1
|
Di Talia S. Developmental Control of Cell Cycle and Signaling. Cold Spring Harb Perspect Biol 2025; 17:a041499. [PMID: 38858070 PMCID: PMC11864111 DOI: 10.1101/cshperspect.a041499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In most species, the earliest stages of embryogenesis are characterized by rapid proliferation, which must be tightly controlled with other cellular processes across the large scale of the embryo. The study of this coordination has recently revealed new mechanisms of regulation of morphogenesis. Here, I discuss progress on how the integration of biochemical and mechanical signals leads to the proper positioning of cellular components, how signaling waves ensure the synchronization of the cell cycle, and how cell cycle transitions are properly timed. Similar concepts are emerging in the control of morphogenesis of other tissues, highlighting both common and unique features of early embryogenesis.
Collapse
Affiliation(s)
- Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
2
|
Goins LM, Girard JR, Mondal BC, Buran S, Su CC, Tang R, Biswas T, Kissi JA, Banerjee U. Wnt signaling couples G2 phase control with differentiation during hematopoiesis in Drosophila. Dev Cell 2024; 59:2477-2496.e5. [PMID: 38866012 PMCID: PMC11421984 DOI: 10.1016/j.devcel.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
During homeostasis, a critical balance is maintained between myeloid-like progenitors and their differentiated progeny, which function to mitigate stress and innate immune challenges. The molecular mechanisms that help achieve this balance are not fully understood. Using genetic dissection in Drosophila, we show that a Wnt6/EGFR-signaling network simultaneously controls progenitor growth, proliferation, and differentiation. Unlike G1-quiescence of stem cells, hematopoietic progenitors are blocked in G2 phase by a β-catenin-independent (Wnt/STOP) Wnt6 pathway that restricts Cdc25 nuclear entry and promotes cell growth. Canonical β-catenin-dependent Wnt6 signaling is spatially confined to mature progenitors through localized activation of the tyrosine kinases EGFR and Abelson kinase (Abl), which promote nuclear entry of β-catenin and facilitate exit from G2. This strategy combines transcription-dependent and -independent forms of both Wnt6 and EGFR pathways to create a direct link between cell-cycle control and differentiation. This unique combinatorial strategy employing conserved components may underlie homeostatic balance and stress response in mammalian hematopoiesis.
Collapse
Affiliation(s)
- Lauren M Goins
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Juliet R Girard
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Bama Charan Mondal
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sausan Buran
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chloe C Su
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruby Tang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Titash Biswas
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jessica A Kissi
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Szischik CL, Reves Szemere J, Balderrama R, Sánchez de la Vega C, Ventura AC. Transient frequency preference responses in cell signaling systems. NPJ Syst Biol Appl 2024; 10:86. [PMID: 39128915 PMCID: PMC11317535 DOI: 10.1038/s41540-024-00413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
Ligand-receptor systems, covalent modification cycles, and transcriptional networks are the fundamental components of cell signaling and gene expression systems. While their behavior in reaching a steady-state regime under step-like stimulation is well understood, their response under repetitive stimulation, particularly at early time stages is poorly characterized. Yet, early-stage responses to external inputs are arguably as informative as late-stage ones. In simple systems, a periodic stimulation elicits an initial transient response, followed by periodic behavior. Transient responses are relevant when the stimulation has a limited time span, or when the stimulated component's timescale is slow as compared to the timescales of the downstream processes, in which case the latter processes may be capturing only those transients. In this study, we analyze the frequency response of simple motifs at different time stages. We use dose-conserved pulsatile input signals and consider different metrics versus frequency curves. We show that in ligand-receptor systems, there is a frequency preference response in some specific metrics during the transient stages, which is not present in the periodic regime. We suggest this is a general system-level mechanism that cells may use to filter input signals that have consequences for higher order circuits. In addition, we evaluate how the described behavior in isolated motifs is reflected in similar types of responses in cascades and pathways of which they are a part. Our studies suggest that transient frequency preferences are important dynamic features of cell signaling and gene expression systems, which have been overlooked.
Collapse
Affiliation(s)
- Candela L Szischik
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física. Ciudad Universitaria, 1428, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina-Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
| | - Juliana Reves Szemere
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física. Ciudad Universitaria, 1428, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina-Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
- Universidad Pedagógica Nacional and Universidad Nacional de La Pampa, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Santa Rosa, Argentina
| | - Rocío Balderrama
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Matemática. Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Investigaciones Matemáticas Luis A. Santaló (IMAS - CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina, Buenos Aires, Argentina
| | - Constanza Sánchez de la Vega
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Matemática. Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Cálculo, FCEyN, CONICET-UBA, Buenos Aires, Argentina
| | - Alejandra C Ventura
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física. Ciudad Universitaria, 1428, Buenos Aires, Argentina.
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina-Universidad de Buenos Aires, 1428, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Bernadskaya YY, Kuan A, Tjärnberg A, Brandenburg J, Zheng P, Wiechecki K, Kaplan N, Failla M, Bikou M, Madilian O, Wang W, Christiaen L. Cell cycle-driven transcriptome maturation confers multilineage competence to cardiopharyngeal progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604718. [PMID: 39091743 PMCID: PMC11291048 DOI: 10.1101/2024.07.23.604718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
During development, stem and progenitor cells divide and transition through germ layer- and lineage-specific multipotent states to generate the diverse cell types that compose an animal. Defined changes in biomolecular composition underlie the progressive loss of potency and acquisition of lineage-specific characteristics. For example, multipotent cardiopharyngeal progenitors display multilineage transcriptional priming, whereby both the cardiac and pharyngeal muscle programs are partially active and coexist in the same progenitor cells, while their daughter cells engage in a cardiac or pharyngeal muscle differentiation path only after cell division. Here, using the tunicate Ciona, we studied the acquisition of multilineage competence and the coupling between fate decisions and cell cycle progression. We showed that multipotent cardiopharyngeal progenitors acquire the competence to produce distinct Tbx1/10(+) and (-) daughter cells shortly before mitosis, which is necessary for Tbx1/10 activation. By combining transgene-based sample barcoding with single cell RNA-seq (scRNA-seq), we uncovered transcriptome-wide dynamics in migrating cardiopharyngeal progenitors as cells progress through G1, S and G2 phases. We termed this process "transcriptome maturation", and identified candidate "mature genes", including the Rho GAP-coding gene Depdc1, which peak in late G2. Functional assays indicated that transcriptome maturation fosters cardiopharyngeal competence, in part through multilineage priming and proper oriented and asymmetric division that influences subsequent fate decisions, illustrating the concept of "behavioral competence". Both classic feedforward circuits and coupling with cell cycle progression drive transcriptome maturation, uncovering distinct levels of coupling between cell cycle progression and fateful molecular transitions. We propose that coupling competence and fate decision with the G2 and G1 phases, respectively, ensures the timely deployment of lineage-specific programs.
Collapse
Affiliation(s)
| | - Ariel Kuan
- Department of Biology, New York University, New York, NY, USA
| | | | | | - Ping Zheng
- Fang Centre, Ocean University of China, Qingdao, China
| | - Keira Wiechecki
- Department of Biology, New York University, New York, NY, USA
| | - Nicole Kaplan
- Department of Biology, New York University, New York, NY, USA
| | - Margaux Failla
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Department of Biology, New York University, New York, NY, USA
| | - Maria Bikou
- Department of Biology, New York University, New York, NY, USA
| | - Oliver Madilian
- Department of Biology, New York University, New York, NY, USA
| | - Wei Wang
- Department of Biology, New York University, New York, NY, USA
- Fang Centre, Ocean University of China, Qingdao, China
| | - Lionel Christiaen
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
5
|
Camuglia J, Chanet S, Martin AC. Morphogenetic forces planar polarize LGN/Pins in the embryonic head during Drosophila gastrulation. eLife 2022; 11:e78779. [PMID: 35796436 PMCID: PMC9262390 DOI: 10.7554/elife.78779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/05/2022] [Indexed: 01/03/2023] Open
Abstract
Spindle orientation is often achieved by a complex of Partner of Inscuteable (Pins)/LGN, Mushroom Body Defect (Mud)/Nuclear Mitotic Apparatus (NuMa), Gαi, and Dynein, which interacts with astral microtubules to rotate the spindle. Cortical Pins/LGN recruitment serves as a critical step in this process. Here, we identify Pins-mediated planar cell polarized divisions in several of the mitotic domains of the early Drosophila embryo. We found that neither planar cell polarity pathways nor planar polarized myosin localization determined division orientation; instead, our findings strongly suggest that Pins planar polarity and force generated from mesoderm invagination are important. Disrupting Pins polarity via overexpression of a myristoylated version of Pins caused randomized division angles. We found that disrupting forces through chemical inhibitors, depletion of an adherens junction protein, or blocking mesoderm invagination disrupted Pins planar polarity and spindle orientation. Furthermore, directional ablations that separated mesoderm from mitotic domains disrupted spindle orientation, suggesting that forces transmitted from mesoderm to mitotic domains can polarize Pins and orient division during gastrulation. To our knowledge, this is the first in vivo example where mechanical force has been shown to polarize Pins to mediate division orientation.
Collapse
Affiliation(s)
- Jaclyn Camuglia
- Biology Department, Massachusetts Institute of TechnologyCambridge, MAUnited States
| | - Soline Chanet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSLParisFrance
| | - Adam C Martin
- Biology Department, Massachusetts Institute of TechnologyCambridge, MAUnited States
| |
Collapse
|
6
|
Szemere JR, Rotstein HG, Ventura AC. Frequency-preference response in covalent modification cycles under substrate sequestration conditions. NPJ Syst Biol Appl 2021; 7:32. [PMID: 34404807 PMCID: PMC8371027 DOI: 10.1038/s41540-021-00192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Covalent modification cycles (CMCs) are basic units of signaling systems and their properties are well understood. However, their behavior has been mostly characterized in situations where the substrate is in excess over the modifying enzymes. Experimental data on protein abundance suggest that the enzymes and their target proteins are present in comparable concentrations, leading to substrate sequestration by the enzymes. In this enzyme-in-excess regime, CMCs have been shown to exhibit signal termination, the ability of the product to return to a stationary value lower than its peak in response to constant stimulation, while this stimulation is still active, with possible implications for the ability of systems to adapt to environmental inputs. We characterize the conditions leading to signal termination in CMCs in the enzyme-in-excess regime. We also demonstrate that this behavior leads to a preferred frequency response (band-pass filters) when the cycle is subjected to periodic stimulation, whereas the literature reports that CMCs investigated so far behave as low-pass filters. We characterize the relationship between signal termination and the preferred frequency response to periodic inputs and we explore the dynamic mechanism underlying these phenomena. Finally, we describe how the behavior of CMCs is reflected in similar types of responses in the cascades of which they are part. Evidence of protein abundance in vivo shows that enzymes and substrates are present in comparable concentrations, thus suggesting that signal termination and frequency-preference response to periodic inputs are also important dynamic features of cell signaling systems, which have been overlooked.
Collapse
Affiliation(s)
- Juliana Reves Szemere
- grid.482261.b0000 0004 1794 2491Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, Argentina
| | - Horacio G. Rotstein
- grid.260896.30000 0001 2166 4955Federated Department of Biological Sciences, New Jersey Institute of Technology & Rutgers University, Newark, NJ United States
| | - Alejandra C. Ventura
- grid.482261.b0000 0004 1794 2491Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981Departamento de Física, FCEyN UBA, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
7
|
Abstract
Understanding the mechanisms of embryonic cell cycles is a central goal of developmental biology, as the regulation of the cell cycle must be closely coordinated with other events during early embryogenesis. Quantitative imaging approaches have recently begun to reveal how the cell cycle oscillator is controlled in space and time, and how it is integrated with mechanical signals to drive morphogenesis. Here, we discuss how the Drosophila embryo has served as an excellent model for addressing the molecular and physical mechanisms of embryonic cell cycles, with comparisons to other model systems to highlight conserved and species-specific mechanisms. We describe how the rapid cleavage divisions characteristic of most metazoan embryos require chemical waves and cytoplasmic flows to coordinate morphogenesis across the large expanse of the embryo. We also outline how, in the late cleavage divisions, the cell cycle is inter-regulated with the activation of gene expression to ensure a reliable maternal-to-zygotic transition. Finally, we discuss how precise transcriptional regulation of the timing of mitosis ensures that tissue morphogenesis and cell proliferation are tightly controlled during gastrulation.
Collapse
Affiliation(s)
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27705, USA
| |
Collapse
|
8
|
Liu B, Zhao H, Wu K, Großhans J. Temporal Gradients Controlling Embryonic Cell Cycle. BIOLOGY 2021; 10:biology10060513. [PMID: 34207742 PMCID: PMC8228447 DOI: 10.3390/biology10060513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Embryonic cells sense temporal gradients of regulatory signals to determine whether and when to proceed or remodel the cell cycle. Such a control mechanism is allowed to accurately link the cell cycle with the developmental program, including cell differentiation, morphogenesis, and gene expression. The mid-blastula transition has been a paradigm for timing in early embryogenesis in frog, fish, and fly, among others. It has been argued for decades now if the events associated with the mid-blastula transition, i.e., the onset of zygotic gene expression, remodeling of the cell cycle, and morphological changes, are determined by a control mechanism or by absolute time. Recent studies indicate that multiple independent signals and mechanisms contribute to the timing of these different processes. Here, we focus on the mechanisms for cell cycle remodeling, specifically in Drosophila, which relies on gradual changes of the signal over time. We discuss pathways for checkpoint activation, decay of Cdc25 protein levels, as well as depletion of deoxyribonucleotide metabolites and histone proteins. The gradual changes of these signals are linked to Cdk1 activity by readout mechanisms involving thresholds. Abstract Cell proliferation in early embryos by rapid cell cycles and its abrupt pause after a stereotypic number of divisions present an attractive system to study the timing mechanism in general and its coordination with developmental progression. In animals with large eggs, such as Xenopus, zebrafish, or Drosophila, 11–13 very fast and synchronous cycles are followed by a pause or slowdown of the cell cycle. The stage when the cell cycle is remodeled falls together with changes in cell behavior and activation of the zygotic genome and is often referred to as mid-blastula transition. The number of fast embryonic cell cycles represents a clear and binary readout of timing. Several factors controlling the cell cycle undergo dynamics and gradual changes in activity or concentration and thus may serve as temporal gradients. Recent studies have revealed that the gradual loss of Cdc25 protein, gradual depletion of free deoxyribonucleotide metabolites, or gradual depletion of free histone proteins impinge on Cdk1 activity in a threshold-like manner. In this review, we will highlight with a focus on Drosophila studies our current understanding and recent findings on the generation and readout of these temporal gradients, as well as their position within the regulatory network of the embryonic cell cycle.
Collapse
Affiliation(s)
- Boyang Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (B.L.); (H.Z.); (K.W.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (B.L.); (H.Z.); (K.W.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Keliang Wu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (B.L.); (H.Z.); (K.W.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Jörg Großhans
- Department of Biology, Philipps University, 35043 Marburg, Germany
- Correspondence:
| |
Collapse
|
9
|
Zhu H, Cui Y, Luo C, Liu F. Quantifying Temperature Compensation of Bicoid Gradients with a Fast T-Tunable Microfluidic Device. Biophys J 2020; 119:1193-1203. [PMID: 32853562 PMCID: PMC7499060 DOI: 10.1016/j.bpj.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022] Open
Abstract
As a reaction-diffusion system strongly affected by temperature, early fly embryos surprisingly show highly reproducible and accurate developmental patterns during embryogenesis under temperature perturbations. To reveal the underlying temperature compensation mechanism, it is important to overcome the challenge in quantitative imaging on fly embryos under temperature perturbations. Inspired by microfluidics generating temperature steps on fly embryos, here we design a microfluidic device capable of ensuring the normal development of multiple fly embryos as well as achieving real-time temperature control and fast temperature switches for quantitative live imaging with a home-built two-photon microscope. We apply this system to quantify the temperature compensation of the morphogen Bicoid (Bcd) gradient in fly embryos. The length constant of the exponential Bcd gradient reaches the maximum at 25°C within the measured temperatures of 18-29°C and gradually adapts to the corresponding value at new temperatures upon a fast temperature switch. The relaxation time of such an adaptation becomes longer if the temperature is switched in a later developmental stage. This age-dependent temperature compensation could be explained if the traditional synthesis-diffusion-degradation model is extended to incorporate the dynamic change of the parameters controlling the formation of Bcd gradients.
Collapse
Affiliation(s)
- Hongcun Zhu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China
| | - Yeping Cui
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China
| | - Chunxiong Luo
- Center for Quantitative Biology, Peking University, Beijing, China; The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Feng Liu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China; Center for Quantitative Biology, Peking University, Beijing, China.
| |
Collapse
|
10
|
Liu B, Gregor I, Müller HA, Großhans J. Fluorescence fluctuation analysis reveals PpV dependent Cdc25 protein dynamics in living embryos. PLoS Genet 2020; 16:e1008735. [PMID: 32251417 PMCID: PMC7162543 DOI: 10.1371/journal.pgen.1008735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/16/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
The protein phosphatase Cdc25 is a key regulator of the cell cycle by activating Cdk-cyclin complexes. Cdc25 is regulated by its expression levels and post-translational mechanisms. In early Drosophila embryogenesis, Cdc25/Twine drives the fast and synchronous nuclear cycles. A pause in the cell cycle and the remodeling to a more generic cell cycle mode with a gap phase are determined by Twine inactivation and destruction in early interphase 14, in response to zygotic genome activation. Although the pseudokinase Tribbles contributes to the timely degradation of Twine, Twine levels are controlled by additional yet unknown post-translational mechanisms. Here, we apply a non-invasive method based on fluorescence fluctuation analysis (FFA) to record the absolute concentration profiles of Twine with minute-scale resolution in single living embryos. Employing this assay, we found that Protein phosphatase V (PpV), the homologue of the catalytic subunit of human PP6, ensures appropriately low Twine protein levels at the onset of interphase 14. PpV controls directly or indirectly the phosphorylation of Twine at multiple serine and threonine residues as revealed by phosphosite mapping. Mutational analysis confirmed that these sites are involved in control of Twine protein dynamics, and cell cycle remodeling is delayed in a fraction of the phosphosite mutant embryos. Our data reveal a novel mechanism for control of Twine protein levels and their significance for embryonic cell cycle remodeling.
Collapse
Affiliation(s)
- Boyang Liu
- Fachbereich Biologie (FB17), Philipps-Universität Marburg, Marburg, Germany
- Institut für Entwicklungsbiochemie, Universitätsmedizin, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ingo Gregor
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
| | - H.-Arno Müller
- Fachgebiet Entwicklungsgenetik, Institut für Biologie, Universität Kassel, Kassel, Germany
| | - Jörg Großhans
- Fachbereich Biologie (FB17), Philipps-Universität Marburg, Marburg, Germany
- Institut für Entwicklungsbiochemie, Universitätsmedizin, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Auconi A, Giansanti A, Klipp E. Information Thermodynamics for Time Series of Signal-Response Models. ENTROPY 2019; 21:e21020177. [PMID: 33266893 PMCID: PMC7514659 DOI: 10.3390/e21020177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/27/2019] [Accepted: 02/11/2019] [Indexed: 11/29/2022]
Abstract
The entropy production in stochastic dynamical systems is linked to the structure of their causal representation in terms of Bayesian networks. Such a connection was formalized for bipartite (or multipartite) systems with an integral fluctuation theorem in [Phys. Rev. Lett. 111, 180603 (2013)]. Here we introduce the information thermodynamics for time series, that are non-bipartite in general, and we show that the link between irreversibility and information can only result from an incomplete causal representation. In particular, we consider a backward transfer entropy lower bound to the conditional time series irreversibility that is induced by the absence of feedback in signal-response models. We study such a relation in a linear signal-response model providing analytical solutions, and in a nonlinear biological model of receptor-ligand systems where the time series irreversibility measures the signaling efficiency.
Collapse
Affiliation(s)
- Andrea Auconi
- Theoretische Biophysik, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Andrea Giansanti
- Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy
- INFN, Sezione di Roma 1, 00185 Rome, Italy
| | - Edda Klipp
- Theoretische Biophysik, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115 Berlin, Germany
- Correspondence:
| |
Collapse
|
12
|
Momen-Roknabadi A, Di Talia S, Wieschaus E. Transcriptional Timers Regulating Mitosis in Early Drosophila Embryos. Cell Rep 2017; 16:2793-2801. [PMID: 27626650 DOI: 10.1016/j.celrep.2016.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/30/2016] [Accepted: 08/11/2016] [Indexed: 11/30/2022] Open
Abstract
The development of an embryo requires precise spatiotemporal regulation of cellular processes. During Drosophila gastrulation, a precise temporal pattern of cell division is encoded through transcriptional regulation of cdc25(string) in 25 distinct mitotic domains. Using a genetic screen, we demonstrate that the same transcription factors that regulate the spatial pattern of cdc25(string) transcription encode its temporal activation. We identify buttonhead and empty spiracles as the major activators of cdc25(string) expression in mitotic domain 2. The effect of these activators is balanced through repression by hairy, sloppy paired 1, and huckebein. Within the mitotic domain, temporal precision of mitosis is robust and unaffected by changing dosage of rate-limiting transcriptional factors. However, precision can be disrupted by altering the levels of the two activators or two repressors. We propose that the additive and balanced action of activators and repressors is a general strategy for precise temporal regulation of cellular transitions during development.
Collapse
Affiliation(s)
- Amir Momen-Roknabadi
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Eric Wieschaus
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
13
|
Ogura Y, Sasakura Y. Emerging mechanisms regulating mitotic synchrony during animal embryogenesis. Dev Growth Differ 2017; 59:565-579. [DOI: 10.1111/dgd.12391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Yosuke Ogura
- Laboratory for Morphogenetic Signaling; RIKEN Center for Developmental Biology; Kobe Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center; University of Tsukuba; Shizuoka Japan
| |
Collapse
|
14
|
Deneke VE, Melbinger A, Vergassola M, Di Talia S. Waves of Cdk1 Activity in S Phase Synchronize the Cell Cycle in Drosophila Embryos. Dev Cell 2017; 38:399-412. [PMID: 27554859 DOI: 10.1016/j.devcel.2016.07.023] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/13/2016] [Accepted: 07/26/2016] [Indexed: 01/16/2023]
Abstract
Embryos of most metazoans undergo rapid and synchronous cell cycles following fertilization. While diffusion is too slow for synchronization of mitosis across large spatial scales, waves of Cdk1 activity represent a possible process of synchronization. However, the mechanisms regulating Cdk1 waves during embryonic development remain poorly understood. Using biosensors of Cdk1 and Chk1 activities, we dissect the regulation of Cdk1 waves in the Drosophila syncytial blastoderm. We show that Cdk1 waves are not controlled by the mitotic switch but by a double-negative feedback between Cdk1 and Chk1. Using mathematical modeling and surgical ligations, we demonstrate a fundamental distinction between S phase Cdk1 waves, which propagate as active trigger waves in an excitable medium, and mitotic Cdk1 waves, which propagate as passive phase waves. Our findings show that in Drosophila embryos, Cdk1 positive feedback serves primarily to ensure the rapid onset of mitosis, while wave propagation is regulated by S phase events.
Collapse
Affiliation(s)
- Victoria E Deneke
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Anna Melbinger
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Massimo Vergassola
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
15
|
Deneke VE, Melbinger A, Vergassola M, Di Talia S. Waves of Cdk1 Activity in S Phase Synchronize the Cell Cycle in Drosophila Embryos. Dev Cell 2016. [PMID: 27554859 DOI: 10.1016/j.devcel.2016.07.0240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Embryos of most metazoans undergo rapid and synchronous cell cycles following fertilization. While diffusion is too slow for synchronization of mitosis across large spatial scales, waves of Cdk1 activity represent a possible process of synchronization. However, the mechanisms regulating Cdk1 waves during embryonic development remain poorly understood. Using biosensors of Cdk1 and Chk1 activities, we dissect the regulation of Cdk1 waves in the Drosophila syncytial blastoderm. We show that Cdk1 waves are not controlled by the mitotic switch but by a double-negative feedback between Cdk1 and Chk1. Using mathematical modeling and surgical ligations, we demonstrate a fundamental distinction between S phase Cdk1 waves, which propagate as active trigger waves in an excitable medium, and mitotic Cdk1 waves, which propagate as passive phase waves. Our findings show that in Drosophila embryos, Cdk1 positive feedback serves primarily to ensure the rapid onset of mitosis, while wave propagation is regulated by S phase events.
Collapse
Affiliation(s)
- Victoria E Deneke
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Anna Melbinger
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Massimo Vergassola
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
16
|
Ferree PL, Deneke VE, Di Talia S. Measuring time during early embryonic development. Semin Cell Dev Biol 2016; 55:80-8. [PMID: 26994526 PMCID: PMC4903905 DOI: 10.1016/j.semcdb.2016.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/15/2016] [Indexed: 11/27/2022]
Abstract
In most metazoans, embryonic development is orchestrated by a precise series of cellular behaviors. Understanding how such events are regulated to achieve a stereotypical temporal progression is a fundamental problem in developmental biology. In this review, we argue that studying the regulation of the cell cycle in early embryonic development will reveal novel principles of how embryos accurately measure time. We will discuss the strategies that have emerged from studying early development of Drosophila embryos. By comparing the development of flies to that of other metazoans, we will highlight both conserved and alternative mechanisms to generate precision during embryonic development.
Collapse
Affiliation(s)
- Patrick L Ferree
- Department of Cell Biology, Duke University Medical Center, Durham NC, United States
| | - Victoria E Deneke
- Department of Cell Biology, Duke University Medical Center, Durham NC, United States
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham NC, United States.
| |
Collapse
|
17
|
Ogura Y, Sasakura Y. Developmental Control of Cell-Cycle Compensation Provides a Switch for Patterned Mitosis at the Onset of Chordate Neurulation. Dev Cell 2016; 37:148-61. [DOI: 10.1016/j.devcel.2016.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 01/28/2016] [Accepted: 03/16/2016] [Indexed: 10/21/2022]
|
18
|
Ayeni JO, Campbell SD. "Ready, set, go": checkpoint regulation by Cdk1 inhibitory phosphorylation. Fly (Austin) 2015; 8:140-7. [PMID: 25483135 DOI: 10.4161/19336934.2014.969147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
ABSTRACT Cell cycle checkpoints prevent mitosis from occurring before DNA replication and repair are completed during S and G2 phases. The checkpoint mechanism involves inhibitory phosphorylation of Cdk1, a conserved kinase that regulates the onset of mitosis. Metazoans have two distinct Cdk1 inhibitory kinases with specialized developmental functions: Wee1 and Myt1. Ayeni et al used transgenic Cdk1 phospho-acceptor mutants to analyze how the distinct biochemical properties of these kinases affected their functions. They concluded from their results that phosphorylation of Cdk1 on Y15 was necessary and sufficient for G2/M checkpoint arrest in imaginal wing discs, whereas phosphorylation on T14 promoted chromosome stability by a different mechanism. A curious relationship was also noted between Y15 inhibitory phosphorylation and T161 activating phosphorylation. These unexpected complexities in Cdk1 inhibitory phosphorylation demonstrate that the checkpoint mechanism is not a simple binary "off/on" switch, but has at least three distinct states: "Ready", to prevent chromosome damage and apoptosis, "Set", for developmentally regulated G2 phase arrest, and "Go", when Cdc25 phosphatases remove inhibitory phosphates to trigger Cdk1 activation at the G2/M transition.
Collapse
Affiliation(s)
- J O Ayeni
- a Department of Biological Sciences ; University of Alberta ; Edmonton , AB , Canada
| | | |
Collapse
|
19
|
Arenas-Mena C, Coffman JA. Developmental control of transcriptional and proliferative potency during the evolutionary emergence of animals. Dev Dyn 2015; 244:1193-201. [PMID: 26173445 PMCID: PMC4705838 DOI: 10.1002/dvdy.24305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 06/18/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022] Open
Abstract
It is proposed that the evolution of complex animals required repressive genetic mechanisms for controlling the transcriptional and proliferative potency of cells. Unicellular organisms are transcriptionally potent, able to express their full genetic complement as the need arises through their life cycle, whereas differentiated cells of multicellular organisms can only express a fraction of their genomic potential. Likewise, whereas cell proliferation in unicellular organisms is primarily limited by nutrient availability, cell proliferation in multicellular organisms is developmentally regulated. Repressive genetic controls limiting the potency of cells at the end of ontogeny would have stabilized the gene expression states of differentiated cells and prevented disruptive proliferation, allowing the emergence of diverse cell types and functional shapes. We propose that distal cis-regulatory elements represent the primary innovations that set the stage for the evolution of developmental gene regulatory networks and the repressive control of key multipotency and cell-cycle control genes. The testable prediction of this model is that the genomes of extant animals, unlike those of our unicellular relatives, encode gene regulatory circuits dedicated to the developmental control of transcriptional and proliferative potency.
Collapse
Affiliation(s)
- Cesar Arenas-Mena
- Department of Biology, College of Staten Island and Graduate Center, The City University of New York (CUNY), Staten Island, New York
| | | |
Collapse
|
20
|
Di Talia S, Wieschaus EF. Simple biochemical pathways far from steady state can provide switchlike and integrated responses. Biophys J 2015; 107:L1-L4. [PMID: 25099818 DOI: 10.1016/j.bpj.2014.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 11/30/2022] Open
Abstract
Covalent modification cycles (systems in which the activity of a substrate is regulated by the action of two opposing enzymes) and ligand/receptor interactions are ubiquitous in signaling systems and their steady-state properties are well understood. However, the behavior of such systems far from steady state remains unclear. Here, we analyze the properties of covalent modification cycles and ligand/receptor interactions driven by the accumulation of the activating enzyme and the ligand, respectively. We show that for a large range of parameters both systems produce sharp switchlike response and yet allow for temporal integration of the signal, two desirable signaling properties. Ultrasensitivity is observed also in a region of parameters where the steady-state response is hyperbolic. The temporal integration properties are tunable by regulating the levels of the deactivating enzyme and receptor, as well as by adjusting the rate of accumulation of the activating enzyme and ligand. We propose that this tunability is used to generate precise responses in signaling systems.
Collapse
Affiliation(s)
- Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina.
| | - Eric F Wieschaus
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, New Jersey
| |
Collapse
|
21
|
Bothma JP, Garcia HG, Ng S, Perry MW, Gregor T, Levine M. Enhancer additivity and non-additivity are determined by enhancer strength in the Drosophila embryo. eLife 2015; 4:e07956. [PMID: 26267217 PMCID: PMC4532966 DOI: 10.7554/elife.07956] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/15/2015] [Indexed: 01/29/2023] Open
Abstract
Metazoan genes are embedded in a rich milieu of regulatory information that often includes multiple enhancers possessing overlapping activities. In this study, we employ quantitative live imaging methods to assess the function of pairs of primary and shadow enhancers in the regulation of key patterning genes-knirps, hunchback, and snail-in developing Drosophila embryos. The knirps enhancers exhibit additive, sometimes even super-additive activities, consistent with classical gene fusion studies. In contrast, the hunchback enhancers function sub-additively in anterior regions containing saturating levels of the Bicoid activator, but function additively in regions where there are diminishing levels of the Bicoid gradient. Strikingly sub-additive behavior is also observed for snail, whereby removal of the proximal enhancer causes a significant increase in gene expression. Quantitative modeling of enhancer-promoter interactions suggests that weakly active enhancers function additively while strong enhancers behave sub-additively due to competition with the target promoter.
Collapse
Affiliation(s)
- Jacques P Bothma
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Hernan G Garcia
- Department of Physics, Princeton University, Princeton, United States
| | - Samuel Ng
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Michael W Perry
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Thomas Gregor
- Department of Physics, Princeton University, Princeton, United States
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
| | - Michael Levine
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
22
|
Liu X, Wang X, Yang X, Liu S, Jiang L, Qu Y, Hu L, Ouyang Q, Tang C. Reliable cell cycle commitment in budding yeast is ensured by signal integration. eLife 2015; 4:e03977. [PMID: 25590650 PMCID: PMC4378612 DOI: 10.7554/elife.03977] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/07/2015] [Indexed: 12/29/2022] Open
Abstract
Cell fate decisions are critical for life, yet little is known about how their reliability is achieved when signals are noisy and fluctuating with time. In this study, we show that in budding yeast, the decision of cell cycle commitment (Start) is determined by the time integration of its triggering signal Cln3. We further identify the Start repressor, Whi5, as the integrator. The instantaneous kinase activity of Cln3-Cdk1 is recorded over time on the phosphorylated Whi5, and the decision is made only when phosphorylated Whi5 reaches a threshold. Cells adjust the threshold by modulating Whi5 concentration in different nutrient conditions to coordinate growth and division. Our work shows that the strategy of signal integration, which was previously found in decision-making behaviors of animals, is adopted at the cellular level to reduce noise and minimize uncertainty.
Collapse
Affiliation(s)
- Xili Liu
- Center for Quantitative
Biology, Peking University,
Beijing, China
- Peking-Tsinghua Center
for Life Sciences, Peking University,
Beijing, China
| | - Xin Wang
- Center for Quantitative
Biology, Peking University,
Beijing, China
- Peking-Tsinghua Center
for Life Sciences, Peking University,
Beijing, China
| | - Xiaojing Yang
- Center for Quantitative
Biology, Peking University,
Beijing, China
- Peking-Tsinghua Center
for Life Sciences, Peking University,
Beijing, China
| | - Sen Liu
- Institute of Molecular
Biology, College of Medical Science, China Three Gorges
University, Yichang, China
| | - Lingli Jiang
- Center for Quantitative
Biology, Peking University,
Beijing, China
- Peking-Tsinghua Center
for Life Sciences, Peking University,
Beijing, China
| | - Yimiao Qu
- Center for Quantitative
Biology, Peking University,
Beijing, China
- Peking-Tsinghua Center
for Life Sciences, Peking University,
Beijing, China
| | - Lufeng Hu
- Center for Quantitative
Biology, Peking University,
Beijing, China
- Peking-Tsinghua Center
for Life Sciences, Peking University,
Beijing, China
| | - Qi Ouyang
- Center for Quantitative
Biology, Peking University,
Beijing, China
- Peking-Tsinghua Center
for Life Sciences, Peking University,
Beijing, China
| | - Chao Tang
- Center for Quantitative
Biology, Peking University,
Beijing, China
- Peking-Tsinghua Center
for Life Sciences, Peking University,
Beijing, China
| |
Collapse
|
23
|
Bouldin CM, Snelson CD, Farr GH, Kimelman D. Restricted expression of cdc25a in the tailbud is essential for formation of the zebrafish posterior body. Genes Dev 2014; 28:384-95. [PMID: 24478331 PMCID: PMC3937516 DOI: 10.1101/gad.233577.113] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The vertebrate body forms from a multipotent stem cell-like progenitor population that contributes newly differentiated cells to the posterior end of the embryo. Here, in vivo analyses show that proliferation is compartmentalized at the posterior end of the zebrafish embryo via regulated expression of mitotic factor Cdc25a. Furthermore, compartmentalization of proliferation during embryogenesis is critical to both body extension and muscle cell fate. This study reveals an unexpected link between precise regulation of the cell cycle and differentiation from multipotency in the vertebrate embryo. The vertebrate body forms from a multipotent stem cell-like progenitor population that progressively contributes newly differentiated cells to the most posterior end of the embryo. How the progenitor population balances proliferation and other cellular functions is unknown due to the difficulty of analyzing cell division in vivo. Here, we show that proliferation is compartmentalized at the posterior end of the embryo during early zebrafish development by the regulated expression of cdc25a, a key controller of mitotic entry. Through the use of a transgenic line that misexpresses cdc25a, we show that this compartmentalization is critical for the formation of the posterior body. Upon misexpression of cdc25a, several essential T-box transcription factors are abnormally expressed, including Spadetail/Tbx16, which specifically prevents the normal onset of myoD transcription, leading to aberrant muscle formation. Our results demonstrate that compartmentalization of proliferation during early embryogenesis is critical for both extension of the vertebrate body and differentiation of the multipotent posterior progenitor cells to the muscle cell fate.
Collapse
Affiliation(s)
- Cortney M Bouldin
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
24
|
Gomes H, Romeiro NC, Braz GRC, de Oliveira EAG, Rodrigues C, da Fonseca RN, Githaka N, Isezaki M, Konnai S, Ohashi K, da Silva Vaz I, Logullo C, Moraes J. Identification and structural-functional analysis of cyclin-dependent kinases of the cattle tick Rhipicephalus (Boophilus) microplus. PLoS One 2013; 8:e76128. [PMID: 24146826 PMCID: PMC3795742 DOI: 10.1371/journal.pone.0076128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/20/2013] [Indexed: 01/08/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are a family of serine/threonine kinases essential for cell cycle progression. Herein, we describe the participation of CDKs in the physiology of Rhipicephalus microplus, the southern cattle tick and an important disease vector. Firstly, amino acid sequences homologous with CDKs of other organisms were identified from a R. microplus transcriptome database in silico. The analysis of the deduced amino acid sequences of CDK1 and CDK10 from R. microplus showed that both have caspase-3/7 cleavage motifs despite their differences in motif position and length of encoded proteins. CDK1 has two motifs (DKRGD and SAKDA) located opposite to the ATP binding site while CDK10 has only one motif (SLLDN) for caspase 3–7 near the ATP binding site. Roscovitine (Rosco), a purine derivative that inhibits CDK/cyclin complexes by binding to the catalytic domain of the CDK molecule at the ATP binding site, which prevents the transfer of ATP's γphosphoryl group to the substrate. To determine the effect of Rosco on tick CDKs, BME26 cells derived from R. microplus embryo cells were utilized in vitro inhibition assays. Cell viability decreased in the Rosco-treated groups after 24 hours of incubation in a concentration-dependent manner and this was observed up to 48 hours following incubation. To our knowledge, this is the first report on characterization of a cell cycle protein in arachnids, and the sensitivity of BME26 tick cell line to Rosco treatment suggests that CDKs are potential targets for novel drug design to control tick infestation.
Collapse
Affiliation(s)
- Helga Gomes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM - UFRJ, campus Macaé, Avenida São José do Barreto, São José do Barreto, Macaé, RJ, Brazil
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, CCS, Bloco H, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Nelilma C. Romeiro
- Laboratório Integrado de Computação Científica, NUPEM - UFRJ, Campus Macaé, São José do Barreto, Macaé, RJ, Brazil
| | - Gloria R. C. Braz
- Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil
- Departamento de Bioquímica - Instituto de Química, IQ-UFRJ, Rio de Janeiro, RJ, Brazil
| | | | - Camilla Rodrigues
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM - UFRJ, campus Macaé, Avenida São José do Barreto, São José do Barreto, Macaé, RJ, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM - UFRJ, campus Macaé, Avenida São José do Barreto, São José do Barreto, Macaé, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Naftaly Githaka
- Laboratory of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Nishi, Kita-Ku Sapporo, Japan
| | - Masayoshi Isezaki
- Laboratory of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Nishi, Kita-Ku Sapporo, Japan
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Nishi, Kita-Ku Sapporo, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Nishi, Kita-Ku Sapporo, Japan
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil
- Centro de Biotecnologia e Faculdade de Veterinária, UFRGS, Porto Alegre, RS, Brazil
| | - Carlos Logullo
- Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil
- Laboratório de Química e Função de Proteínas e Peptídeos, Unidade de Experimentação Animal – CBB - UENF, Horto, Campos dos Goytacazes, RJ, Brazil
| | - Jorge Moraes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM - UFRJ, campus Macaé, Avenida São José do Barreto, São José do Barreto, Macaé, RJ, Brazil
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, CCS, Bloco H, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
25
|
Di Talia S, She R, Blythe SA, Lu X, Zhang QF, Wieschaus EF. Posttranslational control of Cdc25 degradation terminates Drosophila's early cell-cycle program. Curr Biol 2013; 23:127-32. [PMID: 23290553 DOI: 10.1016/j.cub.2012.11.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/05/2012] [Accepted: 11/12/2012] [Indexed: 11/30/2022]
Abstract
In most metazoans, early embryonic development is characterized by rapid mitotic divisions that are controlled by maternal mRNAs and proteins that accumulate during oogenesis. These rapid divisions pause at the midblastula transition (MBT), coinciding with a dramatic increase in gene transcription and the degradation of a subset of maternal mRNAs. In Drosophila, the cell-cycle pause is controlled by inhibitory phosphorylation of Cdk1, which in turn is driven by downregulation of the activating Cdc25 phosphatases. Here, we show that the two Drosophila Cdc25 homologs, String and Twine, differ in their dynamics and that, contrary to current models, their downregulations are not controlled by mRNA degradation but through different posttranslational mechanisms. The degradation rate of String protein gradually increases during the late syncytial cycles in a manner dependent on the nuclear-to-cytoplasmic ratio and on the DNA replication checkpoints. Twine, on the other hand, is targeted for degradation at the onset of the MBT through a switch-like mechanism controlled, like String, by the nuclear-to-cytoplasmic ratio, but not requiring the DNA replication checkpoints. We demonstrate that posttranslational control of Twine degradation ensures that the proper number of mitoses precede the MBT.
Collapse
Affiliation(s)
- Stefano Di Talia
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | |
Collapse
|