1
|
Zhu Y, Zhu J, Wang X, Wang P, Liu R. Molecular roles in membrane receptor signaling pathways and cascade reactions in chondrocytes: a review. J Mol Histol 2025; 56:94. [PMID: 39988650 DOI: 10.1007/s10735-025-10368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
Articular cartilage (AC) is a specialized connective tissue with unique biological and mechanical properties, which depends on the biological effects of each resident chondrocyte and its surrounding extracellular matrix (ECM) to form a unit that operates in a constant and balanced feedback loop. The surface membrane receptors of chondrocytes play a crucial role in the feedback balance of this biological unit. Various biological signals outside chondrocytes, such as water-soluble chemical signal molecules and mechanical signals, are unable to directly enter the cell and must first bind to the plasma membrane receptors to induce changes in the level and activity of intracellular signal transduction molecules. These changes then transmit through signaling cascade pathways into the nucleus, changing the cell phenotype, and producing physiological or pathological changes. Specific chemical and mechanical signals break the feedback balance of cartilage tissue units through membrane receptors. In the ECM environment, the molecular actions of chondrocyte membrane receptors in response to these specific signals, along with associated ion channel receptors, collectively regulate the biological effects of chondrocytes. This leads to decreased chondrocyte survival and an imbalance in ECM regulation, ultimately disrupting the tissue's molecular framework and physiological feedback mechanisms, and resulting in pathological changes in cartilage tissue. To provide insights into addressing the complexities associated with cartilage tissue injury and repair engineering, this review provides a comprehensive overview of the molecular mechanisms and biological implications of chondrocyte membrane receptor-mediated signal transduction, including G protein-coupled receptors (GPCRs), enzyme-linked receptors (tyrosine kinase receptors (TKRs)), and integrin receptors.
Collapse
Affiliation(s)
- Yingkang Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jingjing Zhu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xu Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Pengbo Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ruiyu Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
2
|
Kolasangiani R, Farzanian K, Chen Y, Schwartz MA, Bidone TC. Conformational response of α IIbβ 3 and α Vβ 3 integrins to force. Structure 2025; 33:289-299.e4. [PMID: 39706199 DOI: 10.1016/j.str.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/09/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
As major adhesion receptors, integrins transmit biochemical and mechanical signals across the plasma membrane. These functions are regulated by transitions between bent and extended conformations and modulated by force. To understand how force on integrins mediates cellular mechanosensing, we compared two highly homologous integrins, αIIbβ3 and αVβ3. These integrins, expressed in circulating platelets vs. solid tissues, respectively, share the β3 subunit, bind similar ligands and have similar bent and extended conformations. Here, we report that in cells expressing equivalent levels of each integrin, αIIbβ3 mediates spreading on softer substrates than αVβ3. These effects correlate with differences in structural dynamics of the two integrins under force. All-atom simulations show that αIIbβ3 is more flexible than αVβ3 due to correlated residue motions within the α subunit domains. Single molecule measurements confirm that αIIbβ3 extends faster than αVβ3. These results reveal a fundamental relationship between protein function and structural dynamics in cell mechanosensing.
Collapse
Affiliation(s)
- Reza Kolasangiani
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Khashayar Farzanian
- Yale Cardiovascular Research Center, Department of Internal Medicine (Cardiology), Yale University, New Haven, CT, USA
| | - Yunfeng Chen
- Department of Biochemistry and Molecular Biology and Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Department of Internal Medicine (Cardiology), Yale University, New Haven, CT, USA; Department of Cell Biology, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, USA
| | - Tamara C Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah, Salt Lake City, UT, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Haidari R, Fowler WJ, Robinson SD, Johnson RT, Warren DT. Microvascular endothelial cells display organ-specific responses to extracellular matrix stiffness. Curr Res Physiol 2025; 8:100140. [PMID: 39967829 PMCID: PMC11833412 DOI: 10.1016/j.crphys.2025.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/21/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
The extracellular matrix was originally thought of as simply a cellular scaffold but is now considered a key regulator of cell function and phenotype from which cells can derive biochemical and mechanical stimuli. Age-associated changes in matrix composition drive increases in matrix stiffness. Enhanced matrix stiffness promotes the progression of numerous diseases including cardiovascular disease, musculoskeletal disease, fibrosis, and cancer. Macrovascular endothelial cells undergo endothelial dysfunction in response to enhanced matrix stiffness. However, endothelial cells are highly heterogeneous, adopting structural and gene expression profiles specific to their organ of origin. Endothelial cells isolated from different vessels (i.e. arteries, veins or capillaries) respond differently to changes in substrate stiffness. It is unknown whether microvascular endothelial cells isolated from different organs also display organ-specific responses to substrate stiffness. In this study, we compare the response of microvascular endothelial cells isolated from both the mouse lung and mammary gland to a range of physiologically relevant substrate stiffnesses. We find that endothelial origin influences microvascular endothelial cell response to substrate stiffness in terms of both proliferation and migration speed. In lung-derived endothelial cells, proliferation is bimodal, where both physiologically soft and stiff substrates drive enhanced proliferation. Conversely, in mammary gland-derived endothelial cells, proliferation increases as substrate stiffness increases. Substrate stiffness also promotes enhanced endothelial migration. Enhanced stiffness drove greater increases in migration speed in mammary gland-derived than lung-derived endothelial cells. However, stiffness-induced changes in microvascular endothelial cell morphology were consistent between both cell lines, with substrate stiffness driving an increase in endothelial volume. Our research demonstrates the importance of considering endothelial origin in experimental design, especially when investigating how age-associated changes in matrix stiffness drive endothelial dysfunction and disease progression.
Collapse
Affiliation(s)
- Rana Haidari
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- School of Biology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Wesley J. Fowler
- Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ, UK
| | - Stephen D. Robinson
- School of Biology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ, UK
| | - Robert T. Johnson
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
| | - Derek T. Warren
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
4
|
Lu H, Li Z, Zhu L, Xu P, Wang H, Li Y, Zhao W. Fabrication and Temporal Dependency Osteogenic Regulation of Dual-Scale Hierarchical Microstructures on Medical Metal Surface. Adv Healthc Mater 2024; 13:e2402369. [PMID: 39175381 DOI: 10.1002/adhm.202402369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/09/2024] [Indexed: 08/24/2024]
Abstract
The structural characteristics at the interface of bone implants can guide biological regulation. In this study, a dual-scale hierarchical microstructure is proposed and customized using hybrid machining to achieve temporal dependency osteogenic regulation. It is observed that osteoblasts induced by dual-scale hierarchical structure exhibit adequate protrusion development and rapid cell attachment through the modulation of mechanical forces in the cell growth environment, and further promot the upregulation of the cell membrane receptor PDGFR-α, which is related to cell proliferation. Afterward, transcriptomic analysis reveals that during the differentiation stage, the DSH structure regulates cellular signaling cascades primarily through integrin adhesion mechanisms and then accelerates osteogenic differentiation by activating the TGF-β pathway and cAMP signaling pathway. Furthermore, the calcium nodules are preferentially deposited within the lower honeycomb-like channels, thereby endowing the proposed dual-scale hierarchical structure with the potential to induce oriented deposition and improve the long-term stability of the implant.
Collapse
Affiliation(s)
- Hao Lu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Zhijun Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Lida Zhu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Peihua Xu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Hai Wang
- Shenyang Lebuy Vacuum Tech. Co., Ltd, Shenyang, Liaoning, China
| | - Yonghao Li
- Shenyang Lebuy Vacuum Tech. Co., Ltd, Shenyang, Liaoning, China
| | - Weidong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Jafarinia H, Shi L, Wolfenson H, Carlier A. YAP phosphorylation within integrin adhesions: Insights from a computational model. Biophys J 2024; 123:3658-3668. [PMID: 39233443 PMCID: PMC11560305 DOI: 10.1016/j.bpj.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024] Open
Abstract
Mechanical and biochemical cues intricately activate Yes-associated protein (YAP), which is pivotal for the cellular responses to these stimuli. Recent findings reveal an unexplored role of YAP in influencing the apoptotic process. It has been shown that, on soft matrices, YAP is recruited to small adhesions, phosphorylated at Y357, and translocated into the nucleus triggering apoptosis. Interestingly, YAP Y357 phosphorylation is significantly reduced in larger mature focal adhesions on stiff matrices. Building upon these novel insights, we have developed a stochastic model to delve deeper into the complex dynamics of YAP phosphorylation within integrin adhesions. Our findings emphasize several key points: firstly, increasing the cytosolic diffusion rate of YAP correlates with higher levels of phosphorylated YAP (pYAP); secondly, increasing the number of binding sites and distributing them across the membrane surface, mimicking smaller adhesions, leads to higher pYAP levels, particularly at lower diffusion rates. Moreover, we show that the binding and release rate of YAP to adhesions as well as adhesion lifetimes significantly influence the size effect of adhesion-induced YAP phosphorylation. The results highlight the complex and dynamic interplay between adhesion lifetime, the rate of pYAP unbinding from adhesions, and dephosphorylation rates, collectively shaping overall pYAP levels. In summary, our work advances the understanding of YAP mechanotransduction and opens avenues for experimental validation.
Collapse
Affiliation(s)
- Hamidreza Jafarinia
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, the Netherlands
| | - Lidan Shi
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
6
|
Perry N, Braun R, Ben‐Hamo‐Arad A, Kanaan D, Arad T, Porat‐Kuperstein L, Toledano H. Integrin restriction by miR-34 protects germline progenitors from cell death during aging. Aging Cell 2024; 23:e14131. [PMID: 38450871 PMCID: PMC11166360 DOI: 10.1111/acel.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 03/08/2024] Open
Abstract
During aging, regenerative tissues must dynamically balance the two opposing processes of proliferation and cell death. While many microRNAs are differentially expressed during aging, their roles as dynamic regulators of tissue regeneration have yet to be described. We show that in the highly regenerative Drosophila testis, miR-34 levels are significantly elevated during aging. miR-34 modulates germ cell death and protects the progenitor germ cells from accelerated aging. However, miR-34 is not expressed in the progenitors themselves but rather in neighboring cyst cells that kill the progenitors. Transcriptomics followed by functional analysis revealed that during aging, miR-34 modifies integrin signaling by limiting the levels of the heterodimeric integrin receptor αPS2 and βPS subunits. In addition, we found that in cyst cells, this heterodimer is essential for inducing phagoptosis and degradation of the progenitor germ cells. Together, these data suggest that the miR-34-integrin signaling axis acts as a sensor of progenitor germ cell death to extend progenitor functionality during aging.
Collapse
Affiliation(s)
- Noam Perry
- Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Racheli Braun
- Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
- Biomedical Engineering FacultyTechnion IITsHaifaIsrael
| | - Aya Ben‐Hamo‐Arad
- Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Diana Kanaan
- Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Tal Arad
- Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | | | - Hila Toledano
- Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| |
Collapse
|
7
|
García-Sobrino R, Ruiz-Blas I, García C, Reinecke H, Elvira C, Rodríguez-Hernández J, Martínez-Campos E, Gallardo A. Hydrogels with dual sensitivity to temperature and pH in physiologically relevant ranges as supports for versatile controlled cell detachment. BIOMATERIALS ADVANCES 2024; 159:213826. [PMID: 38479241 DOI: 10.1016/j.bioadv.2024.213826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Thermosensitive hydrogels based on the N-vinyl caprolactam (VCL), capable of allowing for cell adhesion and proliferation, as well as non-aggressive detachment by controlled temperature drop, were functionalized with 23 % or lower molar percentages of the cationizable hydrophobic unit 2-(diisopropylamino) ethyl methacrylate (DPAEMA), to obtain networks with dual sensitivity to temperature and pH. The swelling analysis of the systems has shown a transition pK (pKb) close to physiological values, dependent on the temperature of the medium (pKb of 6.6 and 6.9 when the temperature of the medium is above and below the transition temperature VPTT, respectively) and little dependence on the degree of functionalization of DPAEMA. In addition, at temperatures below the transition temperature (VPTT), the systems have shown large swelling variations as a function of the pH (i.e. below and above the pKb), exhibiting greater absorption capacity at pHs below pKb, where the DPAEMA units are cationized. Cytocompatibility and transplant capacity have been evaluated using the C166-GFP endothelial cell line. None of the thermosensitive hydrogels with variable DPAEMA content showed a delay with respect to the control without DPAEMA neither in terms of adhesion nor in proliferation. However, by increasing the percentage of DPAEMA functionalization -and decreasing thermosensitivity-, a correlative decrease in mitochondrial activity was obtained in the transplant, with significant differences for the hydrogels with DPAEMA molar percentage of 3 % or higher. Taking advantage of the proximity of the pKb to the physiological value, we have evaluated the cellular response and the capacity for transplantation after lowering the pH to 6.5, below pKb. A direct relationship of the DPAEMA functionalization degree on the detachment efficiency was observed, since the hydrogels with the highest molar load of DPAEMA showed higher mitochondrial metabolic activity after cell detachment.
Collapse
Affiliation(s)
- Rubén García-Sobrino
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, Madrid 28006, Spain; Grupo de Síntesis Orgánica y Bioevaluación, Instituto Pluridisciplinar (IP), UCM, Unidad Asociada al CSIC por el ICTP y el IQM, Paseo de Juan XXIII 1, 28040 Madrid, Spain.
| | - Irene Ruiz-Blas
- Grupo de Síntesis Orgánica y Bioevaluación, Instituto Pluridisciplinar (IP), UCM, Unidad Asociada al CSIC por el ICTP y el IQM, Paseo de Juan XXIII 1, 28040 Madrid, Spain
| | - Carolina García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Helmut Reinecke
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Carlos Elvira
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Juan Rodríguez-Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Enrique Martínez-Campos
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, Madrid 28006, Spain; Grupo de Síntesis Orgánica y Bioevaluación, Instituto Pluridisciplinar (IP), UCM, Unidad Asociada al CSIC por el ICTP y el IQM, Paseo de Juan XXIII 1, 28040 Madrid, Spain.
| | - Alberto Gallardo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, Madrid 28006, Spain
| |
Collapse
|
8
|
Kang M, Senatore AJ, Naughton H, McTigue M, Beltman RJ, Herppich AA, Pflum MKH, Howe AK. Protein kinase A is a functional component of focal adhesions. J Biol Chem 2024; 300:107234. [PMID: 38552737 PMCID: PMC11044056 DOI: 10.1016/j.jbc.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
Focal adhesions (FAs) form the junction between extracellular matrix (ECM)-bound integrins and the actin cytoskeleton and also transmit signals that regulate cell adhesion, cytoskeletal dynamics, and cell migration. While many of these signals are rooted in reversible tyrosine phosphorylation, phosphorylation of FA proteins on Ser/Thr residues is far more abundant yet its mechanisms and consequences are far less understood. The cAMP-dependent protein kinase (protein kinase A; PKA) has important roles in cell adhesion and cell migration and is both an effector and regulator of integrin-mediated adhesion to the ECM. Importantly, subcellular localization plays a critically important role in specifying PKA function. Here, we show that PKA is present in isolated FA-cytoskeleton complexes and active within FAs in live cells. Furthermore, using kinase-catalyzed biotinylation of isolated FA-cytoskeleton complexes, we identify 53 high-stringency candidate PKA substrates within FAs. From this list, we validate tensin-3 (Tns3)-a well-established molecular scaffold, regulator of cell migration, and a component of focal and fibrillar adhesions-as a novel direct substrate for PKA. These observations identify a new pathway for phospho-regulation of Tns3 and, importantly, establish a new and important niche for localized PKA signaling and thus provide a foundation for further investigation of the role of PKA in the regulation of FA dynamics and signaling.
Collapse
Affiliation(s)
- Mingu Kang
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Amanda J Senatore
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Hannah Naughton
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Madeline McTigue
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Rachel J Beltman
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Andrew A Herppich
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Alan K Howe
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.
| |
Collapse
|
9
|
Noro J, Vilaça-Faria H, Reis RL, Pirraco RP. Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application. Bioact Mater 2024; 34:494-519. [PMID: 38298755 PMCID: PMC10827697 DOI: 10.1016/j.bioactmat.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Biomaterial choice is an essential step during the development tissue engineering and regenerative medicine (TERM) applications. The selected biomaterial must present properties allowing the physiological-like recapitulation of several processes that lead to the reestablishment of homeostatic tissue or organ function. Biomaterials derived from the extracellular matrix (ECM) present many such properties and their use in the field has been steadily increasing. Considering this growing importance, it becomes imperative to provide a comprehensive overview of ECM biomaterials, encompassing their sourcing, processing, and integration into TERM applications. This review compiles the main strategies used to isolate and process ECM-derived biomaterials as well as different techniques used for its characterization, namely biochemical and chemical, physical, morphological, and biological. Lastly, some of their applications in the TERM field are explored and discussed.
Collapse
Affiliation(s)
- Jennifer Noro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Vilaça-Faria
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
10
|
Kang M, Senatore AJ, Naughton H, McTigue M, Beltman RJ, Herppich AA, Pflum MKH, Howe AK. Protein Kinase A is a Functional Component of Focal Adhesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.18.553932. [PMID: 37645771 PMCID: PMC10462105 DOI: 10.1101/2023.08.18.553932] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Focal adhesions (FAs) form the junction between extracellular matrix (ECM)-bound integrins and the actin cytoskeleton and also transmit signals that regulate cell adhesion, cytoskeletal dynamics, and cell migration. While many of these signals are rooted in reversible tyrosine phosphorylation, phosphorylation of FA proteins on Ser/Thr residues is far more abundant yet its mechanisms and consequences are far less understood. The cAMP-dependent protein kinase (protein kinase A; PKA) has important roles in cell adhesion and cell migration and is both an effector and regulator of integrin-mediated adhesion to the ECM. Importantly, subcellular localization plays a critically important role in specifying PKA function. Here, we show that PKA is present in isolated FA-cytoskeleton complexes and active within FAs in live cells. Furthermore, using kinase-catalyzed biotinylation of isolated FA-cytoskeleton complexes, we identify fifty-three high-stringency candidate PKA substrates within FAs. From this list, we validate tensin-3 (Tns3) - a well-established molecular scaffold, regulator of cell migration, and component of focal and fibrillar adhesions - as a novel direct substrate for PKA. These observations identify a new pathway for phospho-regulation of Tns3 and, importantly, establish a new and important niche for localized PKA signaling and thus provide a foundation for further investigation of the role of PKA in the regulation of FA dynamics and signaling.
Collapse
|
11
|
Xia D, Jiang D, Yu P, Jia K, Wang J, Shen D, Zhao Q, Lu C. Ras3 in Bombyx mori with antiviral function against B. mori nucleopolyhedrovirus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105114. [PMID: 38101715 DOI: 10.1016/j.dci.2023.105114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Bombyx mori ras protein3 (BmRas3) is a small molecular protein in the GTPase superfamily, which has the activity of binding guanosine nucleotides and GTP enzymes. It acts as a molecular switch by coupling extracellular signal to different cellular response through the conversion between Ras-GTP conformation and Ras-GDP conformation, thus regulating signal pathways responsible for cell growth, migration, adhesion, survival and differentiation. However, few studies have been done on Ras3 in silkworm, and its function and mechanism are unclear. In this study, we found that the overexpression of BmRas3 inhibited the infection of BmNPV(B. mori nucleopolyhedrovirus), while knockdown of BmRas3 could promote the infection of BmNPV. In addition, after the BmRas3 in silkworm larvae was knockdown, the anti-BmNPV ability of silkworm decreased and the survival rate of silkworm was affected. Additionly in the cells with BmRas3 overexpression, the transcription level of BmMapkk6 、BmP38、BmJNK、BmERK1/2 and BmERK5 were significantly increased after BmNPV infection, and the transcript levels of BmMapkk6、BmP38、BmJNK、BmERK1/2 and BmERK5 were also inhibited to varying degrees This is the first report on the antiviral effect of BmRas3 in silkworm, which provides a new direction for further study on the anti-BmNPV mechanism of silkworm and screening and cultivation of anti-BmNPV silkworm strain.
Collapse
Affiliation(s)
- Dingguo Xia
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| | - Dan Jiang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Pengcheng Yu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Kaifang Jia
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Jinyang Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Dongxu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Qiaoling Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400715, China
| |
Collapse
|
12
|
Aazmi A, Zhang D, Mazzaglia C, Yu M, Wang Z, Yang H, Huang YYS, Ma L. Biofabrication methods for reconstructing extracellular matrix mimetics. Bioact Mater 2024; 31:475-496. [PMID: 37719085 PMCID: PMC10500422 DOI: 10.1016/j.bioactmat.2023.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
In the human body, almost all cells interact with extracellular matrices (ECMs), which have tissue and organ-specific compositions and architectures. These ECMs not only function as cellular scaffolds, providing structural support, but also play a crucial role in dynamically regulating various cellular functions. This comprehensive review delves into the examination of biofabrication strategies used to develop bioactive materials that accurately mimic one or more biophysical and biochemical properties of ECMs. We discuss the potential integration of these ECM-mimics into a range of physiological and pathological in vitro models, enhancing our understanding of cellular behavior and tissue organization. Lastly, we propose future research directions for ECM-mimics in the context of tissue engineering and organ-on-a-chip applications, offering potential advancements in therapeutic approaches and improved patient outcomes.
Collapse
Affiliation(s)
- Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Duo Zhang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Corrado Mazzaglia
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
13
|
García-Sobrino R, Muñoz M, Rodríguez-Jara E, Rams J, Torres B, Cifuentes SC. Bioabsorbable Composites Based on Polymeric Matrix (PLA and PCL) Reinforced with Magnesium (Mg) for Use in Bone Regeneration Therapy: Physicochemical Properties and Biological Evaluation. Polymers (Basel) 2023; 15:4667. [PMID: 38139919 PMCID: PMC10747080 DOI: 10.3390/polym15244667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Improvements in Tissue Engineering and Regenerative Medicine (TERM)-type technologies have allowed the development of specific materials that, together with a better understanding of bone tissue structure, have provided new pathways to obtain biomaterials for bone tissue regeneration. In this manuscript, bioabsorbable materials are presented as emerging materials in tissue engineering therapies related to bone lesions because of their ability to degrade in physiological environments while the regeneration process is completed. This comprehensive review aims to explore the studies, published since its inception (2010s) to the present, on bioabsorbable composite materials based on PLA and PCL polymeric matrix reinforced with Mg, which is also bioabsorbable and has recognized osteoinductive capacity. The research collected in the literature reveals studies based on different manufacturing and dispersion processes of the reinforcement as well as the physicochemical analysis and corresponding biological evaluation to know the osteoinductive capacity of the proposed PLA/Mg and PCL/Mg composites. In short, this review shows the potential of these composite materials and serves as a guide for those interested in bioabsorbable materials applied in bone tissue engineering.
Collapse
Affiliation(s)
- Rubén García-Sobrino
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (M.M.); (J.R.); (B.T.)
| | - Marta Muñoz
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (M.M.); (J.R.); (B.T.)
| | - Elías Rodríguez-Jara
- Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, c/Kelsen 5, 28049 Madrid, Spain;
| | - Joaquín Rams
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (M.M.); (J.R.); (B.T.)
| | - Belén Torres
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (M.M.); (J.R.); (B.T.)
| | - Sandra C. Cifuentes
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (M.M.); (J.R.); (B.T.)
| |
Collapse
|
14
|
Valdivia A, Avalos AM, Leyton L. Thy-1 (CD90)-regulated cell adhesion and migration of mesenchymal cells: insights into adhesomes, mechanical forces, and signaling pathways. Front Cell Dev Biol 2023; 11:1221306. [PMID: 38099295 PMCID: PMC10720913 DOI: 10.3389/fcell.2023.1221306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 12/17/2023] Open
Abstract
Cell adhesion and migration depend on the assembly and disassembly of adhesive structures known as focal adhesions. Cells adhere to the extracellular matrix (ECM) and form these structures via receptors, such as integrins and syndecans, which initiate signal transduction pathways that bridge the ECM to the cytoskeleton, thus governing adhesion and migration processes. Integrins bind to the ECM and soluble or cell surface ligands to form integrin adhesion complexes (IAC), whose composition depends on the cellular context and cell type. Proteomic analyses of these IACs led to the curation of the term adhesome, which is a complex molecular network containing hundreds of proteins involved in signaling, adhesion, and cell movement. One of the hallmarks of these IACs is to sense mechanical cues that arise due to ECM rigidity, as well as the tension exerted by cell-cell interactions, and transduce this force by modifying the actin cytoskeleton to regulate cell migration. Among the integrin/syndecan cell surface ligands, we have described Thy-1 (CD90), a GPI-anchored protein that possesses binding domains for each of these receptors and, upon engaging them, stimulates cell adhesion and migration. In this review, we examine what is currently known about adhesomes, revise how mechanical forces have changed our view on the regulation of cell migration, and, in this context, discuss how we have contributed to the understanding of signaling mechanisms that control cell adhesion and migration.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
15
|
Ergaz B, Goren S, Lesman A. Micropatterning the organization of multicellular structures in 3D biological hydrogels; insights into collective cellular mechanical interactions. Biofabrication 2023; 16:015012. [PMID: 37906963 DOI: 10.1088/1758-5090/ad0849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Control over the organization of cells at the microscale level within supporting biomaterials can push forward the construction of complex tissue architectures for tissue engineering applications and enable fundamental studies of how tissue structure relates to its function. While cells patterning on 2D substrates is a relatively established and available procedure, micropatterning cells in biomimetic 3D hydrogels has been more challenging, especially with micro-scale resolution, and currently relies on sophisticated tools and protocols. We present a robust and accessible 'peel-off' method to micropattern large arrays of individual cells or cell-clusters of precise sizes in biological 3D hydrogels, such as fibrin and collagen gels, with control over cell-cell separation distance and neighboring cells position. We further demonstrate partial control over cell position in thez-dimension by stacking two layers in varying distances between the layers. To demonstrate the potential of the micropatterning gel platform, we study the matrix-mediated mechanical interaction between array of cells that are accurately separated in defined distances. A collective process of intense cell-generated densified bands emerging in the gel between near neighbors was identified, along which cells preferentially migrate, a process relevant to tissue morphogenesis. The presented 3D gel micropatterning method can be used to reveal fundamental morphogenetic processes, and to reconstruct any tissue geometry with micrometer resolution in 3D biomimetic gel environments, leveraging the engineering of tissues in complex architectures.
Collapse
Affiliation(s)
- Bar Ergaz
- School of Mechanical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel-Aviv, Israel
| | - Shahar Goren
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel-Aviv, Israel
- Center for Chemistry and Physics of Living Systems, Tel Aviv University, Tel-Aviv, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel-Aviv, Israel
- Center for Chemistry and Physics of Living Systems, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
16
|
Bril M, Saberi A, Jorba I, van Turnhout MC, Sahlgren CM, Bouten CV, Schenning AP, Kurniawan NA. Shape-Morphing Photoresponsive Hydrogels Reveal Dynamic Topographical Conditioning of Fibroblasts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303136. [PMID: 37740666 PMCID: PMC10625123 DOI: 10.1002/advs.202303136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Indexed: 09/25/2023]
Abstract
The extracellular environment defines a physical boundary condition with which cells interact. However, to date, cell response to geometrical environmental cues is largely studied in static settings, which fails to capture the spatiotemporally varying cues cells receive in native tissues. Here, a photoresponsive spiropyran-based hydrogel is presented as a dynamic, cell-compatible, and reconfigurable substrate. Local stimulation with blue light (455 nm) alters hydrogel swelling, resulting in on-demand reversible micrometer-scale changes in surface topography within 15 min, allowing investigation into cell response to controlled geometry actuations. At short term (1 h after actuation), fibroblasts respond to multiple rounds of recurring topographical changes by reorganizing their nucleus and focal adhesions (FA). FAs form primarily at the dynamic regions of the hydrogel; however, this propensity is abolished when the topography is reconfigured from grooves to pits, demonstrating that topographical changes dynamically condition fibroblasts. Further, this dynamic conditioning is found to be associated with long-term (72 h) maintenance of focal adhesions and epigenetic modifications. Overall, this study offers a new approach to dissect the dynamic interplay between cells and their microenvironment and shines a new light on the cell's ability to adapt to topographical changes through FA-based mechanotransduction.
Collapse
Affiliation(s)
- Maaike Bril
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Aref Saberi
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Ignasi Jorba
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Mark C. van Turnhout
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Cecilia M. Sahlgren
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Faculty of Science and EngineeringÅbo Akademi UniversityTurkuFI‐20520Finland
| | - Carlijn V.C. Bouten
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Albert P.H.J. Schenning
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Department of Chemical Engineering & ChemistryEindhoven University of TechnologyEindhoven5612 AEThe Netherlands
| | - Nicholas A. Kurniawan
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| |
Collapse
|
17
|
Lončarić M, Stojanović N, Rac-Justament A, Coopmans K, Majhen D, Humphries JD, Humphries MJ, Ambriović-Ristov A. Talin2 and KANK2 functionally interact to regulate microtubule dynamics, paclitaxel sensitivity and cell migration in the MDA-MB-435S melanoma cell line. Cell Mol Biol Lett 2023; 28:56. [PMID: 37460977 PMCID: PMC10353188 DOI: 10.1186/s11658-023-00473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Focal adhesions (FAs) are integrin-containing, multi-protein structures that link intracellular actin to the extracellular matrix and trigger multiple signaling pathways that control cell proliferation, differentiation, survival and motility. Microtubules (MTs) are stabilized in the vicinity of FAs through interaction with the components of the cortical microtubule stabilizing complex (CMSC). KANK (KN motif and ankyrin repeat domains) family proteins within the CMSC, KANK1 or KANK2, bind talin within FAs and thus mediate actin-MT crosstalk. We previously identified in MDA-MB-435S cells, which preferentially use integrin αVβ5 for adhesion, KANK2 as a key molecule enabling the actin-MT crosstalk. KANK2 knockdown also resulted in increased sensitivity to MT poisons, paclitaxel (PTX) and vincristine and reduced migration. Here, we aimed to analyze whether KANK1 has a similar role and to distinguish which talin isoform binds KANK2. METHODS The cell model consisted of human melanoma cell line MDA-MB-435S and stably transfected clone with decreased expression of integrin αV (3αV). For transient knockdown of talin1, talin2, KANK1 or KANK2 we used gene-specific siRNAs transfection. Using previously standardized protocol we isolated integrin adhesion complexes. SDS-PAGE and Western blot was used for protein expression analysis. The immunofluorescence analysis and live cell imaging was done using confocal microscopy. Cell migration was analyzed with Transwell Cell Culture Inserts. Statistical analysis using GraphPad Software consisted of either one-way analysis of variance (ANOVA), unpaired Student's t-test or two-way ANOVA analysis. RESULTS We show that KANK1 is not a part of the CMSC associated with integrin αVβ5 FAs and its knockdown did not affect the velocity of MT growth or cell sensitivity to PTX. The talin2 knockdown mimicked KANK2 knockdown i.e. led to the perturbation of actin-MT crosstalk, which is indicated by the increased velocity of MT growth and increased sensitivity to PTX and also reduced migration. CONCLUSION We conclude that KANK2 functionally interacts with talin2 and that the mechanism of increased sensitivity to PTX involves changes in microtubule dynamics. These data elucidate a cell-type-specific role of talin2 and KANK2 isoforms and we propose that talin2 and KANK2 are therefore potential therapeutic targets for improved cancer therapy.
Collapse
Affiliation(s)
- Marija Lončarić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Anja Rac-Justament
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Kaatje Coopmans
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Dragomira Majhen
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jonathan D Humphries
- Department of Life Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
18
|
Melamed S, Zaffryar-Eilot S, Nadjar-Boger E, Aviram R, Zhao H, Yaseen-Badarne W, Kalev-Altman R, Sela-Donenfeld D, Lewinson O, Astrof S, Hasson P, Wolfenson H. Initiation of fibronectin fibrillogenesis is an enzyme-dependent process. Cell Rep 2023; 42:112473. [PMID: 37148241 DOI: 10.1016/j.celrep.2023.112473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/16/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023] Open
Abstract
Fibronectin fibrillogenesis and mechanosensing both depend on integrin-mediated force transmission to the extracellular matrix. However, force transmission is in itself dependent on fibrillogenesis, and fibronectin fibrils are found in soft embryos where high forces cannot be applied, suggesting that force cannot be the sole initiator of fibrillogenesis. Here, we identify a nucleation step prior to force transmission, driven by fibronectin oxidation mediated by lysyl oxidase enzyme family members. This oxidation induces fibronectin clustering, which promotes early adhesion, alters cellular response to soft matrices, and enhances force transmission to the matrix. In contrast, absence of fibronectin oxidation abrogates fibrillogenesis, perturbs cell-matrix adhesion, and compromises mechanosensation. Moreover, fibronectin oxidation promotes cancer cell colony formation in soft agar as well as collective and single-cell migration. These results reveal a force-independent enzyme-dependent mechanism that initiates fibronectin fibrillogenesis, establishing a critical step in cell adhesion and mechanosensing.
Collapse
Affiliation(s)
- Shay Melamed
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Shelly Zaffryar-Eilot
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Elisabeth Nadjar-Boger
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Rohtem Aviram
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Huaning Zhao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Wesal Yaseen-Badarne
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Rotem Kalev-Altman
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| | - Oded Lewinson
- Department of Molecular Microbiology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
19
|
Sun N, Zhang C, Wang J, Yue X, Kim HY, Zhang RY, Liu H, Widjaja J, Tang H, Zhang TX, Ye J, Qian A, Liu C, Wu A, Wang K, Johanis M, Yang P, Liu H, Meng M, Liang L, Pei R, Chai-Ho W, Zhu Y, Tseng HR. Hierarchical integration of DNA nanostructures and NanoGold onto a microchip facilitates covalent chemistry-mediated purification of circulating tumor cells in head and neck squamous cell carcinoma. NANO TODAY 2023; 49:101786. [PMID: 38037608 PMCID: PMC10688595 DOI: 10.1016/j.nantod.2023.101786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
It is well-established that the combined use of nanostructured substrates and immunoaffinity agents can enhance the cell-capture performance of the substrates, thus offering a practical solution to effectively capture circulating tumor cells (CTCs) in peripheral blood. Developing along this strategy, this study first demonstrated a top-down approach for the fabrication of tetrahedral DNA nanostructure (TDN)-NanoGold substrates through the hierarchical integration of three functional constituents at various length-scales: a macroscale glass slide, sub-microscale self-organized NanoGold, and nanoscale self-assembled TDN. The TDN-NanoGold substrates were then assembled with microfluidic chaotic mixers to give TDN-NanoGold Click Chips. In conjunction with the use of copper (Cu)-catalyzed azide-alkyne cycloaddition (CuAAC)-mediated CTC capture and restriction enzyme-triggered CTC release, TDN-NanoGold Click Chips allow for effective enumeration and purification of CTCs with intact cell morphologies and preserved molecular integrity. To evaluate the clinical utility of TDN-NanoGold Click Chips, we used these devices to isolate and purify CTCs from patients with human papillomavirus (HPV)-positive (+) head and neck squamous cell carcinoma (HNSCC). The purified HPV(+) HNSCC CTCs were then subjected to RT-ddPCR testing, allowing for detection of E6/E7 oncogenes, the characteristic molecular signatures of HPV(+) HNSCC. We found that the resulting HPV(+) HNSCC CTC counts and E6/E7 transcript copy numbers are correlated with the treatment responses in the patients, suggesting the potential clinical utility of TDN-NanoGold Click Chips for non-invasive diagnostic applications of HPV(+) HNSCC.
Collapse
Affiliation(s)
- Na Sun
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ceng Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Wang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xinmin Yue
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Hyo Yong Kim
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ryan Y. Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hongtao Liu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong 250014, China
| | - Josephine Widjaja
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hubert Tang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tiffany X. Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jinglei Ye
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Audrey Qian
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chensong Liu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alex Wu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Katharina Wang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Johanis
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peng Yang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Honggang Liu
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Meng Meng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong Province, China
| | - Renjun Pei
- Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Suzhou 215123, China
| | - Wanxing Chai-Ho
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Chen S, He T, Zhong Y, Chen M, Yao Q, Chen D, Shao Z, Xiao G. Roles of focal adhesion proteins in skeleton and diseases. Acta Pharm Sin B 2023; 13:998-1013. [PMID: 36970189 PMCID: PMC10031257 DOI: 10.1016/j.apsb.2022.09.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
The skeletal system, which contains bones, joints, tendons, ligaments and other elements, plays a wide variety of roles in body shaping, support and movement, protection of internal organs, production of blood cells and regulation of calcium and phosphate metabolism. The prevalence of skeletal diseases and disorders, such as osteoporosis and bone fracture, osteoarthritis, rheumatoid arthritis, and intervertebral disc degeneration, increases with age, causing pain and loss of mobility and creating a huge social and economic burden globally. Focal adhesions (FAs) are macromolecular assemblies that are composed of the extracellular matrix (ECM), integrins, intracellular cytoskeleton and other proteins, including kindlin, talin, vinculin, paxillin, pinch, Src, focal adhesion kinase (FAK) and integrin-linked protein kinase (ILK) and other proteins. FA acts as a mechanical linkage connecting the ECM and cytoskeleton and plays a key role in mediating cell-environment communications and modulates important processes, such as cell attachment, spreading, migration, differentiation and mechanotransduction, in different cells in skeletal system by impacting distinct outside-in and inside-out signaling pathways. This review aims to integrate the up-to-date knowledge of the roles of FA proteins in the health and disease of skeletal system and focuses on the specific molecular mechanisms and underlying therapeutic targets for skeletal diseases.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
21
|
Liu J, Zhang J, Fu X, Yang S, Li Y, Liu J, DiSanto ME, Chen P, Zhang X. The Emerging Role of Cell Adhesion Molecules on Benign Prostatic Hyperplasia. Int J Mol Sci 2023; 24:2870. [PMID: 36769190 PMCID: PMC9917596 DOI: 10.3390/ijms24032870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/01/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in elderly men. It is characterized by prostatic enlargement and urethral compression and often causes lower urinary tract symptoms (LUTs) such as urinary frequency, urgency, and nocturia. Existing studies have shown that the pathological process of prostate hyperplasia is mainly related to the imbalance of cell proliferation and apoptosis, inflammation, epithelial-mesenchymal transition (EMT), and growth factors. However, the exact molecular mechanisms remain incompletely elucidated. Cell adhesion molecules (CAMs) are a group of cell surface proteins that mediate cell-cell adhesion and cell migration. Modulating adhesion molecule expression can regulate cell proliferation, apoptosis, EMT, and fibrotic processes, engaged in the development of prostatic hyperplasia. In this review, we went over the important roles and molecular mechanisms of cell adhesion molecules (mainly integrins and cadherins) in both physiological and pathological processes. We also analyzed the mechanisms of CAMs in prostate hyperplasia and explored the potential value of targeting CAMs as a therapeutic strategy for BPH.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Junchao Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shu Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Michael E. DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
22
|
Austin J, Tu Y, Pal K, Wang X. Vinculin transmits high-level integrin tensions that are dispensable for focal adhesion formation. Biophys J 2023; 122:156-167. [PMID: 36352785 PMCID: PMC9822790 DOI: 10.1016/j.bpj.2022.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/08/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Focal adhesions (FAs) transmit force and mediate mechanotransduction between cells and the matrix. Previous studies revealed that integrin-transmitted force is critical to regulate FA formation. As vinculin is a prominent FA protein implicated in integrin tension transmission, this work studies the relation among integrin tensions (force), vinculin (protein), and FA formation (structure) by integrin tension manipulation, force visualization and vinculin knockout (KO). Two DNA-based integrin tension tools are adopted: tension gauge tether (TGT) and integrative tension sensor (ITS), with TGT restricting integrin tensions under a designed Ttol (tension tolerance) value and ITS visualizing integrin tensions above the Ttol value by fluorescence. Results show that large FAs (area >1 μm2) were formed on the TGT surface with Ttol of 54 pN but not on those with lower Ttol values. Time-series analysis of FA formation shows that focal complexes (area <0.5 μm2) appeared on all TGT surfaces 20 min after cell plating, but only matured to large FAs on TGT with Ttol of 54 pN. Next, we tested FA formation in vinculin KO cells on TGT surfaces. Surprisingly, the Ttol value of TGT required for large FA formation is drastically decreased to 23 pN. To explore the cause, we visualized integrin tensions in both wild-type and vinculin KO cells using ITS. The results showed that integrin tensions in FAs of wild-type cells frequently activate ITS with Ttol of 54 pN. With vinculin KO, however, integrin tensions in FAs became lower and unable to activate 54 pN ITS. Force signal intensities of integrin tensions reported by 33 and 43 pN ITS were also significantly reduced with vinculin KO, suggesting that vinculin is essential to transmit high-level integrin tensions and involved in transmitting intermediate-level integrin tensions in FAs. However, the high-level integrin tensions transmitted by vinculin are not required by FA formation.
Collapse
Affiliation(s)
- Jacob Austin
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa
| | - Ying Tu
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa
| | - Kaushik Pal
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa; Department of Biochemistry, Biophysics and Molecular Biology, Ames, Iowa.
| |
Collapse
|
23
|
Hijazi N, Shi Z, Rockey DC. Characterization of focal adhesion proteins in rodent hepatic stellate cells. Histochem Cell Biol 2022; 158:325-334. [PMID: 35960334 PMCID: PMC10824234 DOI: 10.1007/s00418-022-02123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 11/04/2022]
Abstract
Ongoing liver injury leads to fibrosis and ultimately cirrhosis, a leading cause of death worldwide. The primary mechanism underlying the fibrogenic response is the activation of cells known as hepatic stellate cells (HSCs) which are "quiescent" in the normal liver but become "activated" after injury by transdifferentiating into extracellular matrix-secreting myofibroblasts. Since integrins (extracellular matrix binding receptors) are important mediators of HSC activation and fibrogenesis, we hypothesized that focal adhesion (FA) proteins, which link integrins to the intracellular protein machinery, may be important in the activation process. Therefore, using both an in vitro model of activation in primary rat HSCs and an in vivo model of liver injury, we examined three FA proteins: vinculin, FAK, and talin. All three proteins were significantly upregulated during HSC activation at both the messenger RNA (mRNA) and protein levels. Confocal microscopy demonstrated that the proteins had a widespread expression throughout HSCs with prominent localization at the end of actin filaments. Finally, we stimulated HSCs with the profibrotic ligands endothelin-1 (ET-1) and transforming growth factor beta (TGF-β) and observed an increase in the size of vinculin-containing FAs and the cell area occupied by them. The data indicate that HSCs possess a broad array of FA proteins, and given their upregulation during activation, this raises the possibility that they play a role in the fibrogenic response to injury.
Collapse
Affiliation(s)
- Nour Hijazi
- Digestive Disease Research Core Center, Medical University of South Carolina, 96 Jonathan Lucas Street, Clinical Sciences Building, Suite 912, Charleston, SC 29425, USA
| | - Zengdun Shi
- Digestive Disease Research Core Center, Medical University of South Carolina, 96 Jonathan Lucas Street, Clinical Sciences Building, Suite 912, Charleston, SC 29425, USA
| | - Don C. Rockey
- Digestive Disease Research Core Center, Medical University of South Carolina, 96 Jonathan Lucas Street, Clinical Sciences Building, Suite 912, Charleston, SC 29425, USA
| |
Collapse
|
24
|
Kong X, Kapustka A, Sullivan B, Schwarz GJ, Leckband DE. Extracellular matrix regulates force transduction at VE-cadherin junctions. Mol Biol Cell 2022; 33:ar95. [PMID: 35653290 DOI: 10.1091/mbc.e22-03-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Increased tension on VE-cadherin (VE-cad) complexes activates adaptive cell stiffening and local cytoskeletal reinforcement--two key signatures of intercellular mechanotransduction. Here we demonstrate that tugging on VE-cad receptors initiates a cascade that results in downstream integrin activation. The formation of new integrin adhesions potentiates vinculin and actin recruitment to mechanically reinforce stressed cadherin adhesions. This cascade differs from documented antagonistic effects of integrins on intercellular junctions. We identify focal adhesion kinase, Abl kinase, and RhoA GTPase as key components of the positive feedback loop. Results further show that a consequence of integrin involvement is the sensitization of intercellular force transduction to the extracellular matrix (ECM) not by regulating junctional tension but by altering signal cascades that reinforce cell-cell adhesions. On type 1 collagen or fibronectin substrates, integrin subtypes α2β1 and α5β1, respectively, differentially control actin remodeling at VE-cad adhesions. Specifically, ECM-dependent differences in VE-cad force transduction mirror differences in the rigidity sensing mechanisms of α2β1 and α5β1 integrins. The findings verify the role of integrins in VE-cad force transduction and uncover a previously unappreciated mechanism by which the ECM impacts the mechanical reinforcement of interendothelial junctions.
Collapse
Affiliation(s)
- Xinyu Kong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Adrian Kapustka
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan Sullivan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Gregory J Schwarz
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Deborah E Leckband
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
25
|
Bera K, Kiepas A, Zhang Y, Sun SX, Konstantopoulos K. The interplay between physical cues and mechanosensitive ion channels in cancer metastasis. Front Cell Dev Biol 2022; 10:954099. [PMID: 36158191 PMCID: PMC9490090 DOI: 10.3389/fcell.2022.954099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Physical cues have emerged as critical influencers of cell function during physiological processes, like development and organogenesis, and throughout pathological abnormalities, including cancer progression and fibrosis. While ion channels have been implicated in maintaining cellular homeostasis, their cell surface localization often places them among the first few molecules to sense external cues. Mechanosensitive ion channels (MICs) are especially important transducers of physical stimuli into biochemical signals. In this review, we describe how physical cues in the tumor microenvironment are sensed by MICs and contribute to cancer metastasis. First, we highlight mechanical perturbations, by both solid and fluid surroundings typically found in the tumor microenvironment and during critical stages of cancer cell dissemination from the primary tumor. Next, we describe how Piezo1/2 and transient receptor potential (TRP) channels respond to these physical cues to regulate cancer cell behavior during different stages of metastasis. We conclude by proposing alternative mechanisms of MIC activation that work in tandem with cytoskeletal components and other ion channels to bestow cells with the capacity to sense, respond and navigate through the surrounding microenvironment. Collectively, this review provides a perspective for devising treatment strategies against cancer by targeting MICs that sense aberrant physical characteristics during metastasis, the most lethal aspect of cancer.
Collapse
Affiliation(s)
- Kaustav Bera
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Sean X. Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| |
Collapse
|
26
|
Pandey N, Anastasiadis P, Carney CP, Kanvinde PP, Woodworth GF, Winkles JA, Kim AJ. Nanotherapeutic treatment of the invasive glioblastoma tumor microenvironment. Adv Drug Deliv Rev 2022; 188:114415. [PMID: 35787387 PMCID: PMC10947564 DOI: 10.1016/j.addr.2022.114415] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM) is the most common malignant adult brain cancer with no curative treatment strategy. A significant hurdle in GBM treatment is effective therapeutic delivery to the brain-invading tumor cells that remain following surgery within functioning brain regions. Developing therapies that can either directly target these brain-invading tumor cells or act on other cell types and molecular processes supporting tumor cell invasion and recurrence are essential steps in advancing new treatments in the clinic. This review highlights some of the drug delivery strategies and nanotherapeutic technologies that are designed to target brain-invading GBM cells or non-neoplastic, invasion-supporting cells residing within the GBM tumor microenvironment.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Christine P Carney
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pranjali P Kanvinde
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States.
| |
Collapse
|
27
|
Lana JFSD, Lana AVSD, da Fonseca LF, Coelho MA, Marques GG, Mosaner T, Ribeiro LL, Azzini GOM, Santos GS, Fonseca E, de Andrade MAP. Stromal Vascular Fraction for Knee Osteoarthritis - An Update. J Stem Cells Regen Med 2022; 18:11-20. [PMID: 36003656 DOI: 10.46582/jsrm.1801003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022]
Abstract
Orthobiologics never cease to cause popularity within the medical science field, distinctly in regenerative medicine. Recently, adipose tissue has been an object of interest for many researchers and medical experts due to the fact that it represents a novel and potential cell source for tissue engineering and regenerative medicine purposes. Stromal vascular fraction (SVF), for instance, which is an adipose tissue-derivative, has generated optimistic results in many scenarios. Its biological potential can be harnessed and administered into injured tissues, particularly areas in which standard healing is disrupted. This is a typical feature of osteoarthritis (OA), a common degenerative joint disease which is outlined by persistent inflammation and destruction of surrounding tissues. SVF is known to carry a large amount of stem and progenitor cells, which are able to perform self-renewal, differentiation, and proliferation. Furthermore, they also secrete several cytokines and several growth factors, effectively sustaining immune modulatory effects and halting the escalated pro-inflammatory status of OA. Although SVF has shown interesting results throughout the medical community, additional research is still highly desirable in order to further elucidate its potential regarding musculoskeletal disorders, especially OA.
Collapse
Affiliation(s)
| | | | - Lucas Furtado da Fonseca
- Orthopaedic Department - Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo - SP, Brazil
| | - Marcelo Amaral Coelho
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | | | - Tomas Mosaner
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | | | | | - Gabriel Silva Santos
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | - Eduardo Fonseca
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | | |
Collapse
|
28
|
Solubilization and Purification of α 5β 1 Integrin from Rat Liver for Reconstitution into Nanodiscs. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2507:1-18. [PMID: 35773574 DOI: 10.1007/978-1-0716-2368-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Transmembrane proteins (or integral membrane proteins) are synthesized in the endoplasmic reticulum where most of them are core glycosylated prior to folding and in some cases assembly into quaternary structures. Correctly glycosylated, folded, and assembled transmembrane proteins are then shuttled to the Golgi apparatus for additional posttranslational modifications such as complex-type glycosylations, sulfation or proteolytic clipping. At the plasma membrane, the glycosylated extracellular domains are key to communicate with the cellular environment for a variety of functions, such as binding to the extracellular matrix for cell adhesion and migration, to neighboring cells for cell-cell interaction, or to extracellular components for nutrient uptake and cell signaling. Intracellular domains are essential to mediate signaling cascades, or to connect to cytosolic adaptors for internalization and intracellular compartmentalization. Despite its importance for the understanding of molecular mechanisms of transmembrane protein function, the determination of their structures has remained a challenging task. In recent years, their reconstitution in lipid nanodiscs in combination with high resolution cryo-electron microscopy has provided novel avenues to render this process more accessible. Here, we describe detailed protocols for the solubilization of heavily glycosylated α5β1 integrin from rat livers, its purification and reconstitution into nanodiscs. At the plasma membrane of many cells, including tumor metastases, this essential heterodimeric transmembrane protein mediates the communication between extracellular matrix and cytosolic cytoskeleton in processes of cell adhesion and migration. We expect that the protocols that are described here will provide new opportunities for the determination of the full structure of α5β1 integrin, as well as for the understanding of how interacting partners can regulate function and activity of this transmembrane protein.
Collapse
|
29
|
Gomes de Almeida P, Rifes P, Martins-Jesus AP, Pinheiro GG, Andrade RP, Thorsteinsdóttir S. Cell–Fibronectin Interactions and Actomyosin Contractility Regulate the Segmentation Clock and Spatio-Temporal Somite Cleft Formation during Chick Embryo Somitogenesis. Cells 2022; 11:cells11132003. [PMID: 35805087 PMCID: PMC9266262 DOI: 10.3390/cells11132003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 12/19/2022] Open
Abstract
Fibronectin is essential for somite formation in the vertebrate embryo. Fibronectin matrix assembly starts as cells emerge from the primitive streak and ingress in the unsegmented presomitic mesoderm (PSM). PSM cells undergo cyclic waves of segmentation clock gene expression, followed by Notch-dependent upregulation of meso1 in the rostral PSM which induces somite cleft formation. However, the relevance of the fibronectin matrix for these molecular processes remains unknown. Here, we assessed the role of the PSM fibronectin matrix in the spatio-temporal regulation of chick embryo somitogenesis by perturbing (1) extracellular fibronectin matrix assembly, (2) integrin–fibronectin binding, (3) Rho-associated protein kinase (ROCK) activity and (4) non-muscle myosin II (NM II) function. We found that integrin–fibronectin engagement and NM II activity are required for cell polarization in the nascent somite. All treatments resulted in defective somitic clefts and significantly perturbed meso1 and segmentation clock gene expression in the PSM. Importantly, inhibition of actomyosin-mediated contractility increased the period of hairy1/hes4 oscillations from 90 to 120 min. Together, our work strongly suggests that the fibronectin–integrin–ROCK–NM II axis regulates segmentation clock dynamics and dictates the spatio-temporal localization of somitic clefts.
Collapse
Affiliation(s)
- Patrícia Gomes de Almeida
- cE3c—CHANGE, Departmento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1740-016 Lisboa, Portugal; (P.G.d.A.); (P.R.); (G.G.P.)
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal; (A.P.M.-J.); (R.P.A.)
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Pedro Rifes
- cE3c—CHANGE, Departmento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1740-016 Lisboa, Portugal; (P.G.d.A.); (P.R.); (G.G.P.)
| | - Ana P. Martins-Jesus
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal; (A.P.M.-J.); (R.P.A.)
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Gonçalo G. Pinheiro
- cE3c—CHANGE, Departmento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1740-016 Lisboa, Portugal; (P.G.d.A.); (P.R.); (G.G.P.)
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal; (A.P.M.-J.); (R.P.A.)
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Raquel P. Andrade
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal; (A.P.M.-J.); (R.P.A.)
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisboa, Portugal
| | - Sólveig Thorsteinsdóttir
- cE3c—CHANGE, Departmento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1740-016 Lisboa, Portugal; (P.G.d.A.); (P.R.); (G.G.P.)
- Correspondence:
| |
Collapse
|
30
|
Mukherjee A, Melamed S, Damouny-Khoury H, Amer M, Feld L, Nadjar-Boger E, Sheetz MP, Wolfenson H. α-Catenin links integrin adhesions to F-actin to regulate ECM mechanosensing and rigidity dependence. J Cell Biol 2022; 221:213257. [PMID: 35652786 PMCID: PMC9166284 DOI: 10.1083/jcb.202102121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 12/22/2021] [Accepted: 05/16/2022] [Indexed: 02/03/2023] Open
Abstract
Both cell-cell and cell-matrix adhesions are regulated by mechanical signals, but the mechanobiological processes that mediate the cross talk between these structures are poorly understood. Here we show that α-catenin, a mechanosensitive protein that is classically linked with cadherin-based adhesions, associates with and regulates integrin adhesions. α-Catenin is recruited to the edges of mesenchymal cells, where it interacts with F-actin. This is followed by mutual retrograde flow of α-catenin and F-actin from the cell edge, during which α-catenin interacts with vinculin within integrin adhesions. This interaction affects adhesion maturation, stress-fiber assembly, and force transmission to the matrix. In epithelial cells, α-catenin is present in cell-cell adhesions and absent from cell-matrix adhesions. However, when these cells undergo epithelial-to-mesenchymal transition, α-catenin transitions to the cell edge, where it facilitates proper mechanosensing. This is highlighted by the ability of α-catenin-depleted cells to grow on soft matrices. These results suggest a dual role of α-catenin in mechanosensing, through both cell-cell and cell-matrix adhesions.
Collapse
Affiliation(s)
- Abhishek Mukherjee
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Shay Melamed
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Hana Damouny-Khoury
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Malak Amer
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Lea Feld
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Elisabeth Nadjar-Boger
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Michael P. Sheetz
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel,Correspondence to Haguy Wolfenson:
| |
Collapse
|
31
|
Ming R, Jiang Y, Fan J, An C, Li J, Chen T, Li X. High-Efficiency Capture of Cells by Softening Cell Membrane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106547. [PMID: 35112794 DOI: 10.1002/smll.202106547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The capture of circulating tumor cells (CTCs) by nanostructured substrate surface is a useful method for early diagnosis of cancer. At present, most methods used to improve the cell capture efficiency are based on changing substrate surface properties. However, there are still some gaps between these methods and practical applications. Here, a method is presented for improving cell capture efficiency from a different perspective, that is, changing the properties of the cells. Concretely, the mechanical properties of the cell membrane are changed by adding Cytochalasin D to soften the cell membrane. Furthermore, a corresponding theoretical model is proposed to explain the experimental results. It is found that cell softening can reduce the resistance of cell adhesion, which makes the adhesion ability stronger. The high-efficiency capture of cells by softening the cell membrane provides a potential method to improve the detection performance of CTCs.
Collapse
Affiliation(s)
- Ruiqi Ming
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Ye Jiang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jiaqi Fan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Chunchun An
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Jinqi Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- SCNU Qingyuan Institute of Science and Technology Innovation Co. Ltd., Qingyuan, 511517, China
| | - Xinlei Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
32
|
Mirgorodskaya E, Dransart E, Shafaq-Zadah M, Roderer D, Sihlbom C, Leffler H, Johannes L. Site-specific N-glycan profiles of α 5 β 1 integrin from rat liver. Biol Cell 2022; 114:160-176. [PMID: 35304921 DOI: 10.1111/boc.202200017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND INFORMATION Like most other cell surface proteins, α5 β1 integrin is glycosylated, which is required for its various activities in ways that mostly remain to be determined. RESULTS Here, we have established the first comprehensive site-specific glycan map of α5 β1 integrin that was purified from a natural source, i.e., rat liver. This analysis revealed striking site selective variations in glycan composition. Complex bi, tri or tetraantennary N-glycans were predominant at various proportions at most potential N-glycosylation sites. A few of these sites were non-glycosylated or contained high mannose or hybrid glycans, indicating that early N-glycan processing was hindered. Almost all complex N-glycans had fully galactosylated and sialylated antennae. Moderate levels of core fucosylation and high levels of O-acetylation of NeuAc residues were observed at certain sites. An O-linked HexNAc was found in an EGF-like domain of β1 integrin. The extensive glycan information that results from our study was projected onto a map of α5 β1 integrin that was obtained by homology modeling. We have used this model for the discussion of how glycosylation might be used in the functional cycle of α5 β1 integrin. A striking example concerns the involvement of glycan-binding galectins in the regulation of the molecular homeostasis of glycoproteins at the cell surface through the formation of lattices or endocytic pits according to the glycolipid-lectin (GL-Lect) hypothesis. CONCLUSION We expect that the glycoproteomics data of the current study will serve as a resource for the exploration of structural mechanisms by which glycans control α5 β1 integrin activity and endocytic trafficking. SIGNIFICANCE Glycosylation of α5 β1 integrin has been implicated in multiple aspects of integrin function and structure. Yet, detailed knowledge of its glycosylation, notably the specific sites of glycosylation, is lacking. Furthermore, the α5 β1 integrin preparation that was analyzed here is from a natural source, which is of importance as there is not a lot of literature in the field about the glycosylation of 'native' glycoproteins. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Estelle Dransart
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, 26 rue d'Ulm, 75248, Paris, Cedex, 05, France
| | - Massiullah Shafaq-Zadah
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, 26 rue d'Ulm, 75248, Paris, Cedex, 05, France
| | - Daniel Roderer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, Berlin, 13125, Germany
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Hakon Leffler
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Sweden
| | - Ludger Johannes
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, 26 rue d'Ulm, 75248, Paris, Cedex, 05, France
| |
Collapse
|
33
|
Wahiduzzaman M, Liu Y, Huang T, Wei W, Li Y. Cell-cell communication analysis for single-cell RNA sequencing and its applications in carcinogenesis and COVID-19. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Boos MA, Lamandé SR, Stok KS. Multiscale Strain Transfer in Cartilage. Front Cell Dev Biol 2022; 10:795522. [PMID: 35186920 PMCID: PMC8855033 DOI: 10.3389/fcell.2022.795522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
The transfer of stress and strain signals between the extracellular matrix (ECM) and cells is crucial for biochemical and biomechanical cues that are required for tissue morphogenesis, differentiation, growth, and homeostasis. In cartilage tissue, the heterogeneity in spatial variation of ECM molecules leads to a depth-dependent non-uniform strain transfer and alters the magnitude of forces sensed by cells in articular and fibrocartilage, influencing chondrocyte metabolism and biochemical response. It is not fully established how these nonuniform forces ultimately influence cartilage health, maintenance, and integrity. To comprehend tissue remodelling in health and disease, it is fundamental to investigate how these forces, the ECM, and cells interrelate. However, not much is known about the relationship between applied mechanical stimulus and resulting spatial variations in magnitude and sense of mechanical stimuli within the chondrocyte’s microenvironment. Investigating multiscale strain transfer and hierarchical structure-function relationships in cartilage is key to unravelling how cells receive signals and how they are transformed into biosynthetic responses. Therefore, this article first reviews different cartilage types and chondrocyte mechanosensing. Following this, multiscale strain transfer through cartilage tissue and the involvement of individual ECM components are discussed. Finally, insights to further understand multiscale strain transfer in cartilage are outlined.
Collapse
Affiliation(s)
- Manuela A. Boos
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Shireen R. Lamandé
- Musculoskeletal Research, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Kathryn S. Stok
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Kathryn S. Stok,
| |
Collapse
|
35
|
Ben Hamouda S, Miglino MA, de Sá Schiavo Matias G, Beauchamp G, Lavoie JP. Asthmatic Bronchial Matrices Determine the Gene Expression and Behavior of Smooth Muscle Cells in a 3D Culture Model. FRONTIERS IN ALLERGY 2021; 2:762026. [PMID: 35387054 PMCID: PMC8974673 DOI: 10.3389/falgy.2021.762026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Asthma is associated with increased deposition and altered phenotype of airway smooth muscle (ASM) cells. However, little is known about the processes responsible for these changes. It has been suggested that alterations of the extracellular matrix (ECM) contribute to the remodeling of ASM cells in asthma. Three-dimensional matrices allow the in vitro study of complex cellular responses to different stimuli in a close-to-natural environment. Thus, we investigated the ultrastructural and genic variations of ASM cells cultured on acellular asthmatic and control bronchial matrices. We studied horses, as they spontaneously develop a human asthma-like condition (heaves) with similarities to chronic pulmonary changes observed in human asthma. Primary bronchial ASM cells from asthmatic (n = 3) and control (n = 3) horses were cultured on decellularized bronchi from control (n = 3) and asthmatic (n = 3) horses. Each cell lineage was used to recellularize six different bronchi for 41 days. Histomorphometry on HEPS-stained-recellularized matrices revealed an increased ASM cell number in the control cell/control matrix (p = 0.02) and asthmatic cell/control matrix group (p = 0.04) compared with the asthmatic cell/asthmatic matrix group. Scan electron microscopy revealed a cell invasion of the ECM. While ASM cells showed high adhesion and proliferation processes on the control ECM, the presence of senescent cells and cellular debris in the asthmatic ECM with control or asthmatic ASM cells suggested cell death. When comparing asthmatic with control cell/matrix combinations by targeted next generation sequencing, only AGC1 (p = 0.04), MYO10 (p = 0.009), JAM3 (p = 0.02), and TAGLN (p = 0.001) were differentially expressed out of a 70-gene pool previously associated with smooth muscle remodeling. To our knowledge, this is the first attempt to evaluate the effects of asthmatic ECM on an ASM cell phenotype using a biological bronchial matrix. Our results indicate that bronchial ECM health status contributes to ASM cell gene expression and, possibly, its survival.
Collapse
Affiliation(s)
- Selma Ben Hamouda
- Faculty of Veterinary Medicine, Université de Montréal, Quebec City, QC, Canada
| | - Maria Angélica Miglino
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Guy Beauchamp
- Faculty of Veterinary Medicine, Université de Montréal, Quebec City, QC, Canada
| | - Jean-Pierre Lavoie
- Faculty of Veterinary Medicine, Université de Montréal, Quebec City, QC, Canada
- *Correspondence: Jean-Pierre Lavoie
| |
Collapse
|
36
|
Afriyie-Asante A, Dabla A, Dagenais A, Berton S, Smyth R, Sun J. Mycobacterium tuberculosis Exploits Focal Adhesion Kinase to Induce Necrotic Cell Death and Inhibit Reactive Oxygen Species Production. Front Immunol 2021; 12:742370. [PMID: 34745115 PMCID: PMC8564185 DOI: 10.3389/fimmu.2021.742370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/04/2021] [Indexed: 01/25/2023] Open
Abstract
Tuberculosis is a deadly, contagious respiratory disease that is caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb). Mtb is adept at manipulating and evading host immunity by hijacking alveolar macrophages, the first line of defense against inhaled pathogens, by regulating the mode and timing of host cell death. It is established that Mtb infection actively blocks apoptosis and instead induces necrotic-like modes of cell death to promote disease progression. This survival strategy shields the bacteria from destruction by the immune system and antibiotics while allowing for the spread of bacteria at opportunistic times. As such, it is critical to understand how Mtb interacts with host macrophages to manipulate the mode of cell death. Herein, we demonstrate that Mtb infection triggers a time-dependent reduction in the expression of focal adhesion kinase (FAK) in human macrophages. Using pharmacological perturbations, we show that inhibition of FAK (FAKi) triggers an increase in a necrotic form of cell death during Mtb infection. In contrast, genetic overexpression of FAK (FAK+) completely blocked macrophage cell death during Mtb infection. Using specific inhibitors of necrotic cell death, we show that FAK-mediated cell death during Mtb infection occurs in a RIPK1-depedent, and to a lesser extent, RIPK3-MLKL-dependent mechanism. Consistent with these findings, FAKi results in uncontrolled replication of Mtb, whereas FAK+ reduces the intracellular survival of Mtb in macrophages. In addition, we demonstrate that enhanced control of intracellular Mtb replication by FAK+ macrophages is a result of increased production of antibacterial reactive oxygen species (ROS) as inhibitors of ROS production restored Mtb burden in FAK+ macrophages to same levels as in wild-type cells. Collectively, our data establishes FAK as an important host protective response during Mtb infection to block necrotic cell death and induce ROS production, which are required to restrict the survival of Mtb.
Collapse
Affiliation(s)
- Afrakoma Afriyie-Asante
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Ankita Dabla
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Amy Dagenais
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Stefania Berton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
37
|
Abstract
INTRODUCTION The matrisome and adhesome comprise proteins that are found within or are associated with the extracellular matrix (ECM) and adhesion complexes, respectively. Interactions between cells and their microenvironment are mediated by key matrisome and adhesome proteins, which direct fundamental processes, including growth and development. Due to their underlying complexity, it has historically been challenging to undertake mass spectrometry (MS)-based profiling of these proteins. New developments in sample preparative workflows, informatics databases, and MS techniques have enabled in-depth proteomic characterization of the matrisome and adhesome, resulting in a comprehensive understanding of the interactomes, and cellular signaling that occur at the cell-ECM interface. AREA COVERED This review summarizes recent advances in proteomic characterization of the matrisome and adhesome. It focuses on the importance of curated databases and discusses key strengths and limitations of different workflows. EXPERT OPINION MS-based proteomics has shown promise in characterizing the matrisome and topology of adhesome networks in health and disease. Moving forward, it will be important to incorporate integrative analysis to define the bidirectional signaling between the matrisome and adhesome, and adopt new methods for post-translational modification and in vivo analyses to better dissect the critical roles that these proteins play in human pathophysiology.
Collapse
Affiliation(s)
- Lukas Krasny
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
38
|
Eroumé KS, Cavill R, Staňková K, de Boer J, Carlier A. Exploring the influence of cytosolic and membrane FAK activation on YAP/TAZ nuclear translocation. Biophys J 2021; 120:4360-4377. [PMID: 34509508 PMCID: PMC8553670 DOI: 10.1016/j.bpj.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/16/2021] [Accepted: 09/07/2021] [Indexed: 11/12/2022] Open
Abstract
Membrane binding and unbinding dynamics play a crucial role in the biological activity of several nonintegral membrane proteins, which have to be recruited to the membrane to perform their functions. By localizing to the membrane, these proteins are able to induce downstream signal amplification in their respective signaling pathways. Here, we present a 3D computational approach using reaction-diffusion equations to investigate the relation between membrane localization of focal adhesion kinase (FAK), Ras homolog family member A (RhoA), and signal amplification of the YAP/TAZ signaling pathway. Our results show that the theoretical scenarios in which FAK is membrane bound yield robust and amplified YAP/TAZ nuclear translocation signals. Moreover, we predict that the amount of YAP/TAZ nuclear translocation increases with cell spreading, confirming the experimental findings in the literature. In summary, our in silico predictions show that when the cell membrane interaction area with the underlying substrate increases, for example, through cell spreading, this leads to more encounters between membrane-bound signaling partners and downstream signal amplification. Because membrane activation is a motif common to many signaling pathways, this study has important implications for understanding the design principles of signaling networks.
Collapse
Affiliation(s)
- Kerbaï Saïd Eroumé
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Rachel Cavill
- Department of Data Science and Knowledge Engineering, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Katerina Staňková
- Department of Data Science and Knowledge Engineering, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Jan de Boer
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
39
|
Driscoll TP, Bidone TC, Ahn SJ, Yu A, Groisman A, Voth GA, Schwartz MA. Integrin-based mechanosensing through conformational deformation. Biophys J 2021; 120:4349-4359. [PMID: 34509509 PMCID: PMC8553792 DOI: 10.1016/j.bpj.2021.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/29/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022] Open
Abstract
Conversion of integrins from low to high affinity states, termed activation, is important in biological processes, including immunity, hemostasis, angiogenesis, and embryonic development. Integrin activation is regulated by large-scale conformational transitions from closed, low affinity states to open, high affinity states. Although it has been suggested that substrate stiffness shifts the conformational equilibrium of integrin and governs its unbinding, here, we address the role of integrin conformational activation in cellular mechanosensing. Comparison of wild-type versus activating mutants of integrin αVβ3 show that activating mutants shift cell spreading, focal adhesion kinase activation, traction stress, and force on talin toward high stiffness values at lower stiffness. Although all activated integrin mutants showed equivalent binding affinity for soluble ligands, the β3 S243E mutant showed the strongest shift in mechanical responses. To understand this behavior, we used coarse-grained computational models derived from molecular level information. The models predicted that wild-type integrin αVβ3 displaces under force and that activating mutations shift the required force toward lower values, with S243E showing the strongest effect. Cellular stiffness sensing thus correlates with computed effects of force on integrin conformation. Together, these data identify a role for force-induced integrin conformational deformation in cellular mechanosensing.
Collapse
Affiliation(s)
- Tristan P. Driscoll
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida,Corresponding author
| | - Tamara C. Bidone
- Department of Biomedical Engineering, Salt Lake City, Utah,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah,Corresponding author
| | - Sang Joon Ahn
- Yale Cardiovascular Research Center, Department of Cardiovascular Medicine, Yale University, New Haven, Connecticut
| | - Alvin Yu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Alexander Groisman
- Department of Physics, University of California San Diego, La Jolla, California
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Department of Cardiovascular Medicine, Yale University, New Haven, Connecticut,Department of Cell Biology, New Haven, Connecticut,Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, Connecticut
| |
Collapse
|
40
|
Fibers by Electrospinning and Their Emerging Applications in Bone Tissue Engineering. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone tissue engineering (BTE) is an optimized approach for bone regeneration to overcome the disadvantages of lacking donors. Biocompatibility, biodegradability, simulation of extracellular matrix (ECM), and excellent mechanical properties are essential characteristics of BTE scaffold, sometimes including drug loading capacity. Electrospinning is a simple technique to prepare fibrous scaffolds because of its efficiency, adaptability, and flexible preparation of electrospinning solution. Recent studies about electrospinning in BTE are summarized in this review. First, we summarized various types of polymers used in electrospinning and methods of electrospinning in recent work. Then, we divided them into three parts according to their main role in BTE, (1) ECM simulation, (2) mechanical support, and (3) drug delivery system.
Collapse
|
41
|
Schussler O, Chachques JC, Alifano M, Lecarpentier Y. Key Roles of RGD-Recognizing Integrins During Cardiac Development, on Cardiac Cells, and After Myocardial Infarction. J Cardiovasc Transl Res 2021; 15:179-203. [PMID: 34342855 DOI: 10.1007/s12265-021-10154-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Cardiac cells interact with the extracellular matrix (ECM) proteins through integrin mechanoreceptors that control many cellular events such as cell survival, apoptosis, differentiation, migration, and proliferation. Integrins play a crucial role in cardiac development as well as in cardiac fibrosis and hypertrophy. Integrins recognize oligopeptides present on ECM proteins and are involved in three main types of interaction, namely with collagen, laminin, and the oligopeptide RGD (Arg-Gly-Asp) present on vitronectin and fibronectin proteins. To date, the specific role of integrins recognizing the RGD has not been addressed. In this review, we examine their role during cardiac development, their role on cardiac cells, and their upregulation during pathological processes such as heart fibrosis and hypertrophy. We also examine their role in regenerative and angiogenic processes after myocardial infarction (MI) in the peri-infarct area. Specific targeting of these integrins may be a way of controlling some of these pathological events and thereby improving medical outcomes.
Collapse
Affiliation(s)
- Olivier Schussler
- Thoracic Surgery Department, Cochin Hospital, APHP Centre, University of Paris, Paris, France.
| | - Juan C Chachques
- Department of Cardiac Surgery Pompidou Hospital, Laboratory of Biosurgical Research, Carpentier Foundation, University Paris Descartes, 75015, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, APHP Centre, University of Paris, Paris, France.,INSERM U1138 Team "Cancer, Immune Control, and Escape", Cordeliers Research Center, University of Paris, Paris, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| |
Collapse
|
42
|
Yuan W, Wang H, Fang C, Yang Y, Xia X, Yang B, Lin Y, Li G, Bian L. Microscopic local stiffening in a supramolecular hydrogel network expedites stem cell mechanosensing in 3D and bone regeneration. MATERIALS HORIZONS 2021; 8:1722-1734. [PMID: 34846502 DOI: 10.1039/d1mh00244a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dynamic hydrogels cross-linked by weak and reversible physical interactions enhance the 3-dimensional (3D) spreading and mechanosensing abilities of encapsulated cells in a matrix. However, the highly dynamic nature of these physical cross-links also results in low mechanical stiffness in the hydrogel network and high tether compliance of the cell adhesion motifs attached to the network. The resulting low force feedback of the soft hydrogel network impedes the efficient activation of mechanotransduction signalling in the encapsulated cells. Herein, we demonstrate that the chemical incorporation of acryloyl nanoparticle-based cross-linkers creates regionally stiff network structures in the dynamic supramolecular hydrogels without compromising the dynamic properties of the cell-adaptable inter-nanoparticle hydrogel network. The obtained dynamic hydrogels with a heterogeneous hydrogel network topology expedite the development of adhesion structures, 3D spreading, and mechanosensing of the encapsulated stem cells, as evidenced by the upregulated expression of key biomarkers such as vinculin, FAK, and YAP. This enhanced spreading and mechanotransduction promotes the osteogenic differentiation of the encapsulated stem cells. In contrast, doping with physically entrapped nanoparticles or molecular cross-linkers (PEGDA) cannot locally reinforce the dynamic hydrogel network and therefore fails to facilitate cell mechanosensing or differentiation in the 3D hydrogels. We further show that the dynamic hydrogels with a locally stiffened network promote the in situ regeneration of bone defects in an animal model. Our findings provide valuable insights into the design of the supramolecular dynamic hydrogels with biomimetic hierarchical biomechanical structures as the optimized carrier material for stem cell-based therapies.
Collapse
Affiliation(s)
- Weihao Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Alday-Parejo B, Ghimire K, Coquoz O, Albisetti GW, Tamò L, Zaric J, Stalin J, Rüegg C. MAGI1 localizes to mature focal adhesion and modulates endothelial cell adhesion, migration and angiogenesis. Cell Adh Migr 2021; 15:126-139. [PMID: 33823745 PMCID: PMC8115569 DOI: 10.1080/19336918.2021.1911472] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MAGI1 is an intracellular adaptor protein that stabilizes cell junctions and regulates epithelial and endothelial integrity. Here, we report that that in endothelial cells MAGI1 colocalizes with paxillin, β3-integrin, talin 1, tensin 3 and α-4-actinin at mature focal adhesions and actin stress fibers, and regulates their dynamics. Downregulation of MAGI1 reduces focal adhesion formation and maturation, cell spreading, actin stress fiber formation and RhoA/Rac1 activation. MAGI1 silencing increases phosphorylation of paxillin at Y118, an indicator of focal adhesion turnover. MAGI1 promotes integrin-dependent endothelial cells adhesion to ECM, reduces invasion and tubulogenesisin vitro and suppresses angiogenesis in vivo. Our results identify MAGI1 as anovel component of focal adhesions, and regulator of focal adhesion dynamics, cell adhesion, invasion and angiogenesis.
Collapse
Affiliation(s)
- Begoña Alday-Parejo
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Kedar Ghimire
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Oriana Coquoz
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Gioele W Albisetti
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Institute of Pharmacology and Toxicology, Section of Neuropharmacology, University of Zürich, Zürich, Switzerland
| | - Luca Tamò
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Clinical Trials Unit, University of Bern, Bern, Switzerland
| | - Jelena Zaric
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale De Lausanne, Lausanne, Switzerland
| | - Jimmy Stalin
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
44
|
Choi E, Bae S, Kim D, Yang GH, Lee K, You HJ, Kang HJ, Gwak SJ, An S, Jeon H. Characterization and intracellular mechanism of electrospun poly (ε-caprolactone) (PCL) fibers incorporated with bone-dECM powder as a potential membrane for guided bone regeneration. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Manipulation of Focal Adhesion Signaling by Pathogenic Microbes. Int J Mol Sci 2021; 22:ijms22031358. [PMID: 33572997 PMCID: PMC7866387 DOI: 10.3390/ijms22031358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Focal adhesions (FAs) serve as dynamic signaling hubs within the cell. They connect intracellular actin to the extracellular matrix (ECM) and respond to environmental cues. In doing so, these structures facilitate important processes such as cell-ECM adhesion and migration. Pathogenic microbes often modify the host cell actin cytoskeleton in their pursuit of an ideal replicative niche or during invasion to facilitate uptake. As actin-interfacing structures, FA dynamics are also intimately tied to actin cytoskeletal organization. Indeed, exploitation of FAs is another avenue by which pathogenic microbes ensure their uptake, survival and dissemination. This is often achieved through the secretion of effector proteins which target specific protein components within the FA. Molecular mimicry of the leucine-aspartic acid (LD) motif or vinculin-binding domains (VBDs) commonly found within FA proteins is a common microbial strategy. Other effectors may induce post-translational modifications to FA proteins through the regulation of phosphorylation sites or proteolytic cleavage. In this review, we present an overview of the regulatory mechanisms governing host cell FAs, and provide examples of how pathogenic microbes have evolved to co-opt them to their own advantage. Recent technological advances pose exciting opportunities for delving deeper into the mechanistic details by which pathogenic microbes modify FAs.
Collapse
|
46
|
Zhang S, Zhang S, Wang H, Huang X, Wang J, Li J, Cheng D, Wang H, Lu D, Wang Y. Silencing myelin protein zero-like 1 expression suppresses cell proliferation and invasiveness of human glioma cells by inhibiting multiple cancer-associated signal pathways. JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glioma is the most common primary malignant tumor of the adult central nervous system. It has high morbidity and poor survival. Myelin protein zero-like protein 1 (MPZL1) is a cell surface glycoprotein that activates numerous adhesion-dependent signaling pathways. MPZL1 plays important roles in human cancers that include metastatic process; however, it is not clear if MPZL1 plays a role in human glioma. Therefore, this study aimed to determine if silencing MPZL1 impacted the cell proliferative features of human glioma cells. First, MPZL1 expression was investigated in human glioma samples and tumor cell lines. Then the effects of small interfering RNA (siRNA)-targeting MPZL1 were analyzed on proliferation, colony formation, cell cycle progression, and invasion of human glioma cells. The results from this study demonstrated that MPZL1 was highly expressed in human glioma tissues and glioma cell lines. In addition, knockdown of MPZL1 significantly inhibited cell proliferation, colony formation, and invasiveness of glioma cells, and effectively induced cell cycle arrest at the G1 phase. Western blotting analysis indicated that silencing MPZL1 expression downregulated the expression of matrix metalloproteinase-2 (MMP-2), WNT1, caspase-3, cyclin A1, epidermal growth factor receptor (EGFR), and signal transducer and activator of transcription 3 (STAT3), and upregulated p53. The results from this study suggest that MPZL1 might be a marker for tumors and could be a potential therapeutic target for human glioma.
Collapse
|
47
|
Lee Y, Finch-Edmondson M, Cognart H, Zhu B, Song H, Low BC, Sudol M. Common and Unique Transcription Signatures of YAP and TAZ in Gastric Cancer Cells. Cancers (Basel) 2020; 12:cancers12123667. [PMID: 33297432 PMCID: PMC7762230 DOI: 10.3390/cancers12123667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 01/05/2023] Open
Abstract
Simple Summary YAP and TAZ are cancer-causing genes that encode proteins with similar, but not identical functions. YAP and TAZ function in diverse biological processes including cell proliferation and organ size control. Because of the high similarity in functions between YAP and TAZ, they have often been described as one entity: YAP/TAZ. However, new lines of evidence started to suggest that YAP and TAZ have unique functions as well. To understand the YAP- and TAZ-specific functions, we identified genes that are regulated solely by YAP or by TAZ. Our study revealed that YAP plays a distinct role in cell-substrate junctions, which are critical for tumour cell growth, migration, and metastasis, and both YAP and TAZ are involved in regulating blood platelets and lipid metabolism in gastric cancer cells. Abstract YAP and its paralog TAZ are the nuclear effectors of the Hippo tumour-suppressor pathway, and function as transcriptional co-activators to control gene expression in response to mechanical cues. To identify both common and unique transcriptional targets of YAP and TAZ in gastric cancer cells, we carried out RNA-sequencing analysis of overexpressed YAP or TAZ in the corresponding paralogous gene-knockouts (KOs), TAZ KO or YAP KO, respectively. Gene Ontology (GO) analysis of the YAP/TAZ-transcriptional targets revealed activation of genes involved in platelet biology and lipoprotein particle formation as targets that are common for both YAP and TAZ. However, the GO terms for cell-substrate junction were a unique function of YAP. Further, we found that YAP was indispensable for the gastric cancer cells to re-establish cell-substrate junctions on a rigid surface following prolonged culture on a soft substrate. Collectively, our study not only identifies common and unique transcriptional signatures of YAP and TAZ in gastric cancer cells but also reveals a dominant role for YAP over TAZ in the control of cell-substrate adhesion.
Collapse
Affiliation(s)
- Yaelim Lee
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; (H.C.); (B.C.L.); (M.S.)
- Correspondence: (Y.L.); (M.F.-E.)
| | - Megan Finch-Edmondson
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; (H.C.); (B.C.L.); (M.S.)
- Correspondence: (Y.L.); (M.F.-E.)
| | - Hamizah Cognart
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; (H.C.); (B.C.L.); (M.S.)
| | - Bowen Zhu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore;
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Haiwei Song
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore;
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; (H.C.); (B.C.L.); (M.S.)
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; (H.C.); (B.C.L.); (M.S.)
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
48
|
Zhang L, Wei F, Bai Q, Song D, Zheng Z, Wang Y, Liu X, Abdulrahman AA, Bian Y, Xu X, Chen C, Zhang H, Sun D. Oscillating Magnetic Field Regulates Cell Adherence and Endothelialization Based on Magnetic Nanoparticle-Modified Bacterial Cellulose. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52467-52478. [PMID: 33170636 DOI: 10.1021/acsami.0c17213] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the widely explored biomaterial scaffolds in vascular tissue engineering applications lately, no ideal platform has been provided for small diameter synthetic vascular grafts mainly due to the thrombosis issue. Endothelium is the only known completely non-thrombogenic material; so, functional endothelialization onto vascular biomaterials is critical in maintaining the patency of vascular networks. Bacterial cellulose (BC) is a natural biomaterial with superior biocompatibility and appropriate hydrophilicity as potential vascular grafts. In previous studies, surface modification of active peptides such as Arg-Gly-Asp (RGD) sequences onto biomaterials has been proven to achieve accelerated and selective endothelial cell (EC) adhesion. In our study, we demonstrated a new strategy to remotely regulate the adhesion of endothelial cells based on an oscillating magnetic field and achieve successful endothelialization on the modified BC membranes. In details, we synthesized bacterial cellulose (BC), magnetic BC (MBC), and RGD peptide-grafted magnetic BC (RMBC), modified with the HOOC-PEG-COOH-coated iron oxide nanoparticles (PEG-IONs). The endothelial cells were cultured on the three materials under different frequencies of an oscillating magnetic field, including "stationary" (0 Hz), "slow" (0.1 Hz), and "fast" (2 Hz) groups. Compared to BC and MBC membranes, the cells on RMBC membranes generally show better adhesion and proliferation. Meanwhile, the "slow" frequency of a magnetic field promotes this phenomenon on RMBC and achieves endothelialization after culture for 4 days, whereas "fast" inhibits the cellular attachment. Overall, we demonstrate a non-invasive and convenient method to regulate the endothelialization process, with promising applications in vascular tissue engineering.
Collapse
Affiliation(s)
- Lei Zhang
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Feng Wei
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Qianqian Bai
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong SAR, P.R. China
| | - Danhong Song
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Zhuofan Zheng
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Yafei Wang
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Xin Liu
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Al-Ammari Abdulrahman
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Yingxin Bian
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Xuran Xu
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Chuntao Chen
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Hongsong Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Dongping Sun
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| |
Collapse
|
49
|
Ye X, Wang J, Qiao Z, Yang D, Wang J, Abudureyimu A, Yang K, Feng Y, Ma Z, Liu Z. Quantitative proteomic analysis of MDCK cell adhesion. Mol Omics 2020; 17:121-129. [PMID: 33201162 DOI: 10.1039/d0mo00055h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
MDCK cells are a key reagent in modern vaccine production. As MDCK cells are normally adherent, creation of suspension cells for vaccine production using genetic engineering approaches is highly desirable. However, little is known regarding the mechanisms and effectors underlying MDCK cell adhesion. In this study, we performed a comparative analysis of whole protein levels between MDCK adhesion and suspension cells using an iTRAQ-based (isobaric tags for relative and absolute quantitation) proteomics approach. We found that expression of several proteins involved in cell adhesion exhibit reduced expression in suspension cells, including at the mRNA level. Proteins whose expression was reduced in suspension cells include cadherin 1 (CDH1), catenin beta-1 (CTNNB1), and catenin alpha-1 (CTNNA1), which are involved in intercellular adhesion; junction plakoglobin (JUP), desmoplakin (DSP), and desmoglein 3 (DSG3), which are desmosome components; and transglutaminase 2 (TGM2) and alpha-actinin-1 (ACTN1), which regulate the adhesion between cells and the extracellular matrix. A functional verification experiment showed that inhibition of E-cadherin significantly reduced intercellular adhesion of MDCK cells. E-Cadherin did not significantly affect the proliferation of MDCK cells and the replication of influenza virus. These findings reveal possible mechanisms underlying adhesion of MDCK cells and will guide the creation of MDCK suspension cells by genetic engineering.
Collapse
Affiliation(s)
- Xuanqing Ye
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Revach OY, Grosheva I, Geiger B. Biomechanical regulation of focal adhesion and invadopodia formation. J Cell Sci 2020; 133:133/20/jcs244848. [DOI: 10.1242/jcs.244848] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
Integrin adhesions are a structurally and functionally diverse family of transmembrane, multi-protein complexes that link the intracellular cytoskeleton to the extracellular matrix (ECM). The different members of this family, including focal adhesions (FAs), focal complexes, fibrillar adhesions, podosomes and invadopodia, contain many shared scaffolding and signaling ‘adhesome’ components, as well as distinct molecules that perform specific functions, unique to each adhesion form. In this Hypothesis, we address the pivotal roles of mechanical forces, generated by local actin polymerization or actomyosin-based contractility, in the formation, maturation and functionality of two members of the integrin adhesions family, namely FAs and invadopodia, which display distinct structures and functional properties. FAs are robust and stable ECM contacts, associated with contractile stress fibers, while invadopodia are invasive adhesions that degrade the underlying matrix and penetrate into it. We discuss here the mechanisms, whereby these two types of adhesion utilize a similar molecular machinery to drive very different – often opposing cellular activities, and hypothesize that early stages of FAs and invadopodia assembly use similar biomechanical principles, whereas maturation of the two structures, and their ‘adhesive’ and ‘invasive’ functionalities require distinct sources of biomechanical reinforcement.
Collapse
Affiliation(s)
- Or-Yam Revach
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inna Grosheva
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Geiger
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|