1
|
Ali-Ahmad A, Mors M, Carrer M, Li X, Bilokapić S, Halić M, Cascella M, Sekulić N. Non-nucleosomal (CENP-A/H4) 2 - DNA complexes as a possible platform for centromere organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630874. [PMID: 39803555 PMCID: PMC11722257 DOI: 10.1101/2024.12.31.630874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The centromere is a part of the chromosome that is essential for the even segregation of duplicated chromosomes during cell division. It is epigenetically defined by the presence of the histone H3 variant CENP-A. CENP-A associates specifically with a group of 16 proteins that form the centromere-associated network of proteins (CCAN). In mitosis, the kinetochore forms on the CCAN to connect the duplicated chromosomes to the microtubules protruding from the cell poles. Previous studies have shown that CENP-A replaces H3 in nucleosomes, and recently the structures of CENP-A-containing nucleosomes in complex with CCANs have been revealed, but they show only a limited interaction between CCANs and CENP-A. Here, we report the cryoEM structure of 2x(CENP-A/H4)2-di-tetramers assembled on DNA in the absence of H2A/H2B histone dimer and speculate how (CENP-A/H4)2-tetramers and -di-tetramers might serve as a platform for CCAN organization.
Collapse
Affiliation(s)
- Ahmad Ali-Ahmad
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, Oslo 0318, Norway
| | - Mira Mors
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern 0315, Norway
| | - Manuel Carrer
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern 0315, Norway
| | - Xinmeng Li
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern 0315, Norway
| | - Silvija Bilokapić
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mario Halić
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Michele Cascella
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern 0315, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Nikolina Sekulić
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, Oslo 0318, Norway
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern 0315, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Sethi SC, Shrestha RL, Balachandra V, Durairaj G, Au WC, Nirula M, Karpova TS, Kaiser P, Basrai MA. β-TrCP-Mediated Proteolysis of Mis18β Prevents Mislocalization of CENP-A and Chromosomal Instability. Mol Cell Biol 2024; 44:429-442. [PMID: 39135477 PMCID: PMC11486186 DOI: 10.1080/10985549.2024.2382445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 10/15/2024] Open
Abstract
Restricting the localization of evolutionarily conserved histone H3 variant CENP-A to the centromere is essential to prevent chromosomal instability (CIN), an important hallmark of cancers. Overexpressed CENP-A mislocalizes to non-centromeric regions and contributes to CIN in yeast, flies, and human cells. Centromeric localization of CENP-A is facilitated by the interaction of Mis18β with CENP-A specific chaperone HJURP. Cellular levels of Mis18β are regulated by β-transducin repeat containing protein (β-TrCP), an F-box protein of SCF (Skp1, Cullin, F-box) E3-ubiquitin ligase complex. Here, we show that defects in β-TrCP-mediated proteolysis of Mis18β contributes to the mislocalization of endogenous CENP-A and CIN in a triple-negative breast cancer (TNBC) cell line, MDA-MB-231. CENP-A mislocalization in β-TrCP depleted cells is dependent on high levels of Mis18β as depletion of Mis18β suppresses mislocalization of CENP-A in these cells. Consistent with these results, endogenous CENP-A is mislocalized in cells overexpressing Mis18β alone. In summary, our results show that β-TrCP-mediated degradation of Mis18β prevents mislocalization of CENP-A and CIN. We propose that deregulated expression of Mis18β may be one of the key mechanisms that contributes to chromosome segregation defects in cancers.
Collapse
Affiliation(s)
- Subhash Chandra Sethi
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Roshan Lal Shrestha
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vinutha Balachandra
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Geetha Durairaj
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Wei-Chun Au
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Nirula
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tatiana S. Karpova
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter Kaiser
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Munira A. Basrai
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Takeuchi H, Nagahara S, Higashiyama T, Berger F. The Chaperone NASP Contributes to de Novo Deposition of the Centromeric Histone Variant CENH3 in Arabidopsis Early Embryogenesis. PLANT & CELL PHYSIOLOGY 2024; 65:1135-1148. [PMID: 38597891 PMCID: PMC11287212 DOI: 10.1093/pcp/pcae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
The centromere is an essential chromosome region where the kinetochore is formed to control equal chromosome distribution during cell division. The centromere-specific histone H3 variant CENH3 (also called CENP-A) is a prerequisite for the kinetochore formation. Since CENH3 evolves rapidly, associated factors, including histone chaperones mediating the deposition of CENH3 on the centromere, are thought to act through species-specific amino acid sequences. The functions and interaction networks of CENH3 and histone chaperons have been well-characterized in animals and yeasts. However, molecular mechanisms involved in recognition and deposition of CENH3 are still unclear in plants. Here, we used a swapping strategy between domains of CENH3 of Arabidopsis thaliana and the liverwort Marchantia polymorpha to identify specific regions of CENH3 involved in targeting the centromeres and interacting with the general histone H3 chaperone, nuclear autoantigenic sperm protein (NASP). CENH3's LoopN-α1 region was necessary and sufficient for the centromere targeting in cooperation with the α2 region and was involved in interaction with NASP in cooperation with αN, suggesting a species-specific CENH3 recognition. In addition, by generating an Arabidopsis nasp knock-out mutant in the background of a fully fertile GFP-CENH3/cenh3-1 line, we found that NASP was implicated for de novo CENH3 deposition after fertilization and thus for early embryo development. Our results imply that the NASP mediates the supply of CENH3 in the context of the rapidly evolving centromere identity in land plants.
Collapse
Affiliation(s)
- Hidenori Takeuchi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shiori Nagahara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna 1030, Austria
| |
Collapse
|
4
|
Graham E, Esashi F. DNA strand breaks at centromeres: Friend or foe? Semin Cell Dev Biol 2024; 156:141-151. [PMID: 37872040 DOI: 10.1016/j.semcdb.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Centromeres are large structural regions in the genomic DNA, which are essential for accurately transmitting a complete set of chromosomes to daughter cells during cell division. In humans, centromeres consist of highly repetitive α-satellite DNA sequences and unique epigenetic components, forming large proteinaceous structures required for chromosome segregation. Despite their biological importance, there is a growing body of evidence for centromere breakage across the cell cycle, including periods of quiescence. In this review, we provide an up-to-date examination of the distinct centromere environments at different stages of the cell cycle, highlighting their plausible contribution to centromere breakage. Additionally, we explore the implications of these breaks on centromere function, both in terms of negative consequences and potential positive effects.
Collapse
Affiliation(s)
- Emily Graham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Serafim RB, Cardoso C, Storti CB, da Silva P, Qi H, Parasuram R, Navegante G, Peron JPS, Silva WA, Espreafico EM, Paçó-Larson ML, Price BD, Valente V. HJURP is recruited to double-strand break sites and facilitates DNA repair by promoting chromatin reorganization. Oncogene 2024; 43:804-820. [PMID: 38279062 DOI: 10.1038/s41388-024-02937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024]
Abstract
HJURP is overexpressed in several cancer types and strongly correlates with patient survival. However, the mechanistic basis underlying the association of HJURP with cancer aggressiveness is not well understood. HJURP promotes the loading of the histone H3 variant, CENP-A, at the centromeric chromatin, epigenetically defining the centromeres and supporting proper chromosome segregation. In addition, HJURP is associated with DNA repair but its function in this process is still scarcely explored. Here, we demonstrate that HJURP is recruited to DSBs through a mechanism requiring chromatin PARylation and promotes epigenetic alterations that favor the execution of DNA repair. Incorporation of HJURP at DSBs promotes turnover of H3K9me3 and HP1, facilitating DNA damage signaling and DSB repair. Moreover, HJURP overexpression in glioma cell lines also affected global structure of heterochromatin independently of DNA damage induction, promoting genome-wide reorganization and assisting DNA damage response. HJURP overexpression therefore extensively alters DNA damage signaling and DSB repair, and also increases radioresistance of glioma cells. Importantly, HJURP expression levels in tumors are also associated with poor response of patients to radiation. Thus, our results enlarge the understanding of HJURP involvement in DNA repair and highlight it as a promising target for the development of adjuvant therapies that sensitize tumor cells to irradiation.
Collapse
Affiliation(s)
- Rodolfo B Serafim
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Rodovia Araraquara - Jaú, Km 01 - s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil
| | - Cibele Cardoso
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Camila B Storti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Patrick da Silva
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Hongyun Qi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Ramya Parasuram
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Geovana Navegante
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Rodovia Araraquara - Jaú, Km 01 - s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil
| | - Jean Pierre S Peron
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Wilson A Silva
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Enilza M Espreafico
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Maria L Paçó-Larson
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Brendan D Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Valeria Valente
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil.
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Rodovia Araraquara - Jaú, Km 01 - s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil.
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil.
| |
Collapse
|
6
|
Liu C, Fang J, Kang W, Yang Y, Yu C, Chen H, Zhang Y, Ouyang H. Identification of novel potential homologous repair deficiency-associated genes in pancreatic adenocarcinoma via WGCNA coexpression network analysis and machine learning. Cell Cycle 2023; 22:2392-2408. [PMID: 38124367 PMCID: PMC10802216 DOI: 10.1080/15384101.2023.2293594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Homologous repair deficiency (HRD) impedes double-strand break repair, which is a common driver of carcinogenesis. Positive HRD status can be used as theranostic markers of response to platinum- and PARP inhibitor-based chemotherapies. Here, we aimed to fully investigate the therapeutic and prognostic potential of HRD in pancreatic adenocarcinoma (PAAD) and identify effective biomarkers related to HRD using comprehensive bioinformatics analysis. The HRD score was defined as the unweighted sum of the LOH, TAI, and LST scores, and it was obtained based on the previous literature. To characterize PAAD immune infiltration subtypes, the "ConsensusClusterPlus" package in R was used to conduct unsupervised clustering. A WGCNA was conducted to elucidate the gene coexpression modules and hub genes in the HRD-related gene module of PAAD. The functional enrichment study was performed using Metascape. LASSO analysis was performed using the "glmnet" package in R, while the random forest algorithm was realized using the "randomForest" package in R. The prognostic variables were evaluated using univariate Cox analysis. The prognostic risk model was built using the LASSO approach. ROC curve and KM survival analyses were performed to assess the prognostic potential of the risk model. The half-maximal inhibitory concentration (IC50) of the PARP inhibitors was estimated using the "pRRophetic" package in R and the Genomics of Drug Sensitivity in Cancer database. The "rms" package in R was used to create the nomogram. A high HRD score indicated a poor prognosis and an advanced clinical process in PAAD patients. PAAD tumors with high HRD levels revealed significant T helper lymphocyte depletion, upregulated levels of cancer stem cells, and increased sensitivity to rucaparib, Olaparib, and veliparib. Using WGCNA, 11 coexpression modules were obtained. The red module and 122 hub genes were identified as the most correlated with HRD in PAAD. Functional enrichment analysis revealed that the 122 hub genes were mainly concentrated in cell cycle pathways. One novel HRD-related gene signature consisting of CKS1B, HJURP, and TPX2 were screened via LASSO analysis and a random forest algorithm, and they were validated using independent validation sets. No direct association between HRD and CKS1B, HJURP, or TPX2 has not been reported in the literature so far. Thus, these findings indicated that CKS1B, HJURP, and TPX2 have potential as diagnostic and prognostic biomarkers for PAAD. We constructed a novel HRD-related prognostic model that provides new insights into PAAD prognosis and immunotherapy. Based on bioinformatics analysis, we comprehensively explored the therapeutic and prognostic potential of HRD in PAAD. One novel HRD-related gene signature consisting of CKS1B, HJURP, and TPX2 were identified through the combination of WGCNA, LASSO analysis and a random forest algorithm. A novel HRD-related risk model that can predict clinical prognosis and immunotherapeutic response in PAAD patients was constructed.
Collapse
Affiliation(s)
- Chun Liu
- Department of General surgery, The People’s Hospital of Chizhou, Chizhou, Anhui Province, China
| | - Jingyun Fang
- Department of Nursing, The People’s Hospital of Chizhou, Chizhou, Anhui Province, China
| | - Weibiao Kang
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yang Yang
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Changjun Yu
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Hao Chen
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yongwei Zhang
- Department of general surgery, Anqing First People’s Hospital, Anqing, Anhui Province, China
| | - Huan Ouyang
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
7
|
Das A, Boese KG, Tachibana K, Baek SH, Lampson MA, Black BE. Centromere-specifying nucleosomes persist in aging mouse oocytes in the absence of nascent assembly. Curr Biol 2023; 33:3759-3765.e3. [PMID: 37582374 PMCID: PMC10528140 DOI: 10.1016/j.cub.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Centromeres direct genetic inheritance but are not themselves genetically encoded. Instead, centromeres are defined epigenetically by the presence of a histone H3 variant, CENP-A.1 In cultured somatic cells, an established paradigm of cell-cycle-coupled propagation maintains centromere identity: CENP-A is partitioned between sisters during replication and replenished by new assembly, which is restricted to G1. The mammalian female germ line challenges this model because of the cell-cycle arrest between pre-meiotic S phase and the subsequent G1, which can last for the entire reproductive lifespan (months to decades). New CENP-A chromatin assembly maintains centromeres during prophase I in worm and starfish oocytes,2,3 suggesting that a similar process may be required for centromere inheritance in mammals. To test this hypothesis, we developed an oocyte-specific conditional knockout (cKO) mouse for Mis18α, an essential component of the assembly machinery. We find that embryos derived from Mis18α knockout oocytes fail to assemble CENP-A nucleosomes prior to zygotic genome activation (ZGA), validating the knockout model. We show that deletion of Mis18α in the female germ line at the time of birth has no impact on centromeric CENP-A nucleosome abundance, even after 6-8 months of aging. In addition, there is no detectable detriment to fertility. Thus, centromere chromatin is maintained long-term, independent of new assembly during the extended prophase I arrest in mouse oocytes.
Collapse
Affiliation(s)
- Arunika Das
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katelyn G Boese
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kikue Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Seoul National University, Seoul 08826, Republic of Korea
| | - Michael A Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Das A, Boese KG, Tachibana K, Baek SH, Lampson MA, Black BE. Centromere-specifying nucleosomes persist in aging mouse oocytes in the absence of nascent assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541332. [PMID: 37292821 PMCID: PMC10245701 DOI: 10.1101/2023.05.18.541332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Centromeres direct genetic inheritance but are not themselves genetically encoded. Instead, centromeres are defined epigenetically by the presence of a histone H3 variant, CENP-A 1 . In cultured somatic cells, an established paradigm of cell cycle-coupled propagation maintains centromere identity: CENP-A is partitioned between sisters during replication and replenished by new assembly, which is restricted to G1. The mammalian female germline challenges this model because of the cell cycle arrest between pre-meiotic S-phase and the subsequent G1, which can last for the entire reproductive lifespan (months to decades). New CENP-A chromatin assembly maintains centromeres during prophase I in worm and starfish oocyte 2,3 , suggesting that a similar process may be required for centromere inheritance in mammals. However, we show that centromere chromatin is maintained long-term independent of new assembly during the extended prophase I arrest in mouse oocytes. Conditional knockout of Mis18α, an essential component of the assembly machinery, in the female germline at the time of birth has almost no impact on centromeric CENP-A nucleosome abundance nor any detectable detriment to fertility.
Collapse
Affiliation(s)
- Arunika Das
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katelyn G. Boese
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kikue Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Seoul National University, Seoul 08826
| | - Michael A. Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute; University of Pennsylvania, Philadelphia PA 19104, USA
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lead Contact
| |
Collapse
|
9
|
Kuzelova A, Dupacova N, Antosova B, Sunny SS, Kozmik Z, Paces J, Skoultchi AI, Stopka T, Kozmik Z. Chromatin Remodeling Enzyme Snf2h Is Essential for Retinal Cell Proliferation and Photoreceptor Maintenance. Cells 2023; 12:1035. [PMID: 37048108 PMCID: PMC10093269 DOI: 10.3390/cells12071035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Chromatin remodeling complexes are required for many distinct nuclear processes such as transcription, DNA replication, and DNA repair. However, the contribution of these complexes to the development of complex tissues within an organism is poorly characterized. Imitation switch (ISWI) proteins are among the most evolutionarily conserved ATP-dependent chromatin remodeling factors and are represented by yeast Isw1/Isw2, and their vertebrate counterparts Snf2h (Smarca5) and Snf2l (Smarca1). In this study, we focused on the role of the Snf2h gene during the development of the mammalian retina. We show that Snf2h is expressed in both retinal progenitors and post-mitotic retinal cells. Using Snf2h conditional knockout mice (Snf2h cKO), we found that when Snf2h is deleted, the laminar structure of the adult retina is not retained, the overall thickness of the retina is significantly reduced compared with controls, and the outer nuclear layer (ONL) is completely missing. The depletion of Snf2h did not influence the ability of retinal progenitors to generate all the differentiated retinal cell types. Instead, the Snf2h function is critical for the proliferation of retinal progenitor cells. Cells lacking Snf2h have a defective S-phase, leading to the entire cell division process impairments. Although all retinal cell types appear to be specified in the absence of the Snf2h function, cell-cycle defects and concomitantly increased apoptosis in Snf2h cKO result in abnormal retina lamination, complete destruction of the photoreceptor layer, and consequently, a physiologically non-functional retina.
Collapse
Affiliation(s)
- Andrea Kuzelova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Naoko Dupacova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Barbora Antosova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Sweetu Susan Sunny
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Zbynek Kozmik
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jan Paces
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Arthur I. Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Tomas Stopka
- Biocev, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
| |
Collapse
|
10
|
Kuzelova A, Dupacova N, Antosova B, Sunny SS, Kozmik Z, Paces J, Skoultchi AI, Stopka T, Kozmik Z. Chromatin remodeling enzyme Snf2h is essential for retinal cell proliferation and photoreceptor maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528323. [PMID: 36824843 PMCID: PMC9948993 DOI: 10.1101/2023.02.13.528323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Chromatin remodeling complexes are required for many distinct nuclear processes such as transcription, DNA replication and DNA repair. However, how these complexes contribute to the development of complex tissues within an organism is poorly characterized. Imitation switch (ISWI) proteins are among the most evolutionarily conserved ATP-dependent chromatin remodeling factors and are represented by yeast Isw1/Isw2, and their vertebrate counterparts Snf2h (Smarca5) and Snf2l (Smarca1). In this study, we focused on the role of the Snf2h gene during development of the mammalian retina. We show that Snf2h is expressed in both retinal progenitors and post-mitotic retinal cells. Using Snf2h conditional knockout mice ( Snf2h cKO), we found that when Snf2h is deleted the laminar structure of the adult retina is not retained, the overall thickness of the retina is significantly reduced compared with controls, and the outer nuclear layer (ONL) is completely missing. Depletion of Snf2h did not influence the ability of retinal progenitors to generate all of the differentiated retinal cell types. Instead, Snf2h function is critical for proliferation of retinal progenitor cells. Cells lacking Snf2h have a defective S-phase, leading to the entire cell division process impairments. Although, all retinal cell types appear to be specified in the absence of Snf2h function, cell cycle defects and concomitantly increased apoptosis in Snf2h cKO result in abnormal retina lamination, complete destruction of the photoreceptor layer and, consequently, in a physiologically non-functional retina.
Collapse
|
11
|
Li L, Yuan Q, Chu YM, Jiang HY, Zhao JH, Su Q, Huo DQ, Zhang XF. Advances in holliday junction recognition protein (HJURP): Structure, molecular functions, and roles in cancer. Front Cell Dev Biol 2023; 11:1106638. [PMID: 37025176 PMCID: PMC10070699 DOI: 10.3389/fcell.2023.1106638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Oncogenes are increasingly recognized as important factors in the development and progression of cancer. Holliday Junction Recognition Protein (HJURP) is a highly specialized mitogenic protein that is a chaperone protein of histone H3. The HJURP gene is located on chromosome 2q37.1 and is involved in nucleosome composition in the mitotic region, forming a three-dimensional crystal structure with Centromere Protein A (CENP-A) and the histone 4 complex. HJURP is involved in the recruitment and assembly of centromere and kinetochore and plays a key role in stabilizing the chromosome structure of tumor cells, and its dysfunction may contribute to tumorigenesis. In the available studies HJURP is upregulated in a variety of cancer tissues and cancer cell lines and is involved in tumor proliferation, invasion, metastasis and immune response. In an in vivo model, overexpression of HJURP in most cancer cell lines promotes cell proliferation and invasiveness, reduces susceptibility to apoptosis, and promotes tumor growth. In addition, upregulation of HJURP was associated with poorer prognosis in a variety of cancers. These properties suggest that HJURP may be a possible target for the treatment of certain cancers. Various studies targeting HJURP as a prognostic and therapeutic target for cancer are gradually attracting interest and attention. This paper reviews the functional and molecular mechanisms of HJURP in a variety of tumor types with the aim of providing new targets for future cancer therapy.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Qiang Yuan
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yue-Ming Chu
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Hang-Yu Jiang
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Ju-Hua Zhao
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Qiang Su
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, China
| | - Dan-Qun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
- *Correspondence: Dan-Qun Huo, ; Xiao-Fen Zhang,
| | - Xiao-Fen Zhang
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- *Correspondence: Dan-Qun Huo, ; Xiao-Fen Zhang,
| |
Collapse
|
12
|
The Roles of Histone Post-Translational Modifications in the Formation and Function of a Mitotic Chromosome. Int J Mol Sci 2022; 23:ijms23158704. [PMID: 35955838 PMCID: PMC9368973 DOI: 10.3390/ijms23158704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
During mitosis, many cellular structures are organized to segregate the replicated genome to the daughter cells. Chromatin is condensed to shape a mitotic chromosome. A multiprotein complex known as kinetochore is organized on a specific region of each chromosome, the centromere, which is defined by the presence of a histone H3 variant called CENP-A. The cytoskeleton is re-arranged to give rise to the mitotic spindle that binds to kinetochores and leads to the movement of chromosomes. How chromatin regulates different activities during mitosis is not well known. The role of histone post-translational modifications (HPTMs) in mitosis has been recently revealed. Specific HPTMs participate in local compaction during chromosome condensation. On the other hand, HPTMs are involved in CENP-A incorporation in the centromere region, an essential activity to maintain centromere identity. HPTMs also participate in the formation of regulatory protein complexes, such as the chromosomal passenger complex (CPC) and the spindle assembly checkpoint (SAC). Finally, we discuss how HPTMs can be modified by environmental factors and the possible consequences on chromosome segregation and genome stability.
Collapse
|
13
|
Yang Y, Yuan J, Liu Z, Cao W, Liu P. The expression, clinical relevance, and prognostic significance of HJURP in cholangiocarcinoma. Front Oncol 2022; 12:972550. [PMID: 35965590 PMCID: PMC9366246 DOI: 10.3389/fonc.2022.972550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCholangiocarcinoma (CCA) is the malignancy originating from the biliary epithelium, including intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA) CCA. The prognosis of CCA is very poor, and the biomarkers of different CCA subsets should be investigated separately. Holliday junction recognition protein (HJURP) is a key component of the pre-nucleosomal complex, which is responsible for normal mitosis. The ectopic expression of HJURP has been reported in several cancers, but not CCA.Materials and methodsIn our study, we investigated the expression of HJURP in 127 CCA patients which were composed of 32 iCCAs, 71 pCCAs, and 24 dCCAs with immunohistochemistry and divided these patients into subgroups with a low or high expression of HJURP. With chi-square test and univariate and multivariate analyses, we evaluated the clinical relevance and prognostic significance of HJURP in iCCAs, pCCAs, and dCCAs.ResultsHJURP was ectopically upregulated in CCAs compared with the para-tumor tissues based on TCGA and other mRNA-seq databases. A high expression of HJURP was correlated with low overall survival rates of iCCA and pCCA, but not in dCCA. Moreover, HJURP was an independent prognostic biomarker in both iCCA and pCCA. Patients with high HJURP were more likely to suffer CCA-related death after operation.ConclusionsHJURP was an independent prognostic biomarker in both iCCA and pCCA, but not in dCCA. Our results provide more evidence of the molecular features of different CCA subsets and suggest that patients with high HJURP are more high-risk, which can guide more precision follow-up and treatment of CCA.
Collapse
Affiliation(s)
- Yang Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Jinyan Yuan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Zhenzhong Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Wenwen Cao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Pei Liu
- Department of Burn and Plastic Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, China
- *Correspondence: Pei Liu,
| |
Collapse
|
14
|
Renaud-Pageot C, Quivy JP, Lochhead M, Almouzni G. CENP-A Regulation and Cancer. Front Cell Dev Biol 2022; 10:907120. [PMID: 35721491 PMCID: PMC9201071 DOI: 10.3389/fcell.2022.907120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
In mammals, CENP-A, a histone H3 variant found in the centromeric chromatin, is critical for faithful chromosome segregation and genome integrity maintenance through cell divisions. Specifically, it has dual functions, enabling to define epigenetically the centromere position and providing the foundation for building up the kinetochore. Regulation of its dynamics of synthesis and deposition ensures to propagate proper centromeres on each chromosome across mitosis and meiosis. However, CENP-A overexpression is a feature identified in many cancers. Importantly, high levels of CENP-A lead to its mislocalization outside the centromere. Recent studies in mammals have begun to uncover how CENP-A overexpression can affect genome integrity, reprogram cell fate and impact 3D nuclear organization in cancer. Here, we summarize the mechanisms that orchestrate CENP-A regulation. Then we review how, beyond its centromeric function, CENP-A overexpression is linked to cancer state in mammalian cells, with a focus on the perturbations that ensue at the level of chromatin organization. Finally, we review the clinical interest for CENP-A in cancer treatment.
Collapse
|
15
|
HJURP regulates cell proliferation and chemo-resistance via YAP1/NDRG1 transcriptional axis in triple-negative breast cancer. Cell Death Dis 2022; 13:396. [PMID: 35459269 PMCID: PMC9033877 DOI: 10.1038/s41419-022-04833-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 01/22/2023]
Abstract
Triple-negative breast cancer is still a difficult point in clinical treatment at present, and a deep study of its pathogenesis has great clinical value. Therefore, our research mainly focuses on exploring the progression of triple-negative breast cancer and determines the important role of the HJURP/YAP1/NDRG1 transcriptional regulation axis in triple-negative breast cancer. We observed significantly increased HJURP expression levels in triple-negative breast cancer compared to other subtypes. HJURP could affect the level of ubiquitination modification of YAP1 protein and then regulate its downstream transcriptional activity. Mechanistically, we found that YAP1 positively regulates NDRG1 transcription by binding the promoter region of the NDRG1 gene. And HJURP/YAP1/NDRG1 axis could affect cell proliferation and chemotherapy sensitivity in triple-negative breast cancer. Taken together, these findings provide insights into the transcriptional regulation axis of HJURP/YAP1/NDRG1 in triple-negative breast cancer progression and therapeutic response.
Collapse
|
16
|
Jeffery D, Lochhead M, Almouzni G. CENP-A: A Histone H3 Variant with Key Roles in Centromere Architecture in Healthy and Diseased States. Results Probl Cell Differ 2022; 70:221-261. [PMID: 36348109 DOI: 10.1007/978-3-031-06573-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Centromeres are key architectural components of chromosomes. Here, we examine their construction, maintenance, and functionality. Focusing on the mammalian centromere- specific histone H3 variant, CENP-A, we highlight its coevolution with both centromeric DNA and its chaperone, HJURP. We then consider CENP-A de novo deposition and the importance of centromeric DNA recently uncovered with the added value from new ultra-long-read sequencing. We next review how to ensure the maintenance of CENP-A at the centromere throughout the cell cycle. Finally, we discuss the impact of disrupting CENP-A regulation on cancer and cell fate.
Collapse
Affiliation(s)
- Daniel Jeffery
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France
| | - Marina Lochhead
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France
| | - Geneviève Almouzni
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France.
| |
Collapse
|
17
|
Salinas-Luypaert C, Allu PK, Logsdon GA, Dawicki-McKenna JM, Gambogi CW, Fachinetti D, Black BE. Gene replacement strategies validate the use of functional tags on centromeric chromatin and invalidate an essential role for CENP-A K124ub. Cell Rep 2021; 37:109924. [PMID: 34731637 PMCID: PMC8643106 DOI: 10.1016/j.celrep.2021.109924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/31/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
Functional tags are ubiquitous in cell biology, and for studies of one chromosomal locus, the centromere, tags have been remarkably useful. The centromere directs chromosome inheritance at cell division. The location of the centromere is defined by a histone H3 variant, CENP-A. The regulation of the chromatin assembly pathway essential for centromere inheritance and function includes posttranslational modification (PTM) of key components, including CENP-A itself. Others have recently called into question the use of functional tags, with the claim that at least two widely used tags obscured the essentiality of one particular PTM, CENP-AK124 ubiquitination (ub). Here, we employ three independent gene replacement strategies that eliminate large, lysine-containing tags to interrogate these claims. Using these approaches, we find no evidence to support an essential function of CENP-AK124ub. Our general methodology will be useful to validate discoveries permitted by powerful functional tagging schemes at the centromere and other cellular locations. Using three gene replacement strategies, Salinas-Luypaert et al. demonstrate that CENP-AK124ub is not essential for CENP-A function at centromeres. Thus, functional tags do not mask the role of K124 when it is mutated. These strategies can be employed to interrogate posttranslational modifications at the centromere and other cellular locations.
Collapse
Affiliation(s)
| | - Praveen Kumar Allu
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jennine M Dawicki-McKenna
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig W Gambogi
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniele Fachinetti
- Institut Curie, PSL University, CNRS, UMR 144, 26 rue d'Ulm, 75005, Paris, France.
| | - Ben E Black
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Abstract
In eukaryotes, genomic DNA is packaged into chromatin in the nucleus. The accessibility of DNA is dependent on the chromatin structure and dynamics, which essentially control DNA-related processes, including transcription, DNA replication, and repair. All of the factors that affect the structure and dynamics of nucleosomes, the nucleosome-nucleosome interaction interfaces, and the binding of linker histones or other chromatin-binding proteins need to be considered to understand the organization and function of chromatin fibers. In this review, we provide a summary of recent progress on the structure of chromatin fibers in vitro and in the nucleus, highlight studies on the dynamic regulation of chromatin fibers, and discuss their related biological functions and abnormal organization in diseases.
Collapse
Affiliation(s)
- Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Wei Li
- National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; .,Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Navarro AP, Cheeseman IM. Kinetochore assembly throughout the cell cycle. Semin Cell Dev Biol 2021; 117:62-74. [PMID: 33753005 DOI: 10.1016/j.semcdb.2021.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/29/2022]
Abstract
The kinetochore plays an essential role in facilitating chromosome segregation during cell division. This massive protein complex assembles onto the centromere of chromosomes and enables their attachment to spindle microtubules during mitosis. The kinetochore also functions as a signaling hub to regulate cell cycle progression, and is crucial to ensuring the fidelity of chromosome segregation. Despite the fact that kinetochores are large and robust molecular assemblies, they are also highly dynamic structures that undergo structural and organizational changes throughout the cell cycle. This review will highlight our current understanding of kinetochore structure and function, focusing on the dynamic processes that underlie kinetochore assembly.
Collapse
Affiliation(s)
- Alexandra P Navarro
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
20
|
Unequal contribution of two paralogous CENH3 variants in cowpea centromere function. Commun Biol 2020; 3:775. [PMID: 33319863 PMCID: PMC7738545 DOI: 10.1038/s42003-020-01507-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
In most diploids the centromere-specific histone H3 (CENH3), the assembly site of active centromeres, is encoded by a single copy gene. Persistance of two CENH3 paralogs in diploids species raises the possibility of subfunctionalization. Here we analysed both CENH3 genes of the diploid dryland crop cowpea. Phylogenetic analysis suggests that gene duplication of CENH3 occurred independently during the speciation of Vigna unguiculata. Both functional CENH3 variants are transcribed, and the corresponding proteins are intermingled in subdomains of different types of centromere sequences in a tissue-specific manner together with the kinetochore protein CENPC. CENH3.2 is removed from the generative cell of mature pollen, while CENH3.1 persists. CRISPR/Cas9-based inactivation of CENH3.1 resulted in delayed vegetative growth and sterility, indicating that this variant is needed for plant development and reproduction. By contrast, CENH3.2 knockout individuals did not show obvious defects during vegetative and reproductive development. Hence, CENH3.2 of cowpea is likely at an early stage of pseudogenization and less likely undergoing subfunctionalization.
Collapse
|
21
|
Hori T, Cao J, Nishimura K, Ariyoshi M, Arimura Y, Kurumizaka H, Fukagawa T. Essentiality of CENP-A Depends on Its Binding Mode to HJURP. Cell Rep 2020; 33:108388. [PMID: 33207191 DOI: 10.1016/j.celrep.2020.108388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/16/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022] Open
Abstract
CENP-A incorporation is critical for centromere specification and is mediated by the chaperone HJURP. The CENP-A-targeting domain (CATD) of CENP-A specifically binds to HJURP, and this binding is conserved. However, the binding interface of CENP-A-HJURP is yet to be understood. Here, we identify the critical residues for chicken CENP-A or HJURP. The A59Q mutation in the α1-helix of chicken CENP-A causes CENP-A mis-incorporation and subsequent cell death, whereas the corresponding mutation in human CENP-A does not. We also find that W53 of HJURP, which is a contact site of A59 in CENP-A, is also essential in chicken cells. Our comprehensive analyses reveal that the affinities of HJURP to CATD differ between chickens and humans. However, the introduction of two arginine residues to the chicken HJURP αA-helix suppresses CENP-A mis-incorporation in chicken cells expressing CENP-AA59Q. Our data explain the mechanisms and evolution of CENP-A essentiality by the CENP-A-HJURP interaction.
Collapse
Affiliation(s)
- Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - JingHui Cao
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kohei Nishimura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuhiro Arimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
22
|
Takeuchi S, Kagabu M, Shoji T, Nitta Y, Sugiyama T, Sato J, Nakamura Y. Anti-cancer immunotherapy using cancer-derived multiple epitope-peptides cocktail vaccination clinical studies in patients with refractory/persistent disease of uterine cervical cancer and ovarian cancer [phase 2]. Oncoimmunology 2020; 9:1838189. [PMID: 33235818 PMCID: PMC7671072 DOI: 10.1080/2162402x.2020.1838189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 01/04/2023] Open
Abstract
We had conducted phase 1/2 studies of cancer vaccination therapy using neo-tumor antigens in patients with refractory/persistent cervical cancer (CC) and ovarian cancer (OC) to assess the feasibility and efficacy. Enrollees must be refractory/persistent disease for usual treatments with Human Leukocyte Antigen-A*0201 or A*2402. The targets were epitope peptides obtained from driver genes in surviving pathways as follows: for CC A*0201, peptides from Up Regulating Lung Cancer 10 gene (URLC10) and Hypoxia-inducible gene 2 (HIG-2) and for OC A*0201, HIG2, VEGFR (vascular epithelial growth factor receptor) 1 and 2 were used. For CC A*2402, Forkhead Box M1 (FOXM1), Maternal Embryonic Leucine zipper Kinase (MELK), and Holliday Junction Recognition Protein (HJURP) were used. For OC A*2402, cocktails of peptides from FOXM1, MELK, HJURP, VEGFR1, and VEGFR2 were used. Subcutaneous administration was performed with adjuvant weekly. The toxicity profiles and tumor-response were analyzed in eight-week interval. Sixty-six patients were accrued, and 64 were evaluable for adverse events (AEs), and 35 for response. AEs of G2/3 dermatologic reaction (DR) of injection site had been identified in 15.6% and no other severe AEs were detected. Response rate in OC and CC were 22.9% and 20%, respectively. Median overall survival showed longer in performance status (PS) 0 (versus PS1/2), in CRP negative (versus positive) and in DR positive (versus negative) such as 8.7 m versus 1.2 m (p < .001), 8.8 m versus 3.0 m (p < .05) and 10.2 m versus 1.2 m (p < .001), respectively. In conclusion, our vaccination therapy was feasible and effective in this cohort of patients.
Collapse
Affiliation(s)
- Satoshi Takeuchi
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Yahaba town, Japan
- Division of Gynecologic Oncology, Department of Gynecology, Women Health Care, Kobe Tokushukai Hospital Women’s Cancer Center, Gynecologic Oncology, Kobe, Japan
| | - Masahiro Kagabu
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Yahaba town, Japan
| | - Tadahiro Shoji
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Yahaba town, Japan
| | - Yukari Nitta
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Yahaba town, Japan
| | - Toru Sugiyama
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Yahaba town, Japan
- Gynecology, St. Mary’s Hospital, Kurume, Japan
| | - Junya Sato
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Yahaba town, Japan
- Department of Pharmacy, Shizuoka Cancer Center, Tokyo, Japan
| | - Yusuke Nakamura
- Department of Cancer, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Cancer precision Medicine, Cancer Institute Hospital of JFCR (Japanese Foundation for Cancer Research), Tokyo, Japan
| |
Collapse
|
23
|
Kurumizaka H, Kujirai T, Takizawa Y. Contributions of Histone Variants in Nucleosome Structure and Function. J Mol Biol 2020; 433:166678. [PMID: 33065110 DOI: 10.1016/j.jmb.2020.10.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 11/19/2022]
Abstract
Chromatin compacts genomic DNA in eukaryotes. The primary chromatin unit is the nucleosome core particle, composed of four pairs of the core histones, H2A, H2B, H3, and H4, and 145-147 base pairs of DNA. Since replication, recombination, repair, and transcription take place in chromatin, the structure and dynamics of the nucleosome must be versatile. These nucleosome characteristics underlie the epigenetic regulation of genomic DNA. In higher eukaryotes, many histone variants have been identified as non-allelic isoforms, which confer nucleosome diversity. In this article, we review the manifold types of nucleosomes produced by histone variants, which play important roles in the epigenetic regulation of chromatin.
Collapse
Affiliation(s)
- Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
24
|
Mitra S, Srinivasan B, Jansen LE. Stable inheritance of CENP-A chromatin: Inner strength versus dynamic control. J Cell Biol 2020; 219:e202005099. [PMID: 32931551 PMCID: PMC7659725 DOI: 10.1083/jcb.202005099] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Chromosome segregation during cell division is driven by mitotic spindle attachment to the centromere region on each chromosome. Centromeres form a protein scaffold defined by chromatin featuring CENP-A, a conserved histone H3 variant, in a manner largely independent of local DNA cis elements. CENP-A nucleosomes fulfill two essential criteria to epigenetically identify the centromere. They undergo self-templated duplication to reestablish centromeric chromatin following DNA replication. More importantly, CENP-A incorporated into centromeric chromatin is stably transmitted through consecutive cell division cycles. CENP-A nucleosomes have unique structural properties and binding partners that potentially explain their long lifetime in vivo. However, rather than a static building block, centromeric chromatin is dynamically regulated throughout the cell cycle, indicating that CENP-A stability is also controlled by external factors. We discuss recent insights and identify the outstanding questions on how dynamic control of the long-term stability of CENP-A ensures epigenetic centromere inheritance.
Collapse
Affiliation(s)
- Sreyoshi Mitra
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Bharath Srinivasan
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | | |
Collapse
|
25
|
Hoffmann S, Izquierdo HM, Gamba R, Chardon F, Dumont M, Keizer V, Hervé S, McNulty SM, Sullivan BA, Manel N, Fachinetti D. A genetic memory initiates the epigenetic loop necessary to preserve centromere position. EMBO J 2020; 39:e105505. [PMID: 32945564 PMCID: PMC7560200 DOI: 10.15252/embj.2020105505] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
Centromeres are built on repetitive DNA sequences (CenDNA) and a specific chromatin enriched with the histone H3 variant CENP‐A, the epigenetic mark that identifies centromere position. Here, we interrogate the importance of CenDNA in centromere specification by developing a system to rapidly remove and reactivate CENP‐A (CENP‐AOFF/ON). Using this system, we define the temporal cascade of events necessary to maintain centromere position. We unveil that CENP‐B bound to CenDNA provides memory for maintenance on human centromeres by promoting de novo CENP‐A deposition. Indeed, lack of CENP‐B favors neocentromere formation under selective pressure. Occasionally, CENP‐B triggers centromere re‐activation initiated by CENP‐C, but not CENP‐A, recruitment at both ectopic and native centromeres. This is then sufficient to initiate the CENP‐A‐based epigenetic loop. Finally, we identify a population of CENP‐A‐negative, CENP‐B/C‐positive resting CD4+ T cells capable to re‐express and reassembles CENP‐A upon cell cycle entry, demonstrating the physiological importance of the genetic memory.
Collapse
Affiliation(s)
| | | | - Riccardo Gamba
- Institut Curie, CNRS, UMR 144, PSL Research University, Paris, France
| | - Florian Chardon
- Institut Curie, CNRS, UMR 144, PSL Research University, Paris, France
| | - Marie Dumont
- Institut Curie, CNRS, UMR 144, PSL Research University, Paris, France
| | - Veer Keizer
- Institut Curie, CNRS, UMR 144, PSL Research University, Paris, France
| | - Solène Hervé
- Institut Curie, CNRS, UMR 144, PSL Research University, Paris, France
| | - Shannon M McNulty
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Nicolas Manel
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | |
Collapse
|
26
|
N-Terminus Does Not Govern Protein Turnover of Schizosaccharomyces pombe CENP-A. Int J Mol Sci 2020; 21:ijms21176175. [PMID: 32859127 PMCID: PMC7503380 DOI: 10.3390/ijms21176175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Centromere integrity underlies an essential framework for precise chromosome segregation and epigenetic inheritance. Although centromeric DNA sequences vary among different organisms, all eukaryotic centromeres comprise a centromere-specific histone H3 variant, centromeric protein A (CENP-A), on which other centromeric proteins assemble into the kinetochore complex. This complex connects chromosomes to mitotic spindle microtubules to ensure accurate partitioning of the genome into daughter cells. Overexpression of CENP-A is associated with many cancers and is correlated with its mistargeting, forming extra-centromeric kinetochore structures. The mislocalization of CENP-A can be counteracted by proteolysis. The amino (N)-terminal domain (NTD) of CENP-A has been implicated in this regulation and shown to be dependent on the proline residues within this domain in Saccharomyces cerevisiae CENP-A, Cse4. We recently identified a proline-rich GRANT motif in the NTD of Schizosaccharomyces pombe CENP-A (SpCENP-A) that regulates the centromeric targeting of CENP-A via binding to the CENP-A chaperone Sim3. Here, we investigated whether the NTD is required to confer SpCENP-A turnover (i.e., counter stability) using various truncation mutants of SpCENP-A. We show that sequential truncation of the NTD did not improve the stability of the protein, indicating that the NTD of SpCENP-A does not drive turnover of the protein. Instead, we reproduced previous observations that heterochromatin integrity is important for SpCENP-A stability, and showed that this occurs in an NTD-independent manner. Cells bearing the null mutant of the histone H3 lysine 9 methyltransferase Clr4 (Δclr4), which have compromised constitutive heterochromatin integrity, showed reductions in the proportion of SpCENP-A in the chromatin-containing insoluble fraction of the cell extract, suggesting that heterochromatin may promote SpCENP-A chromatin incorporation. Thus, a disruption in heterochromatin may result in the delocalization of SpCENP-A from chromatin, thus exposing it to protein turnover. Taken together, we show that the NTD is not required to confer SpCENP-A protein turnover.
Collapse
|
27
|
Mahlke MA, Nechemia-Arbely Y. Guarding the Genome: CENP-A-Chromatin in Health and Cancer. Genes (Basel) 2020; 11:genes11070810. [PMID: 32708729 PMCID: PMC7397030 DOI: 10.3390/genes11070810] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Faithful chromosome segregation is essential for the maintenance of genomic integrity and requires functional centromeres. Centromeres are epigenetically defined by the histone H3 variant, centromere protein A (CENP-A). Here we highlight current knowledge regarding CENP-A-containing chromatin structure, specification of centromere identity, regulation of CENP-A deposition and possible contribution to cancer formation and/or progression. CENP-A overexpression is common among many cancers and predicts poor prognosis. Overexpression of CENP-A increases rates of CENP-A deposition ectopically at sites of high histone turnover, occluding CCCTC-binding factor (CTCF) binding. Ectopic CENP-A deposition leads to mitotic defects, centromere dysfunction and chromosomal instability (CIN), a hallmark of cancer. CENP-A overexpression is often accompanied by overexpression of its chaperone Holliday Junction Recognition Protein (HJURP), leading to epigenetic addiction in which increased levels of HJURP and CENP-A become necessary to support rapidly dividing p53 deficient cancer cells. Alterations in CENP-A posttranslational modifications are also linked to chromosome segregation errors and CIN. Collectively, CENP-A is pivotal to genomic stability through centromere maintenance, perturbation of which can lead to tumorigenesis.
Collapse
Affiliation(s)
- Megan A. Mahlke
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA;
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yael Nechemia-Arbely
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA;
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: ; Tel.: +1-412-623-3228; Fax: +1-412-623-7828
| |
Collapse
|
28
|
Das A, Black BE, Lampson MA. Maternal inheritance of centromeres through the germline. Curr Top Dev Biol 2020; 140:35-54. [PMID: 32591081 DOI: 10.1016/bs.ctdb.2020.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The centromere directs chromosome segregation but is not itself genetically encoded. In most species, centromeres are epigenetically defined by the presence of a histone H3 variant CENP-A, independent of the underlying DNA sequence. Therefore, to maintain centromeres and ensure accurate chromosome segregation, CENP-A nucleosomes must be inherited across generations through the germline. In this chapter we discuss three aspects of maternal centromere inheritance. First, we propose mechanisms for maintaining CENP-A nucleosomes through the prolonged prophase arrest in mammalian oocytes. Second, we review mechanisms by which selfish centromeres bias their transmission through female meiosis. Third, we discuss regulation of centromere size through early embryonic development.
Collapse
Affiliation(s)
- Arunika Das
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Michael A Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
29
|
Roure V, Medina-Pritchard B, Lazou V, Rago L, Anselm E, Venegas D, Jeyaprakash AA, Heun P. Reconstituting Drosophila Centromere Identity in Human Cells. Cell Rep 2019; 29:464-479.e5. [PMID: 31597104 PMCID: PMC6900781 DOI: 10.1016/j.celrep.2019.08.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 07/21/2019] [Accepted: 08/22/2019] [Indexed: 01/24/2023] Open
Abstract
The centromere is an essential chromosomal region required for accurate chromosome segregation. Most eukaryotic centromeres are defined epigenetically by the histone H3 variant, centromere protein (CENP)-A, yet how its self-propagation is achieved remains poorly understood. Here, we develop a heterologous system to reconstitute epigenetic inheritance of centromeric chromatin by ectopically targeting the Drosophila centromere proteins dCENP-A, dCENP-C, and CAL1 to LacO arrays in human cells. Dissecting the function of these three components uncovers the key role of self-association of dCENP-C and CAL1 for their mutual interaction and dCENP-A deposition. Importantly, we identify CAL1 to be required for dCENP-C loading onto chromatin in cooperation with dCENP-A nucleosomes, thus closing the epigenetic loop to ensure dCENP-C and dCENP-A replenishment during the cell division cycle. Finally, we show that all three factors are sufficient for dCENP-A propagation and propose a model for the epigenetic inheritance of Drosophila centromere identity.
Collapse
Affiliation(s)
- Virginie Roure
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3QR, UK
| | - Bethan Medina-Pritchard
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3QR, UK
| | - Vasiliki Lazou
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3QR, UK
| | - Luciano Rago
- Max-Planck-Institute of Immunobiology, Stübeweg 51, 79108 Freiburg, Germany
| | - Eduard Anselm
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3QR, UK
| | - Daniela Venegas
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3QR, UK
| | - A. Arockia Jeyaprakash
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3QR, UK
| | - Patrick Heun
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3QR, UK.
| |
Collapse
|
30
|
Papanastasiou M, Mullahoo J, DeRuff KC, Bajrami B, Karageorgos I, Johnston SE, Peckner R, Myers SA, Carr SA, Jaffe JD. Chasing Tails: Cathepsin-L Improves Structural Analysis of Histones by HX-MS. Mol Cell Proteomics 2019; 18:2089-2098. [PMID: 31409669 PMCID: PMC6773551 DOI: 10.1074/mcp.ra119.001325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/19/2019] [Indexed: 12/27/2022] Open
Abstract
The N-terminal regions (tails) of histone proteins are dynamic elements that protrude from the nucleosome and are involved in many aspects of chromatin organization. Their epigenetic role is well-established, and post-translational modifications present on these regions contribute to transcriptional regulation. Considering their biological significance, relatively few structural details have been established for histone tails, mainly because of their inherently disordered nature. Although hydrogen/deuterium exchange mass spectrometry (HX-MS) is well-suited for the analysis of dynamic structures, it has seldom been employed in this context, presumably because of the poor N-terminal coverage provided by pepsin. Inspired from histone-clipping events, we profiled the activity of cathepsin-L under HX-MS quench conditions and characterized its specificity employing the four core histones (H2A, H2B, H3 and H4). Cathepsin-L demonstrated cleavage patterns that were substrate- and pH-dependent. Cathepsin-L generated overlapping N-terminal peptides about 20 amino acids long for H2A, H3, and H4 proving its suitability for the analysis of histone tails dynamics. We developed a comprehensive HX-MS method in combination with pepsin and obtained full sequence coverage for all histones. We employed our method to analyze histones H3 and H4. We observe rapid deuterium exchange of the N-terminal tails and cooperative unfolding (EX1 kinetics) in the histone-fold domains of histone monomers in-solution. Overall, this novel strategy opens new avenues for investigating the dynamic properties of histones that are not apparent from the crystal structures, providing insights into the structural basis of the histone code.
Collapse
Affiliation(s)
| | | | | | | | - Ioannis Karageorgos
- Biomolecular Measurements Division, National Institute of Standards and Technology, Gaithersburg, MD;; Institute for Bioscience and Biotechnology Research, Rockville, MD
| | | | - Ryan Peckner
- The Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Jacob D Jaffe
- The Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
31
|
Logsdon GA, Gambogi CW, Liskovykh MA, Barrey EJ, Larionov V, Miga KH, Heun P, Black BE. Human Artificial Chromosomes that Bypass Centromeric DNA. Cell 2019; 178:624-639.e19. [PMID: 31348889 PMCID: PMC6657561 DOI: 10.1016/j.cell.2019.06.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/07/2019] [Accepted: 06/03/2019] [Indexed: 11/29/2022]
Abstract
Recent breakthroughs with synthetic budding yeast chromosomes expedite the creation of synthetic mammalian chromosomes and genomes. Mammals, unlike budding yeast, depend on the histone H3 variant, CENP-A, to epigenetically specify the location of the centromere-the locus essential for chromosome segregation. Prior human artificial chromosomes (HACs) required large arrays of centromeric α-satellite repeats harboring binding sites for the DNA sequence-specific binding protein, CENP-B. We report the development of a type of HAC that functions independently of these constraints. Formed by an initial CENP-A nucleosome seeding strategy, a construct lacking repetitive centromeric DNA formed several self-sufficient HACs that showed no uptake of genomic DNA. In contrast to traditional α-satellite HAC formation, the non-repetitive construct can form functional HACs without CENP-B or initial CENP-A nucleosome seeding, revealing distinct paths to centromere formation for different DNA sequence types. Our developments streamline the construction and characterization of HACs to facilitate mammalian synthetic genome efforts.
Collapse
Affiliation(s)
- Glennis A Logsdon
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig W Gambogi
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mikhail A Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Evelyne J Barrey
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Karen H Miga
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Patrick Heun
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Ben E Black
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
The nucleosomes that mark centromere location on chromosomes old and new. Essays Biochem 2019; 63:15-27. [DOI: 10.1042/ebc20180060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 01/02/2023]
Abstract
Abstract
Proper segregation of chromosomes is an essential component of cell division. The centromere is the locus at which the kinetochore—the proteinaceous complex that ties chromosomes to microtubules—forms during mitosis and meiosis. Thus, the centromere is critical for equal segregation of chromosomes. The centromere is characterized by both protein and DNA elements: the histone H3 variant CENP-A epigenetically defines the location of the centromere while centromeric DNA sequences are neither necessary nor sufficient for centromere function. Paradoxically, the DNA sequences play a critical role in new centromere formation. In this essay, we discuss the contribution of both epigenetics and genetics at the centromere. Understanding these contributions is vital to efforts to control centromere formation on synthetic/artificial chromosomes and centromere strength on natural ones.
Collapse
|
33
|
Zhao H, Winogradoff D, Dalal Y, Papoian GA. The Oligomerization Landscape of Histones. Biophys J 2019; 116:1845-1855. [PMID: 31005236 DOI: 10.1016/j.bpj.2019.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 12/29/2022] Open
Abstract
In eukaryotes, DNA is packaged within nucleosomes. The DNA of each nucleosome is typically centered around an octameric histone protein core: one central tetramer plus two separate dimers. Studying the assembly mechanisms of histones is essential for understanding the dynamics of entire nucleosomes and higher-order DNA packaging. Here, we investigate canonical histone assembly and that of the centromere-specific histone variant, centromere protein A (CENP-A), using molecular dynamics simulations. We quantitatively characterize their thermodynamical and dynamical features, showing that two H3/H4 dimers form a structurally floppy, weakly bound complex, the latter exhibiting large instability around the central interface manifested via a swiveling motion of two halves. This finding is consistent with the recently observed DNA handedness flipping of the tetrasome. In contrast, the variant CENP-A encodes distinctive stability to its tetramer with a rigid but twisted interface compared to the crystal structure, implying diverse structural possibilities of the histone variant. Interestingly, the observed tetramer dynamics alter significantly and appear to reach a new balance when H2A/H2B dimers are present. Furthermore, we found that the preferred structure for the (CENP-A/H4)2 tetramer is incongruent with the octameric structure, explaining many of the unusual dynamical behaviors of the CENP-A nucleosome. In all, these data reveal key mechanistic insights and structural details for the assembly of canonical and variant histone tetramers and octamers, providing theoretical quantifications and physical interpretations for longstanding and recent experimental observations. Based on these findings, we propose different chaperone-assisted binding and nucleosome assembly mechanisms for the canonical and CENP-A histone oligomers.
Collapse
Affiliation(s)
- Haiqing Zhao
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David Winogradoff
- Chemical Physics Program, Institute for Physical Science and Technology
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Garegin A Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland; Chemical Physics Program, Institute for Physical Science and Technology; Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland.
| |
Collapse
|
34
|
Dawicki-McKenna JM, Black BE. Chromosomes: Keeping Centromeric Chromatin Tidy through S Phase. Curr Biol 2019; 29:R35-R37. [DOI: 10.1016/j.cub.2018.11.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Ding M, Jiang J, Yang F, Zheng F, Fang J, Wang Q, Wang J, Yao W, Liu X, Gao X, Mullen M, He P, Rono C, Ding X, Hong J, Fu C, Liu X, Yao X. Holliday junction recognition protein interacts with and specifies the centromeric assembly of CENP-T. J Biol Chem 2018; 294:968-980. [PMID: 30459232 DOI: 10.1074/jbc.ra118.004688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/19/2018] [Indexed: 02/02/2023] Open
Abstract
The centromere is an evolutionarily conserved eukaryotic protein machinery essential for precision segregation of the parental genome into two daughter cells during mitosis. Centromere protein A (CENP-A) organizes the functional centromere via a constitutive centromere-associated network composing the CENP-T complex. However, how CENP-T assembles onto the centromere remains elusive. Here we show that CENP-T binds directly to Holliday junction recognition protein (HJURP), an evolutionarily conserved chaperone involved in loading CENP-A. The binding interface of HJURP was mapped to the C terminus of CENP-T. Depletion of HJURP by CRISPR-elicited knockout minimized recruitment of CENP-T to the centromere, indicating the importance of HJURP in CEPN-T loading. Our immunofluorescence analyses indicate that HJURP recruits CENP-T to the centromere in S/G2 phase during the cell division cycle. Significantly, the HJURP binding-deficient mutant CENP-T6L failed to locate to the centromere. Importantly, CENP-T insufficiency resulted in chromosome misalignment, in particular chromosomes 15 and 18. Taken together, these data define a novel molecular mechanism underlying the assembly of CENP-T onto the centromere by a temporally regulated HJURP-CENP-T interaction.
Collapse
Affiliation(s)
- Mingrui Ding
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China.,the Keck Center for Cellular Dynamics and Organoid Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Jiying Jiang
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China
| | - Fengrui Yang
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China
| | - Fan Zheng
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China
| | - Jingwen Fang
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China
| | - Qian Wang
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China
| | - Jianyu Wang
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China.,the Keck Center for Cellular Dynamics and Organoid Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - William Yao
- the Keck Center for Cellular Dynamics and Organoid Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Xu Liu
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China.,the Keck Center for Cellular Dynamics and Organoid Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Xinjiao Gao
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China
| | - McKay Mullen
- the Keck Center for Cellular Dynamics and Organoid Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Ping He
- the Keck Center for Cellular Dynamics and Organoid Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Cathy Rono
- the Keck Center for Cellular Dynamics and Organoid Plasticity, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Xia Ding
- the Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingjun Hong
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China
| | - Chuanhai Fu
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China
| | - Xing Liu
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China,
| | - Xuebiao Yao
- From the Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of the China School of Life Sciences, Chinese Academy of Sciences Center of Excellence on Cell Sciences, Hefei 230027, China,
| |
Collapse
|
36
|
Zasadzińska E, Huang J, Bailey AO, Guo LY, Lee NS, Srivastava S, Wong KA, French BT, Black BE, Foltz DR. Inheritance of CENP-A Nucleosomes during DNA Replication Requires HJURP. Dev Cell 2018; 47:348-362.e7. [PMID: 30293838 PMCID: PMC6219920 DOI: 10.1016/j.devcel.2018.09.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/26/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Abstract
Centromeric chromatin defines the site of kinetochore formation and ensures faithful chromosome segregation. Centromeric identity is epigenetically specified by the incorporation of CENP-A nucleosomes. DNA replication presents a challenge for inheritance of centromeric identity because nucleosomes are removed to allow for replication fork progression. Despite this challenge, CENP-A nucleosomes are stably retained through S phase. We used BioID to identify proteins transiently associated with CENP-A during DNA replication. We found that during S phase, HJURP transiently associates with centromeres and binds to pre-existing CENP-A, suggesting a distinct role for HJURP in CENP-A retention. We demonstrate that HJURP is required for centromeric nucleosome inheritance during S phase. HJURP co-purifies with the MCM2-7 helicase complex and, together with the MCM2 subunit, binds CENP-A simultaneously. Therefore, pre-existing CENP-A nucleosomes require an S phase function of the HJURP chaperone and interaction with MCM2 to ensure faithful inheritance of centromere identity through DNA replication.
Collapse
Affiliation(s)
- Ewelina Zasadzińska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Jiehuan Huang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Lucie Y Guo
- Department of Biochemistry and Biophysics and Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy S Lee
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Shashank Srivastava
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kelvin A Wong
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bradley T French
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics and Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
37
|
Mendiratta S, Gatto A, Almouzni G. Histone supply: Multitiered regulation ensures chromatin dynamics throughout the cell cycle. J Cell Biol 2018; 218:39-54. [PMID: 30257851 PMCID: PMC6314538 DOI: 10.1083/jcb.201807179] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Mendiratta et al. review the interplay between the different regulatory layers that affect the transcription and dynamics of distinct histone H3 variants along the cell cycle. As the building blocks of chromatin, histones are central to establish and maintain particular chromatin states associated with given cell fates. Importantly, histones exist as distinct variants whose expression and incorporation into chromatin are tightly regulated during the cell cycle. During S phase, specialized replicative histone variants ensure the bulk of the chromatinization of the duplicating genome. Other non-replicative histone variants deposited throughout the cell cycle at specific loci use pathways uncoupled from DNA synthesis. Here, we review the particular dynamics of expression, cellular transit, assembly, and disassembly of replicative and non-replicative forms of the histone H3. Beyond the role of histone variants in chromatin dynamics, we review our current knowledge concerning their distinct regulation to control their expression at different levels including transcription, posttranscriptional processing, and protein stability. In light of this unique regulation, we highlight situations where perturbations in histone balance may lead to cellular dysfunction and pathologies.
Collapse
Affiliation(s)
- Shweta Mendiratta
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Alberto Gatto
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Genevieve Almouzni
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France .,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| |
Collapse
|
38
|
Srivastava S, Foltz DR. Posttranslational modifications of CENP-A: marks of distinction. Chromosoma 2018; 127:279-290. [PMID: 29569072 PMCID: PMC6082721 DOI: 10.1007/s00412-018-0665-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 02/06/2023]
Abstract
Centromeres are specialized chromosome domain that serve as the site for kinetochore assembly and microtubule attachment during cell division, to ensure proper segregation of chromosomes. In higher eukaryotes, the identity of active centromeres is marked by the presence of CENP-A (centromeric protein-A), a histone H3 variant. CENP-A forms a centromere-specific nucleosome that acts as a foundation for centromere assembly and function. The posttranslational modification (PTM) of histone proteins is a major mechanism regulating the function of chromatin. While a few CENP-A site-specific modifications are shared with histone H3, the majority are specific to CENP-A-containing nucleosomes, indicating that modification of these residues contribute to centromere-specific function. CENP-A undergoes posttranslational modifications including phosphorylation, acetylation, methylation, and ubiquitylation. Work from many laboratories have uncovered the importance of these CENP-A modifications in its deposition at centromeres, protein stability, and recruitment of the CCAN (constitutive centromere-associated network). Here, we discuss the PTMs of CENP-A and their biological relevance.
Collapse
Affiliation(s)
- Shashank Srivastava
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
39
|
Heterochromatin and RNAi regulate centromeres by protecting CENP-A from ubiquitin-mediated degradation. PLoS Genet 2018; 14:e1007572. [PMID: 30089114 PMCID: PMC6101405 DOI: 10.1371/journal.pgen.1007572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/20/2018] [Accepted: 07/18/2018] [Indexed: 01/03/2023] Open
Abstract
Centromere is a specialized chromatin domain that plays a vital role in chromosome segregation. In most eukaryotes, centromere is surrounded by the epigenetically distinct heterochromatin domain. Heterochromatin has been shown to contribute to centromere function, but the precise role of heterochromatin in centromere specification remains elusive. Centromeres in most eukaryotes, including fission yeast (Schizosaccharomyces pombe), are defined epigenetically by the histone H3 (H3) variant CENP-A. In contrast, the budding yeast Saccharomyces cerevisiae has genetically-defined point centromeres. The transition between regional centromeres and point centromeres is considered as one of the most dramatic evolutionary events in centromere evolution. Here we demonstrated that Cse4, the budding yeast CENP-A homolog, can localize to centromeres in fission yeast and partially substitute fission yeast CENP-ACnp1. But overexpression of Cse4 results in its localization to heterochromatic regions. Cse4 is subject to efficient ubiquitin-dependent degradation in S. pombe, and its N-terminal domain dictates its centromere distribution via ubiquitination. Notably, without heterochromatin and RNA interference (RNAi), Cse4 fails to associate with centromeres. We showed that RNAi-dependent heterochromatin mediates centromeric localization of Cse4 by protecting Cse4 from ubiquitin-dependent degradation. Heterochromatin also contributes to the association of native CENP-ACnp1 with centromeres via the same mechanism. These findings suggest that protection of CENP-A from degradation by heterochromatin is a general mechanism used for centromere assembly, and also provide novel insights into centromere evolution.
Collapse
|
40
|
Lu M, He X. Ccp1 modulates epigenetic stability at centromeres and affects heterochromatin distribution in Schizosaccharomyces pombe. J Biol Chem 2018; 293:12068-12080. [PMID: 29899117 PMCID: PMC6078436 DOI: 10.1074/jbc.ra118.003873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/02/2018] [Indexed: 12/26/2022] Open
Abstract
Distinct chromatin organization features, such as centromeres and heterochromatin domains, are inherited epigenetically. However, the mechanisms that modulate the accuracy of epigenetic inheritance, especially at the individual nucleosome level, are not well-understood. Here, using ChIP and next-generation sequencing (ChIP-Seq), we characterized Ccp1, a homolog of the histone chaperone Vps75 in budding yeast that functions in centromere chromatin duplication and heterochromatin maintenance in fission yeast (Schizosaccharomyces pombe). We show that Ccp1 is enriched at the central core regions of the centromeres. Of note, among all histone chaperones characterized, deletion of the ccp1 gene uniquely reduced the rate of epigenetic switching, manifested as position effect variegation within the centromeric core region (CEN-PEV). In contrast, gene deletion of other histone chaperones either elevated the PEV switching rates or did not affect centromeric PEV. Ccp1 and the kinetochore components Mis6 and Sim4 were mutually dependent for centromere or kinetochore association at the proper levels. Moreover, Ccp1 influenced heterochromatin distribution at multiple loci in the genome, including the subtelomeric and the pericentromeric regions. We also found that Gar2, a protein predominantly enriched in the nucleolus, functions similarly to Ccp1 in modulating the epigenetic stability of centromeric regions, although its mechanism remained unclear. Together, our results identify Ccp1 as an important player in modulating epigenetic stability and maintaining proper organization of multiple chromatin domains throughout the fission yeast genome.
Collapse
Affiliation(s)
- Min Lu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangwei He
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
41
|
Chen P, Li G. Structure and Epigenetic Regulation of Chromatin Fibers. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:25-35. [PMID: 29167282 DOI: 10.1101/sqb.2017.82.033795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In eukaryotes, genomic DNA is hierarchically packaged by histones into chromatin on several levels to fit inside the nucleus. As a central-level structure between nucleosomal arrays and higher-order chromatin organizations, the 30-nm chromatin fiber and its dynamics play a crucial role in gene regulation. However, despite considerable efforts over the past three decades, the fundamental structure and its dynamic regulation of chromatin fibers still remain as a big challenge in molecular biology. Here, we mainly summarize the most recent progress in elucidating the structure of the 30-nm chromatin fiber in vitro and epigenetic regulation of chromatin fibers by chromatin factors, particularly histone variants. In addition, we also discuss recent studies in unraveling the three-dimensional organization of chromatin fibers in situ by genomic approaches and electron microscopy.
Collapse
Affiliation(s)
- Ping Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
42
|
Schalch T, Steiner FA. Structure of centromere chromatin: from nucleosome to chromosomal architecture. Chromosoma 2017; 126:443-455. [PMID: 27858158 PMCID: PMC5509776 DOI: 10.1007/s00412-016-0620-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022]
Abstract
The centromere is essential for the segregation of chromosomes, as it serves as attachment site for microtubules to mediate chromosome segregation during mitosis and meiosis. In most organisms, the centromere is restricted to one chromosomal region that appears as primary constriction on the condensed chromosome and is partitioned into two chromatin domains: The centromere core is characterized by the centromere-specific histone H3 variant CENP-A (also called cenH3) and is required for specifying the centromere and for building the kinetochore complex during mitosis. This core region is generally flanked by pericentric heterochromatin, characterized by nucleosomes containing H3 methylated on lysine 9 (H3K9me) that are bound by heterochromatin proteins. During mitosis, these two domains together form a three-dimensional structure that exposes CENP-A-containing chromatin to the surface for interaction with the kinetochore and microtubules. At the same time, this structure supports the tension generated during the segregation of sister chromatids to opposite poles. In this review, we discuss recent insight into the characteristics of the centromere, from the specialized chromatin structures at the centromere core and the pericentromere to the three-dimensional organization of these regions that make up the functional centromere.
Collapse
Affiliation(s)
- Thomas Schalch
- Department of Molecular Biology, Sciences III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| | - Florian A Steiner
- Department of Molecular Biology, Sciences III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
43
|
Jing R, Xi J, Leng Y, Chen W, Wang G, Jia W, Kang J, Zhu S. Motifs in the amino-terminus of CENP-A are required for its accumulation within the nucleus and at the centromere. Oncotarget 2017; 8:40654-40667. [PMID: 28489565 PMCID: PMC5522188 DOI: 10.18632/oncotarget.17204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/07/2017] [Indexed: 11/25/2022] Open
Abstract
Centromere protein A (CENP-A) is a variant of core histone H3 that marks the centromere's location on the chromosome. The mechanisms that target the protein to the nucleus and the centromere have not been defined. In this study, we found that deletion of the first 53 but not the first 29 residues of CENP-A from the amino-terminus, resulted in its cytoplasmic localization. Two motifs, R42R43R44 and K49R52K53K56, which are reported to be required for DNA contact in the centromere nucleosome, were found to be critical for CENP-A nuclear accumulation. These two motifs potentially mediated its interaction with Importin-β but were not involved in CENP-A centromeric localization. A third novel motif, L60L61I62R63K64, was found to be essential for the centromeric accumulation of CENP-A. The nonpolar hydrophobic residues L60L61I62, but not the basic residues R63K64, were found to be the most important residues. A protein interaction assay suggested that this motif is not involved in the interaction of CENP-A with its deposition factors but potentially mediates its interaction with core histone H4 and CENP-B. Our study uncovered the role of the amino-terminus of CENP-A in localization.
Collapse
Affiliation(s)
- Ruiqi Jing
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jiajie Xi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Ye Leng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Songcheng Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
44
|
Centromeres are maintained by fastening CENP-A to DNA and directing an arginine anchor-dependent nucleosome transition. Nat Commun 2017; 8:15775. [PMID: 28598437 PMCID: PMC5472775 DOI: 10.1038/ncomms15775] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/26/2017] [Indexed: 12/17/2022] Open
Abstract
Maintaining centromere identity relies upon the persistence of the epigenetic mark provided by the histone H3 variant, centromere protein A (CENP-A), but the molecular mechanisms that underlie its remarkable stability remain unclear. Here, we define the contributions of each of the three candidate CENP-A nucleosome-binding domains (two on CENP-C and one on CENP-N) to CENP-A stability using gene replacement and rapid protein degradation. Surprisingly, the most conserved domain, the CENP-C motif, is dispensable. Instead, the stability is conferred by the unfolded central domain of CENP-C and the folded N-terminal domain of CENP-N that becomes rigidified 1,000-fold upon crossbridging CENP-A and its adjacent nucleosomal DNA. Disrupting the ‘arginine anchor' on CENP-C for the nucleosomal acidic patch disrupts the CENP-A nucleosome structural transition and removes CENP-A nucleosomes from centromeres. CENP-A nucleosome retention at centromeres requires a core centromeric nucleosome complex where CENP-C clamps down a stable nucleosome conformation and CENP-N fastens CENP-A to the DNA. Centromere maintenance depends on the persistence of the histone variant CENP-A at the centromeres. Here, the authors characterize the core centromeric nucleosome complex wherein CENP-C confers a stable CENP-A nucleosome conformation and CENP-N fastens CENP-A to the DNA.
Collapse
|
45
|
Abstract
While chromatin characteristics in interphase are widely studied, characteristics of mitotic chromatin and their inheritance through mitosis are still poorly understood. During mitosis, chromatin undergoes dramatic changes: transcription stalls, chromatin-binding factors leave the chromatin, histone modifications change and chromatin becomes highly condensed. Many key insights into mitotic chromosome state and conformation have come from extensive microscopy studies over the last century. Over the last decade, the development of 3C-based techniques has enabled the study of higher order chromosome organization during mitosis in a genome-wide manner. During mitosis, chromosomes lose their cell type-specific and locus-dependent chromatin organization that characterizes interphase chromatin and fold into randomly positioned loop arrays. Upon exit of mitosis, cells are capable of quickly rearranging the chromosome conformation to form the cell type-specific interphase organization again. The information that enables this rearrangement after mitotic exit is thought to be encoded at least in part in mitotic bookmarks, e.g. histone modifications and variants, histone remodelers, chromatin factors, and non-coding RNA. Here we give an overview of the chromosomal organization and epigenetic characteristics of interphase and mitotic chromatin in vertebrates. Second, we describe different ways in which mitotic bookmarking enables epigenetic memory of the features of interphase chromatin through mitosis. And third, we explore the role of epigenetic modifications and mitotic bookmarking in cell differentiation.
Collapse
Affiliation(s)
- Marlies E. Oomen
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-0103, USA
| | - Job Dekker
- Howard Hughes Medical Institute, Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-0103, USA
| |
Collapse
|
46
|
Fachinetti D, Logsdon GA, Abdullah A, Selzer EB, Cleveland DW, Black BE. CENP-A Modifications on Ser68 and Lys124 Are Dispensable for Establishment, Maintenance, and Long-Term Function of Human Centromeres. Dev Cell 2017; 40:104-113. [PMID: 28073008 PMCID: PMC5235356 DOI: 10.1016/j.devcel.2016.12.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/09/2016] [Accepted: 12/11/2016] [Indexed: 12/24/2022]
Abstract
CENP-A is a histone H3 variant key to epigenetic specification of mammalian centromeres. Using transient overexpression of CENP-A mutants, two recent reports in Developmental Cell proposed essential centromere functions for post-translational modifications of human CENP-A. Phosphorylation at Ser68 was proposed to have an essential role in CENP-A deposition at centromeres. Blockage of ubiquitination at Lys124 was proposed to abrogate localization of CENP-A to the centromere. Following gene inactivation and replacement in human cells, we demonstrate that CENP-A mutants that cannot be phosphorylated at Ser68 or ubiquitinated at Lys124 assemble efficiently at centromeres during G1, mediate early events in centromere establishment at an ectopic chromosomal locus, and maintain centromere function indefinitely. Thus, neither Ser68 nor Lys124 post-translational modification is essential for long-term centromere identity, propagation, cell-cycle-dependent deposition, maintenance, function, or mediation of early steps in centromere establishment.
Collapse
Affiliation(s)
- Daniele Fachinetti
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Glennis A Logsdon
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amira Abdullah
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Evan B Selzer
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
47
|
Cell Biology of Cheating—Transmission of Centromeres and Other Selfish Elements Through Asymmetric Meiosis. CENTROMERES AND KINETOCHORES 2017; 56:377-396. [DOI: 10.1007/978-3-319-58592-5_16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Zasadzińska E, Foltz DR. Orchestrating the Specific Assembly of Centromeric Nucleosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:165-192. [PMID: 28840237 DOI: 10.1007/978-3-319-58592-5_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Centromeres are chromosomal loci that are defined epigenetically in most eukaryotes by incorporation of a centromere-specific nucleosome in which the canonical histone H3 variant is replaced by Centromere Protein A (CENP-A). Therefore, the assembly and propagation of centromeric nucleosomes are critical for maintaining centromere identify and ensuring genomic stability. Centromeres direct chromosome segregation (during mitosis and meiosis) by recruiting the constitutive centromere-associated network of proteins throughout the cell cycle that in turn recruits the kinetochore during mitosis. Assembly of centromere-specific nucleosomes in humans requires the dedicated CENP-A chaperone HJURP, and the Mis18 complex to couple the deposition of new CENP-A to the site of the pre-existing centromere, which is essential for maintaining centromere identity. Human CENP-A deposition occurs specifically in early G1, into pre-existing chromatin, and several additional chromatin-associated complexes regulate CENP-A nucleosome deposition and stability. Here we review the current knowledge on how new CENP-A nucleosomes are assembled selectively at the existing centromere in different species and how this process is controlled to ensure stable epigenetic inheritance of the centromere.
Collapse
Affiliation(s)
- Ewelina Zasadzińska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA. .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
49
|
Barnhart-Dailey MC, Trivedi P, Stukenberg PT, Foltz DR. HJURP interaction with the condensin II complex during G1 promotes CENP-A deposition. Mol Biol Cell 2016; 28:54-64. [PMID: 27807043 PMCID: PMC5221629 DOI: 10.1091/mbc.e15-12-0843] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 10/17/2016] [Accepted: 10/26/2016] [Indexed: 01/27/2023] Open
Abstract
Condensin II interacts with human CENP-A chaperone HJURP and is present at centromeres in early G1. Condensin II, but not condensin I, is required for efficient CENP-A deposition in human cells. HJURP-induced chromatin decondensation at de novo centromeres is counteracted by the activity of condensin II. Centromeric chromatin is required for kinetochore assembly during mitosis and accurate chromosome segregation. A unique nucleosome containing the histone H3–specific variant CENP-A is the defining feature of centromeric chromatin. In humans, CENP-A nucleosome deposition occurs in early G1 just after mitotic exit at the time when the CENP-A deposition machinery localizes to centromeres. The mechanism by which CENP-A is deposited onto an existing, condensed chromatin template is not understood. Here we identify the selective association of the CENP-A chaperone HJURP with the condensin II complex and not condensin I. We show CAPH2 is present at centromeres during early G1 at the time when CENP-A deposition is occurring. CAPH2 localization to early G1 centromeres is dependent on HJURP. The CENP-A chaperone and assembly factor HJURP induces decondensation of a noncentromeric LacO array, and this decondensation is modulated by the condensin II complex. We show that condensin II function at the centromere is required for new CENP-A deposition in human cells. These data demonstrate that HJURP selectively recruits the condensin II chromatin-remodeling complex to facilitate CENP-A deposition in human cells.
Collapse
Affiliation(s)
- Meghan C Barnhart-Dailey
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical School, Charlottesville, VA 22908
| | - Prasad Trivedi
- Department of Cell Biology, University of Virginia Medical School, Charlottesville, VA 22908
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical School, Charlottesville, VA 22908.,Department of Cell Biology, University of Virginia Medical School, Charlottesville, VA 22908
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical School, Charlottesville, VA 22908 .,Department of Cell Biology, University of Virginia Medical School, Charlottesville, VA 22908.,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
50
|
Zhao H, Winogradoff D, Bui M, Dalal Y, Papoian GA. Promiscuous Histone Mis-Assembly Is Actively Prevented by Chaperones. J Am Chem Soc 2016; 138:13207-13218. [PMID: 27454815 PMCID: PMC7757119 DOI: 10.1021/jacs.6b05355] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Histone proteins are essential for the organization, expression, and inheritance of genetic material for eukaryotic cells. A centromere-specific H3 histone variant, centromere protein A (CENP-A), shares about 50% amino acid sequence identity with H3. CENP-A is required for packaging the centromere and for the proper separation of chromosomes during mitosis. Despite their distinct biological functions, previously reported crystal structures of the CENP-A/H4 and H3/H4 dimers reveal a high degree of similarity. In this work, we characterize the structural dynamics of CENP-A/H4 and H3/H4 dimers based on a dual-resolution approach, using both microsecond-scale explicit-solvent all-atom and coarse-grained (CG) molecular dynamics (MD) simulations. Our data show that the H4 histone is significantly more rigid compared with the H3 histone and its variant CENP-A, hence, serving as a reinforcing structural element within the histone core. We report that the CENP-A/H4 dimer is significantly more dynamic than its canonical counterpart H3/H4, and our results provide a physical explanation for this flexibility. Further, we observe that the centromere-specific chaperone Holliday Junction Recognition Protein (HJURP) stabilizes the CENP-A/H4 dimer by forming a specific electrostatic interaction network. Finally, replacing CENP-A S68 with E68 disrupts the binding interface between CENP-A and HJURP in all-atom MD simulation, and consistently, in vivo experiments demonstrate that replacing CENP-A S68 with E68 disrupts CENP-A's localization to the centromere. Based on all our results, we propose that, during the CENP-A/H4 deposition process, the chaperone HJURP protects various substructures of the dimer, serving both as a folding and binding chaperone.
Collapse
Affiliation(s)
- Haiqing Zhao
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - David Winogradoff
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Minh Bui
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Garegin A. Papoian
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|