1
|
Blengini CS, Tang S, Mendola RJ, Garrisi GJ, Swain JE, Schindler K. AURKA controls oocyte spindle assembly checkpoint and chromosome alignment by HEC1 phosphorylation. Life Sci Alliance 2025; 8:e202403146. [PMID: 40328643 PMCID: PMC12056248 DOI: 10.26508/lsa.202403146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
In human oocytes, meiosis I is error-prone, causing early miscarriages and developmental disorders. The Aurora protein kinases are key regulators of chromosome segregation in mitosis and meiosis, and their dysfunction is associated with aneuploidy. Oocytes express three Aurora kinase (AURK) proteins, but only AURKA is necessary and sufficient to support oocyte meiosis in mice. However, the unique molecular contributions to ensuring high egg quality of AURKA remain unclear. Here, using a combination of genetic and pharmacological approaches, we evaluated how AURKA phosphorylation regulates outer kinetochore function during oocyte meiosis. We found that the outer kinetochore protein Ndc80/HEC1 is constitutively phosphorylated at multiple residues by Aurora kinases during meiosis I, but that serine 69 is specifically phosphorylated by AURKA in mouse and human oocytes. We further show that serine 69 phosphorylation contributes to spindle assembly checkpoint activation and chromosome alignment during meiosis I. These results provide a fundamental mechanistic understanding of how AURKA regulates meiosis and kinetochore function to ensure meiosis I fidelity.
Collapse
Affiliation(s)
- Cecilia S Blengini
- Department of Genetics; Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | - Shuang Tang
- Department of Genetics; Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | - Robert J Mendola
- CCRM / Institute for Reproductive Medicine and Science (IRMS), Livingston, NJ, USA
| | - G John Garrisi
- CCRM / Institute for Reproductive Medicine and Science (IRMS), Livingston, NJ, USA
| | | | - Karen Schindler
- Department of Genetics; Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
2
|
Camlin NJ. Protein-targeting reverse genetic approaches: the future of oocyte and preimplantation embryo research. Mol Hum Reprod 2025; 31:gaaf008. [PMID: 40100642 PMCID: PMC12000532 DOI: 10.1093/molehr/gaaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Reverse genetic approaches are the standard in molecular biology to determine a protein's function. Traditionally, nucleic acid targeting via gene knockout (DNA) and knockdown (RNA) has been the method of choice to remove proteins-of-interest. However, the nature of mammalian oocyte maturation and preimplantation embryo development can make nucleic acid-targeting approaches difficult. Gene knockout allows time for compensatory mechanisms and secondary phenotypes to develop which can make interpretation of a protein's function difficult. Furthermore, genes can be essential for animal and/or oocyte survival, and therefore, gene knockout is not always a viable approach to investigate oocyte maturation and preimplantation embryo development. Conversely, RNA-targeting approaches, i.e. RNA interference (RNAi) and morpholinos, rely on protein half-life and therefore are unable to knockdown every protein-of-interest. An increasing number of reverse genetic approaches that directly target proteins have been developed to overcome the limitations of nucleic acid-based approaches, including Trim-Away and auxin-inducible degradation. These protein-targeting approaches give researchers exquisite and fast control of protein loss. This review will discuss how Trim-Away and auxin-inducible degradation can overcome many of the challenges of nucleic acid-based reverse genetic approaches. Furthermore, it highlights the unique research opportunities these approaches afford, such as targeting post-translationally modified proteins.
Collapse
Affiliation(s)
- Nicole J Camlin
- Cell and Molecular Biology, School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
3
|
Erdogan-Yildirim Z, Carlson JC, Krishnan M, Zhang JZ, Lambert-Messerlian G, Naseri T, Viali S, Hawley NL, McGarvey ST, Weeks DE, Minster RL. A genome-wide association study of anti-Müllerian hormone (AMH) levels in Samoan women. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.05.24318457. [PMID: 39677481 PMCID: PMC11643216 DOI: 10.1101/2024.12.05.24318457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Study question Can a genome-wide association study (GWAS) and transcriptome-wide association study (TWAS) help identify genetic variation or genes associated with circulating anti-Müllerian hormone (AMH) levels in Samoan women? Summary answer We identified eleven genome-wide suggestive loci (strongest association signal in ARID3A 19-946163-G-C [ p = 2.32 × 10⁻⁷]) and seven transcriptome-wide significant genes ( GINS2, SENP3, USP7, TUSC3, MAFA, METTL4, NDFIP1 [all with a p < 2.50 × 10⁻⁶]) associated with circulating AMH levels in Samoan women. What is known already Three prior GWASs of AMH levels identified eight loci in premenopausal women of European ancestry (AMH, MCM8, TEX41 , CHECK2, CDCA7 , EIF4EBP1, BMP4 and an uncharacterized non-coding RNA gene CTB-99A3.1 ), among which the MCM8 locus was shared among all three studies. Study design size duration We included a sample of 1,185 women from two independently recruited samples: a family study ( n = 212; [age: 18 to 40 years]) recruited in 2002-03 from Samoa and American Samoa; and the Soifua Manuia Study ( n = 973; age: 25 to 51 years), a crosssectional population-based study recruited in 2010 from Samoa. Participants/materials setting methods Serum AMH levels were measured using enzyme linked immunosorbent assays (ELISA). We performed GWASs in the two participant samples using a Cox mixed-effects model to account for AMH levels below detectable limits and adjusted for centered age, centered age², polity, and kinship via kinship matrix. The summary statistics were then meta-analyzed using a fixed-effect model. We annotated the variants with p < 1 × 10⁻⁵ and calculated posterior probability of causality for prioritization. We further annotated variants using FUMA and performed colocalization and transcriptome-wide association analysis. We also assessed whether any previously reported loci were replicated in our GWAS. Main results and the role of chance We identified eleven novel genome-wide suggestive loci ( p < 1 × 10⁻⁵) associated with AMH levels and replicated EIF4EBP1, a previously reported AMH locus, in the GWAS. The lead variant in ARID3A , 19-946163-G-C is in high linkage disequilibrium ( r ² = 0.79) with the known age-at-menopause variant 19-950694-G-A. Nearby KISS1R is a biologically plausibility causal gene in the region; kisspeptin regulates ovarian follicle development and has been linked to AMH levels. Further investigation of the ARID3A locus is warranted. Limitations reasons for caution The main limitations of our study are the small sample size for a GWAS and the use of the transcription model trained on mostly European samples from the Genotype Tissue Expression (GTEx) project, which may have led to reduced power to detect genotype-expression associations. Our findings need to be validated in larger Polynesian cohorts. Wider implications of the findings In addition to replicating one of the eight previously discovered AMH loci, we identified new suggestive associations. It is known that the inclusion of founder populations aids in the discovery of novel loci. These findings could enhance our understanding of AMH and AMH-related reproductive phenotypes (ovarian reserve, age at menopause, premature ovarian failure, and polycystic ovary syndrome) and help build a screening approach for women at risk for these phenotypes using genetically predicted AMH levels. Study funding/competing interests This work was funded by NIH grants R01-HL093093 (PI: S.T.M.), R01-HL133040 (PI: R.L.M.), and T90-DE030853 (PI: C.S. Sfeir). Molecular data for the Trans-Omics in Precision Medicine (TOPMed) Program was supported by the National Heart, Lung and Blood Institute (NHLBI). The content is solely the responsibility of the authors and does not represent the official views of the National Institutes of Health.
Collapse
|
4
|
Wang T, Ran B, Luo Y, Ma J, Li J, Li P, Li M, Li D. Functional study of the ST6GAL2 gene regulating skeletal muscle growth and development. Heliyon 2024; 10:e37311. [PMID: 39296044 PMCID: PMC11407927 DOI: 10.1016/j.heliyon.2024.e37311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
ST6GAL2, a member of the sialoglycosyltransferase family, primarily localizes within the cellular Golgi apparatus. However, the role of the ST6GAL2 gene in skeletal muscle growth and development remains elusive. In this study, the impact of the ST6GAL2 gene on the proliferation, differentiation, and apoptosis of primary chicken myoblasts at the cellular level was investigated. Quantitative fluorescent PCR was used to measure the expression levels of genes. Subsequently, using gene knockout mice, we assessed its effects on skeletal muscle growth and development in vivo. Our findings reveal that the ST6GAL2 gene promotes the expression of cell cycle and proliferation-related genes, including CCNB2 and PCNA, and apoptosis-related genes, such as Fas and Caspase-9. At the individual level, double knockout of ST6GAL2 inhibited the formation of both fast and slow muscle fibers in the quadriceps, extensor digitorum longus, and tibial anterior muscle, while promoting their formation in the gastrocnemius and soleus. These results collectively demonstrate that the ST6GAL2 gene facilitates the proliferation, apoptosis, and fusion processes of primary chicken myoblasts. Additionally, it promotes the enlargement of cross-sectional muscle fiber areas and regulates the formation of fast and slow muscle fibers at the individual level, albeit inhibiting muscle fusion. This study provides valuable insights into the role of the ST6GAL2 gene in promoting proliferation of skeletal muscle.
Collapse
Affiliation(s)
- Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Bo Ran
- Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Yingyu Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jideng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Xi Nan Gynecological Hospital Co., Ltd., 66 Bisheng Road, Chengdu, 610000, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
5
|
Kim HM, Kang MK, Seong SY, Jo JH, Kim MJ, Shin EK, Lee CG, Han SJ. Meiotic Cell Cycle Progression in Mouse Oocytes: Role of Cyclins. Int J Mol Sci 2023; 24:13659. [PMID: 37686466 PMCID: PMC10487953 DOI: 10.3390/ijms241713659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
All eukaryotic cells, including oocytes, utilize an engine called cyclin-dependent kinase (Cdk) to drive the cell cycle. Cdks are activated by a co-factor called cyclin, which regulates their activity. The key Cdk-cyclin complex that regulates the oocyte cell cycle is known as Cdk1-cyclin B1. Recent studies have elucidated the roles of other cyclins, such as B2, B3, A2, and O, in oocyte cell cycle regulation. This review aims to discuss the recently discovered roles of various cyclins in mouse oocyte cell cycle regulation in accordance with the sequential progression of the cell cycle. In addition, this review addresses the translation and degradation of cyclins to modulate the activity of Cdks. Overall, the literature indicates that each cyclin performs unique and redundant functions at various stages of the cell cycle, while their expression and degradation are tightly regulated. Taken together, this review provides new insights into the regulatory role and function of cyclins in oocyte cell cycle progression.
Collapse
Affiliation(s)
- Hye Min Kim
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Min Kook Kang
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Se Yoon Seong
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Jun Hyeon Jo
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Min Ju Kim
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Eun Kyeong Shin
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Chang Geun Lee
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Seung Jin Han
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
- Department of Medical Biotechnology, Inje University, Gimhae 50834, Republic of Korea
- Institute of Basic Science, Inje University, Gimhae 50834, Republic of Korea
| |
Collapse
|
6
|
Jiang Y, Adhikari D, Li C, Zhou X. Spatiotemporal regulation of maternal mRNAs during vertebrate oocyte meiotic maturation. Biol Rev Camb Philos Soc 2023; 98:900-930. [PMID: 36718948 DOI: 10.1111/brv.12937] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Vertebrate oocytes face a particular challenge concerning the regulation of gene expression during meiotic maturation. Global transcription becomes quiescent in fully grown oocytes, remains halted throughout maturation and fertilization, and only resumes upon embryonic genome activation. Hence, the oocyte meiotic maturation process is largely regulated by protein synthesis from pre-existing maternal messenger RNAs (mRNAs) that are transcribed and stored during oocyte growth. Rapidly developing genome-wide techniques have greatly expanded our insights into the global translation changes and possible regulatory mechanisms during oocyte maturation. The storage, translation, and processing of maternal mRNAs are thought to be regulated by factors interacting with elements in the mRNA molecules. Additionally, posttranscriptional modifications of mRNAs, such as methylation and uridylation, have recently been demonstrated to play crucial roles in maternal mRNA destabilization. However, a comprehensive understanding of the machineries that regulate maternal mRNA fate during oocyte maturation is still lacking. In particular, how the transcripts of important cell cycle components are stabilized, recruited at the appropriate time for translation, and eliminated to modulate oocyte meiotic progression remains unclear. A better understanding of these mechanisms will provide invaluable insights for the preconditions of developmental competence acquisition, with important implications for the treatment of infertility. This review discusses how the storage, localization, translation, and processing of oocyte mRNAs are regulated, and how these contribute to oocyte maturation progression.
Collapse
Affiliation(s)
- Yanwen Jiang
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Chunjin Li
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Xu Zhou
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| |
Collapse
|
7
|
Sun C, Lowe S, Ma S, Bentley R, Zhou Z, Cheng C, Zhou Q. CCNB2 expression correlates with worse outcomes in breast cancer patients: a pooled analysis. Women Health 2022; 62:655-663. [DOI: 10.1080/03630242.2022.2106530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO, USA
| | - Shaodi Ma
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, Hefei, Anhui, P.R. China
| | - Rachel Bentley
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO, USA
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Ce Cheng
- Internal Medicine, The University of Arizona College of Medicine, Tucson, Arizona
- Internal Medicine, Banner-University Medical Center South, Tucson, Arizona
| | - Qin Zhou
- Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Liu S, Yuan X, Gui P, Liu R, Durojaye O, Hill DL, Fu C, Yao X, Dou Z, Liu X. Mad2 promotes Cyclin B2 recruitment to the kinetochore for guiding accurate mitotic checkpoint. EMBO Rep 2022; 23:e54171. [PMID: 35384228 PMCID: PMC9171689 DOI: 10.15252/embr.202154171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Accurate mitotic progression relies on the dynamic phosphorylation of multiple substrates by key mitotic kinases. Cyclin-dependent kinase 1 is a master kinase that coordinates mitotic progression and requires its regulatory subunit Cyclin B to ensure full kinase activity and substrate specificity. The function of Cyclin B2, which is a closely related family member of Cyclin B1, remains largely elusive. Here, we show that Mad2 promotes the kinetochore localization of Cyclin B2 and that their interaction at the kinetochores guides accurate chromosome segregation. Our biochemical analyses have characterized the Mad2-Cyclin B2 interaction and delineated a novel Mad2-interacting motif (MIM) on Cyclin B2. The functional importance of the Cyclin B2-Mad2 interaction was demonstrated by real-time imaging in which MIM-deficient mutant Cyclin B2 failed to rescue the chromosomal segregation defects. Taken together, we have delineated a previously undefined function of Cyclin B2 at the kinetochore and have established, in human cells, a mechanism of action by which Mad2 contributes to the spindle checkpoint.
Collapse
Affiliation(s)
- Sikai Liu
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Yuan
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ping Gui
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ran Liu
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Olanrewaju Durojaye
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Donald L Hill
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics and The First Affiliated Hospital, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Chromosome Segregation in the Oocyte: What Goes Wrong during Aging. Int J Mol Sci 2022; 23:ijms23052880. [PMID: 35270022 PMCID: PMC8911062 DOI: 10.3390/ijms23052880] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 12/13/2022] Open
Abstract
Human female fertility and reproductive lifespan decrease significantly with age, resulting in an extended post-reproductive period. The central dogma in human female reproduction contains two important aspects. One is the pool of oocytes in the human ovary (the ovarian reserve; approximately 106 at birth), which diminishes throughout life until menopause around the age of 50 (approximately 103 oocytes) in women. The second is the quality of oocytes, including the correctness of meiotic divisions, among other factors. Notably, the increased rate of sub- and infertility, aneuploidy, miscarriages, and birth defects are associated with advanced maternal age, especially in women above 35 years of age. This postponement is also relevant for human evolution; decades ago, the female aging-related fertility drop was not as important as it is today because women were having their children at a younger age. Spindle assembly is crucial for chromosome segregation during each cell division and oocyte maturation, making it an important event for euploidy. Consequently, aberrations in this segregation process, especially during the first meiotic division in human eggs, can lead to implantation failure or spontaneous abortion. Today, human reproductive medicine is also facing a high prevalence of aneuploidy, even in young females. However, the shift in the reproductive phase of humans and the strong increase in errors make the problem much more dramatic at later stages of the female reproductive phase. Aneuploidy in human eggs could be the result of the non-disjunction of entire chromosomes or sister chromatids during oocyte meiosis, but partial or segmental aneuploidies are also relevant. In this review, we intend to describe the relevance of the spindle apparatus during oocyte maturation for proper chromosome segregation in the context of maternal aging and the female reproductive lifespan.
Collapse
|
10
|
Zhang C, Wang M, Li Y, Zhang Y. Profiling and functional characterization of maternal mRNA translation during mouse maternal-to-zygotic transition. SCIENCE ADVANCES 2022; 8:eabj3967. [PMID: 35108058 PMCID: PMC8809684 DOI: 10.1126/sciadv.abj3967] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Translational regulation plays an important role in gene expression and function. Although the transcriptional dynamics of mouse preimplantation embryos have been well characterized, the global mRNA translation landscape and the master regulators of zygotic genome activation (ZGA) remain unknown. Here, by developing and applying a low-input ribosome profiling (LiRibo-seq) technique, we profiled the mRNA translation landscape in mouse preimplantation embryos and revealed the translational dynamics during mouse preimplantation development. We identified a marked translational transition from MII oocytes to zygotes and demonstrated that active translation of maternal mRNAs is essential for maternal-to-zygotic transition (MZT). We further showed that two maternal factors, Smarcd2 and Cyclin T2, whose translation is activated in zygotes, are required for chromatin reprogramming and ZGA, respectively. Our study thus not only filled in a knowledge gap on translational regulation during mammalian preimplantation development but also revealed insights into the critical function of maternal mRNA translation in MZT.
Collapse
Affiliation(s)
- Chunxia Zhang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Meng Wang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Yisi Li
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
- Corresponding author.
| |
Collapse
|
11
|
Huang C, Wu D, Khan FA, Wang Y, Xu J, Luo C, Zhang K, Sun F, Huo L. Zinc oxide nanoparticle causes toxicity to the development of mouse oocyte and early embryo. Toxicol Lett 2022; 358:48-58. [DOI: 10.1016/j.toxlet.2022.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 12/24/2022]
|
12
|
Jeon HJ, Oh JS. TRF1 Depletion Reveals Mutual Regulation Between Telomeres, Kinetochores, and Inner Centromeres in Mouse Oocytes. Front Cell Dev Biol 2021; 9:749116. [PMID: 34604243 PMCID: PMC8486315 DOI: 10.3389/fcell.2021.749116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022] Open
Abstract
In eukaryotic chromosomes, the centromere and telomere are two specialized structures that are essential for chromosome stability and segregation. Although centromeres and telomeres often are located in close proximity to form telocentric chromosomes in mice, it remained unclear whether these two structures influence each other. Here we show that TRF1 is required for inner centromere and kinetochore assembly in addition to its role in telomere protection in mouse oocytes. TRF1 depletion caused premature chromosome segregation by abrogating the spindle assembly checkpoint (SAC) and impairing kinetochore-microtubule (kMT) attachment, which increased the incidence of aneuploidy. Notably, TRF1 depletion disturbed the localization of Survivin and Ndc80/Hec1 at inner centromeres and kinetochores, respectively. Moreover, SMC3 and SMC4 levels significantly decreased after TRF1 depletion, suggesting that TRF1 is involved in chromosome cohesion and condensation. Importantly, inhibition of inner centromere or kinetochore function led to a significant decrease in TRF1 level and telomere shortening. Therefore, our results suggest that telomere integrity is required to preserve inner centromere and kinetochore architectures, and vice versa, suggesting mutual regulation between telomeres and centromeres.
Collapse
Affiliation(s)
- Hyuk-Joon Jeon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
13
|
Zhou C, Zhang X, Miao Y, Zhang Y, Li Y, Xiong B. The cohesin stabilizer Sororin drives G 2-M transition and spindle assembly in mammalian oocytes. SCIENCE ADVANCES 2021; 7:eabg9335. [PMID: 34559563 PMCID: PMC8462903 DOI: 10.1126/sciadv.abg9335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
During the S phase of mitosis, Sororin is recruited by acetylated Smc3 and stabilizes sister chromatid cohesion by counteracting the Wapl-Pds5 interaction. Thereafter, Sororin is phosphorylated during prophase and translocated to the cytoplasm, where its function remains poorly understood. Here, we report that Sororin acts as a regulator of meiotic G2-M transition and spindle assembly in mammalian oocytes. Sororin is present in the nucleus of GV oocytes and becomes associated with the spindle apparatus during meiosis I in mice. Depletion of Sororin causes failure of GVBD due to inactivation of Cdk1 and defective spindle assembly because of reduced levels of Cyclin B2. We validate Sororin interactions with Cyclin B2 that protects it from destruction by APCCdh1, which drives M phase entry and bipolar spindle formation. Notably, the meiotic functions of Sororin are conserved among mammals. Together, our findings provide novel insights into the noncanonical role of Sororin in the resumption of meiosis and progression through meiosis I in mammalian oocytes.
Collapse
|
14
|
Greaney J, Subramanian GN, Ye Y, Homer H. Isolation and in vitro Culture of Mouse Oocytes. Bio Protoc 2021; 11:e4104. [PMID: 34458398 DOI: 10.21769/bioprotoc.4104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 11/02/2022] Open
Abstract
Females are endowed at birth with a fixed reserve of oocytes, which declines both in quantity and quality with advancing age. Understanding the molecular mechanisms regulating oocyte quality is crucial for improving the chances of pregnancy success in fertility clinics. In vitro culture systems enable researchers to analyse important molecular and genetic regulators of oocyte maturation and fertilisation. Here, we describe in detail a highly reproducible technique for the isolation and culture of fully grown mouse oocytes. We include the considerations and precautionary measures required for minimising the detrimental effects of in vitro culture conditions. This technique forms the starting point for a wide range of experimental approaches such as post-transcriptional gene silencing, immunocytochemistry, Western blotting, high-resolution 4D time-lapse imaging, and in vitro fertilization, which are instrumental in dissecting the molecular determinants of oocyte quality. Hence, this protocol serves as a useful, practical guide for any oocyte researcher beginning experiments aimed at investigating important oocyte molecular factors. Graphic abstract: A step-by-step protocol for the isolation and in vitro culture of oocytes from mice.
Collapse
Affiliation(s)
- Jessica Greaney
- The Christopher Chen Oocyte Biology Research Laboratory, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Goutham Narayanan Subramanian
- The Christopher Chen Oocyte Biology Research Laboratory, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Yunan Ye
- The Christopher Chen Oocyte Biology Research Laboratory, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Hayden Homer
- The Christopher Chen Oocyte Biology Research Laboratory, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| |
Collapse
|
15
|
Cyclin B2 (CCNB2) Stimulates the Proliferation of Triple-Negative Breast Cancer (TNBC) Cells In Vitro and In Vivo. DISEASE MARKERS 2021; 2021:5511041. [PMID: 34354775 PMCID: PMC8331305 DOI: 10.1155/2021/5511041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer. Currently, targeting therapy makes great advances for the treatment of TNBC, whereas more effective therapeutic targets are urgently needed. Cyclin B2 (CCNB2), which belongs to B-type cyclins, is known as a cell cycle regulator. CCNB2 is synthesized at G1 phase in cancer cells and downregulated at anaphase. The defects of CCNB2 led to the abnormal cell cycle and tumorigenesis. Though there are wide effects of CCNB2 on multiple types of tumors, the potential role of CCNB2 in TNBC progression is still unclear. Herein, we found that CCNB2 was highly expressed in human TNBC tissues and correlated with the prognosis and clinical pathological features including tumor size (p = 0.022∗) and pTNM stage (p = 0.021∗) of patients with TNBC. CCNB2 could promote the proliferation of TNBC cells in vitro and in mice. Our findings therefore confirmed the involvement of CCNB2 in TNBC progression and provided the evidence that CCNB2 could serve as a promising molecular target of TNBC.
Collapse
|
16
|
Li J, Zhang HY, Wang F, Sun QY, Qian WP. The Cyclin B2/CDK1 Complex Conservatively Inhibits Separase Activity in Oocyte Meiosis II. Front Cell Dev Biol 2021; 9:648053. [PMID: 33777955 PMCID: PMC7993350 DOI: 10.3389/fcell.2021.648053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 11/15/2022] Open
Abstract
Recently, we have reported that the cyclin B2/CDK1 complex regulates homologous chromosome segregation through inhibiting separase activity in oocyte meiosis I, which further elucidates the compensation of cyclin B2 on cyclin B1’s function in meiosis I. However, whether cyclin B2/CDK1 complex also negatively regulates separase activity during oocyte meiosis II remains unknown. In the present study, we investigated the function of cyclin B2 in meiosis II of oocyte. We found that stable cyclin B2 expression impeded segregation of sister chromatids after oocyte parthenogenetic activation. Consistently, stable cyclin B2 inhibited separase activation, while introduction of non-phosphorylatable separase mutant rescued chromatid separation in the stable cyclin B2-expressed oocytes. Therefore, the cyclin B2/CDK1 complex conservatively regulates separase activity via inhibitory phosphorylation of separase in both meiosis I and meiosis II of mouse oocyte.
Collapse
Affiliation(s)
- Jian Li
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Hong-Yong Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| |
Collapse
|
17
|
Courtois A, Yoshida S, Takenouchi O, Asai K, Kitajima TS. Stable kinetochore-microtubule attachments restrict MTOC position and spindle elongation in oocytes. EMBO Rep 2021; 22:e51400. [PMID: 33655692 PMCID: PMC8024892 DOI: 10.15252/embr.202051400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 01/13/2023] Open
Abstract
In mouse oocytes, acentriolar MTOCs functionally replace centrosomes and act as microtubule nucleation sites. Microtubules nucleated from MTOCs initially assemble into an unorganized ball‐like structure, which then transforms into a bipolar spindle carrying MTOCs at its poles, a process called spindle bipolarization. In mouse oocytes, spindle bipolarization is promoted by kinetochores but the mechanism by which kinetochore–microtubule attachments contribute to spindle bipolarity remains unclear. This study demonstrates that the stability of kinetochore–microtubule attachment is essential for confining MTOC positions at the spindle poles and for limiting spindle elongation. MTOC sorting is gradual and continues even in the metaphase spindle. When stable kinetochore–microtubule attachments are disrupted, the spindle is unable to restrict MTOCs at its poles and fails to terminate its elongation. Stable kinetochore fibers are directly connected to MTOCs and to the spindle poles. These findings suggest a role for stable kinetochore–microtubule attachments in fine‐tuning acentrosomal spindle bipolarity.
Collapse
Affiliation(s)
- Aurélien Courtois
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shuhei Yoshida
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Osamu Takenouchi
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Kohei Asai
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Kolapalli SP, Sahu R, Chauhan NR, Jena KK, Mehto S, Das SK, Jain A, Rout M, Dash R, Swain RK, Lee DY, Rusten TE, Chauhan S, Chauhan S. RNA-Binding RING E3-Ligase DZIP3/hRUL138 Stabilizes Cyclin D1 to Drive Cell-Cycle and Cancer Progression. Cancer Res 2021; 81:315-331. [PMID: 33067265 PMCID: PMC7116596 DOI: 10.1158/0008-5472.can-20-1871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/02/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022]
Abstract
DZIP3/hRUL138 is a poorly characterized RNA-binding RING E3-ubiquitin ligase with functions in embryonic development. Here we demonstrate that DZIP3 is a crucial driver of cancer cell growth, migration, and invasion. In mice and zebrafish cancer models, DZIP3 promoted tumor growth and metastasis. In line with these results, DZIP3 was frequently overexpressed in several cancer types. Depletion of DZIP3 from cells resulted in reduced expression of Cyclin D1 and a subsequent G1 arrest and defect in cell growth. Mechanistically, DZIP3 utilized its two different domains to interact and stabilize Cyclin D1 both at mRNA and protein levels. Using an RNA-binding lysine-rich region, DZIP3 interacted with the AU-rich region in 3' untranslated region of Cyclin D1 mRNA and stabilized it. Using a RING E3-ligase domain, DZIP3 interacted and increased K63-linked ubiquitination of Cyclin D1 protein to stabilize it. Remarkably, DZIP3 interacted with, ubiquitinated, and stabilized Cyclin D1 predominantly in the G1 phase of the cell cycle, where it is needed for cell-cycle progression. In agreement with this, a strong positive correlation of mRNA expression between DZIP3 and Cyclin D1 in different cancer types was observed. Additionally, DZIP3 regulated several cell cycle proteins by modulating the Cyclin D1-E2F axes. Taken together, this study demonstrates for the first time that DZIP3 uses a unique two-pronged mechanism in its stabilization of Cyclin D1 to drive cell-cycle and cancer progression. SIGNIFICANCE: These findings show that DZIP3 is a novel driver of cell-cycle and cancer progression via its control of Cyclin D1 mRNA and protein stability in a cell-cycle phase-dependent manner. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/2/315/F1.large.jpg.
Collapse
Affiliation(s)
| | - Rinku Sahu
- Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Nishant R Chauhan
- Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Kautilya K Jena
- Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Subhash Mehto
- Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Saroj K Das
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ashish Jain
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Manaswini Rout
- Vascular Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Rupesh Dash
- Gene Therapy and Cancer Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Rajeeb K Swain
- Vascular Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - David Y Lee
- Department of Internal Medicine, Radiation Oncology, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Tor Erik Rusten
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Santosh Chauhan
- Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Swati Chauhan
- Gene Therapy and Cancer Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
19
|
Subramanian GN, Greaney J, Wei Z, Becherel O, Lavin M, Homer HA. Oocytes mount a noncanonical DNA damage response involving APC-Cdh1-mediated proteolysis. J Cell Biol 2020; 219:151594. [PMID: 32328643 PMCID: PMC7147104 DOI: 10.1083/jcb.201907213] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/15/2019] [Accepted: 01/31/2020] [Indexed: 12/26/2022] Open
Abstract
In mitotic cells, DNA damage induces temporary G2 arrest via inhibitory Cdk1 phosphorylation. In contrast, fully grown G2-stage oocytes readily enter M phase immediately following chemical induction of DNA damage in vitro, indicating that the canonical immediate-response G2/M DNA damage response (DDR) may be deficient. Senataxin (Setx) is involved in RNA/DNA processing and maintaining genome integrity. Here we find that mouse oocytes deleted of Setx accumulate DNA damage when exposed to oxidative stress in vitro and during aging in vivo, after which, surprisingly, they undergo G2 arrest. Moreover, fully grown wild-type oocytes undergo G2 arrest after chemotherapy-induced in vitro damage if an overnight delay is imposed following damage induction. Unexpectedly, this slow-evolving DDR is not mediated by inhibitory Cdk1 phosphorylation but by APC-Cdh1–mediated proteolysis of the Cdk1 activator, cyclin B1, secondary to increased Cdc14B-dependent APC-Cdh1 activation and reduced Emi1-dependent inhibition. Thus, oocytes are unable to respond immediately to DNA damage, but instead mount a G2/M DDR that evolves slowly and involves a phosphorylation-independent proteolytic pathway.
Collapse
Affiliation(s)
- Goutham Narayanan Subramanian
- The Christopher Chen Oocyte Biology Research Laboratory, University of Queensland Centre for Clinical Research, The University of Queensland, Queensland, Australia
| | - Jessica Greaney
- The Christopher Chen Oocyte Biology Research Laboratory, University of Queensland Centre for Clinical Research, The University of Queensland, Queensland, Australia
| | - Zhe Wei
- The Christopher Chen Oocyte Biology Research Laboratory, University of Queensland Centre for Clinical Research, The University of Queensland, Queensland, Australia
| | - Olivier Becherel
- Cancer and Neurosciences Lab, University of Queensland Centre for Clinical Research, The University of Queensland, Queensland, Australia
| | - Martin Lavin
- Cancer and Neurosciences Lab, University of Queensland Centre for Clinical Research, The University of Queensland, Queensland, Australia
| | - Hayden Anthony Homer
- The Christopher Chen Oocyte Biology Research Laboratory, University of Queensland Centre for Clinical Research, The University of Queensland, Queensland, Australia
| |
Collapse
|
20
|
Danlasky BM, Panzica MT, McNally KP, Vargas E, Bailey C, Li W, Gong T, Fishman ES, Jiang X, McNally FJ. Evidence for anaphase pulling forces during C. elegans meiosis. J Cell Biol 2020; 219:e202005179. [PMID: 33064834 PMCID: PMC7577052 DOI: 10.1083/jcb.202005179] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/20/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
Anaphase chromosome movement is thought to be mediated by pulling forces generated by end-on attachment of microtubules to the outer face of kinetochores. However, it has been suggested that during C. elegans female meiosis, anaphase is mediated by a kinetochore-independent pushing mechanism with microtubules only attached to the inner face of segregating chromosomes. We found that the kinetochore proteins KNL-1 and KNL-3 are required for preanaphase chromosome stretching, suggesting a role in pulling forces. In the absence of KNL-1,3, pairs of homologous chromosomes did not separate and did not move toward a spindle pole. Instead, each homolog pair moved together with the same spindle pole during anaphase B spindle elongation. Two masses of chromatin thus ended up at opposite spindle poles, giving the appearance of successful anaphase.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Francis J. McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| |
Collapse
|
21
|
Li J, Qian WP, Sun QY. Cyclins regulating oocyte meiotic cell cycle progression†. Biol Reprod 2020; 101:878-881. [PMID: 31347666 PMCID: PMC6877757 DOI: 10.1093/biolre/ioz143] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/17/2019] [Accepted: 07/18/2019] [Indexed: 11/30/2022] Open
Abstract
Oocyte meiotic maturation is a vital and final process in oogenesis. Unlike somatic cells, the oocyte needs to undergo two continuous meiotic divisions (meiosis I and meiosis II) to become a haploid gamete. Notably, oocyte meiotic progression includes two rounds of unique meiotic arrest and resumption. The first arrest occurs at the G2 (germinal vesicle) stage and meiosis resumption is stimulated by a gonadotropin surge; the second arrest takes place at the metaphase II stage, the stage from which it is released when fertilization takes place. The maturation-promoting factor, which consists of cyclin B1 (CCNB1) and cyclin-dependent kinase 1 (CDK1), is responsible for regulating meiotic resumption and progression, while CDK1 is the unique CDK that acts as the catalytic subunit of maturation-promoting factor. Recent studies showed that except for cyclin B1, multiple cyclins interact with CDK1 to form complexes, which are involved in the regulation of meiotic progression at different stages. Here, we review and discuss the control of oocyte meiotic progression by cyclins A1, A2, B1, B2, B3, and O.
Collapse
Affiliation(s)
- Jian Li
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Chotiner JY, Wolgemuth DJ, Wang PJ. Functions of cyclins and CDKs in mammalian gametogenesis†. Biol Reprod 2020; 101:591-601. [PMID: 31078132 DOI: 10.1093/biolre/ioz070] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Cyclins and cyclin-dependent kinases (CDKs) are key regulators of the cell cycle. Most of our understanding of their functions has been obtained from studies in single-cell organisms and mitotically proliferating cultured cells. In mammals, there are more than 20 cyclins and 20 CDKs. Although genetic ablation studies in mice have shown that most of these factors are dispensable for viability and fertility, uncovering their functional redundancy, CCNA2, CCNB1, and CDK1 are essential for embryonic development. Cyclin/CDK complexes are known to regulate both mitotic and meiotic cell cycles. While some mechanisms are common to both types of cell divisions, meiosis has unique characteristics and requirements. During meiosis, DNA replication is followed by two successive rounds of cell division. In addition, mammalian germ cells experience a prolonged prophase I in males or a long period of arrest in prophase I in females. Therefore, cyclins and CDKs may have functions in meiosis distinct from their mitotic functions and indeed, meiosis-specific cyclins, CCNA1 and CCNB3, have been identified. Here, we describe recent advances in the field of cyclins and CDKs with a focus on meiosis and early embryogenesis.
Collapse
Affiliation(s)
- Jessica Y Chotiner
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
- Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Debra J Wolgemuth
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
- Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Iljas JD, Wei Z, Homer HA. Sirt1 sustains female fertility by slowing age-related decline in oocyte quality required for post-fertilization embryo development. Aging Cell 2020; 19:e13204. [PMID: 32729989 PMCID: PMC7511857 DOI: 10.1111/acel.13204] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
The NAD+‐dependent sirtuin deacetylase, Sirt1, regulates key transcription factors strongly implicated in ageing and lifespan. Due to potential confounding effects secondary to loss of Sirt1 function from the soma in existing whole‐animal mutants, the in vivo role of Sirt1 in oocytes (oocyte‐Sirt1) for female fertility remains unknown. We deleted Sirt1 specifically in growing oocytes and study how loss of oocyte‐Sirt1 affects a comprehensive range of female reproductive parameters including ovarian follicular reservoir, oocyte maturation, oocyte mitochondrial abundance, oxidative stress, fertilization, embryo development and fertility during ageing. Surprisingly, eliminating this key sirtuin from growing oocytes has no effect in young females. During a 10‐month‐long breeding trial, however, we find that 50% of females lacking oocyte‐Sirt1 become prematurely sterile between 9 and 11 months of age when 100% of wild‐type females remain fertile. This is not due to an accelerated age‐related decline in oocyte numbers in the absence of oocyte‐Sirt1 but to reduced oocyte developmental competence or quality. Compromised oocyte quality does not impact in vivo oocyte maturation or fertilization but leads to increased oxidative stress in preimplantation embryos that inhibits cleavage divisions. Our data suggest that defects emerge in aged females lacking oocyte‐Sirt1 due to concurrent age‐related changes such as reduced NAD+ and sirtuin expression levels, which compromise compensatory mechanisms that can cover for Sirt1 loss in younger oocytes. In contrast to evidence that increasing Sirt1 activity delays ageing, our data provide some of the only in vivo evidence that loss of Sirt1 induces premature ageing.
Collapse
Affiliation(s)
- Juvita D. Iljas
- The Christopher Chen Oocyte Biology Research Laboratory Centre for Clinical Research The University of Queensland Herston Qld Australia
| | - Zhe Wei
- The Christopher Chen Oocyte Biology Research Laboratory Centre for Clinical Research The University of Queensland Herston Qld Australia
| | - Hayden A. Homer
- The Christopher Chen Oocyte Biology Research Laboratory Centre for Clinical Research The University of Queensland Herston Qld Australia
| |
Collapse
|
24
|
Nampt-mediated spindle sizing secures a post-anaphase increase in spindle speed required for extreme asymmetry. Nat Commun 2020; 11:3393. [PMID: 32636388 PMCID: PMC7341875 DOI: 10.1038/s41467-020-17088-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
Meiotic divisions in oocytes are extremely asymmetric and require pre- and post-anaphase-onset phases of spindle migration. The latter induces membrane protrusion that is moulded around the spindle thereby reducing cytoplasmic loss. Here, we find that depleting the NAD biosynthetic enzyme, nicotinamide phosphoribosyl-transferase (Nampt), in mouse oocytes results in markedly longer spindles and compromises asymmetry. By analysing spindle speed in live oocytes, we identify a striking and transient acceleration after anaphase-onset that is severely blunted following Nampt-depletion. Slow-moving midzones of elongated spindles induce cortical furrowing deep within the oocyte before protrusions can form, altogether resulting in larger oocyte fragments being cleaved off. Additionally, we find that Nampt-depletion lowers NAD and ATP levels and that reducing NAD using small molecule Nampt inhibitors also compromises asymmetry. These data show that rapid midzone displacement is critical for extreme asymmetry by delaying furrowing to enable protrusions to form and link metabolic status to asymmetric division. Meiotic cell division in oocytes is asymmetric and requires microtubule spindle migration after anaphase-onset. Here, the authors show that Nampt, an enzyme of the Nicotinamide adenine dinucleotide (NAD) biosynthetic pathway, contributes to post-anaphase spindle migration and oocyte division asymmetry by controlling spindle length.
Collapse
|
25
|
Prc1-rich kinetochores are required for error-free acentrosomal spindle bipolarization during meiosis I in mouse oocytes. Nat Commun 2020; 11:2652. [PMID: 32461611 PMCID: PMC7253481 DOI: 10.1038/s41467-020-16488-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 05/01/2020] [Indexed: 12/18/2022] Open
Abstract
Acentrosomal meiosis in oocytes represents a gametogenic challenge, requiring spindle bipolarization without predefined bipolar cues. While much is known about the structures that promote acentrosomal microtubule nucleation, less is known about the structures that mediate spindle bipolarization in mammalian oocytes. Here, we show that in mouse oocytes, kinetochores are required for spindle bipolarization in meiosis I. This process is promoted by oocyte-specific, microtubule-independent enrichment of the antiparallel microtubule crosslinker Prc1 at kinetochores via the Ndc80 complex. In contrast, in meiosis II, cytoplasm that contains upregulated factors including Prc1 supports kinetochore-independent pathways for spindle bipolarization. The kinetochore-dependent mode of spindle bipolarization is required for meiosis I to prevent chromosome segregation errors. Human oocytes, where spindle bipolarization is reportedly error prone, exhibit no detectable kinetochore enrichment of Prc1. This study reveals an oocyte-specific function of kinetochores in acentrosomal spindle bipolarization in mice, and provides insights into the error-prone nature of human oocytes. Oocyte meiosis must achieve spindle bipolarization without predefined spatial cues. Yoshida et al. demonstrate that spindle bipolarization during meiosis I in mouse oocytes requires kinetochores to prevent chromosome segregation errors, a phenomenon that does not occur in error-prone human oocytes.
Collapse
|
26
|
Zhou Q, Li J, Yue W, Li A, Meng TG, Lei WL, Fan LH, Ouyang YC, Schatten H, Wang ZB, Sun QY. Cell division cycle 23 is required for mouse oocyte meiotic maturation. FASEB J 2020; 34:8990-9002. [PMID: 32449168 DOI: 10.1096/fj.202000131r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 11/11/2022]
Abstract
Precise regulation of chromosome segregation during oocyte meiosis is of vital importance to mammalian reproduction. Anaphase promoting complex/cyclosome (APC/C) is reported to play an important role in metaphase-to-anaphase transition. Here we report that cell division cycle 23 (Cdc23, also known as APC8) plays a critical role in regulating the oocyte chromosome separation. Cdc23 localized on the meiotic spindle, and microinjection of Cdc23 siRNA caused decreased ratios of metaphase-to-anaphase transition. Loss of Cdc23 resulted in abnormal spindles, misaligned chromosomes, errors of homologous chromosome segregation, and production of aneuploid oocytes. Further study showed that inactivation of spindle assembly checkpoint and degradation of Cyclin B1 and securin were disturbed after Cdc23 knockdown. Furthermore, we found that inhibiting spindle assembly checkpoint protein Msp1 partly rescued the decreased polar body extrusion and reduced the accumulation of securin in Cdc23 knockdown oocytes. Taken together, our data demonstrate that Cdc23 is required for the chromosome segregation through regulating the spindle assembly checkpoint activity, and cyclin B1 and securin degradation in meiotic mouse oocytes.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ang Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li-Hua Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Bai GY, Choe MH, Kim JS, Oh JS. Mis12 controls cyclin B1 stabilization via Cdc14B-mediated APC/C Cdh1 regulation during meiotic G2/M transition in mouse oocytes. Development 2020; 147:147/8/dev185322. [PMID: 32341029 DOI: 10.1242/dev.185322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/18/2020] [Indexed: 01/02/2023]
Abstract
Mammalian oocytes are arrested at G2/prophase of the first meiosis. After a hormone surge, oocytes resume meiosis, undergoing germinal vesicle breakdown (GVBD). This process is regulated by Cdk1/cyclin B1. Here, we report that Mis12 is required for G2/M transition by regulating cyclin B1 accumulation via Cdc14B-mediated APC/CCdh1 regulation, but is not essential for spindle and chromosome dynamics during meiotic maturation. Depletion of Mis12 severely compromised GVBD by impairing cyclin B1 accumulation. Importantly, impaired GVBD after Mis12 depletion was rescued not only by overexpressing cyclin B1 but also by depleting Cdc14B or Cdh1. Notably, oocytes rescued by cyclin B1 overexpression exhibited normal spindle and chromosome organization with intact kinetochore-microtubule attachments. In addition, after being rescued by cyclin B1 overexpression, Mis12-depleted oocytes normally extruded polar bodies. Moreover, Mis12-depleted oocytes formed pronuclear structures after fertilization but failed to develop beyond zygotes. Interestingly, Mis12 was localized in the cytoplasm and spindle poles in oocytes, in contrast to kinetochore localization in somatic cells. Therefore, our results demonstrate that Mis12 is required for meiotic G2/M transition but is dispensable for meiotic progression through meiosis I and II.
Collapse
Affiliation(s)
- Guang-Yu Bai
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Korea
| | - Min Ho Choe
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea .,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
28
|
Martínez-Alonso D, Malumbres M. Mammalian cell cycle cyclins. Semin Cell Dev Biol 2020; 107:28-35. [PMID: 32334991 DOI: 10.1016/j.semcdb.2020.03.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
Proper progression throughout the cell division cycle depends on the expression level of a family of proteins known as cyclins, and the subsequent activation of cyclin-dependent kinases (Cdks). Among the numerous members of the mammalian cyclin family, only a few of them, cyclins A, B, C, D and E, are known to display critical roles in the cell cycle. These functions will be reviewed here with a special focus on their relevance in different cell types in vivo and their implications in human disease.
Collapse
Affiliation(s)
- Diego Martínez-Alonso
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Spain.
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Spain.
| |
Collapse
|
29
|
Ma X, Zhou L, Zheng S. Transcriptome analysis revealed key prognostic genes and microRNAs in hepatocellular carcinoma. PeerJ 2020; 8:e8930. [PMID: 32296612 PMCID: PMC7150540 DOI: 10.7717/peerj.8930] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. However, the molecular mechanisms involved in HCC remain unclear and are in urgent need of elucidation. Therefore, we sought to identify biomarkers in the prognosis of HCC through an integrated bioinformatics analysis. Methods Messenger RNA (mRNA) expression profiles were obtained from the Gene Expression Omnibus database and The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) for the screening of common differentially expressed genes (DEGs). Function and pathway enrichment analysis, protein-protein interaction network construction and key gene identification were performed. The significance of key genes in HCC was validated by overall survival analysis and immunohistochemistry. Meanwhile, based on TCGA data, prognostic microRNAs (miRNAs) were decoded using univariable and multivariable Cox regression analysis, and their target genes were predicted by miRWalk. Results Eleven hub genes (upregulated ASPM, AURKA, CCNB2, CDC20, PRC1 and TOP2A and downregulated AOX1, CAT, CYP2E1, CYP3A4 and HP) with the most interactions were considered as potential biomarkers in HCC and confirmed by overall survival analysis. Moreover, AURKA, PRC1, TOP2A, AOX1, CYP2E1, and CYP3A4 were considered candidate liver-biopsy markers for high risk of developing HCC and poor prognosis in HCC. Upregulation of hsa-mir-1269b, hsa-mir-518d, hsa-mir-548aq, hsa-mir-548f-1, and hsa-mir-6728, and downregulation of hsa-mir-139 and hsa-mir-4800 were determined to be risk factors of poor prognosis, and most of these miRNAs have strong potential to help regulate the expression of key genes. Conclusions This study undertook the first large-scale integrated bioinformatics analysis of the data from Illumina BeadArray platforms and the TCGA database. With a comprehensive analysis of transcriptional alterations, including mRNAs and miRNAs, in HCC, our study presented candidate biomarkers for the surveillance and prognosis of the disease, and also identified novel therapeutic targets at the molecular and pathway levels.
Collapse
Affiliation(s)
- Xi Ma
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, Zhejiang, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Iljas JD, Homer HA. Sirt3 is dispensable for oocyte quality and female fertility in lean and obese mice. FASEB J 2020; 34:6641-6653. [PMID: 32212196 DOI: 10.1096/fj.202000153r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022]
Abstract
Mammalian oocytes rely heavily on mitochondrial oxidative phosphorylation (OXPHOS) for generating ATP. However, mitochondria are also the primary source of damaging reactive oxygen species (ROS). Mitochondrial de-regulation, therefore, underpins poor oocyte quality associated with conditions such as obesity and aging. The mitochondrial sirtuin, Sirt3, is critical for mitochondrial respiration and redox regulation. Interestingly, however, Sirt3 knockout (Sirt3-/- ) mice do not exhibit systemic compromise under basal conditions, only doing so under stressed conditions such as high-fat diet (HFD)-induced obesity. Mouse oocytes depleted of Sirt3 exhibit increased ROS in vitro, but it is unknown whether Sirt3 is necessary for female fertility in vivo. Here, we test this for the first time by investigating ovarian follicular reserve, oocyte maturation (including detailed spindle assembly and chromosome segregation), and female fertility in Sirt3-/- females. We find that under basal conditions, young Sirt3-/- females exhibit no defects in any parameters. Surprisingly, all parameters also remain intact following HFD-induced obesity. Despite markedly increased ROS levels in HFD Sirt3-/- oocytes, ATP levels nevertheless remain normal. Our data support that ATP is sustained in vivo through increased mitochondrial mass possibly secondary to compensatory upregulation of another sirtuin, Sirt1, which has overlapping functions with Sirt3.
Collapse
Affiliation(s)
- Juvita D Iljas
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| | - Hayden A Homer
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| |
Collapse
|
31
|
Chuang SH, Lee YSE, Huang LYL, Chen CK, Lai CL, Lin YH, Yang JY, Yang SC, Chang LH, Chen CH, Liu CW, Lin HS, Lee YR, Huang KP, Fu KC, Jen HM, Lai JY, Jian PS, Wang YC, Hsueh WY, Tsai PY, Hong WH, Chang CC, Wu DZ, Wu J, Chen MH, Yu KM, Chern CY, Chang JM, Lau JYN, Huang JJ. Discovery of T-1101 tosylate as a first-in-class clinical candidate for Hec1/Nek2 inhibition in cancer therapy. Eur J Med Chem 2020; 191:112118. [PMID: 32113126 DOI: 10.1016/j.ejmech.2020.112118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/18/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Highly expressed in cancer 1 (Hec1) plays an essential role in mitosis and is correlated with cancer formation, progression, and survival. Phosphorylation of Hec1 by Nek2 kinase is essential for its mitotic function, thus any disruption of Hec1/Nek2 protein-protein interaction has potential for cancer therapy. We have developed T-1101 tosylate (9j tosylate, 9j formerly known as TAI-95), optimized from 4-aryl-N-pyridinylcarbonyl-2-aminothiazole of scaffold 9 by introducing various C-4' substituents to enhance potency and water solubility, as a first-in-class oral clinical candidate for Hec1 inhibition with potential for cancer therapy. T-1101 has good oral absorption, along with potent in vitro antiproliferative activity (IC50: 14.8-21.5 nM). It can achieve high concentrations in Huh-7 and MDA-MB-231 tumor tissues, and showed promise in antitumor activity in mice bearing human tumor xenografts of liver cancer (Huh-7), as well as of breast cancer (BT474, MDA-MB-231, and MCF7) with oral administration. Oral co-administration of T-1101 halved the dose of sorafenib (25 mg/kg to 12.5 mg/kg) required to exhibit comparable in vivo activity towards Huh-7 xenografts. Cellular events resulting from Hec1/Nek2 inhibition with T-1101 treatment include Nek2 degradation, chromosomal misalignment, and apoptotic cell death. A combination of T-1101 with either of doxorubicin, paclitaxel, and topotecan in select cancer cells also resulted in synergistic effects. Inactivity of T-1101 on non-cancerous cells, a panel of kinases, and hERG demonstrates cancer specificity, target specificity, and cardiac safety, respectively. Subsequent salt screening showed that T-1101 tosylate has good oral AUC (62.5 μM·h), bioavailability (F = 77.4%), and thermal stability. T-1101 tosylate is currently in phase I clinical trials as an orally administered drug for cancer therapy.
Collapse
Affiliation(s)
- Shih-Hsien Chuang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Ying-Shuan E Lee
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Lynn Y L Huang
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Chi-Kuan Chen
- Genomics Research Center, Academia Sinica, Taipei City, Taiwan
| | - Chun-Liang Lai
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Yu-Hsiang Lin
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Ju-Ying Yang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Sheng-Chuan Yang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Lien-Hsiang Chang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Ching-Hui Chen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Chia-Wei Liu
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Her-Sheng Lin
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Yi-Ru Lee
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Kuan Pin Huang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Kuo Chu Fu
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Hsueh-Min Jen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Jun-Yu Lai
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Pei-Shiou Jian
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Yu-Chuan Wang
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Wen-Yun Hsueh
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Pei-Yi Tsai
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Wan-Hua Hong
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Chia-Chi Chang
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Diana Zc Wu
- Xenobiotic Laboratories, Inc., Plainsboro, NJ, USA
| | - Jinn Wu
- Xenobiotic Laboratories, Inc., Plainsboro, NJ, USA
| | - Meng-Hsin Chen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Kuo-Ming Yu
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Ching Yuh Chern
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Jia-Ming Chang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Johnson Y N Lau
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Jiann-Jyh Huang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan; Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan.
| |
Collapse
|
32
|
Li J, Dong F, Ouyang YC, Sun QY, Qian WP. Overexpression of cyclin A1 promotes meiotic resumption but induces premature chromosome separation in mouse oocyte. J Cell Physiol 2020; 235:7136-7145. [PMID: 32030765 DOI: 10.1002/jcp.29612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/22/2020] [Indexed: 01/29/2023]
Abstract
Mammalian cyclin A1 is prominently expressed in testis and essential for meiosis in the male mouse, however, it shows weak expression in ovary, especially during oocyte maturation. To understand why cyclin A1 behaves in this way in the oocyte, we investigated the effect of cyclin A1 overexpression on mouse oocyte meiotic maturation. Our results revealed that cyclin A1 overexpression triggered meiotic resumption even in the presence of germinal vesicle breakdown inhibitor, milrinone. Nevertheless, the cyclin A1-overexpressed oocytes failed to extrude the first polar body but were completely arrested at metaphase I. Consequently, cyclin A1 overexpression destroyed the spindle morphology and chromosome alignment by inducing premature separation of chromosomes and sister chromatids. Therefore, cyclin A1 overexpression will prevent oocyte maturation although it can promote meiotic resumption. All these results show that decreased expression of cyclin A1 in oocytes may have an evolutional significance to keep long-lasting prophase arrest and orderly chromosome separation during oocyte meiotic maturation.
Collapse
Affiliation(s)
- Jian Li
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
33
|
Yang D, He Y, Wu B, Deng Y, Wang N, Li M, Liu Y. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer. J Ovarian Res 2020; 13:10. [PMID: 31987036 PMCID: PMC6986075 DOI: 10.1186/s13048-020-0613-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Ovarian cancer (OC) ranks fifth as a cause of gynecological cancer-associated death globally. Until now, the molecular mechanisms underlying the tumorigenesis and prognosis of OC have not been fully understood. This study aims to identify hub genes and therapeutic drugs involved in OC. Methods Four gene expression profiles (GSE54388, GSE69428, GSE36668, and GSE40595) were downloaded from the Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) in OC tissues and normal tissues with an adjusted P-value < 0.05 and a |log fold change (FC)| > 1.0 were first identified by GEO2R and FunRich software. Next, Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses were performed for functional enrichment analysis of these DEGs. Then, the hub genes were identified by the cytoHubba plugin and the other bioinformatics approaches including protein-protein interaction (PPI) network analysis, module analysis, survival analysis, and miRNA-hub gene network construction was also performed. Finally, the GEPIA2 and DGIdb databases were utilized to verify the expression levels of hub genes and to select the candidate drugs for OC, respectively. Results A total of 171 DEGs were identified, including 114 upregulated and 57 downregulated DEGs. The results of the GO analysis indicated that the upregulated DEGs were mainly involved in cell division, nucleus, and protein binding, whereas the biological functions showing enrichment in the downregulated DEGs were mainly negative regulation of transcription from RNA polymerase II promoter, protein complex and apicolateral plasma membrane, and glycosaminoglycan binding. As for the KEGG-pathway, the upregulated DEGs were mainly associated with metabolic pathways, biosynthesis of antibiotics, biosynthesis of amino acids, cell cycle, and HTLV-I infection. Additionally, 10 hub genes (KIF4A, CDC20, CCNB2, TOP2A, RRM2, TYMS, KIF11, BIRC5, BUB1B, and FOXM1) were identified and survival analysis of these hub genes showed that OC patients with the high-expression of CCNB2, TYMS, KIF11, KIF4A, BIRC5, BUB1B, FOXM1, and CDC20 were statistically more likely to have poorer progression free survival. Meanwhile, the expression levels of the hub genes based on GEPIA2 were in accordance with those based on GEO. Finally, DGIdb database was used to identify 62 small molecules as the potentially targeted drugs for OC treatment. Conclusions In summary, the data may produce new insights regarding OC pathogenesis and treatment. Hub genes and candidate drugs may improve individualized diagnosis and therapy for OC in future.
Collapse
Affiliation(s)
- Dan Yang
- Department of Environmental Health, School of Public Health, China Medical University, 77th Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yang He
- Department of Central Laboratory, The First Affiliated Hospital, China Medical University, 155th Nanjing North Street, Shenyang, 110001, Liaoning, China
| | - Bo Wu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital, China Medical University, 155th Nanjing North Street, Shenyang, 110001, Liaoning, China
| | - Yan Deng
- Department of Environmental Health, School of Public Health, China Medical University, 77th Puhe Road, Shenyang, 110122, Liaoning, China
| | - Nan Wang
- Department of Environmental Health, School of Public Health, China Medical University, 77th Puhe Road, Shenyang, 110122, Liaoning, China
| | - Menglin Li
- Department of Environmental Health, School of Public Health, China Medical University, 77th Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yang Liu
- Department of Environmental Health, School of Public Health, China Medical University, 77th Puhe Road, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
34
|
Astbury P, Subramanian GN, Greaney J, Roling C, Irving J, Homer HA. The Presence of Immature GV- Stage Oocytes during IVF/ICSI Is a Marker of Poor Oocyte Quality: A Pilot Study. Med Sci (Basel) 2020; 8:medsci8010004. [PMID: 31963146 PMCID: PMC7151566 DOI: 10.3390/medsci8010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Here we investigate whether the presence of germinal vesicle-stage oocytes (GV- oocytes) reflects poor oocyte developmental competence (or quality). This was a prospective, non-randomised, cohort pilot-study involving 60 patients undergoing in vitro fertilization/ intracytoplasmic sperm injection for whom complete pregnancy outcome data were available. Patients in whom GV- oocytes were retrieved (GV+) at transvaginal oocyte retrieval (TVOR) were compared with those from whom no GVs were retrieved (GV-). We found that GV+ (n = 29) and GV- (n = 31) patients were similarly aged (35.4 vs. 36.4 years; p = 0.446). GV+ patients had a mean of 2.41 ± 2.03 GVs and comparable yields of MII oocytes to GV- patients (11 ± 6.88 vs. 8.26 ± 4.84; p = 0.077). Compared with GV- patients, GV+ patients had markedly lower implantation rates (11.8% vs. 30.2%; p = 0.022) as well as oocyte utilisation rates for clinical pregnancy (2.3% vs. 6.8%; p = 0.018) and live-birth (1.9% vs. 5.7%; p = 0.029). DNA damage levels measured using γH2AX immunostaining were not different in oocytes from women <36 years versus those ≥36 years (p = 0.606). Thus, patients who have GV- stage oocytes at TVOR exhibit poor oocyte quality reflected in reduced per-oocyte pregnancy success rates and uniformly high levels of oocyte DNA damage.
Collapse
Affiliation(s)
- Pia Astbury
- Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, The University of Queensland, Herston 4029, Queensland, Australia
- Queensland Fertility Group, Brisbane 4000, Queensland, Australia
| | - Goutham N. Subramanian
- Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, The University of Queensland, Herston 4029, Queensland, Australia
| | - Jessica Greaney
- Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, The University of Queensland, Herston 4029, Queensland, Australia
| | - Chris Roling
- Queensland Fertility Group, Brisbane 4000, Queensland, Australia
| | - Jacqui Irving
- Queensland Fertility Group, Brisbane 4000, Queensland, Australia
| | - Hayden A. Homer
- Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, The University of Queensland, Herston 4029, Queensland, Australia
- Queensland Fertility Group, Brisbane 4000, Queensland, Australia
- Reproductive Endocrinology & Infertility Clinic, Royal Brisbane & Women’s Hospital, Brisbane 4029, Queensland, Australia
- Correspondence:
| |
Collapse
|
35
|
Zhang C, Chen Z, Yin Q, Fu X, Li Y, Stopka T, Skoultchi AI, Zhang Y. The chromatin remodeler Snf2h is essential for oocyte meiotic cell cycle progression. Genes Dev 2020; 34:166-178. [PMID: 31919188 PMCID: PMC7000916 DOI: 10.1101/gad.331157.119] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022]
Abstract
In this study, Zhang et al. set out to describe the molecular mechanisms underlying meiotic chromatin remodeling and meiotic resumption during oocyte development. Using a combination of in vivo and genomic approaches, the authors demonstrate that Snf2h, the catalytic subunit of ISWI family complexes, is critical in driving meiotic progression and acts by regulating the expression of genes important for maturation-promoting factor (MPF) activation. Oocytes are indispensable for mammalian life. Thus, it is important to understand how mature oocytes are generated. As a critical stage of oocytes development, meiosis has been extensively studied, yet how chromatin remodeling contributes to this process is largely unknown. Here, we demonstrate that the ATP-dependent chromatin remodeling factor Snf2h (also known as Smarca5) plays a critical role in regulating meiotic cell cycle progression. Females with oocyte-specific depletion of Snf2h are infertile and oocytes lacking Snf2h fail to undergo meiotic resumption. Mechanistically, depletion of Snf2h results in dysregulation of meiosis-related genes, which causes failure of maturation-promoting factor (MPF) activation. ATAC-seq analysis in oocytes revealed that Snf2h regulates transcription of key meiotic genes, such as Prkar2b, by increasing its promoter chromatin accessibility. Thus, our studies not only demonstrate the importance of Snf2h in oocyte meiotic resumption, but also reveal the mechanism underlying how a chromatin remodeling factor can regulate oocyte meiosis.
Collapse
Affiliation(s)
- Chunxia Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Zhiyuan Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Qiangzong Yin
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Xudong Fu
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Yisi Li
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Automation, Tsinghua University, Beijing 100084, China
| | - Tomas Stopka
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
36
|
Zhou C, Hancock JL, Khanna KK, Homer HA. First meiotic anaphase requires Cep55-dependent inhibitory cyclin-dependent kinase 1 phosphorylation. J Cell Sci 2019; 132:jcs.233379. [PMID: 31427428 DOI: 10.1242/jcs.233379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/09/2019] [Indexed: 12/28/2022] Open
Abstract
During mitosis, anaphase is triggered by anaphase-promoting complex (APC)-mediated destruction of securin and cyclin B1, which leads to inactivation of cyclin-dependent kinase 1 (Cdk1). By regulating APC activity, the mitotic spindle assembly checkpoint (SAC) therefore has robust control over anaphase timing to prevent chromosome mis-segregation. Mammalian oocytes are prone to aneuploidy, the reasons for which remain obscure. In mitosis, Cep55 is required post-anaphase for the final steps of cytokinesis. We found that Cep55-depleted mouse oocytes progress normally through early meiosis I, but that anaphase I fails as a result of persistent Cdk1 activity. Unexpectedly, Cdk1 inactivation was compromised following Cep55 depletion, despite on-time SAC silencing and intact APC-mediated proteolysis. We found that impaired Cdk1 inactivation was caused by inadequate inhibitory Cdk1 phosphorylation consequent upon failure to suppress Cdc25 phosphatase, identifying a proteolysis-independent step necessary for anaphase I. Thus, the SAC in oocytes does not exert exclusive control over anaphase I initiation, providing new insight into vulnerability to error.
Collapse
Affiliation(s)
- Chenxi Zhou
- The Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, The University of Queensland, Herston 4029, QLD, Australia
| | - Janelle L Hancock
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Hayden A Homer
- The Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, The University of Queensland, Herston 4029, QLD, Australia
| |
Collapse
|
37
|
Bouftas N, Wassmann K. Cycling through mammalian meiosis: B-type cyclins in oocytes. Cell Cycle 2019; 18:1537-1548. [PMID: 31208271 PMCID: PMC6619999 DOI: 10.1080/15384101.2019.1632139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
B-type cyclins in association with Cdk1 mediate key steps of mitosis and meiosis, by phosphorylating a plethora of substrates. Progression through the meiotic cell cycle requires the execution of two cell divisions named meiosis I and II without intervening S-phase, to obtain haploid gametes. These two divisions are highly asymmetric in the large oocyte. Chromosome segregation in meiosis I and sister chromatid segregation in meiosis II requires the sharp, switch-like inactivation of Cdk1 activity, which is brought about by degradation of B-type cyclins and counteracting phosphatases. Importantly and contrary to mitosis, inactivation of Cdk1 must not allow S-phase to take place at exit from meiosis I. Here, we describe recent studies on the regulation of translation and degradation of B-type cyclins in mouse oocytes, and how far their roles are redundant or specific, with a special focus on the recently discovered oocyte-specific role of cyclin B3.
Collapse
Affiliation(s)
- Nora Bouftas
- Institut de Biologie Paris Seine (IBPS), Sorbonne Université, Paris, France
- CNRS UMR7622 Developmental Biology Lab, Sorbonne Université, Paris, France
| | - Katja Wassmann
- Institut de Biologie Paris Seine (IBPS), Sorbonne Université, Paris, France
- CNRS UMR7622 Developmental Biology Lab, Sorbonne Université, Paris, France
| |
Collapse
|
38
|
Daldello EM, Luong XG, Yang CR, Kuhn J, Conti M. Cyclin B2 is required for progression through meiosis in mouse oocytes. Development 2019; 146:dev172734. [PMID: 30952665 PMCID: PMC6503990 DOI: 10.1242/dev.172734] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/01/2019] [Indexed: 12/20/2022]
Abstract
Cyclins associate with cyclin-dependent serine/threonine kinase 1 (CDK1) to generate the M phase-promoting factor (MPF) activity essential for progression through mitosis and meiosis. Although cyclin B1 (CCNB1) is required for embryo development, previous studies concluded that CCNB2 is dispensable for cell cycle progression. Given previous findings of high Ccnb2 mRNA translation rates in prophase-arrested oocytes, we re-evaluated the role of this cyclin during meiosis. Ccnb2-/- oocytes underwent delayed germinal vesicle breakdown and showed defects during the metaphase-to-anaphase transition. This defective maturation was associated with compromised Ccnb1 and Moloney sarcoma oncogene (Mos) mRNA translation, delayed spindle assembly and increased errors in chromosome segregation. Given these defects, a significant percentage of oocytes failed to complete meiosis I because the spindle assembly checkpoint remained active and anaphase-promoting complex/cyclosome function was inhibited. In vivo, CCNB2 depletion caused ovulation of immature oocytes, premature ovarian failure, and compromised female fecundity. These findings demonstrate that CCNB2 is required to assemble sufficient pre-MPF for timely meiosis re-entry and progression. Although endogenous cyclins cannot compensate, overexpression of CCNB1/2 rescues the meiotic phenotypes, indicating similar molecular properties but divergent modes of regulation of these cyclins.
Collapse
Affiliation(s)
- Enrico Maria Daldello
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Xuan G Luong
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Cai-Rong Yang
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Jonathan Kuhn
- Cell and Tissue Biology Department, University of California, San Francisco, CA 94143, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
39
|
Petrachkova T, Wortinger LA, Bard AJ, Singh J, Warga RM, Kane DA. Lack of Cyclin B1 in zebrafish causes lengthening of G2 and M phases. Dev Biol 2019; 451:167-179. [PMID: 30930047 DOI: 10.1016/j.ydbio.2019.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/23/2022]
Abstract
An essential part of the Mitosis Promoting Factor, Cyclin B1 is indispensable for cells to enter mitosis. We report here that the zebrafish early arrest mutant specter is a loss-of-function mutation in the сyclin B1 gene. cyclin B1 is maternally transcribed in zebrafish, and the zygotic phenotype is apparent by early segmentation. Lack of zygotic Cyclin B1 does not stop cells from dividing, rather it causes an abnormal and elongated progression through the G2 and M phases of the cell cycle. Many mutant cells show signs of chromosomal instability or enter apoptosis. Using CRISPR-mediated gene editing, we produced a more severe gain-of-function mutation confirming that specter is the result of nonfunctional Cyclin B1. Although also a recessive phenotype, this new mutation produces an alternative splice-form of cyclin B1 mRNA, whose product lacks several key components for Cyclin B1, but not the Cdk1-binding domain. This mutant form of Cyclin B1 completely prevents cell division. We conclude that, although Cyclin B1 is critical for cells to enter mitosis, another cell cycle protein may be cooperating with Cdk1 at the G2/M checkpoint to sustain a partly functional Mitosis Promoting Factor.
Collapse
Affiliation(s)
- Tetiana Petrachkova
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| | - Laura A Wortinger
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Amber J Bard
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Jyotika Singh
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Rachel M Warga
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Donald A Kane
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| |
Collapse
|
40
|
Propensity in low-grade oocytes for delayed germinal vesicle breakdown compromises the developmental ability of sub-optimal grade Bubalus bubalis oocytes. ZYGOTE 2018; 26:359-365. [PMID: 30289096 DOI: 10.1017/s0967199418000321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryMaturing oocytes have diverse developmental potential and good quality oocytes exhibit a better ability to attain physiological milestones in a time-dependent manner. This situation necessitates the confirmation of oocyte developmental status more precisely under an in vitro embryo production (IVEP) regime. The aim of this study was to explain timely events in germinal vesicle breakdown (GVBD), an important milestone of oocyte nuclear maturation, to delineate the developmental capacity of Bubalus bubalis oocytes. In addition, the expression profile of genes responsible for GVBD was assessed in order to understand the molecular context responsible for GVBD. The chronology of GVBD events at different time intervals during in vitro maturation (IVM) suggests that the rate at which oocytes undergo GVBD was strikingly different in the brilliant cresyl blue (BCB)+ and BCB- groups. The expression of AKT and CDC25B genes for BCB+ oocytes was maximum at 8 h of IVM, and CCNB (cyclin B) peaked at around 10 h, which suggested that GVBD was finished after 10 h in BCB+ oocytes, whereas the expression of AKT and CDC25B was found to peak at around 12-14 h of IVM. This difference consequently delays the GVBD event by 2-4 h in BCB- oocytes. Poor abundance of gene transcripts was mainly implicated in delay and lower rate of GVBD in BCB- oocytes which in turn strongly affected the translational ability of oocytes to blastocysts. The findings of this study support the idea that there is a propensity in sub-optimal grade oocytes for delayed GVBD that compromises the developmental ability of low grade buffalo oocytes. The study highlights the very small, but importantly vital and separate, time window of the GVBD event during which the competence levels of buffalo oocytes are altered along with their translational ability to develop into the prospective embryos.
Collapse
|
41
|
Wei Z, Greaney J, Zhou C, A Homer H. Cdk1 inactivation induces post-anaphase-onset spindle migration and membrane protrusion required for extreme asymmetry in mouse oocytes. Nat Commun 2018; 9:4029. [PMID: 30279413 PMCID: PMC6168559 DOI: 10.1038/s41467-018-06510-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/31/2018] [Indexed: 11/09/2022] Open
Abstract
Female meiotic divisions are extremely asymmetric, producing large oocytes and small polar bodies (PBs). In mouse oocytes, the spindle relocates to the cortex before anaphase of meiosis I (MI). It is presumed that by displacing the future midzone, pre-anaphase spindle repositioning alone ensures asymmetry. But how subsequent anaphase events might contribute to asymmetric PB extrusion (PBE) is unknown. Here, we find that inactivation of cyclin-dependent kinase 1 (Cdk1) induces anaphase and simultaneously triggers cytoplasmic formin-mediated F-actin polymerisation that propels the spindle into the cortex causing it to protrude while anaphase progresses. Significantly, if post-anaphase-onset spindle migration fails, protrusion and asymmetry are severely threatened even with intact pre-anaphase migration. Conversely, post-anaphase migration can completely compensate for failed pre-anaphase migration. These data identify a cell-cycle-triggered phase of spindle displacement occurring after anaphase-onset, which, by inducing protrusion, is necessary for extreme asymmetry in mouse oocytes and uncover a pathway for maximising unequal division.
Collapse
Affiliation(s)
- Zhe Wei
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Jessica Greaney
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Chenxi Zhou
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Hayden A Homer
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia.
| |
Collapse
|
42
|
Increased Expression of Maturation Promoting Factor Components Speeds Up Meiosis in Oocytes from Aged Females. Int J Mol Sci 2018; 19:ijms19092841. [PMID: 30235877 PMCID: PMC6164426 DOI: 10.3390/ijms19092841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 12/24/2022] Open
Abstract
The rate of chromosome segregation errors that emerge during meiosis I in the mammalian female germ line are known to increase with maternal age; however, little is known about the underlying molecular mechanism. The objective of this study was to analyze meiotic progression of mouse oocytes in relation to maternal age. Using the mouse as a model system, we analyzed the timing of nuclear envelope breakdown and the morphology of the nuclear lamina of oocytes obtained from young (2 months old) and aged females (12 months old). Oocytes obtained from older females display a significantly faster progression through meiosis I compared to the ones obtained from younger females. Furthermore, in oocytes from aged females, lamin A/C structures exhibit rapid phosphorylation and dissociation. Additionally, we also found an increased abundance of MPF components and increased translation of factors controlling translational activity in the oocytes of aged females. In conclusion, the elevated MPF activity observed in aged female oocytes affects precocious meiotic processes that can multifactorially contribute to chromosomal errors in meiosis I.
Collapse
|
43
|
Li J, Tang JX, Cheng JM, Hu B, Wang YQ, Aalia B, Li XY, Jin C, Wang XX, Deng SL, Zhang Y, Chen SR, Qian WP, Sun QY, Huang XX, Liu YX. Cyclin B2 can compensate for Cyclin B1 in oocyte meiosis I. J Cell Biol 2018; 217:3901-3911. [PMID: 30097513 PMCID: PMC6219713 DOI: 10.1083/jcb.201802077] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/12/2018] [Accepted: 08/01/2018] [Indexed: 11/22/2022] Open
Abstract
Cyclin B1 and its interaction with CDK1 are thought to be critical for meiosis I progression in oocytes. However, using oocyte-specific conditional knockouts, Li et al. show that Cyclin B2 activity can compensate for Cyclin B1 to trigger meiosis resumption. Mammalian oocytes are arrested at the prophase of the first meiotic division for months and even years, depending on species. Meiotic resumption of fully grown oocytes requires activation of M-phase–promoting factor (MPF), which is composed of Cyclin B1 and cyclin-dependent kinase 1 (CDK1). It has long been believed that Cyclin B1 synthesis/accumulation and its interaction with CDK1 is a prerequisite for MPF activation in oocytes. In this study, we revealed that oocyte meiotic resumption occurred in the absence of Cyclin B1. Ccnb1-null oocytes resumed meiosis and extruded the first polar body. Without Cyclin B1, CDK1 could be activated by up-regulated Cyclin B2. Ccnb1 and Ccnb2 double knockout permanently arrested the oocytes at the prophase of the first meiotic division. Oocyte-specific Ccnb1-null female mice were infertile due to failed MPF activity elevation and thus premature interphase-like stage entry in the second meiotic division. These results have revealed a hidden compensatory mechanism between Cyclin B1 and Cyclin B2 in regulating MPF and oocyte meiotic resumption.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Ji-Xin Tang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jin-Mei Cheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bian Hu
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Yu-Qian Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Batool Aalia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Xia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shou-Long Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Xu Huang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Feng H, Thompson EM. Specialization of CDK1 and cyclin B paralog functions in a coenocystic mode of oogenic meiosis. Cell Cycle 2018; 17:1425-1444. [PMID: 29969934 PMCID: PMC6986761 DOI: 10.1080/15384101.2018.1486167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Oogenesis in the urochordate, Oikopleura dioica, occurs in a large coenocyst in which vitellogenesis precedes oocyte selection in order to adapt oocyte production to nutrient conditions. The animal has expanded Cyclin-Dependant Kinase 1 (CDK1) and Cyclin B paralog complements, with several expressed during oogenesis. Here, we addressed functional redundancy and specialization of CDK1 and cyclin B paralogs during oogenesis and early embryogenesis through spatiotemporal analyses and knockdown assays. CDK1a translocated from organizing centres (OCs) to selected meiotic nuclei at the beginning of the P4 phase of oogenesis, and its knockdown impaired vitellogenesis, nurse nuclear dumping, and entry of nurse nuclei into apoptosis. CDK1d-Cyclin Ba translocated from OCs to selected meiotic nuclei in P4, drove meiosis resumption and promoted nuclear envelope breakdown (NEBD). CDK1d-Cyclin Ba was also involved in histone H3S28 phosphorylation on centromeres and meiotic spindle assembly through regulating Aurora B localization to centromeres during prometaphase I. In other studied species, Cyclin B3 commonly promotes anaphase entry, but we found O. dioica Cyclin B3a to be non-essential for anaphase entry during oogenic meiosis. Instead, Cyclin B3a contributed to meiotic spindle assembly though its loss could be compensated by Cyclin Ba.
Collapse
Affiliation(s)
- Haiyang Feng
- a Department of Biological Sciences , University of Bergen , Bergen , Norway.,b Sars International Centre for Marine Molecular Biology , University of Bergen , Bergen , Norway
| | - Eric M Thompson
- a Department of Biological Sciences , University of Bergen , Bergen , Norway.,b Sars International Centre for Marine Molecular Biology , University of Bergen , Bergen , Norway
| |
Collapse
|
45
|
Greaney J, Wei Z, Homer H. Immunofluorescence Staining of K-Fibers in Mouse Oocytes Using Cold Fixation. Methods Mol Biol 2018; 1818:77-87. [PMID: 29961257 DOI: 10.1007/978-1-4939-8603-3_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The kinetochore is a multiprotein complex that assembles on centromeric DNA and constitutes the main attachment interface between chromosomes and microtubules of the spindle apparatus. Kinetochores also provide the platform for integrating the surveillance mechanism known as the spindle assembly checkpoint (SAC) that regulates the timing of anaphase onset. Saturation of microtubule binding sites on kinetochores displaces SAC proteins leading to loss of SAC-mediated inhibition and the triggering of anaphase. Microtubule binding sites become saturated by bundles of microtubules attached in an end-on manner to kinetochores, termed kinetochore fibers or K-fibers. The appearance of K-fibers therefore signifies the completion of attachment between kinetochores and microtubules and the silencing of the SAC. Here we describe a method involving cold-fixation for immunostaining and imaging K-fibers during meiosis I in mouse oocytes.
Collapse
Affiliation(s)
- Jessica Greaney
- Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Zhe Wei
- Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Hayden Homer
- Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia.
| |
Collapse
|
46
|
The Translation of Cyclin B1 and B2 is Differentially Regulated during Mouse Oocyte Reentry into the Meiotic Cell Cycle. Sci Rep 2017; 7:14077. [PMID: 29074977 PMCID: PMC5658433 DOI: 10.1038/s41598-017-13688-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/29/2017] [Indexed: 01/15/2023] Open
Abstract
Control of protein turnover is critical for meiotic progression. Using RiboTag immunoprecipitation, RNA binding protein immunoprecipitation, and luciferase reporter assay, we investigated how rates of mRNA translation, protein synthesis and degradation contribute to the steady state level of Cyclin B1 and B2 in mouse oocytes. Ribosome loading onto Ccnb1 and Mos mRNAs increases during cell cycle reentry, well after germinal vesicle breakdown (GVBD). This is followed by the translation of reporters containing 3′ untranslated region of Mos or Ccnb1 and the accumulation of Mos and Cyclin B1 proteins. Conversely, ribosome loading onto Ccnb2 mRNA and Cyclin B2 protein level undergo minimal changes during meiotic reentry. Degradation rates of Cyclin B1 or B2 protein at the GV stage are comparable. The translational activation of Mos and Ccnb1, but not Ccnb2, mRNAs is dependent on the RNA binding protein CPEB1. Inhibition of Cdk1 activity, but not Aurora A kinase activity, prevents the translation of Mos or Ccnb1 reporters, suggesting that MPF is required for their translation in mouse oocytes. Conversely, Ccnb2 translation is insensitive to Cdk1 inhibition. Thus, the poised state that allows rapid meiotic reentry in mouse GV oocytes may be determined by the differential translational control of two Cyclins.
Collapse
|
47
|
Huang CJ, Wu D, Jiao XF, Khan FA, Xiong CL, Liu XM, Yang J, Yin TL, Huo LJ. Maternal SENP7 programs meiosis architecture and embryo survival in mouse. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1195-1206. [PMID: 28315713 DOI: 10.1016/j.bbamcr.2017.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/22/2022]
Abstract
Understanding the mechanisms underlying abnormal egg production and pregnancy loss is significant for human fertility. SENP7, a SUMO poly-chain editing enzyme, has been regarded as a mitotic regulator of heterochromatin integrity and DNA repair. Herein, we report the roles of SENP7 in mammalian reproductive scenario. Mouse oocytes deficient in SENP7 experienced meiotic arrest at prophase I and metaphase I stages, causing a substantial decrease of mature eggs. Hyperaceylation and hypomethylation of histone H3 and up-regulation of Cdc14B/C accompanied by down-regulation of CyclinB1 and CyclinB2 were further recognized as contributors to defective M-phase entry and spindle assembly in oocytes. The spindle assembly checkpoint activated by defective spindle morphogenesis, which was also caused by mislocalization and ubiquitylation-mediated proteasomal degradation of γ-tubulin, blocked oocytes at meiosis I stage. SENP7-depleted embryos exhibited severely defective maternal-zygotic transition and progressive degeneration, resulting in nearly no blastocyst production. The disrupted epigenetic landscape on histone H3 restricted Rad51C loading onto DNA lesions due to elevated HP1α euchromatic deposition, and reduced DNA 5hmC challenged the permissive status for zygotic DNA repair, which induce embryo death. Our study pinpoints SENP7 as a novel determinant in epigenetic programming and major pathways that govern oocyte and embryo development programs in mammals.
Collapse
Affiliation(s)
- Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Faheem Ahmed Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Cheng-Liang Xiong
- Reproductive Medicine Center of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Xiao-Ming Liu
- Second Affiliated Hospital and Center of Reproductive Medicine, Wenzhou Medical University, Wenzhou 330302, PR China
| | - Jing Yang
- Reproductive Medicine Center, Wuhan University Renmin Hospital, Wuhan 430060, PR China
| | - Tai-Lang Yin
- Reproductive Medicine Center, Wuhan University Renmin Hospital, Wuhan 430060, PR China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
48
|
Abstract
Progression through the meiotic cell cycle must be strictly regulated in oocytes to generate viable embryos and offspring. During mitosis, the kinesin motor protein Kif4 is indispensable for chromosome condensation and separation, midzone formation and cytokinesis. Additionally, the bioactivity of Kif4 is dependent on phosphorylation via Aurora Kinase B and Cdk1, which regulate Kif4 function throughout mitosis. Here, we examine the role of Kif4 in mammalian oocyte meiosis. Kif4 localized in the cytoplasm throughout meiosis I and II, but was also observed to have a dynamic subcellular distribution, associating with both microtubules and kinetochores at different stages of development. Co-localization and proximity ligation assays revealed that the kinetochore proteins, CENP-C and Ndc80, are potential Kif4 interacting proteins. Functional analysis of Kif4 in oocytes via antisense knock-down demonstrated that this protein was not essential for meiosis I completion. However, Kif4 depleted oocytes displayed enlarged polar bodies and abnormal metaphase II spindles, indicating an essential role for this protein for correct asymmetric cell division in meiosis I. Further investigation of the phosphoregulation of meiotic Kif4 revealed that Aurora Kinase and Cdk activity is critical for Kif4 kinetochore localization and interaction with Ndc80 and CENP-C. Finally, Kif4 protein but not gene expression was found to be upregulated with age, suggesting a role for this protein in the decline of oocyte quality with age.
Collapse
|
49
|
Zhang T, Zhou Y, Li L, Wang ZB, Shen W, Schatten H, Sun QY. CenpH regulates meiotic G2/M transition by modulating the APC/CCdh1-cyclin B1 pathway in oocytes. Development 2016; 144:305-312. [PMID: 27993978 PMCID: PMC5394759 DOI: 10.1242/dev.141135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/25/2016] [Indexed: 12/24/2022]
Abstract
Meiotic resumption (G2/M transition) and progression through meiosis I (MI) are two key stages for producing fertilization-competent eggs. Here, we report that CenpH, a component of the kinetochore inner plate, is responsible for G2/M transition in meiotic mouse oocytes. Depletion of CenpH by morpholino injection decreased cyclin B1 levels, resulting in attenuation of maturation-promoting factor (MPF) activation, and severely compromised meiotic resumption. CenpH protects cyclin B1 from destruction by competing with the action of APC/CCdh1. Impaired G2/M transition after CenpH depletion could be rescued by expression of exogenous cyclin B1. Unexpectedly, blocking CenpH did not affect spindle organization and meiotic cell cycle progression after germinal vesicle breakdown. Our findings reveal a novel role of CenpH in regulating meiotic G2/M transition by acting via the APC/CCdh1-cyclin B1 pathway. Summary: CenpH, a component of the kinetochore inner plate protein, is necessary for cyclin B1 stabilization and is responsible for the G2/M transition in meiotic mouse oocytes.
Collapse
Affiliation(s)
- Teng Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Li Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Department of Reproductive Medicine, Guangdong Women and Children Hospital, Guangzhou 510010, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Shen
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China .,Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Distinct and Overlapping Requirements for Cyclins A, B, and B3 in Drosophila Female Meiosis. G3-GENES GENOMES GENETICS 2016; 6:3711-3724. [PMID: 27652889 PMCID: PMC5100870 DOI: 10.1534/g3.116.033050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Meiosis, like mitosis, depends on the activity of the cyclin dependent kinase Cdk1 and its cyclin partners. Here, we examine the specific requirements for the three mitotic cyclins, A, B, and B3 in meiosis of Drosophila melanogaster. We find that all three cyclins contribute redundantly to nuclear envelope breakdown, though cyclin A appears to make the most important individual contribution. Cyclin A is also required for biorientation of homologs in meiosis I. Cyclin B3, as previously reported, is required for anaphase progression in meiosis I and in meiosis II. We find that it also plays a redundant role, with cyclin A, in preventing DNA replication during meiosis. Cyclin B is required for maintenance of the metaphase I arrest in mature oocytes, for spindle organization, and for timely progression through the second meiotic division. It is also essential for polar body formation at the completion of meiosis. With the exception of its redundant role in meiotic maturation, cyclin B appears to function independently of cyclins A and B3 through most of meiosis. We conclude that the three mitotic cyclin-Cdk complexes have distinct and overlapping functions in Drosophila female meiosis.
Collapse
|