1
|
Peeters S, Baldry S, Korecki AJ, Srinivasan A, Wasserman WW, Simpson EM, Brown CJ. Escape from X-chromosome inactivation at KDM5C is driven by promoter-proximal DNA elements and enhanced by domain context. Hum Mol Genet 2025; 34:978-989. [PMID: 40211770 PMCID: PMC12085780 DOI: 10.1093/hmg/ddaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/07/2025] [Accepted: 03/31/2025] [Indexed: 05/19/2025] Open
Abstract
Over 20% of human X-linked genes escape from X-chromosome inactivation (XCI), and are important contributors to sex differences in gene expression. Candidate factors involved in escape have been identified through enrichment analyses and include both regional as well as promoter-proximal elements; however, functional testing is limited. Using both in vivo and in vitro mouse models, we refine a region of just 2.6 kb of the human escape gene KDM5C as able to drive escape from XCI. Transgenes of mouse Kdm5c escape XCI; however, human KDM5C is one of three escape genes in a more than 200 kb region, so we initially tested a BAC transgene containing a full-length version of the gene with a reporter insertion. Contrary to our expectation, this transgene failed to escape from XCI. To understand why, we moved to a mouse embryonic stem cell system and tested the BAC transgene without the reporter cassette. Despite being separated from other human escape genes, and also being tested in a different species, human KDM5C was able to escape from XCI, suggesting that the reporter integration disrupted or separated critical escape elements. We refined escape-essential sequences to only 2.6 kb including the promoter, exon 1 and contiguous 1.6 kb of the first intron, consistent with previous studies demonstrating local elements are sufficient for escape. Interestingly, dual copy insertions showed higher escape, suggesting that while local elements are important drivers for escape, the size or number of escape genes in a region can boost inactive X expression.
Collapse
Affiliation(s)
- Samantha Peeters
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall,Vancouver, BC, Canada V6T 1Z3
| | - Sarah Baldry
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall,Vancouver, BC, Canada V6T 1Z3
| | - Andrea J Korecki
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall,Vancouver, BC, Canada V6T 1Z3
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Aditi Srinivasan
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall,Vancouver, BC, Canada V6T 1Z3
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Wyeth W Wasserman
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall,Vancouver, BC, Canada V6T 1Z3
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Elizabeth M Simpson
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall,Vancouver, BC, Canada V6T 1Z3
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall,Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
2
|
Leeke BJ, Varsally W, Ogushi S, Zohren J, Menchero S, Courtois A, Snell DM, Teissandier A, Ojarikre O, Mahadevaiah SK, Decarpentrie F, Oakey RJ, VandeBerg JL, Turner JMA. Divergent DNA methylation dynamics in marsupial and eutherian embryos. Nature 2025:10.1038/s41586-025-08992-2. [PMID: 40369084 DOI: 10.1038/s41586-025-08992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 04/08/2025] [Indexed: 05/16/2025]
Abstract
Based on seminal work in placental species (eutherians)1-10, a paradigm of mammalian development has emerged wherein the genome-wide erasure of parental DNA methylation is required for embryogenesis. Whether such DNA methylation reprogramming is, in fact, conserved in other mammals is unknown. Here, to resolve this point, we generated base-resolution DNA methylation maps in gametes, embryos and adult tissues of a marsupial, the opossum Monodelphis domestica, revealing variations from the eutherian-derived model. The difference in DNA methylation level between oocytes and sperm is less pronounced than that in eutherians. Furthermore, unlike the genome of eutherians, that of the opossum remains hypermethylated during the cleavage stages. In the blastocyst, DNA demethylation is transient and modest in the epiblast. However, it is sustained in the trophectoderm, suggesting an evolutionarily conserved function for DNA hypomethylation in the mammalian placenta. Furthermore, unlike that in eutherians, the inactive X chromosome becomes globally DNA hypomethylated during embryogenesis. We identify gamete differentially methylated regions that exhibit distinct fates in the embryo, with some transient, and others retained and that represent candidate imprinted loci. We also reveal a possible mechanism for imprinted X inactivation, through maternal DNA methylation of the Xist-like noncoding RNA RSX11. We conclude that the evolutionarily divergent eutherians and marsupials use DNA demethylation differently during embryogenesis.
Collapse
Affiliation(s)
- Bryony J Leeke
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK.
- MRC Laboratory of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Imperial College London, London, UK.
| | - Wazeer Varsally
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Sugako Ogushi
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Jasmin Zohren
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Sergio Menchero
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Aurélien Courtois
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Daniel M Snell
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Aurélie Teissandier
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - Obah Ojarikre
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | | | | | - Rebecca J Oakey
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - John L VandeBerg
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
3
|
Toothacre NE, Rodríguez-Acevedo KL, Wiggins KJ, Scharer CD, Anguera MC. Xist RNA Dependent and Independent Mechanisms Regulate Dynamic X Chromosome Inactivation in B Lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635124. [PMID: 39975415 PMCID: PMC11838359 DOI: 10.1101/2025.01.27.635124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
X-Chromosome Inactivation (XCI) involves epigenetic pathways to equalize X-linked gene expression between female and male mammals. XCI is dynamic in female B cells, as cytological enrichment of Xist RNA and heterochromatic marks on the inactive X-chromosome (Xi) are absent in naïve B cells yet return following mitogenic stimulation. Here, we asked whether any heterochromatic histone marks are present on the Xi in naïve B cells, and whether Xist RNA is required for their deposition and retention following stimulation. We find that the Xi in naïve B cells is depleted for H2AK119Ub and H3K9me3 but enriched for DNA methylation and H3K27me3, which maintain an Xist RNA-dependent epigenetic memory of XCI. Upon stimulation, Xist-independent H3K27me3 and Xist-dependent H2AK119Ub modifications accumulate across the Xi with temporal and spatial specificity. Our findings reveal the importance of Xist RNA, H3K27me3, and H2AK119Ub marks for the epigenetic integrity of X-linked genes across the Xi following female B cell stimulation.
Collapse
|
4
|
Bammidi LS, Gayen S. Multifaceted role of CTCF in X-chromosome inactivation. Chromosoma 2024; 133:217-231. [PMID: 39433641 DOI: 10.1007/s00412-024-00826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Therian female mammals compensate for the dosage of X-linked gene expression by inactivating one of the X-chromosomes. X-inactivation is facilitated by the master regulator Xist long non-coding RNA, which coats the inactive-X and facilitates heterochromatinization through recruiting different chromatin modifiers and changing the X-chromosome 3D conformation. However, many mechanistic aspects behind the X-inactivation process remain poorly understood. Among the many contributing players, CTCF has emerged as one of the key players in orchestrating various aspects related to X-chromosome inactivation by interacting with several other protein and RNA partners. In general, CTCF is a well-known architectural protein, which plays an important role in chromatin organization and transcriptional regulation. Here, we provide significant insight into the role of CTCF in orchestrating X-chromosome inactivation and highlight future perspectives.
Collapse
Affiliation(s)
- Lakshmi Sowjanya Bammidi
- Chromatin RNA and Genome (CRG) Lab, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| | - Srimonta Gayen
- Chromatin RNA and Genome (CRG) Lab, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
5
|
Wong MMK, Hachmer S, Gardner E, Runfola V, Arezza E, Megeney LA, Emerson CP, Gabellini D, Dilworth FJ. SMCHD1 activates the expression of genes required for the expansion of human myoblasts. Nucleic Acids Res 2024; 52:9450-9462. [PMID: 38994563 PMCID: PMC11381350 DOI: 10.1093/nar/gkae600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
SMCHD1 is an epigenetic regulatory protein known to modulate the targeted repression of large chromatin domains. Diminished SMCHD1 function in muscle fibers causes Facioscapulohumeral Muscular Dystrophy (FSHD2) through derepression of the D4Z4 chromatin domain, an event which permits the aberrant expression of the disease-causing gene DUX4. Given that SMCHD1 plays a broader role in establishing the cellular epigenome, we examined whether loss of SMCHD1 function might affect muscle homeostasis through additional mechanisms. Here we show that acute depletion of SMCHD1 results in a DUX4-independent defect in myoblast proliferation. Genomic and transcriptomic experiments determined that SMCHD1 associates with enhancers of genes controlling cell cycle to activate their expression. Amongst these cell cycle regulatory genes, we identified LAP2 as a key target of SMCHD1 required for the expansion of myoblasts, where the ectopic expression of LAP2 rescues the proliferation defect of SMCHD1-depleted cells. Thus, the epigenetic regulator SMCHD1 can play the role of a transcriptional co-activator for maintaining the expression of genes required for muscle progenitor expansion. This DUX4-independent role for SMCHD1 in myoblasts suggests that the pathology of FSHD2 may be a consequence of defective muscle regeneration in addition to the muscle wasting caused by spurious DUX4 expression.
Collapse
Affiliation(s)
- Matthew Man-Kin Wong
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa; Ottawa, ON K1H 8L6, Canada
| | - Sarah Hachmer
- Department of Cell and Regenerative Biology, University of Wisconsin; Madison, WI 53705, USA
| | - Ed Gardner
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa; Ottawa, ON K1H 8L6, Canada
| | - Valeria Runfola
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy
| | - Eric Arezza
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
| | - Lynn A Megeney
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa; Ottawa, ON K1H 8L6, Canada
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Davide Gabellini
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy
| | - F Jeffrey Dilworth
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa; Ottawa, ON K1H 8L6, Canada
- Department of Cell and Regenerative Biology, University of Wisconsin; Madison, WI 53705, USA
| |
Collapse
|
6
|
Dror I, Tan T, Plath K. A critical role for X-chromosome architecture in mammalian X-chromosome dosage compensation. Curr Opin Genet Dev 2024; 87:102235. [PMID: 39053028 DOI: 10.1016/j.gde.2024.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
To regulate gene expression, the macromolecular components of the mammalian interphase nucleus are spatially organized into a myriad of functional compartments. Over the past decade, increasingly sophisticated genomics, microscopy, and functional approaches have probed this organization in unprecedented detail. These investigations have linked chromatin-associated noncoding RNAs to specific nuclear compartments and uncovered mechanisms by which these RNAs establish such domains. In this review, we focus on the long non-coding RNA Xist and summarize new evidence demonstrating the significance of chromatin reconfiguration in creating the inactive X-chromosome compartment. Differences in chromatin compaction correlate with distinct levels of gene repression on the X-chromosome, potentially explaining how human XIST can induce chromosome-wide dampening and silencing of gene expression at different stages of human development.
Collapse
Affiliation(s)
- Iris Dror
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tiao Tan
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Brain Research Institute, Graduate Program in the Biosciences, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Huang Z, Cui W, Ratnayake I, Tawil R, Pfeifer GP. SMCHD1 maintains heterochromatin and genome compartments in human myoblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.07.602392. [PMID: 39026812 PMCID: PMC11257445 DOI: 10.1101/2024.07.07.602392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Mammalian genomes are subdivided into euchromatic A compartments that contain mostly active chromatin, and inactive, heterochromatic B compartments. However, it is unknown how A and B genome compartments are established and maintained. Here we studied SMCHD1, an SMC-like protein in human male myoblasts. SMCHD1 colocalizes with Lamin B1 and the heterochromatin mark H3K9me3. Loss of SMCHD1 leads to extensive heterochromatin depletion at the nuclear lamina and acquisition of active chromatin states along all chromosomes. In absence of SMCHD1, long range intra-chromosomal and inter-chromosomal contacts between B compartments are lost while many new TADs and loops are formed. Inactivation of SMCHD1 promotes numerous B to A compartment transitions accompanied by activation of silenced genes. SMCHD1 functions as an anchor for heterochromatin domains ensuring that these domains are inaccessible to epigenome modification enzymes that typically operate in active chromatin. Therefore, A compartments are formed by default when not prevented by SMCHD1.
Collapse
|
8
|
Forsyth KS, Jiwrajka N, Lovell CD, Toothacre NE, Anguera MC. The conneXion between sex and immune responses. Nat Rev Immunol 2024; 24:487-502. [PMID: 38383754 PMCID: PMC11216897 DOI: 10.1038/s41577-024-00996-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
There are notable sex-based differences in immune responses to pathogens and self-antigens, with female individuals exhibiting increased susceptibility to various autoimmune diseases, and male individuals displaying preferential susceptibility to some viral, bacterial, parasitic and fungal infections. Although sex hormones clearly contribute to sex differences in immune cell composition and function, the presence of two X chromosomes in female individuals suggests that differential gene expression of numerous X chromosome-linked immune-related genes may also influence sex-biased innate and adaptive immune cell function in health and disease. Here, we review the sex differences in immune system composition and function, examining how hormones and genetics influence the immune system. We focus on the genetic and epigenetic contributions responsible for altered X chromosome-linked gene expression, and how this impacts sex-biased immune responses in the context of pathogen infection and systemic autoimmunity.
Collapse
Affiliation(s)
- Katherine S Forsyth
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikhil Jiwrajka
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Claudia D Lovell
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Natalie E Toothacre
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Wang C, Liu Y, Xiong J, Xie K, Wang T, Hu Y, Fu H, Zhang B, Huang X, Bao H, Cai H, Dong B, Li Z. Genome-wide CRISPR screenings identified SMCHD1 as a host-restricting factor for AAV transduction. PLoS Pathog 2024; 20:e1012344. [PMID: 38976714 PMCID: PMC11257396 DOI: 10.1371/journal.ppat.1012344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/18/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
AAV-mediated gene therapy typically requires a high dose of viral transduction, risking acute immune responses and patient safety, part of which is due to limited understanding of the host-viral interactions, especially post-transduction viral genome processing. Here, through a genome-wide CRISPR screen, we identified SMCHD1 (Structural Maintenance of Chromosomes Hinge Domain 1), an epigenetic modifier, as a critical broad-spectrum restricting host factor for post-entry AAV transgene expression. SMCHD1 knock-down by RNAi and CRISPRi or knock-out by CRISPR all resulted in significantly enhanced transgene expression across multiple viral serotypes, as well as for both single-strand and self-complementary AAV genome types. Mechanistically, upon viral transduction, SMCHD1 effectively repressed AAV transcription by the formation of an LRIF1-HP1-containing protein complex and directly binding with the AAV genome to maintain a heterochromatin-like state. SMCHD1-KO or LRIF1-KD could disrupt such a complex and thus result in AAV transcriptional activation. Together, our results highlight the host factor-induced chromatin remodeling as a critical inhibitory mechanism for AAV transduction and may shed light on further improvement in AAV-based gene therapy.
Collapse
Affiliation(s)
- Chenlu Wang
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yu Liu
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jingfei Xiong
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kun Xie
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tianshu Wang
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yu Hu
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Huancheng Fu
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Baiquan Zhang
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaochao Huang
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hui Bao
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haoyang Cai
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Real and Best Biotech Co., Ltd., Chengdu, China
| | - Zhonghan Li
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Martitz A, Schulz EG. Spatial orchestration of the genome: topological reorganisation during X-chromosome inactivation. Curr Opin Genet Dev 2024; 86:102198. [PMID: 38663040 DOI: 10.1016/j.gde.2024.102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 06/11/2024]
Abstract
Genomes are organised through hierarchical structures, ranging from local kilobase-scale cis-regulatory contacts to large chromosome territories. Most notably, (sub)-compartments partition chromosomes according to transcriptional activity, while topologically associating domains (TADs) define cis-regulatory landscapes. The inactive X chromosome in mammals has provided unique insights into the regulation and function of the three-dimensional (3D) genome. Concurrent with silencing of the majority of genes and major alterations of its chromatin state, the X chromosome undergoes profound spatial rearrangements at multiple scales. These include the emergence of megadomains, alterations of the compartment structure and loss of the majority of TADs. Moreover, the Xist locus, which orchestrates X-chromosome inactivation, has provided key insights into regulation and function of regulatory domains. This review provides an overview of recent insights into the control of these structural rearrangements and contextualises them within a broader understanding of 3D genome organisation.
Collapse
Affiliation(s)
- Alexandra Martitz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Edda G Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
11
|
Bowness JS, Almeida M, Nesterova TB, Brockdorff N. YY1 binding is a gene-intrinsic barrier to Xist-mediated gene silencing. EMBO Rep 2024; 25:2258-2277. [PMID: 38654121 PMCID: PMC11094009 DOI: 10.1038/s44319-024-00136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
X chromosome inactivation (XCI) in mammals is mediated by Xist RNA which functions in cis to silence genes on a single X chromosome in XX female cells, thereby equalising levels of X-linked gene expression relative to XY males. XCI progresses over a period of several days, with some X-linked genes silencing faster than others. The chromosomal location of a gene is an important determinant of silencing rate, but uncharacterised gene-intrinsic features also mediate resistance or susceptibility to silencing. In this study, we examine mouse embryonic stem cell lines with an inducible Xist allele (iXist-ChrX mESCs) and integrate allele-specific data of gene silencing and decreasing inactive X (Xi) chromatin accessibility over time courses of Xist induction with cellular differentiation. Our analysis reveals that motifs bound by the transcription factor YY1 are associated with persistently accessible regulatory elements, including many promoters and enhancers of slow-silencing genes. We further show that YY1 is evicted relatively slowly from target sites on Xi, and that silencing of X-linked genes is increased upon YY1 degradation. Together our results suggest that YY1 acts as a barrier to Xist-mediated silencing until the late stages of the XCI process.
Collapse
Affiliation(s)
- Joseph S Bowness
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Mafalda Almeida
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | | | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
12
|
Kong X, Nguyen NV, Li Y, Sakr JS, Williams K, Sharifi S, Chau J, Bayrakci A, Mizuno S, Takahashi S, Kiyono T, Tawil R, Mortazavi A, Yokomori K. Engineered FSHD mutations results in D4Z4 heterochromatin disruption and feedforward DUX4 network activation. iScience 2024; 27:109357. [PMID: 38510139 PMCID: PMC10951985 DOI: 10.1016/j.isci.2024.109357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/20/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is linked to contraction of D4Z4 repeats on chromosome 4q with SMCHD1 mutations acting as a disease modifier. D4Z4 heterochromatin disruption and abnormal upregulation of the transcription factor DUX4, encoded in the D4Z4 repeat, are the hallmarks of FSHD. However, defining the precise effect of D4Z4 contraction has been difficult because D4Z4 repeats are primate-specific and DUX4 expression is very rare in highly heterogeneous patient myocytes. We generated isogenic mutant cell lines harboring D4Z4 and/or SMCHD1 mutations in a healthy human skeletal myoblast line. We found that the mutations affect D4Z4 heterochromatin differently, and that SMCHD1 mutation or disruption of DNA methylation stabilizes otherwise variegated DUX4 target activation in D4Z4 contraction mutant cells, demonstrating the critical role of modifiers. Our study revealed amplification of the DUX4 signal through downstream targets, H3.X/Y and LEUTX. Our results provide important insights into how rare DUX4 expression leads to FSHD pathogenesis.
Collapse
Affiliation(s)
- Xiangduo Kong
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Nam Viet Nguyen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yumeng Li
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Jasmine Shaaban Sakr
- Department of Development and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kate Williams
- Department of Development and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Sheila Sharifi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Jonathan Chau
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Altay Bayrakci
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Tohru Kiyono
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Rabi Tawil
- Neuromuscular Disease Unit, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ali Mortazavi
- Department of Development and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
13
|
Peeters SB, Posynick BJ, Brown CJ. Out of the Silence: Insights into How Genes Escape X-Chromosome Inactivation. EPIGENOMES 2023; 7:29. [PMID: 38131901 PMCID: PMC10742877 DOI: 10.3390/epigenomes7040029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
The silencing of all but one X chromosome in mammalian cells is a remarkable epigenetic process leading to near dosage equivalence in X-linked gene products between the sexes. However, equally remarkable is the ability of a subset of genes to continue to be expressed from the otherwise inactive X chromosome-in some cases constitutively, while other genes are variable between individuals, tissues or cells. In this review we discuss the advantages and disadvantages of the approaches that have been used to identify escapees. The identity of escapees provides important clues to mechanisms underlying escape from XCI, an arena of study now moving from correlation to functional studies. As most escapees show greater expression in females, the not-so-inactive X chromosome is a substantial contributor to sex differences in humans, and we highlight some examples of such impact.
Collapse
Affiliation(s)
| | | | - Carolyn J. Brown
- Molecular Epigenetics Group, Department of Medical Genetics, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
14
|
Keniry A, Blewitt ME. Chromatin-mediated silencing on the inactive X chromosome. Development 2023; 150:dev201742. [PMID: 37991053 DOI: 10.1242/dev.201742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In mammals, the second X chromosome in females is silenced to enable dosage compensation between XX females and XY males. This essential process involves the formation of a dense chromatin state on the inactive X (Xi) chromosome. There is a wealth of information about the hallmarks of Xi chromatin and the contribution each makes to silencing, leaving the tantalising possibility of learning from this knowledge to potentially remove silencing to treat X-linked diseases in females. Here, we discuss the role of each chromatin feature in the establishment and maintenance of the silent state, which is of crucial relevance for such a goal.
Collapse
Affiliation(s)
- Andrew Keniry
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marnie E Blewitt
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
15
|
Tapia Del Fierro A, den Hamer B, Benetti N, Jansz N, Chen K, Beck T, Vanyai H, Gurzau AD, Daxinger L, Xue S, Ly TTN, Wanigasuriya I, Iminitoff M, Breslin K, Oey H, Krom YD, van der Hoorn D, Bouwman LF, Johanson TM, Ritchie ME, Gouil QA, Reversade B, Prin F, Mohun T, van der Maarel SM, McGlinn E, Murphy JM, Keniry A, de Greef JC, Blewitt ME. SMCHD1 has separable roles in chromatin architecture and gene silencing that could be targeted in disease. Nat Commun 2023; 14:5466. [PMID: 37749075 PMCID: PMC10519958 DOI: 10.1038/s41467-023-40992-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/07/2023] [Indexed: 09/27/2023] Open
Abstract
The interplay between 3D chromatin architecture and gene silencing is incompletely understood. Here, we report a novel point mutation in the non-canonical SMC protein SMCHD1 that enhances its silencing capacity at endogenous developmental targets. Moreover, it also results in enhanced silencing at the facioscapulohumeral muscular dystrophy associated macrosatellite-array, D4Z4, resulting in enhanced repression of DUX4 encoded by this repeat. Heightened SMCHD1 silencing perturbs developmental Hox gene activation, causing a homeotic transformation in mice. Paradoxically, the mutant SMCHD1 appears to enhance insulation against other epigenetic regulators, including PRC2 and CTCF, while depleting long range chromatin interactions akin to what is observed in the absence of SMCHD1. These data suggest that SMCHD1's role in long range chromatin interactions is not directly linked to gene silencing or insulating the chromatin, refining the model for how the different levels of SMCHD1-mediated chromatin regulation interact to bring about gene silencing in normal development and disease.
Collapse
Affiliation(s)
- Andres Tapia Del Fierro
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Bianca den Hamer
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Natalia Benetti
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Natasha Jansz
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Kelan Chen
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Tamara Beck
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Hannah Vanyai
- Crick Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | - Alexandra D Gurzau
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Lucia Daxinger
- Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Shifeng Xue
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Thanh Thao Nguyen Ly
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Iromi Wanigasuriya
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Megan Iminitoff
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Kelsey Breslin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Harald Oey
- Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Yvonne D Krom
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Dinja van der Hoorn
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Linde F Bouwman
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Matthew E Ritchie
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Quentin A Gouil
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Bruno Reversade
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Fabrice Prin
- Crick Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | - Timothy Mohun
- Crick Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | | | - Edwina McGlinn
- EMBL Australia, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrew Keniry
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Laberthonnière C, Delourme M, Chevalier R, Dion C, Ganne B, Hirst D, Caron L, Perrin P, Adélaïde J, Chaffanet M, Xue S, Nguyen K, Reversade B, Déjardin J, Baudot A, Robin J, Magdinier F. In skeletal muscle and neural crest cells, SMCHD1 regulates biological pathways relevant for Bosma syndrome and facioscapulohumeral dystrophy phenotype. Nucleic Acids Res 2023; 51:7269-7287. [PMID: 37334829 PMCID: PMC10415154 DOI: 10.1093/nar/gkad523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Many genetic syndromes are linked to mutations in genes encoding factors that guide chromatin organization. Among them, several distinct rare genetic diseases are linked to mutations in SMCHD1 that encodes the structural maintenance of chromosomes flexible hinge domain containing 1 chromatin-associated factor. In humans, its function as well as the impact of its mutations remains poorly defined. To fill this gap, we determined the episignature associated with heterozygous SMCHD1 variants in primary cells and cell lineages derived from induced pluripotent stem cells for Bosma arhinia and microphthalmia syndrome (BAMS) and type 2 facioscapulohumeral dystrophy (FSHD2). In human tissues, SMCHD1 regulates the distribution of methylated CpGs, H3K27 trimethylation and CTCF at repressed chromatin but also at euchromatin. Based on the exploration of tissues affected either in FSHD or in BAMS, i.e. skeletal muscle fibers and neural crest stem cells, respectively, our results emphasize multiple functions for SMCHD1, in chromatin compaction, chromatin insulation and gene regulation with variable targets or phenotypical outcomes. We concluded that in rare genetic diseases, SMCHD1 variants impact gene expression in two ways: (i) by changing the chromatin context at a number of euchromatin loci or (ii) by directly regulating some loci encoding master transcription factors required for cell fate determination and tissue differentiation.
Collapse
Affiliation(s)
| | - Mégane Delourme
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - Raphaël Chevalier
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - Camille Dion
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - Benjamin Ganne
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - David Hirst
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - Leslie Caron
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - Pierre Perrin
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - José Adélaïde
- Aix Marseille Univ, INSERM, CNRS, Institut Paoli Calmette, Centre de Recherche en Cancérologie de Marseille, Laboratory of predictive Oncology, Marseille 13009, France
| | - Max Chaffanet
- Aix Marseille Univ, INSERM, CNRS, Institut Paoli Calmette, Centre de Recherche en Cancérologie de Marseille, Laboratory of predictive Oncology, Marseille 13009, France
| | - Shifeng Xue
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Karine Nguyen
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
- Département de Génétique Médicale, AP-HM, Hôpital d’enfants de la Timone, Marseille 13005, France
| | - Bruno Reversade
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Medical Genetics, Koç University, School of Medicine, Istanbul, Turkey
- Department of Physiology, Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Laboratory of Human Genetics & Therapeutics, Smart-Health Initiative, BESE, KAUST, Thuwal, Saudi Arabia
| | - Jérôme Déjardin
- Institut de Génétique Humaine, UMR 9002, CNRS–Université de Montpellier, Montpellier 34000, France
| | - Anaïs Baudot
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | - Jérôme D Robin
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille 13005, France
| | | |
Collapse
|
17
|
Poonperm R, Ichihara S, Miura H, Tanigawa A, Nagao K, Obuse C, Sado T, Hiratani I. Replication dynamics identifies the folding principles of the inactive X chromosome. Nat Struct Mol Biol 2023; 30:1224-1237. [PMID: 37563439 PMCID: PMC10442229 DOI: 10.1038/s41594-023-01052-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/28/2023] [Indexed: 08/12/2023]
Abstract
Chromosome-wide late replication is an enigmatic hallmark of the inactive X chromosome (Xi). How it is established and what it represents remains obscure. By single-cell DNA replication sequencing, here we show that the entire Xi is reorganized to replicate rapidly and uniformly in late S-phase during X-chromosome inactivation (XCI), reflecting its relatively uniform structure revealed by 4C-seq. Despite this uniformity, only a subset of the Xi became earlier replicating in SmcHD1-mutant cells. In the mutant, these domains protruded out of the Xi core, contacted each other and became transcriptionally reactivated. 4C-seq suggested that they constituted the outermost layer of the Xi even before XCI and were rich in escape genes. We propose that this default positioning forms the basis for their inherent heterochromatin instability in cells lacking the Xi-binding protein SmcHD1 or exhibiting XCI escape. These observations underscore the importance of 3D genome organization for heterochromatin stability and gene regulation.
Collapse
Affiliation(s)
- Rawin Poonperm
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Saya Ichihara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
- Cell Architecture Laboratory, Department of Chromosome Science, National Institute of Genetics, Shizuoka, Japan
| | - Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Akie Tanigawa
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Koji Nagao
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Chikashi Obuse
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Takashi Sado
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| |
Collapse
|
18
|
Šikrová D, Testa AM, Willemsen I, van den Heuvel A, Tapscott SJ, Daxinger L, Balog J, van der Maarel SM. SMCHD1 and LRIF1 converge at the FSHD-associated D4Z4 repeat and LRIF1 promoter yet display different modes of action. Commun Biol 2023; 6:677. [PMID: 37380887 DOI: 10.1038/s42003-023-05053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 06/17/2023] [Indexed: 06/30/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic derepression of the 4q-linked D4Z4 macrosatellite repeat resulting in inappropriate expression of the D4Z4 repeat-encoded DUX4 gene in skeletal muscle. In 5% of FSHD cases, D4Z4 chromatin relaxation is due to germline mutations in one of the chromatin modifiers SMCHD1, DNMT3B or LRIF1. The mechanism of SMCHD1- and LRIF1-mediated D4Z4 repression is not clear. We show that somatic loss-of-function of either SMCHD1 or LRIF1 does not result in D4Z4 chromatin changes and that SMCHD1 and LRIF1 form an auxiliary layer of D4Z4 repressive mechanisms. We uncover that SMCHD1, together with the long isoform of LRIF1, binds to the LRIF1 promoter and silences LRIF1 expression. The interdependency of SMCHD1 and LRIF1 binding differs between D4Z4 and the LRIF1 promoter, and both loci show different transcriptional responses to either early developmentally or somatically perturbed chromatin function of SMCHD1 and LRIF1.
Collapse
Affiliation(s)
- Darina Šikrová
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Alessandra M Testa
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
- Department of Biomedical Sciences, University of Padua, 35100, Padua, Italy
| | - Iris Willemsen
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Anita van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands.
| |
Collapse
|
19
|
Inoue K, Bostan H, Browne MR, Bevis OF, Bortner CD, Moore SA, Stence AA, Martin NP, Chen SH, Burkholder AB, Li JL, Shaw ND. DUX4 double whammy: The transcription factor that causes a rare muscular dystrophy also kills the precursors of the human nose. SCIENCE ADVANCES 2023; 9:eabq7744. [PMID: 36800423 PMCID: PMC9937577 DOI: 10.1126/sciadv.abq7744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/12/2023] [Indexed: 05/19/2023]
Abstract
SMCHD1 mutations cause congenital arhinia (absent nose) and a muscular dystrophy called FSHD2. In FSHD2, loss of SMCHD1 repressive activity causes expression of double homeobox 4 (DUX4) in muscle tissue, where it is toxic. Studies of arhinia patients suggest a primary defect in nasal placode cells (human nose progenitors). Here, we show that upon SMCHD1 ablation, DUX4 becomes derepressed in H9 human embryonic stem cells (hESCs) as they differentiate toward a placode cell fate, triggering cell death. Arhinia and FSHD2 patient-derived induced pluripotent stem cells (iPSCs) express DUX4 when converted to placode cells and demonstrate variable degrees of cell death, suggesting an environmental disease modifier. HSV-1 may be one such modifier as herpesvirus infection amplifies DUX4 expression in SMCHD1 KO hESC and patient iPSC. These studies suggest that arhinia, like FSHD2, is due to compromised SMCHD1 repressive activity in a cell-specific context and provide evidence for an environmental modifier.
Collapse
Affiliation(s)
- Kaoru Inoue
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Hamed Bostan
- Integrative Bioinformatics, NIEHS, Research Triangle Park, NC, USA
| | - MaKenna R. Browne
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Owen F. Bevis
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Carl D. Bortner
- Signal Transduction Laboratory, NIEHS, Research Triangle Park, NC, USA
| | - Steven A. Moore
- Department of Pathology, University of Iowa Carver College of Medicine and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Iowa City, IA, USA
| | - Aaron A. Stence
- University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | | | - Shih-Heng Chen
- Viral Vector Core, NIEHS, Research Triangle Park, NC, USA
| | | | - Jian-Liang Li
- Integrative Bioinformatics, NIEHS, Research Triangle Park, NC, USA
| | - Natalie D. Shaw
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| |
Collapse
|
20
|
Tihaya MS, Mul K, Balog J, de Greef JC, Tapscott SJ, Tawil R, Statland JM, van der Maarel SM. Facioscapulohumeral muscular dystrophy: the road to targeted therapies. Nat Rev Neurol 2023; 19:91-108. [PMID: 36627512 PMCID: PMC11578282 DOI: 10.1038/s41582-022-00762-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Advances in the molecular understanding of facioscapulohumeral muscular dystrophy (FSHD) have revealed that FSHD results from epigenetic de-repression of the DUX4 gene in skeletal muscle, which encodes a transcription factor that is active in early embryonic development but is normally silenced in almost all somatic tissues. These advances also led to the identification of targets for disease-altering therapies for FSHD, as well as an improved understanding of the molecular mechanism of the disease and factors that influence its progression. Together, these developments led the FSHD research community to shift its focus towards the development of disease-modifying treatments for FSHD. This Review presents advances in the molecular and clinical understanding of FSHD, discusses the potential targeted therapies that are currently being explored, some of which are already in clinical trials, and describes progress in the development of FSHD-specific outcome measures and assessment tools for use in future clinical trials.
Collapse
Affiliation(s)
- Mara S Tihaya
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
21
|
Ihirwe RG, Martel J, Rahimi S, Trasler J. Protective and sex-specific effects of moderate dose folic acid supplementation on the placenta following assisted reproduction in mice. FASEB J 2023; 37:e22677. [PMID: 36515682 PMCID: PMC10108070 DOI: 10.1096/fj.202201428r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Epigenetic defects induced by assisted reproductive technologies (ART) have been suggested as a potential mechanism contributing to suboptimal placentation. Here, we hypothesize that ART perturbs DNA methylation (DNAme) and gene expression during early placenta development, leading to abnormal placental phenotypes observed at term. Since folic acid (FA) plays a crucial role in epigenetic regulation, we propose that FA supplementation can rescue ART-induced placental defects. Female mice were placed on a control diet (CD), a moderate 4-fold (FAS4) or high dose 10-fold (FAS10) FA-supplemented diet prior to ART and compared to a natural mating group. ART resulted in 41 and 28 differentially expressed genes (DEGs) in E10.5 female and male placentas, respectively. Many DEGs were implicated in early placenta development and associated with DNAme changes; a number clustered at known imprinting control regions (ICR). In females, FAS4 partially corrected alterations in gene expression while FAS10 showed evidence of male-biased adverse effects. DNAme and gene expression for five genes involved in early placentation (Phlda2, EphB2, Igf2, Peg3, L3mbtl1) were followed up in placentas from normal as well as delayed and abnormal embryos. Phlda2 and Igf2 expression levels were lowest after ART in placentas of female delayed embryos. Moreover, ART concomitantly reduced DNAme at the Kcnq1ot1 ICR which regulates Phlda2 expression; FAS4 partially improved DNAme in a sex-specific manner. In conclusion, ART-associated placental DNAme and transcriptome alterations observed at mid-gestation are sex-specific; they may help explain adverse placental phenotypes detected at term and are partially corrected by maternal moderate dose FA supplementation.
Collapse
Affiliation(s)
- Rita Gloria Ihirwe
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Josée Martel
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sophia Rahimi
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jacquetta Trasler
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Mechanisms of DNA methylation and histone modifications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:51-92. [PMID: 37019597 DOI: 10.1016/bs.pmbts.2023.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The field of genetics has expanded a lot in the past few decades due to the accessibility of human genome sequences, but still, the regulation of transcription cannot be explicated exclusively by the sequence of DNA of an individual. The coordination and crosstalk between chromatin factors which are conserved is indispensable for all living creatures. The regulation of gene expression has been dependent on the methylation of DNA, post-translational modifications of histones, effector proteins, chromatin remodeler enzymes that affect the chromatin structure and function, and other cellular activities such as DNA replication, DNA repair, proliferation and growth. The mutation and deletion of these factors can lead to human diseases. Various studies are being performed to identify and understand the gene regulatory mechanisms in the diseased state. The information from these high throughput screening studies is able to aid the treatment developments based on the epigenetics regulatory mechanisms. This book chapter will discourse on various modifications and their mechanisms that take place on histones and DNA that regulate the transcription of genes.
Collapse
|
23
|
Masui O, Corbel C, Nagao K, Endo TA, Kezuka F, Diabangouaya P, Nakayama M, Kumon M, Koseki Y, Obuse C, Koseki H, Heard E. Polycomb repressive complexes 1 and 2 are each essential for maintenance of X inactivation in extra-embryonic lineages. Nat Cell Biol 2023; 25:134-144. [PMID: 36635505 PMCID: PMC7616894 DOI: 10.1038/s41556-022-01047-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/08/2022] [Indexed: 01/14/2023]
Abstract
In female mammals, one of the two X chromosomes becomes inactivated during development by X-chromosome inactivation (XCI). Although Polycomb repressive complex (PRC) 1 and PRC2 have both been implicated in gene silencing, their exact roles in XCI during in vivo development have remained elusive. To this end, we have studied mouse embryos lacking either PRC1 or PRC2. Here we demonstrate that the loss of either PRC has a substantial impact on maintenance of gene silencing on the inactive X chromosome (Xi) in extra-embryonic tissues, with overlapping yet different genes affected, indicating potentially independent roles of the two complexes. Importantly, a lack of PRC1 does not affect PRC2/H3K27me3 accumulation and a lack of PRC2 does not impact PRC1/H2AK119ub1 accumulation on the Xi. Thus PRC1 and PRC2 contribute independently to the maintenance of XCI in early post-implantation extra-embryonic lineages, revealing that both Polycomb complexes can be directly involved and differently deployed in XCI.
Collapse
Affiliation(s)
- Osamu Masui
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Catherine Corbel
- Unité de Génétique et Biologie du Développement, Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Paris, France
| | - Koji Nagao
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Takaho A Endo
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Fuyuko Kezuka
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Patricia Diabangouaya
- Unité de Génétique et Biologie du Développement, Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Paris, France
| | - Manabu Nakayama
- Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Mami Kumon
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Chikashi Obuse
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Edith Heard
- Unité de Génétique et Biologie du Développement, Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Paris, France.
- Collège de France, Paris, France.
- European Molecular Biology Laboratory (EMBL), Directors' research unit, Heidelberg, Germany.
| |
Collapse
|
24
|
Bauer M, Payer B, Filion GJ. Causality in transcription and genome folding: Insights from X inactivation. Bioessays 2022; 44:e2200105. [PMID: 36028473 DOI: 10.1002/bies.202200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022]
Abstract
The spatial organization of genomes is becoming increasingly understood. In mammals, where it is most investigated, this organization ties in with transcription, so an important research objective is to understand whether gene activity is a cause or a consequence of genome folding in space. In this regard, the phenomena of X-chromosome inactivation and reactivation open a unique window of investigation because of the singularities of the inactive X chromosome. Here we focus on the cause-consequence nexus between genome conformation and transcription and explain how recent results about the structural changes associated with inactivation and reactivation of the X chromosome shed light on this problem.
Collapse
Affiliation(s)
- Moritz Bauer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Guillaume J Filion
- Dept. Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
25
|
Ichihara S, Nagao K, Sakaguchi T, Obuse C, Sado T. SmcHD1 underlies the formation of H3K9me3 blocks on the inactive X chromosome in mice. Development 2022; 149:dev200864. [PMID: 38771307 DOI: 10.1242/dev.200864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022]
Abstract
Stable silencing of the inactive X chromosome (Xi) in female mammals is crucial for the development of embryos and their postnatal health. SmcHD1 is essential for stable silencing of the Xi, and its functional deficiency results in derepression of many X-inactivated genes. Although SmcHD1 has been suggested to play an important role in the formation of higher-order chromatin structure of the Xi, the underlying mechanism is largely unknown. Here, we explore the epigenetic state of the Xi in SmcHD1-deficient epiblast stem cells and mouse embryonic fibroblasts in comparison with their wild-type counterparts. The results suggest that SmcHD1 underlies the formation of H3K9me3-enriched blocks on the Xi, which, although the importance of H3K9me3 has been largely overlooked in mice, play a crucial role in the establishment of the stably silenced state. We propose that the H3K9me3 blocks formed on the Xi facilitate robust heterochromatin formation in combination with H3K27me3, and that the substantial loss of H3K9me3 caused by SmcHD1 deficiency leads to aberrant distribution of H3K27me3 on the Xi and derepression of X-inactivated genes.
Collapse
Affiliation(s)
- Saya Ichihara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Koji Nagao
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Takehisa Sakaguchi
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Chikashi Obuse
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Takashi Sado
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| |
Collapse
|
26
|
Benetti N, Gouil Q, Tapia Del Fierro A, Beck T, Breslin K, Keniry A, McGlinn E, Blewitt ME. Maternal SMCHD1 regulates Hox gene expression and patterning in the mouse embryo. Nat Commun 2022; 13:4295. [PMID: 35879318 PMCID: PMC9314430 DOI: 10.1038/s41467-022-32057-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/13/2022] [Indexed: 11/08/2022] Open
Abstract
Parents transmit genetic and epigenetic information to their offspring. Maternal effect genes regulate the offspring epigenome to ensure normal development. Here we report that the epigenetic regulator SMCHD1 has a maternal effect on Hox gene expression and skeletal patterning. Maternal SMCHD1, present in the oocyte and preimplantation embryo, prevents precocious activation of Hox genes post-implantation. Without maternal SMCHD1, highly penetrant posterior homeotic transformations occur in the embryo. Hox genes are decorated with Polycomb marks H2AK119ub and H3K27me3 from the oocyte throughout early embryonic development; however, loss of maternal SMCHD1 does not deplete these marks. Therefore, we propose maternal SMCHD1 acts downstream of Polycomb marks to establish a chromatin state necessary for persistent epigenetic silencing and appropriate Hox gene expression later in the developing embryo. This is a striking role for maternal SMCHD1 in long-lived epigenetic effects impacting offspring phenotype.
Collapse
Affiliation(s)
- Natalia Benetti
- The Epigenetics and Development Division, WEHI, Parkville, VIC, Australia
- The Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Quentin Gouil
- The Epigenetics and Development Division, WEHI, Parkville, VIC, Australia
- The Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Andres Tapia Del Fierro
- The Epigenetics and Development Division, WEHI, Parkville, VIC, Australia
- The Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Tamara Beck
- The Epigenetics and Development Division, WEHI, Parkville, VIC, Australia
| | - Kelsey Breslin
- The Epigenetics and Development Division, WEHI, Parkville, VIC, Australia
| | - Andrew Keniry
- The Epigenetics and Development Division, WEHI, Parkville, VIC, Australia
- The Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Edwina McGlinn
- EMBL Australia, Monash University, Clayton, VIC, Australia.
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| | - Marnie E Blewitt
- The Epigenetics and Development Division, WEHI, Parkville, VIC, Australia.
- The Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
27
|
Wanigasuriya I, Kinkel SA, Beck T, Roper EA, Breslin K, Lee HJ, Keniry A, Ritchie ME, Blewitt ME, Gouil Q. Maternal SMCHD1 controls both imprinted Xist expression and imprinted X chromosome inactivation. Epigenetics Chromatin 2022; 15:26. [PMID: 35843975 PMCID: PMC9290310 DOI: 10.1186/s13072-022-00458-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Embryonic development is dependent on the maternal supply of proteins through the oocyte, including factors setting up the adequate epigenetic patterning of the zygotic genome. We previously reported that one such factor is the epigenetic repressor SMCHD1, whose maternal supply controls autosomal imprinted expression in mouse preimplantation embryos and mid-gestation placenta. In mouse preimplantation embryos, X chromosome inactivation is also an imprinted process. Combining genomics and imaging, we show that maternal SMCHD1 is required not only for the imprinted expression of Xist in preimplantation embryos, but also for the efficient silencing of the inactive X in both the preimplantation embryo and mid-gestation placenta. These results expand the role of SMCHD1 in enforcing the silencing of Polycomb targets. The inability of zygotic SMCHD1 to fully restore imprinted X inactivation further points to maternal SMCHD1's role in setting up the appropriate chromatin environment during preimplantation development, a critical window of epigenetic remodelling.
Collapse
Affiliation(s)
- Iromi Wanigasuriya
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Sarah A Kinkel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Tamara Beck
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Ellise A Roper
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, Australia
| | - Kelsey Breslin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Heather J Lee
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, Australia
| | - Andrew Keniry
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Matthew E Ritchie
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, The University of Melbourne, Parkville, Australia
- The Department of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Marnie E Blewitt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
- The Department of Medical Biology, The University of Melbourne, Parkville, Australia.
| | - Quentin Gouil
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
- The Department of Medical Biology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
28
|
Epigenetic modifier SMCHD1 maintains a normal pool of long-term hematopoietic stem cells. iScience 2022; 25:104684. [PMID: 35856023 PMCID: PMC9287190 DOI: 10.1016/j.isci.2022.104684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
SMCHD1 (structural maintenance of chromosomes hinge domain containing 1) is a noncanonical SMC protein that mediates long-range repressive chromatin structures. SMCHD1 is required for X chromosome inactivation in female cells and repression of imprinted and clustered autosomal genes, with SMCHD1 mutations linked to human diseases facioscapulohumeral muscular dystrophy (FSHD) and bosma arhinia and micropthalmia syndrome (BAMS). We used a conditional mouse model to investigate SMCHD1 in hematopoiesis. Smchd1-deleted mice maintained steady-state hematopoiesis despite showing an impaired reconstitution capacity in competitive bone marrow transplantations and age-related hematopoietic stem cell (HSC) loss. This phenotype was more pronounced in Smchd1-deleted females, which showed a loss of quiescent HSCs and fewer B cells. Gene expression profiling of Smchd1-deficient HSCs and B cells revealed known and cell-type-specific SMCHD1-sensitive genes and significant disruption to X-linked gene expression in female cells. These data show SMCHD1 is a regulator of HSCs whose effects are more profound in females. SMCHD1 is not required to maintain steady-state hematopoiesis Smchd1-deletion leads to loss of adult hematopoietic stem cells Smchd1-deleted female mice are more severely affected than males SMCHD1 maintains cellular quiescence in female hematopoietic stem cells
Collapse
|
29
|
A lifelong duty: how Xist maintains the inactive X chromosome. Curr Opin Genet Dev 2022; 75:101927. [PMID: 35717799 PMCID: PMC9472561 DOI: 10.1016/j.gde.2022.101927] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 11/22/2022]
Abstract
Female eutherians transcriptionally silence one X chromosome to balance gene dosage between the sexes. X-chromosome inactivation (XCI) is initiated by the lncRNA Xist, which assembles many proteins within the inactive X chromosome (Xi) to trigger gene silencing and heterochromatin formation. It is well established that gene silencing on the Xi is maintained through repressive epigenetic processes, including histone deacetylation and DNA methylation. Recent studies revealed a new mechanism where RNA-binding proteins that interact directly with the RNA contribute to the maintenance of Xist localization and gene silencing. In addition, a surprising plasticity of the Xi was uncovered with many genes becoming upregulated upon experimental deletion of Xist. Intriguingly, immune cells normally lose Xist from the Xi, suggesting that thisXist dependence is utilized in vivo to dynamically regulate gene expression from the Xi. These new studies expose fundamental regulatory mechanisms for the chromatin association of RNAs, highlight the need for studying the maintenance of XCI and Xist localization in a gene- and cell-type-specific manner, and are likely to have clinical impact.
Collapse
|
30
|
Xist-mediated silencing requires additive functions of SPEN and Polycomb together with differentiation-dependent recruitment of SmcHD1. Cell Rep 2022; 39:110830. [PMID: 35584662 DOI: 10.1016/j.celrep.2022.110830] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/17/2022] [Accepted: 04/26/2022] [Indexed: 11/20/2022] Open
Abstract
X chromosome inactivation (XCI) is mediated by the non-coding RNA Xist, which directs chromatin modification and gene silencing in cis. The RNA binding protein SPEN and associated corepressors have a central role in Xist-mediated gene silencing. Other silencing factors, notably the Polycomb system, have been reported to function downstream of SPEN. In recent work, we found that SPEN has an additional role in correct localization of Xist RNA in cis, indicating that its contribution to chromatin-mediated gene silencing needs to be reappraised. Making use of a SPEN separation-of-function mutation, we show that SPEN and Polycomb pathways, in fact, function in parallel to establish gene silencing. We also find that differentiation-dependent recruitment of the chromosomal protein SmcHD1 is required for silencing many X-linked genes. Our results provide important insights into the mechanism of X inactivation and the coordination of chromatin-based gene regulation with cellular differentiation and development.
Collapse
|
31
|
Dossin F, Heard E. The Molecular and Nuclear Dynamics of X-Chromosome Inactivation. Cold Spring Harb Perspect Biol 2022; 14:a040196. [PMID: 34312245 PMCID: PMC9121902 DOI: 10.1101/cshperspect.a040196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In female eutherian mammals, dosage compensation of X-linked gene expression is achieved during development through transcriptional silencing of one of the two X chromosomes. Following X chromosome inactivation (XCI), the inactive X chromosome remains faithfully silenced throughout somatic cell divisions. XCI is dependent on Xist, a long noncoding RNA that coats and silences the X chromosome from which it is transcribed. Xist coating triggers a cascade of chromosome-wide changes occurring at the levels of transcription, chromatin composition, chromosome structure, and spatial organization within the nucleus. XCI has emerged as a paradigm for the study of such crucial nuclear processes and the dissection of their functional interplay. In the past decade, the advent of tools to characterize and perturb these processes have provided an unprecedented understanding into their roles during XCI. The mechanisms orchestrating the initiation of XCI as well as its maintenance are thus being unraveled, although many questions still remain. Here, we introduce key aspects of the XCI process and review the recent discoveries about its molecular basis.
Collapse
Affiliation(s)
- François Dossin
- European Molecular Biology Laboratory, Director's Unit, 69117 Heidelberg, Germany
| | - Edith Heard
- European Molecular Biology Laboratory, Director's Unit, 69117 Heidelberg, Germany
| |
Collapse
|
32
|
Al Adhami H, Bardet AF, Dumas M, Cleroux E, Guibert S, Fauque P, Acloque H, Weber M. A comparative methylome analysis reveals conservation and divergence of DNA methylation patterns and functions in vertebrates. BMC Biol 2022; 20:70. [PMID: 35317801 PMCID: PMC8941758 DOI: 10.1186/s12915-022-01270-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Background Cytosine DNA methylation is a heritable epigenetic mark present in most eukaryotic groups. While the patterns and functions of DNA methylation have been extensively studied in mouse and human, their conservation in other vertebrates remains poorly explored. In this study, we interrogated the distribution and function of DNA methylation in primary fibroblasts of seven vertebrate species including bio-medical models and livestock species (human, mouse, rabbit, dog, cow, pig, and chicken). Results Our data highlight both divergence and conservation of DNA methylation patterns and functions. We show that the chicken genome is hypomethylated compared to other vertebrates. Furthermore, compared to mouse, other species show a higher frequency of methylation of CpG-rich DNA. We reveal the conservation of large unmethylated valleys and patterns of DNA methylation associated with X-chromosome inactivation through vertebrate evolution and make predictions of conserved sets of imprinted genes across mammals. Finally, using chemical inhibition of DNA methylation, we show that the silencing of germline genes and endogenous retroviruses (ERVs) are conserved functions of DNA methylation in vertebrates. Conclusions Our data highlight conserved properties of DNA methylation in vertebrate genomes but at the same time point to differences between mouse and other vertebrate species. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01270-x.
Collapse
Affiliation(s)
- Hala Al Adhami
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Anaïs Flore Bardet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Dumas
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Elouan Cleroux
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Sylvain Guibert
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Patricia Fauque
- Université Bourgogne Franche-Comté, Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, 21000, Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction - CECOS, 14 rue Gaffarel, 21000, Dijon, France
| | - Hervé Acloque
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Michael Weber
- University of Strasbourg, Strasbourg, France. .,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France.
| |
Collapse
|
33
|
Gene regulation in time and space during X-chromosome inactivation. Nat Rev Mol Cell Biol 2022; 23:231-249. [PMID: 35013589 DOI: 10.1038/s41580-021-00438-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
X-chromosome inactivation (XCI) is the epigenetic mechanism that ensures X-linked dosage compensation between cells of females (XX karyotype) and males (XY). XCI is essential for female embryos to survive through development and requires the accurate spatiotemporal regulation of many different factors to achieve remarkable chromosome-wide gene silencing. As a result of XCI, the active and inactive X chromosomes are functionally and structurally different, with the inactive X chromosome undergoing a major conformational reorganization within the nucleus. In this Review, we discuss the multiple layers of genetic and epigenetic regulation that underlie initiation of XCI during development and then maintain it throughout life, in light of the most recent findings in this rapidly advancing field. We discuss exciting new insights into the regulation of X inactive-specific transcript (XIST), the trigger and master regulator of XCI, and into the mechanisms and dynamics that underlie the silencing of nearly all X-linked genes. Finally, given the increasing interest in understanding the impact of chromosome organization on gene regulation, we provide an overview of the factors that are thought to reshape the 3D structure of the inactive X chromosome and of the relevance of such structural changes for XCI establishment and maintenance.
Collapse
|
34
|
Kgatle MM, Lawal IO, Mashabela G, Boshomane TMG, Koatale PC, Mahasha PW, Ndlovu H, Vorster M, Rodrigues HG, Zeevaart JR, Gordon S, Moura-Alves P, Sathekge MM. COVID-19 Is a Multi-Organ Aggressor: Epigenetic and Clinical Marks. Front Immunol 2021; 12:752380. [PMID: 34691068 PMCID: PMC8531724 DOI: 10.3389/fimmu.2021.752380] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022] Open
Abstract
The progression of coronavirus disease 2019 (COVID-19), resulting from a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, may be influenced by both genetic and environmental factors. Several viruses hijack the host genome machinery for their own advantage and survival, and similar phenomena might occur upon SARS-CoV-2 infection. Severe cases of COVID-19 may be driven by metabolic and epigenetic driven mechanisms, including DNA methylation and histone/chromatin alterations. These epigenetic phenomena may respond to enhanced viral replication and mediate persistent long-term infection and clinical phenotypes associated with severe COVID-19 cases and fatalities. Understanding the epigenetic events involved, and their clinical significance, may provide novel insights valuable for the therapeutic control and management of the COVID-19 pandemic. This review highlights different epigenetic marks potentially associated with COVID-19 development, clinical manifestation, and progression.
Collapse
Affiliation(s)
- Mankgopo Magdeline Kgatle
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Ismaheel Opeyemi Lawal
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Gabriel Mashabela
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Tebatso Moshoeu Gillian Boshomane
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Nuclear and Oncology Division, AXIM Medical (Pty), Midrand
| | - Palesa Caroline Koatale
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Phetole Walter Mahasha
- Precision Medicine and SAMRC Genomic Centre, Grants, Innovation, and Product Development (GIPD) Unit, South African Medical Research Council, Pretoria, South Africa
| | - Honest Ndlovu
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Hosana Gomes Rodrigues
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Campinas, Brazil
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- South African Nuclear Energy Corporation, Radiochemistry and NuMeRI PreClinical Imaging Facility, Mahikeng, South Africa
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Pedro Moura-Alves
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mike Machaba Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
35
|
Jia FF, Drew AP, Nicholson GA, Corbett A, Kumar KR. Facioscapulohumeral muscular dystrophy type 2: an update on the clinical, genetic, and molecular findings. Neuromuscul Disord 2021; 31:1101-1112. [PMID: 34711481 DOI: 10.1016/j.nmd.2021.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a common genetic disease of the skeletal muscle with a characteristic pattern of weakness. Facioscapulohumeral muscular dystrophy type 2 (FSHD2) accounts for approximately 5% of all cases of FSHD and describes patients without a D4Z4 repeat contraction on chromosome 4. Phenotypically FSHD2 shows virtually no difference from FSHD1 and both forms of FSHD arise via a common downstream mechanism of epigenetic derepression of the transcription factor DUX4 in skeletal muscle cells. This results in expression of DUX4 and target genes leading to skeletal muscle toxicity. Over the past decade, major progress has been made in our understanding of the genetic and epigenetic architecture that underlies FSHD2 pathogenesis, as well as the clinical manifestations and disease progression. These include the finding that FSHD2 is a digenic disease and that mutations in the genes SMCHD1, DNMT3B, and more recently LRIF1, can cause FSHD2. FSHD2 is complex and it is important that clinicians keep abreast of recent developments; this review aims to serve as an update of the clinical, genetic, and molecular research into this condition.
Collapse
Affiliation(s)
- Fangzhi Frank Jia
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia.
| | - Alexander P Drew
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.
| | - Garth Alexander Nicholson
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales 2139, Australia; Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.
| | - Alastair Corbett
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.
| | - Kishore Raj Kumar
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.
| |
Collapse
|
36
|
Bonora G, Ramani V, Singh R, Fang H, Jackson DL, Srivatsan S, Qiu R, Lee C, Trapnell C, Shendure J, Duan Z, Deng X, Noble WS, Disteche CM. Single-cell landscape of nuclear configuration and gene expression during stem cell differentiation and X inactivation. Genome Biol 2021; 22:279. [PMID: 34579774 PMCID: PMC8474932 DOI: 10.1186/s13059-021-02432-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Mammalian development is associated with extensive changes in gene expression, chromatin accessibility, and nuclear structure. Here, we follow such changes associated with mouse embryonic stem cell differentiation and X inactivation by integrating, for the first time, allele-specific data from these three modalities obtained by high-throughput single-cell RNA-seq, ATAC-seq, and Hi-C. RESULTS Allele-specific contact decay profiles obtained by single-cell Hi-C clearly show that the inactive X chromosome has a unique profile in differentiated cells that have undergone X inactivation. Loss of this inactive X-specific structure at mitosis is followed by its reappearance during the cell cycle, suggesting a "bookmark" mechanism. Differentiation of embryonic stem cells to follow the onset of X inactivation is associated with changes in contact decay profiles that occur in parallel on both the X chromosomes and autosomes. Single-cell RNA-seq and ATAC-seq show evidence of a delay in female versus male cells, due to the presence of two active X chromosomes at early stages of differentiation. The onset of the inactive X-specific structure in single cells occurs later than gene silencing, consistent with the idea that chromatin compaction is a late event of X inactivation. Single-cell Hi-C highlights evidence of discrete changes in nuclear structure characterized by the acquisition of very long-range contacts throughout the nucleus. Novel computational approaches allow for the effective alignment of single-cell gene expression, chromatin accessibility, and 3D chromosome structure. CONCLUSIONS Based on trajectory analyses, three distinct nuclear structure states are detected reflecting discrete and profound simultaneous changes not only to the structure of the X chromosomes, but also to that of autosomes during differentiation. Our study reveals that long-range structural changes to chromosomes appear as discrete events, unlike progressive changes in gene expression and chromatin accessibility.
Collapse
Affiliation(s)
- Giancarlo Bonora
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Vijay Ramani
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Ritambhara Singh
- Department of Computer Science, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - He Fang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ruolan Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
- Division of Hematology, Department of Medicine, University of Washington, Seattle, USA
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
| | - Christine M Disteche
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
37
|
Adenine base editing of the DUX4 polyadenylation signal for targeted genetic therapy in facioscapulohumeral muscular dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:342-354. [PMID: 34484861 PMCID: PMC8399085 DOI: 10.1016/j.omtn.2021.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by chromatin relaxation of the D4Z4 repeat resulting in misexpression of the D4Z4-encoded DUX4 gene in skeletal muscle. One of the key genetic requirements for the stable production of full-length DUX4 mRNA in skeletal muscle is a functional polyadenylation signal (ATTAAA) in exon three of DUX4 that is used in somatic cells. Base editors hold great promise to treat DNA lesions underlying genetic diseases through their ability to carry out specific and rapid nucleotide mutagenesis even in postmitotic cells such as skeletal muscle. In this study, we present a simple and straightforward strategy for mutagenesis of the somatic DUX4 polyadenylation signal by adenine base editing in immortalized myoblasts derived from independent FSHD-affected individuals. We show that mutating this critical cis-regulatory element results in downregulation of DUX4 mRNA and its direct transcriptional target genes. Our findings identify the somatic DUX4 polyadenylation signal as a therapeutic target and represent the first step toward clinical application of the CRISPR-Cas9 base editing platform for FSHD gene therapy.
Collapse
|
38
|
Szanto A, Aguilar R, Kesner B, Blum R, Wang D, Cifuentes-Rojas C, Del Rosario BC, Kis-Toth K, Lee JT. A disproportionate impact of G9a methyltransferase deficiency on the X chromosome. Genes Dev 2021; 35:1035-1054. [PMID: 34168040 PMCID: PMC8247598 DOI: 10.1101/gad.337592.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/27/2021] [Indexed: 01/05/2023]
Abstract
In this study from Szanto et al., the authors investigated the role of G9a, a histone methyltransferase responsible for the dimethylation of histone H3 at lysine 9 (H3K9me2) that plays key roles in transcriptional silencing of developmentally regulated genes, in X-chromosome inactivation (XCI). They found a female-specific function of G9a and demonstrate that deleting G9a has a disproportionate impact on the X chromosome relative to the rest of the genome, and show RNA tethers G9a for allele-specific targeting of the H3K9me2 modification and the G9a–RNA interaction is essential for XCI. G9a is a histone methyltransferase responsible for the dimethylation of histone H3 at lysine 9 (H3K9me2). G9a plays key roles in transcriptional silencing of developmentally regulated genes, but its role in X-chromosome inactivation (XCI) has been under debate. Here, we uncover a female-specific function of G9a and demonstrate that deleting G9a has a disproportionate impact on the X chromosome relative to the rest of the genome. G9a deficiency causes a failure of XCI and female-specific hypersensitivity to drug inhibition of H3K9me2. We show that G9a interacts with Tsix and Xist RNAs, and that competitive inhibition of the G9a-RNA interaction recapitulates the XCI defect. During XCI, Xist recruits G9a to silence X-linked genes on the future inactive X. In parallel on the future Xa, Tsix recruits G9a to silence Xist in cis. Thus, RNA tethers G9a for allele-specific targeting of the H3K9me2 modification and the G9a-RNA interaction is essential for XCI.
Collapse
Affiliation(s)
- Attila Szanto
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rodrigo Aguilar
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Barry Kesner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Roy Blum
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Danni Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Catherine Cifuentes-Rojas
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brian C Del Rosario
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Katalin Kis-Toth
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, Massachusetts 02115, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
39
|
trans-Acting Factors and cis Elements Involved in the Human Inactive X Chromosome Organization and Compaction. Genet Res (Camb) 2021; 2021:6683460. [PMID: 34035662 PMCID: PMC8121581 DOI: 10.1155/2021/6683460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/06/2021] [Accepted: 04/30/2021] [Indexed: 11/23/2022] Open
Abstract
During X chromosome inactivation, many chromatin changes occur on the future inactive X chromosome, including acquisition of a variety of repressive covalent histone modifications, heterochromatin protein associations, and DNA methylation of promoters. Here, we summarize trans-acting factors and cis elements that have been shown to be involved in the human inactive X chromosome organization and compaction.
Collapse
|
40
|
Giaimo BD, Robert-Finestra T, Oswald F, Gribnau J, Borggrefe T. Chromatin Regulator SPEN/SHARP in X Inactivation and Disease. Cancers (Basel) 2021; 13:cancers13071665. [PMID: 33916248 PMCID: PMC8036811 DOI: 10.3390/cancers13071665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Carcinogenesis is a multistep process involving not only the activation of oncogenes and disabling tumor suppressor genes, but also epigenetic modulation of gene expression. X chromosome inactivation (XCI) is a paradigm to study heterochromatin formation and maintenance. The double dosage of X chromosomal genes in female mammals is incompatible with early development. XCI is an excellent model system for understanding the establishment of facultative heterochromatin initiated by the expression of a 17,000 nt long non-coding RNA, known as Xinactivespecifictranscript (Xist), on the X chromosome. This review focuses on the molecular mechanisms of how epigenetic modulators act in a step-wise manner to establish facultative heterochromatin, and we put these in the context of cancer biology and disease. An in depth understanding of XCI will allow a better characterization of particular types of cancer and hopefully facilitate the development of novel epigenetic therapies. Abstract Enzymes, such as histone methyltransferases and demethylases, histone acetyltransferases and deacetylases, and DNA methyltransferases are known as epigenetic modifiers that are often implicated in tumorigenesis and disease. One of the best-studied chromatin-based mechanism is X chromosome inactivation (XCI), a process that establishes facultative heterochromatin on only one X chromosome in females and establishes the right dosage of gene expression. The specificity factor for this process is the long non-coding RNA Xinactivespecifictranscript (Xist), which is upregulated from one X chromosome in female cells. Subsequently, Xist is bound by the corepressor SHARP/SPEN, recruiting and/or activating histone deacetylases (HDACs), leading to the loss of active chromatin marks such as H3K27ac. In addition, polycomb complexes PRC1 and PRC2 establish wide-spread accumulation of H3K27me3 and H2AK119ub1 chromatin marks. The lack of active marks and establishment of repressive marks set the stage for DNA methyltransferases (DNMTs) to stably silence the X chromosome. Here, we will review the recent advances in understanding the molecular mechanisms of how heterochromatin formation is established and put this into the context of carcinogenesis and disease.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| | - Teresa Robert-Finestra
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| |
Collapse
|
41
|
Song Z, Lin J, Li Z, Huang C. The nuclear functions of long noncoding RNAs come into focus. Noncoding RNA Res 2021; 6:70-79. [PMID: 33898883 PMCID: PMC8053782 DOI: 10.1016/j.ncrna.2021.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), defined as untranslated and tightly-regulated transcripts with a length exceeding 200 nt, are common outputs of the eukaryotic genome. It is becoming increasingly apparent that many lncRNAs likely serve as important regulators in a variety of biological processes. In particular, some of them accumulate in the nucleus and function in diverse nuclear events, including chromatin remodeling, transcriptional regulation, RNA processing, DNA damage repair, etc. Here, we unite recent progresses on the functions of nuclear lncRNAs and provide insights into the future research directions of this field.
Collapse
Affiliation(s)
- Zhenxing Song
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Jiamei Lin
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
- Corresponding author. School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
42
|
Moscatelli M, Rougeulle C. [Latest insights on X-chromosome inactivation: When general principles should be revisited]. Med Sci (Paris) 2021; 37:152-158. [PMID: 33591258 DOI: 10.1051/medsci/2020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The inactivation of one of the two X chromosomes of female mammals is a vital process and a paradigm for epigenetic regulations. X-inactivation is triggered, early during embryo development, by the accumulation of a peculiar noncoding RNA, XIST, which interacts with a plethora of molecular complexes and ultimately protects the coated chromosome from the expression machinery. Once installed, the inactive state is locked by multiple layers of chromatin modifications, ensuring its stable perpetuation across cell divisions. However, recent discoveries made in various model organisms urge us to revisit some of the general principles of the X-inactivation process.
Collapse
Affiliation(s)
- Madeleine Moscatelli
- Université de Paris, Épigénétique et Destin Cellulaire, CNRS, F-75006 Paris, France
| | - Claire Rougeulle
- Université de Paris, Épigénétique et Destin Cellulaire, CNRS, F-75006 Paris, France
| |
Collapse
|
43
|
Huang Z, Yu J, Cui W, Johnson BK, Kim K, Pfeifer GP. The chromosomal protein SMCHD1 regulates DNA methylation and the 2c-like state of embryonic stem cells by antagonizing TET proteins. SCIENCE ADVANCES 2021; 7:7/4/eabb9149. [PMID: 33523915 PMCID: PMC7817097 DOI: 10.1126/sciadv.abb9149] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/24/2020] [Indexed: 05/15/2023]
Abstract
5-Methylcytosine (5mC) oxidases, the ten-eleven translocation (TET) proteins, initiate DNA demethylation, but it is unclear how 5mC oxidation is regulated. We show that the protein SMCHD1 (structural maintenance of chromosomes flexible hinge domain containing 1) is found in complexes with TET proteins and negatively regulates TET activities. Removal of SMCHD1 from mouse embryonic stem (ES) cells induces DNA hypomethylation, preferentially at SMCHD1 target sites and accumulation of 5-hydroxymethylcytosine (5hmC), along with promoter demethylation and activation of the Dux double-homeobox gene. In the absence of SMCHD1, ES cells acquire a two-cell (2c) embryo-like state characterized by activation of an early embryonic transcriptome that is substantially imposed by Dux Using Smchd1/Tet1/Tet2/Tet3 quadruple-knockout cells, we show that DNA demethylation, activation of Dux, and other genes upon SMCHD1 loss depend on TET proteins. These data identify SMCHD1 as an antagonist of the 2c-like state of ES cells and of TET-mediated DNA demethylation.
Collapse
Affiliation(s)
- Zhijun Huang
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jiyoung Yu
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
- Asan Medical Center, University of Ulsan, College of Medicine, Songpa, Seoul, South Korea
| | - Wei Cui
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Benjamin K Johnson
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kyunggon Kim
- Asan Medical Center, University of Ulsan, College of Medicine, Songpa, Seoul, South Korea
| | - Gerd P Pfeifer
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
44
|
Panda A, Zylicz JJ, Pasque V. New Insights into X-Chromosome Reactivation during Reprogramming to Pluripotency. Cells 2020; 9:E2706. [PMID: 33348832 PMCID: PMC7766869 DOI: 10.3390/cells9122706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dosage compensation between the sexes results in one X chromosome being inactivated during female mammalian development. Chromosome-wide transcriptional silencing from the inactive X chromosome (Xi) in mammalian cells is erased in a process termed X-chromosome reactivation (XCR), which has emerged as a paradigm for studying the reversal of chromatin silencing. XCR is linked with germline development and induction of naive pluripotency in the epiblast, and also takes place upon reprogramming somatic cells to induced pluripotency. XCR depends on silencing of the long non-coding RNA (lncRNA) X inactive specific transcript (Xist) and is linked with the erasure of chromatin silencing. Over the past years, the advent of transcriptomics and epigenomics has provided new insights into the transcriptional and chromatin dynamics with which XCR takes place. However, multiple questions remain unanswered about how chromatin and transcription related processes enable XCR. Here, we review recent work on establishing the transcriptional and chromatin kinetics of XCR, as well as discuss a model by which transcription factors mediate XCR not only via Xist repression, but also by direct targeting of X-linked genes.
Collapse
Affiliation(s)
- Amitesh Panda
- Laboratory of Cellular Reprogramming and Epigenetic Regulation, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven-University of Leuven, 3000 Leuven, Belgium;
| | - Jan J. Zylicz
- The Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Vincent Pasque
- Laboratory of Cellular Reprogramming and Epigenetic Regulation, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven-University of Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
45
|
Wanigasuriya I, Gouil Q, Kinkel SA, Tapia Del Fierro A, Beck T, Roper EA, Breslin K, Stringer J, Hutt K, Lee HJ, Keniry A, Ritchie ME, Blewitt ME. Smchd1 is a maternal effect gene required for genomic imprinting. eLife 2020; 9:55529. [PMID: 33186096 PMCID: PMC7665889 DOI: 10.7554/elife.55529] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Genomic imprinting establishes parental allele-biased expression of a suite of mammalian genes based on parent-of-origin specific epigenetic marks. These marks are under the control of maternal effect proteins supplied in the oocyte. Here we report epigenetic repressor Smchd1 as a novel maternal effect gene that regulates the imprinted expression of ten genes in mice. We also found zygotic SMCHD1 had a dose-dependent effect on the imprinted expression of seven genes. Together, zygotic and maternal SMCHD1 regulate three classic imprinted clusters and eight other genes, including non-canonical imprinted genes. Interestingly, the loss of maternal SMCHD1 does not alter germline DNA methylation imprints pre-implantation or later in gestation. Instead, what appears to unite most imprinted genes sensitive to SMCHD1 is their reliance on polycomb-mediated methylation as germline or secondary imprints, therefore we propose that SMCHD1 acts downstream of polycomb imprints to mediate its function.
Collapse
Affiliation(s)
- Iromi Wanigasuriya
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Quentin Gouil
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Sarah A Kinkel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Andrés Tapia Del Fierro
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Tamara Beck
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Ellise A Roper
- Faculty of Health and Medicine, The University of Newcastle, Newcastle, Australia
| | - Kelsey Breslin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Jessica Stringer
- Monash Biomedicine Discovery institute, Monash University, Clayton, Australia
| | - Karla Hutt
- Monash Biomedicine Discovery institute, Monash University, Clayton, Australia
| | - Heather J Lee
- Faculty of Health and Medicine, The University of Newcastle, Newcastle, Australia
| | - Andrew Keniry
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Matthew E Ritchie
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,The Department of Medical Biology, The University of Melbourne, Parkville, Australia.,The Department of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Marnie E Blewitt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
46
|
Giacomucci G, Monforte M, Diaz-Manera J, Mul K, Fernandez Torrón R, Maggi L, Marini Bettolo C, Dahlqvist JR, Haberlova J, Camaño P, Gros M, Tartaglione T, Cristiano L, Gerevini S, Calandra P, Deidda G, Giardina E, Sacconi S, Straub V, Vissing J, Van Engelen B, Ricci E, Tasca G. Deep phenotyping of facioscapulohumeral muscular dystrophy type 2 by magnetic resonance imaging. Eur J Neurol 2020; 27:2604-2615. [PMID: 32697863 DOI: 10.1111/ene.14446] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE The aim was to define the radiological picture of facioscapulohumeral muscular dystrophy 2 (FSHD2) in comparison with FSHD1 and to explore correlations between imaging and clinical/molecular data. METHODS Upper girdle and/or lower limb muscle magnetic resonance imaging scans of 34 molecularly confirmed FSHD2 patients from nine European neuromuscular centres were analysed. T1-weighted and short-tau inversion recovery (STIR) sequences were used to evaluate the global pattern and to assess the extent of fatty replacement and muscle oedema. RESULTS The most frequently affected muscles were obliquus and transversus abdominis, semimembranosus, soleus and gluteus minimus in the lower limbs; trapezius, serratus anterior, latissimus dorsi and pectoralis major in the upper girdle. Iliopsoas, popliteus, obturator internus and tibialis posterior in the lower limbs and subscapularis, spinati, sternocleidomastoid and levator scapulae in the upper girdle were the most spared. Asymmetry and STIR hyperintensities were consistent features. The pattern of muscle involvement was similar to that of FSHD1, and the combined involvement of trapezius, abdominal and hamstring muscles, together with complete sparing of iliopsoas and subscapularis, was detected in 91% of patients. Peculiar differences were identified in a rostro-caudal gradient, a predominant involvement of lower limb muscles compared to the upper girdle, and in the higher percentage of STIR hyperintensities in FSHD2. CONCLUSION This multicentre study defines the pattern of muscle involvement in FSHD2, providing useful information for diagnostics and clinical trial design. Both similarities and differences between FSHD1 and FSHD2 were detected, which is also relevant to better understand the pathogenic mechanisms underlying the FSHD-related disease spectrum.
Collapse
Affiliation(s)
- G Giacomucci
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - M Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - J Diaz-Manera
- Neuromuscular Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - K Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - R Fernandez Torrón
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Neurology Department, Biodonostia Health Research Institute, Neuromuscular Area, Hospital Donostia, Basque Health Service, Doctor Begiristain, Donostia-San Sebastian, Spain
| | - L Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - C Marini Bettolo
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - J R Dahlqvist
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - J Haberlova
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - P Camaño
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases; Biodonostia-Osakidetza Basque Health Service, Molecular Diagnostics Platform, San Sebastian, Spain
| | - M Gros
- Université Côte d'Azur (UCA), Peripheral Nervous System, Muscle and ALS Department, Pasteur 2 Hospital, Nice, France.,Université Côte d'Azur, Inserm, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - T Tartaglione
- Radiology Unit, Istituto Dermopatico dell'Immacolata-IRCCS-FLMM, Rome, Italy
| | - L Cristiano
- Radiology Unit, Istituto Dermopatico dell'Immacolata-IRCCS-FLMM, Rome, Italy
| | - S Gerevini
- Neuroradiology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - P Calandra
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo, Rome, Italy
| | - G Deidda
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo, Rome, Italy
| | - E Giardina
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation IRCSS-University of Rome 'Tor Vergata', Rome, Italy
| | - S Sacconi
- Université Côte d'Azur (UCA), Peripheral Nervous System, Muscle and ALS Department, Pasteur 2 Hospital, Nice, France.,Université Côte d'Azur, Inserm, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - V Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - J Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - B Van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - E Ricci
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Roma, Italy.,Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - G Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| |
Collapse
|
47
|
Żylicz JJ, Heard E. Molecular Mechanisms of Facultative Heterochromatin Formation: An X-Chromosome Perspective. Annu Rev Biochem 2020; 89:255-282. [PMID: 32259458 DOI: 10.1146/annurev-biochem-062917-012655] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Facultative heterochromatin (fHC) concerns the developmentally regulated heterochromatinization of different regions of the genome and, in the case of the mammalian X chromosome and imprinted loci, of only one allele of a homologous pair. The formation of fHC participates in the timely repression of genes, by resisting strong trans activators. In this review, we discuss the molecular mechanisms underlying the establishment and maintenance of fHC in mammals using a mouse model. We focus on X-chromosome inactivation (XCI) as a paradigm for fHC but also relate it to genomic imprinting and homeobox (Hox) gene cluster repression. A vital role for noncoding transcription and/or transcripts emerges as the general principle of triggering XCI and canonical imprinting. However, other types of fHC are established through an unknown mechanism, independent of noncoding transcription (Hox clusters and noncanonical imprinting). We also extensively discuss polycomb-group repressive complexes (PRCs), which frequently play a vital role in fHC maintenance.
Collapse
Affiliation(s)
- Jan J Żylicz
- Mammalian Developmental Epigenetics Group, Institut Curie, CNRS UMR 3215, INSERM U934, PSL University, 75248 Paris Cedex 05, France.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, United Kingdom
| | - Edith Heard
- Directors' Research, EMBL Heidelberg, 69117 Heidelberg, Germany;
| |
Collapse
|
48
|
Yagi M, Kabata M, Tanaka A, Ukai T, Ohta S, Nakabayashi K, Shimizu M, Hata K, Meissner A, Yamamoto T, Yamada Y. Identification of distinct loci for de novo DNA methylation by DNMT3A and DNMT3B during mammalian development. Nat Commun 2020; 11:3199. [PMID: 32581223 PMCID: PMC7314859 DOI: 10.1038/s41467-020-16989-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 06/02/2020] [Indexed: 01/24/2023] Open
Abstract
De novo establishment of DNA methylation is accomplished by DNMT3A and DNMT3B. Here, we analyze de novo DNA methylation in mouse embryonic fibroblasts (2i-MEFs) derived from DNA-hypomethylated 2i/L ES cells with genetic ablation of Dnmt3a or Dnmt3b. We identify 355 and 333 uniquely unmethylated genes in Dnmt3a and Dnmt3b knockout (KO) 2i-MEFs, respectively. We find that Dnmt3a is exclusively required for de novo methylation at both TSS regions and gene bodies of Polycomb group (PcG) target developmental genes, while Dnmt3b has a dominant role on the X chromosome. Consistent with this, tissue-specific DNA methylation at PcG target genes is substantially reduced in Dnmt3a KO embryos. Finally, we find that human patients with DNMT3 mutations exhibit reduced DNA methylation at regions that are hypomethylated in Dnmt3 KO 2i-MEFs. In conclusion, here we report a set of unique de novo DNA methylation target sites for both DNMT3 enzymes during mammalian development that overlap with hypomethylated sites in human patients.
Collapse
Affiliation(s)
- Masaki Yagi
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mio Kabata
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Akito Tanaka
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Tomoyo Ukai
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Sho Ohta
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Masahito Shimizu
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
- AMED-CREST, AMED 1-7-1 Otemachi, Tokyo, 100-0004, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan.
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, 606-8507, Japan.
| | - Yasuhiro Yamada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan.
- AMED-CREST, AMED 1-7-1 Otemachi, Tokyo, 100-0004, Japan.
| |
Collapse
|
49
|
Strehle M, Guttman M. Xist drives spatial compartmentalization of DNA and protein to orchestrate initiation and maintenance of X inactivation. Curr Opin Cell Biol 2020; 64:139-147. [PMID: 32535328 DOI: 10.1016/j.ceb.2020.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
X chromosome inactivation (XCI) is the process whereby one of the X chromosomes in female mammalian cells is silenced to equalize X-linked gene expression with males. XCI depends on the long noncoding RNA Xist, which coats the inactive X chromosome in cis and triggers a cascade of events that ultimately lead to chromosome-wide transcriptional silencing that is stable for the lifetime of an organism. In recent years, the discovery of proteins that interact with Xist have led to new insights into how the initiation of XCI occurs. Nevertheless, there are still various unknowns about the mechanisms by which Xist orchestrates and maintains stable X-linked silencing. Here, we review recent work elucidating the role of Xist and its protein partners in mediating chromosome-wide transcriptional repression, as well as discuss a model by which Xist may compartmentalize proteins across the inactive X chromosome to enable both the initiation and maintenance of XCI.
Collapse
Affiliation(s)
- Mackenzie Strehle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
50
|
The influence of DNA methylation on monoallelic expression. Essays Biochem 2020; 63:663-676. [PMID: 31782494 PMCID: PMC6923323 DOI: 10.1042/ebc20190034] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 01/02/2023]
Abstract
Monoallelic gene expression occurs in diploid cells when only one of the two alleles of a gene is active. There are three main classes of genes that display monoallelic expression in mammalian genomes: (1) imprinted genes that are monoallelically expressed in a parent-of-origin dependent manner; (2) X-linked genes that undergo random X-chromosome inactivation in female cells; (3) random monoallelically expressed single and clustered genes located on autosomes. The heritability of monoallelic expression patterns during cell divisions implies that epigenetic mechanisms are involved in the cellular memory of these expression states. Among these, methylation of CpG sites on DNA is one of the best described modification to explain somatic inheritance. Here, we discuss the relevance of DNA methylation for the establishment and maintenance of monoallelic expression patterns among these three groups of genes, and how this is intrinsically linked to development and cellular states.
Collapse
|