriole inheritance among animals and new causes of infertility. Since the atypical centrioles of sperm and zygote share similar functions with typical centrioles in somatic cells, they can provide unmatched insight into centriole biology.
Collapse
|
26
|
Brandvain Y, Coop G. Sperm should evolve to make female meiosis fair. Evolution 2015; 69:1004-14. [PMID: 25662355 DOI: 10.1111/evo.12621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/13/2015] [Indexed: 11/27/2022]
Abstract
Genomic conflicts arise when an allele gains an evolutionary advantage at a cost to organismal fitness. Oögenesis is inherently susceptible to such conflicts because alleles compete for inclusion into the egg. Alleles that distort meiosis in their favor (i.e., meiotic drivers) often decrease organismal fitness, and therefore indirectly favor the evolution of mechanisms to suppress meiotic drive. In this light, many facets of oögenesis and gametogenesis have been interpreted as mechanisms of protection against genomic outlaws. That females of many animal species do not complete meiosis until after fertilization, appears to run counter to this interpretation, because this delay provides an opportunity for sperm-acting alleles to meddle with the outcome of female meiosis and help like alleles drive in heterozygous females. Contrary to this perceived danger, the population genetic theory presented herein suggests that, in fact, sperm nearly always evolve to increase the fairness of female meiosis in the face of genomic conflicts. These results are consistent with the apparent sperm dependence of the best characterized female meiotic driversin animals. Rather than providing an opportunity for sperm collaboration in female meiotic drive, the "fertilization requirement" indirectly protects females from meiotic drivers by providing sperm an opportunity to suppress drive.
Collapse
Affiliation(s)
- Yaniv Brandvain
- Department of Plant Biology, University of Minnesota, Twin Cities, St. Paul, Minnesota 55108.
| | | |
Collapse
|
27
|
Cabral G, Sans S, Cowan C, Dammermann A. Multiple mechanisms contribute to centriole separation in C. elegans. Curr Biol 2013; 23:1380-7. [PMID: 23885867 PMCID: PMC3722485 DOI: 10.1016/j.cub.2013.06.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/16/2013] [Accepted: 06/18/2013] [Indexed: 01/10/2023]
Abstract
Centrosome function in cell division requires their duplication, once, and only once, per cell cycle. Underlying centrosome duplication are alternating cycles of centriole assembly and separation. Work in vertebrates has implicated the cysteine protease separase in anaphase-coupled centriole separation (or disengagement) and identified this as a key step in licensing another round of assembly. Current models have separase cleaving a physical link between centrioles, potentially cohesin, that prevents reinitiation of centriole assembly unless disengaged. Here, we examine separase function in the C. elegans early embryo. We find that depletion impairs separation and consequently duplication of sperm-derived centrioles at the meiosis-mitosis transition. However, subsequent cycles proceed normally. Whereas mitotic centrioles separate in the context of cortical forces acting on a disassembling pericentriolar material, sperm centrioles are not associated with significant pericentriolar material or subject to strong forces. Increasing centrosomal microtubule nucleation restores sperm centriole separation and duplication in separase-depleted embryos, while forced pericentriolar material disassembly drives premature separation in mitosis. These results emphasize the critical role of cytoskeletal forces and the pericentriolar material in centriole separation. Separase contributes to separation where forces are limited, offering a potential explanation for results obtained in different experimental models.
Collapse
Affiliation(s)
- Gabriela Cabral
- Max F. Perutz Laboratories, University of Vienna, Doktor-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Sabina Sanegre Sans
- Research Institute of Molecular Pathology, Doktor-Bohr-Gasse 7, 1030 Vienna, Austria
| | - Carrie R. Cowan
- Research Institute of Molecular Pathology, Doktor-Bohr-Gasse 7, 1030 Vienna, Austria
| | - Alexander Dammermann
- Max F. Perutz Laboratories, University of Vienna, Doktor-Bohr-Gasse 9, 1030 Vienna, Austria
| |
Collapse
|