1
|
Eibes S, Lakshmi RB, Rajendraprasad G, Weinert BT, Kamounah FS, Gamon LF, Rodriguez-Calado S, Meldal M, Davies MJ, Pittelkow M, Choudhary C, Barisic M. Parthenolide disrupts mitosis by inhibiting ZNF207/BUGZ-promoted kinetochore-microtubule attachment. EMBO J 2025:10.1038/s44318-025-00469-2. [PMID: 40425854 DOI: 10.1038/s44318-025-00469-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Parthenolide is a natural compound that has shown highly promising anticancer activity. Even though its mode of action has been studied for decades, its antimitotic activity has been largely overlooked, limiting the understanding of its full anticancer potential. In this study, we combined click-chemistry with quantitative mass spectrometry and cell biology to elucidate the mechanism of action of parthenolide in mitosis. We show that parthenolide does not act as a microtubule-targeting agent in cells. Instead, it binds to the kinetochore protein ZNF207/BUGZ, preventing the establishment of proper kinetochore-microtubule attachment. Our results show that parthenolide covalently binds to Cys54 of BUGZ via Michael addition to its α-methylene-γ-lactone moiety. Since Cys54 is located within the second zinc-finger domain of the BUGZ microtubule-targeting region, we propose that parthenolide interferes with the microtubule-binding ability of BUGZ, consequently preventing kinetochore-microtubule attachments required for accurate chromosome congression to the spindle equator.
Collapse
Affiliation(s)
- Susana Eibes
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark
| | - R Bhagya Lakshmi
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark
| | | | - Brian T Weinert
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Morten Meldal
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael Pittelkow
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Mihalas AB, Arora S, O'Connor SA, Feldman HM, Cucinotta CE, Mitchell K, Bassett J, Kim D, Jin K, Hoellerbauer P, Delegard J, Ling M, Jenkins W, Kufeld M, Corrin P, Carter L, Tsukiyama T, Aronow B, Plaisier CL, Patel AP, Paddison PJ. KAT5 regulates neurodevelopmental states associated with G0-like populations in glioblastoma. Nat Commun 2025; 16:4327. [PMID: 40346033 PMCID: PMC12064679 DOI: 10.1038/s41467-025-59503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/22/2025] [Indexed: 05/11/2025] Open
Abstract
Quiescence cancer stem-like cells may play key roles in promoting tumor cell heterogeneity and recurrence for many tumors, including glioblastoma (GBM). Here we show that the protein acetyltransferase KAT5 is a key regulator of transcriptional, epigenetic, and proliferative heterogeneity impacting transitions into G0-like states in GBM. KAT5 activity suppresses the emergence of quiescent subpopulations with neurodevelopmental progenitor characteristics, while promoting GBM stem-like cell (GSC) self-renewal through coordinately regulating E2F- and MYC- transcriptional networks with protein translation. KAT5 inactivation significantly decreases tumor progression and invasive behavior while increasing survival after standard of care. Further, increasing MYC expression in human neural stem cells stimulates KAT5 activity and protein translation, as well as confers sensitivity to homoharringtonine, to similar levels to those found in GSCs and high-grade gliomas. These results suggest that the dynamic behavior of KAT5 plays key roles in G0 ingress/egress, adoption of quasi-neurodevelopmental states, and aggressive tumor growth in gliomas.
Collapse
Affiliation(s)
- Anca B Mihalas
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Samantha A O'Connor
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Heather M Feldman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Christine E Cucinotta
- College of Arts and Sciences, Department of Molecular Genetics, Ohio State University, Columbus, OH, 43210, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Kelly Mitchell
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - John Bassett
- Department of Medicine, Karolinska Institute, Huddinge, Sweden
| | - Dayoung Kim
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Kang Jin
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Pia Hoellerbauer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jennifer Delegard
- Department of Neurosurgery, University of Washington, Seattle, WA, 98195, USA
| | - Melissa Ling
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Wesley Jenkins
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Megan Kufeld
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Philip Corrin
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Lucas Carter
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Bruce Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Christopher L Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Anoop P Patel
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA.
- Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, 27710, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27710, USA.
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
3
|
Zhao C, Guo Y, Chen Y, Shang G, Song D, Wang J, Yang J, Zhang H. RETRACTED: Zinc finger Protein207 orchestrates glioma migration through regulation of epithelial-mesenchymal transition. ENVIRONMENTAL TOXICOLOGY 2025; 40:E59-E73. [PMID: 38591780 DOI: 10.1002/tox.24271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Glioma represents the predominant primary malignant brain tumor. For several years, molecular profiling has been instrumental in the management and therapeutic stratification of glioma, providing a deeper understanding of its biological complexity. Accumulating evidence unveils the putative involvement of zinc finger proteins (ZNFs) in cancer. This study aimed to elucidate the role and significance of ZNF207 in glioma. METHODS Utilizing online data such as The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), the Genotype-Tissue Expression (GTEx) project, the Clinical Proteomic Tumor Analysis Consortium (CPTAC), and the Human Protein Atlas (HPA) databases, in conjunction with bioinformatics methodologies including GO, KEGG, GSEA, CIBERSORT immune cell infiltration estimation, and protein-protein interaction (PPI) analysis, enabled a comprehensive exploration of ZNF207's involvement in gliomagenesis. Immunohistochemistry and RT-PCR techniques were employed to validate the expression level of ZNF207 in glioma samples. Subsequently, the biological effects of ZNF207 on glioma cells were explored through in vitro assays. RESULTS Our results demonstrate elevated expression of ZNF207 in gliomas, correlating with unfavorable patient outcomes. Stratification analyses were used to delineate the prognostic efficacy of ZNF207 in glioma with different clinicopathological characteristics. Immunocorrelation analysis revealed a significant association between ZNF207 expression and the infiltration levels of T helper cells, macrophages, and natural killer (NK) cells. Utilizing ZNF207 expression and clinical features, we constructed an OS prediction model and displayed well discrimination with a C-index of 0.861. Moreover, the strategic silencing of ZNF207 attenuated glioma cell advancement, evidenced by diminished cellular proliferation, weakened cell tumorigenesis, augmented apoptotic activity, and curtailed migratory capacity alongside the inhibition of the epithelial-mesenchymal transition (EMT) pathway. CONCLUSIONS ZNF207 may identify as a prospective biomarker and therapeutic candidate for glioma prevention, providing valuable insights into understanding glioma pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yuduo Guo
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yujia Chen
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guanjie Shang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Dixiang Song
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jun Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jingjing Yang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Chow CFW, Lenz S, Scheremetjew M, Ghosh S, Richter D, Jegers C, von Appen A, Alberti S, Toth‐Petroczy A. SHARK-capture identifies functional motifs in intrinsically disordered protein regions. Protein Sci 2025; 34:e70091. [PMID: 40100159 PMCID: PMC11917139 DOI: 10.1002/pro.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/30/2025] [Accepted: 02/20/2025] [Indexed: 03/20/2025]
Abstract
Increasing insights into how sequence motifs in intrinsically disordered regions (IDRs) provide functions underscore the need for systematic motif detection. Contrary to structured regions where motifs can be readily identified from sequence alignments, the rapid evolution of IDRs limits the usage of alignment-based tools in reliably detecting motifs within. Here, we developed SHARK-capture, an alignment-free motif detection tool designed for difficult-to-align regions. SHARK-capture innovates on word-based methods by flexibly incorporating amino acid physicochemistry to assess motif similarity without requiring rigid definitions of equivalency groups. SHARK-capture offers consistently strong performance in a systematic benchmark, with superior residue-level performance. SHARK-capture identified known functional motifs across orthologs of the microtubule-associated zinc finger protein BuGZ. We also identified a short motif in the IDR of S. cerevisiae RNA helicase Ded1p, which we experimentally verified to be capable of promoting ATPase activity. Our improved performance allows us to systematically calculate 10,889 motifs for 2695 yeast IDRs and provide it as a resource. SHARK-capture offers the most precise tool yet for the systematic identification of conserved regions in IDRs and is freely available as a Python package (https://pypi.org/project/bio-shark/) and on https://git.mpi-cbg.de/tothpetroczylab/shark.
Collapse
Affiliation(s)
- Chi Fung Willis Chow
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of LifeTechnische Universität DresdenDresdenGermany
| | - Swantje Lenz
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Maxim Scheremetjew
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Soumyadeep Ghosh
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Doris Richter
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Ceciel Jegers
- Cluster of Excellence Physics of LifeTechnische Universität DresdenDresdenGermany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Alexander von Appen
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Simon Alberti
- Cluster of Excellence Physics of LifeTechnische Universität DresdenDresdenGermany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Agnes Toth‐Petroczy
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of LifeTechnische Universität DresdenDresdenGermany
| |
Collapse
|
5
|
Nishanth MJ, Jha S. Evolutionary Analysis of the hnRNP Interactomes and Their Functions in Eukaryotes. Biochem Genet 2024:10.1007/s10528-024-10956-6. [PMID: 39540958 DOI: 10.1007/s10528-024-10956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are central regulators of several fundamental biological processes across eukaryotes. hnRNPs have been implicated in transcriptional and post-transcriptional regulation, telomere maintenance, stem cell maintenance, among other processes in major model organisms. Though hnRNPs are known to be conserved in eukaryotes, the evolutionary conservation/diversification of their functions across species is yet to be understood. To this end, the present work employed computational analyses to identify potential hnRNP orthologs in eighty eukaryotic species, and their interactors. Subsequently, a comprehensive analysis of the biological processes influenced by hnRNP interactomes showed alternative splicing and splicing regulation to be commonly associated with most species, while a few processes were uniquely associated with particular species. Further studies of the clustering patterns of the top-ranking hub nodes of the hnRNP protein networks revealed a notable clustering pattern of hnRNP K orthologs from five species. Subsequent analysis of the genes with overrepresented hnRNP K target sites within their untranslated regions showed hnRNP K orthologs from humans and Ciona intestanilis to potentially target transcripts involved in membrane-related processes. Remarkably, the hnRNP K ortholog from Lottia gigantea was found to possibly regulate other RNA-binding proteins (RBPs), suggesting a regulatory cascade involving hnRNPs and other RBPs. Further experimental studies in this regard would be of scientific and clinical importance, owing to the druggability of several human hnRNPs.
Collapse
Affiliation(s)
- M J Nishanth
- Department of Biotechnology, School of Life Sciences, St Joseph's University, Bengaluru, 560027, India.
| | - Shanker Jha
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India.
| |
Collapse
|
6
|
Li Q, Chao T, Wang Y, Xuan R, Guo Y, He P, Zhang L, Wang J. The Transcriptome Characterization of the Hypothalamus and the Identification of Key Genes during Sexual Maturation in Goats. Int J Mol Sci 2024; 25:10055. [PMID: 39337542 PMCID: PMC11432450 DOI: 10.3390/ijms251810055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Sexual maturation in goats is a dynamic process regulated precisely by the hypothalamic-pituitary-gonadal axis and is essential for reproduction. The hypothalamus plays a crucial role in this process and is the control center of the reproductive activity. It is significant to study the molecular mechanisms in the hypothalamus regulating sexual maturation in goats. We analyzed the serum hormone profiles and hypothalamic mRNA expression profiles of female goats during sexual development (1 day old (neonatal, D1, n = 5), 2 months old (prepuberty, M2, n = 5), 4 months old (sexual maturity, M4, n = 5), and 6 months old (breeding period, M6, n = 5)). The results indicated that from D1 to M6, serum hormone levels, including FSH, LH, progesterone, estradiol, IGF1, and leptin, exhibited an initial increase followed by a decline, peaking at M4. Furthermore, we identified a total of 508 differentially expressed genes in the hypothalamus, with a total of four distinct expression patterns. Nuclear receptor subfamily 1, group D, member 1 (NR1D1), glucagon-like peptide 1 receptor (GLP1R), and gonadotropin-releasing hormone 1 (GnRH-1) may contribute to hormone secretion, energy metabolism, and signal transduction during goat sexual maturation via circadian rhythm regulation, ECM receptor interactions, neuroactive ligand-receptor interactions, and Wnt signaling pathways. This investigation offers novel insights into the molecular mechanisms governing the hypothalamic regulation of goat sexual maturation.
Collapse
Affiliation(s)
- Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Yanfei Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Peipei He
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| |
Collapse
|
7
|
Yon WJ, Ha T, Zheng Y, Pedersen RTA. A tubulin-binding protein that preferentially binds to GDP-tubulin and promotes GTP exchange. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.09.539990. [PMID: 37214866 PMCID: PMC10197657 DOI: 10.1101/2023.05.09.539990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
α- and β-tubulin form heterodimers, with GTPase activity, that assemble into microtubules. Like other GTPases, the nucleotide-bound state of tubulin heterodimers controls whether the molecules are in a biologically active or inactive state. While α-tubulin in the heterodimer is constitutively bound to GTP, β-tubulin can be bound to either GDP (GDP-tubulin) or GTP (GTP-tubulin). GTP-tubulin hydrolyzes its GTP to GDP following assembly into a microtubule and, upon disassembly, must exchange its bound GDP for GTP to participate in subsequent microtubule polymerization. Tubulin dimers have been shown to exhibit rapid intrinsic nucleotide exchange in vitro, leading to a commonly accepted belief that a tubulin guanine nucleotide exchange factor (GEF) may be unnecessary in cells. Here, we use quantitative binding assays to show that BuGZ, a spindle assembly factor, binds tightly to GDP-tubulin, less tightly to GTP-tubulin, and weakly to microtubules. We further show that BuGZ promotes the incorporation of GTP into tubulin using a nucleotide exchange assay. The discovery of a tubulin GEF suggests a mechanism that may aid rapid microtubule assembly dynamics in cells.
Collapse
Affiliation(s)
- Wesley J Yon
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
- Cell, Molecular, Developmental Biology, and Biophysics Program, Johns Hopkins University, Baltimore, MD, USA
| | - Taekjip Ha
- Cell, Molecular, Developmental Biology, and Biophysics Program, Johns Hopkins University, Baltimore, MD, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
- Cell, Molecular, Developmental Biology, and Biophysics Program, Johns Hopkins University, Baltimore, MD, USA
| | - Ross T A Pedersen
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| |
Collapse
|
8
|
Hoellerbauer P, Kufeld M, Arora S, Mitchell K, Girard E, Herman J, Olson J, Paddison P. FBXO42 activity is required to prevent mitotic arrest, spindle assembly checkpoint activation and lethality in glioblastoma and other cancers. NAR Cancer 2024; 6:zcae021. [PMID: 38774470 PMCID: PMC11106029 DOI: 10.1093/narcan/zcae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 05/24/2024] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. To identify genes differentially required for the viability of GBM stem-like cells (GSCs), we performed functional genomic lethality screens comparing GSCs and control human neural stem cells. Among top-scoring hits in a subset of GBM cells was the F-box-containing gene FBXO42, which was also predicted to be essential in ∼15% of cell lines derived from a broad range of cancers. Mechanistic studies revealed that, in sensitive cells, FBXO42 activity prevents chromosome alignment defects, mitotic cell cycle arrest and cell death. The cell cycle arrest, but not the cell death, triggered by FBXO42 inactivation could be suppressed by brief exposure to a chemical inhibitor of Mps1, a key spindle assembly checkpoint (SAC) kinase. FBXO42's cancer-essential function requires its F-box and Kelch domains, which are necessary for FBXO42's substrate recognition and targeting by SCF (SKP1-CUL1-F-box protein) ubiquitin ligase complex. However, none of FBXO42's previously proposed targets, including ING4, p53 and RBPJ, were responsible for the observed phenotypes. Instead, our results suggest that FBOX42 alters the activity of one or more proteins that perturb chromosome-microtubule dynamics in cancer cells, which in turn leads to induction of the SAC and cell death.
Collapse
Affiliation(s)
- Pia Hoellerbauer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109 USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98109 USA
| | - Megan Kufeld
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109 USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109 USA
| | - Kelly Mitchell
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109 USA
| | - Emily J Girard
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109 USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, 98101 USA
| | - Jacob A Herman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109 USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109 USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, 98101 USA
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109 USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98109 USA
| |
Collapse
|
9
|
Zheng H, Zhang Q, Liu X, Shi F, Yang F, Xiang S, Jiang H. Aurora-A condensation mediated by BuGZ aids its mitotic centrosome functions. iScience 2024; 27:109785. [PMID: 38746663 PMCID: PMC11090908 DOI: 10.1016/j.isci.2024.109785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/30/2023] [Accepted: 04/16/2024] [Indexed: 03/17/2025] Open
Abstract
Centrosomes composed of centrioles and the pericentriolar material (PCM), serve as the platform for microtubule polymerization during mitosis. Despite some centriole and PCM proteins have been reported to utilize liquid-liquid phase separation (LLPS) to perform their mitotic functions, whether and how centrosomal kinases exert the coacervation in mitosis is still unknown. Here we reveal that Aurora-A, one key centrosomal kinase in regulating centrosome formation and functions, undergoes phase separation in vitro or in centrosomes from prophase, mediated by the conserved positive-charged residues inside its intrinsic disordered region (IDR) and the intramolecular interaction between its N- and C-terminus. Aurora-A condensation affects centrosome maturation, separation, initial spindle formation from the spindle pole and its kinase activity. Moreover, BuGZ interacts with Aurora-A to enhance its LLPS and centrosome functions. Thus, we propose that Aurora-A collaborates with BuGZ to exhibit the property of LLPS in centrosomes to control its centrosome-dependent functions from prophase.
Collapse
Affiliation(s)
- Hui Zheng
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Qiaoqiao Zhang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China, School of Life Sciences, Hefei, China
| | - Fan Shi
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China, School of Life Sciences, Hefei, China
| | - Shengqi Xiang
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
10
|
Forcella P, Ifflander N, Rolando C, Balta EA, Lampada A, Giachino C, Mukhtar T, Bock T, Taylor V. SAFB regulates hippocampal stem cell fate by targeting Drosha to destabilize Nfib mRNA. eLife 2024; 13:e74940. [PMID: 38722021 PMCID: PMC11149935 DOI: 10.7554/elife.74940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here, we addressed how murine adult hippocampal NSC fate is regulated and described how scaffold attachment factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor nuclear factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.
Collapse
Affiliation(s)
- Pascal Forcella
- Department of Biomedicine, University of BaselBaselSwitzerland
| | | | - Chiara Rolando
- Department of Biomedicine, University of BaselBaselSwitzerland
- Department of Biosciences, University of MilanMilanItaly
| | - Elli-Anna Balta
- Department of Biomedicine, University of BaselBaselSwitzerland
| | | | | | - Tanzila Mukhtar
- Department of Biomedicine, University of BaselBaselSwitzerland
| | - Thomas Bock
- Proteomics Core Facility, Biozentrum, University of BaselBaselSwitzerland
| | - Verdon Taylor
- Department of Biomedicine, University of BaselBaselSwitzerland
| |
Collapse
|
11
|
Deng X, Peng FL, Tang X, Lee YRJ, Lin HH, Liu B. The Arabidopsis BUB1/MAD3 family protein BMF3 requires BUB3.3 to recruit CDC20 to kinetochores in spindle assembly checkpoint signaling. Proc Natl Acad Sci U S A 2024; 121:e2322677121. [PMID: 38466841 PMCID: PMC10963012 DOI: 10.1073/pnas.2322677121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
The spindle assembly checkpoint (SAC) ensures faithful chromosome segregation during cell division by monitoring kinetochore-microtubule attachment. Plants produce both sequence-conserved and diverged SAC components, and it has been largely unknown how SAC activation leads to the assembly of these proteins at unattached kinetochores to prevent cells from entering anaphase. In Arabidopsis thaliana, the noncanonical BUB3.3 protein was detected at kinetochores throughout mitosis, unlike MAD1 and the plant-specific BUB1/MAD3 family protein BMF3 that associated with unattached chromosomes only. When BUB3.3 was lost by a genetic mutation, mitotic cells often entered anaphase with misaligned chromosomes and presented lagging chromosomes after they were challenged by low doses of the microtubule depolymerizing agent oryzalin, resulting in the formation of micronuclei. Surprisingly, BUB3.3 was not required for the kinetochore localization of other SAC proteins or vice versa. Instead, BUB3.3 specifically bound to BMF3 through two internal repeat motifs that were not required for BMF3 kinetochore localization. This interaction enabled BMF3 to recruit CDC20, a downstream SAC target, to unattached kinetochores. Taken together, our findings demonstrate that plant SAC utilizes unconventional protein interactions for arresting mitosis, with BUB3.3 directing BMF3's role in CDC20 recruitment, rather than the recruitment of BUB1/MAD3 proteins observed in fungi and animals. This distinct mechanism highlights how plants adapted divergent versions of conserved cell cycle machinery to achieve specialized SAC control.
Collapse
Affiliation(s)
- Xingguang Deng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA95616
| | - Felicia Lei Peng
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA95616
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Xiaoya Tang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA95616
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA95616
| |
Collapse
|
12
|
Zhang M, Ding Y, Gao M, Lu X, Tan J, Yu F, Gu C, Gu L, Ren X, Hao C, Ming L, Xu K, Mao W, Jin Y, Zhang M, You L, Wang Z, Sun Y, Jiang J, Yang Y, Zhang D, Tang X. Discovery of Novel N-(Anthracen-9-ylmethyl) Benzamide Derivatives as ZNF207 Inhibitors Promising in Treating Glioma. J Med Chem 2024; 67:3909-3934. [PMID: 38377560 DOI: 10.1021/acs.jmedchem.3c02241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Targeting tumor stemness is an innovative approach to cancer treatment. Zinc Finger Protein 207 (ZNF207) is a promising target for weakening the stemness of glioma cells. Here, a series of novel N-(anthracen-9-ylmethyl) benzamide derivatives against ZNF207 were rationally designed and synthesized. The inhibitory activity was evaluated, and their structure-activity relationships were summarized. Among them, C16 exhibited the most potent inhibitory activity, as evidenced by its IC50 values ranging from 0.5-2.5 μM for inhibiting sphere formation and 0.5-15 μM for cytotoxicity. Furthermore, we found that C16 could hinder tumorigenesis and migration and promote apoptosis in vitro. These effects were attributed to the downregulation of stem-related genes. The in vivo evaluation demonstrated that C16 exhibited efficient permeability across the blood-brain barrier and potent efficacy in both subcutaneous and orthotopic glioma tumor models. Hence, C16 may serve as a potential lead compound targeting ZNF207 and has promising therapeutic potential for glioma.
Collapse
Affiliation(s)
- Menghan Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Yushi Ding
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China 211112
| | - Mengkang Gao
- School of Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Xiaolin Lu
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Jun Tan
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Fei Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Congying Gu
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Lujun Gu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Xiameng Ren
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Chenyan Hao
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Liqin Ming
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Kang Xu
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Wenhao Mao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Yuqing Jin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Min Zhang
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China 211112
| | - Linjun You
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China 211112
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China 211112
| | - Zhanbo Wang
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China 211112
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China 211112
| | - Yuanyuan Sun
- Shuangyun BioMed Sci & Tech (Suzhou) Co., Ltd, Suzhou, China 215000
| | - Jingwei Jiang
- Shuangyun BioMed Sci & Tech (Suzhou) Co., Ltd, Suzhou, China 215000
| | - Yong Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China 211112
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China 221004
| | - Dayong Zhang
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Xinying Tang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| |
Collapse
|
13
|
Chen J, Zhang C, Peng J, Tang C, Zhang C, Zhang M, Zou X, Zou Y. Gender-specific lncRNA-miRNA-mRNA regulatory network to reveal potential genes for primary open-angle glaucoma. Exp Eye Res 2023; 236:109668. [PMID: 37774963 DOI: 10.1016/j.exer.2023.109668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Investigation of biomarkers may facilitate understanding the mechanisms of primary open-angle glaucoma (POAG) and developing therapeutic targets. This study aimed to identify potential genes based on competing endogenous RNA (ceRNA) network for POAG. METHODS Based on long noncoding RNAs (lncRNAs), microRNAs (miRNAs) and messenger RNAs (mRNAs) from the Gene Expression Omnibus (GEO) database, we identified differential expressed lncRNAs (DELs), differential expressed miRNAs (DEMis) and differential expressed mRNAs (DEMs) and then constructed a ceRNA network. Through weighted gene co-expression network analysis (WGCNA), we identified gender-specific genes for gender-associated ceRNA network construction, followed by the protein-protein interaction (PPI) network and functional enrichment analysis to screen hub genes and reveal their functions. The expression levels of hub genes were measured in steroid-induced ocular hypertension (SIOH) mice. RESULTS A total of 175 DELs, 727 DEMs and 45 DEMis were screened between control and POAG samples. Seven modules were identified through WGCNA and one module was associated with gender of POAG patients. We discovered 41 gender-specific genes for gender-associated ceRNA construction and then identified 8 genes (NAV3, C1QB, RXRB, P2RY4, ADAM15, VAV3, ZNF207 and TOP1), which were enriched in cell cycle-related pathways and immune-related pathways. C1QB, RXRB, Top1 and ZNF207 were highly interacted with other proteins. The expression levels of NAV3 and C1QB were downregulated in SIOH, while the levels of RXRB, P2RY4, ADAM15, VAV3, ZNF207 and TOP1 were upregulated in SIOH. CONCLUSION This study identifies hub genes associated with the pathogenesis of gender-specific POAG and provides potential biomarkers for POAG.
Collapse
Affiliation(s)
- Jingxia Chen
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China
| | - Chu Zhang
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China
| | - Jinyan Peng
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China
| | - Cuicui Tang
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China
| | - Chunli Zhang
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China
| | - Mengyi Zhang
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China
| | - Xiulan Zou
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China.
| | - Yuping Zou
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China.
| |
Collapse
|
14
|
Perlee S, Kikuchi S, Nakadai T, Masuda T, Ohtsuki S, Matsumoto M, Rahmutulla B, Fukuyo M, Cifani P, Kentsis A, Roeder RG, Kaneda A, Hoshii T. SETD1A function in leukemia is mediated through interaction with mitotic regulators BuGZ/BUB3. EMBO Rep 2023; 24:e57108. [PMID: 37535603 PMCID: PMC10561176 DOI: 10.15252/embr.202357108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
The H3K4 methyltransferase SETD1A plays a crucial role in leukemia cell survival through its noncatalytic FLOS domain-mediated recruitment of cyclin K and regulation of DNA damage response genes. In this study, we identify a functional nuclear localization signal in and interaction partners of the FLOS domain. Our screen for FLOS domain-binding partners reveals that the SETD1A FLOS domain binds mitosis-associated proteins BuGZ/BUB3. Inhibition of both cyclin K and BuGZ/BUB3-binding motifs in SETD1A shows synergistic antileukemic effects. BuGZ/BUB3 localize to SETD1A-bound promoter-TSS regions and SETD1A-negative H3K4me1-positive enhancer regions adjacent to SETD1A target genes. The GLEBS motif and intrinsically disordered region of BuGZ are required for both SETD1A-binding and leukemia cell proliferation. Cell-cycle-specific SETD1A restoration assays indicate that SETD1A expression at the G1/S phase of the cell cycle promotes both the expression of DNA damage response genes and cell cycle progression in leukemia cells.
Collapse
Affiliation(s)
- Sarah Perlee
- Department of Cancer Biology and GeneticsMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Gerstner Graduate School of Biomedical SciencesMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Sota Kikuchi
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular BiologyThe Rockefeller UniversityNew YorkNYUSA
| | - Takeshi Masuda
- Laboratory of Pharmaceutical Microbiology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
| | - Sumio Ohtsuki
- Laboratory of Pharmaceutical Microbiology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Makoto Matsumoto
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Paolo Cifani
- Molecular Pharmacology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Alex Kentsis
- Molecular Pharmacology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular BiologyThe Rockefeller UniversityNew YorkNYUSA
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Takayuki Hoshii
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| |
Collapse
|
15
|
Chuah YH, Tay EXY, Grinchuk OV, Yoon J, Feng J, Kannan S, Robert M, Jakhar R, Liang Y, Lee BWL, Wang LC, Lim YT, Zhao T, Sobota RM, Lu G, Low BC, Crasta KC, Verma CS, Lin Z, Ong DST. CAMK2D serves as a molecular scaffold for RNF8-MAD2 complex to induce mitotic checkpoint in glioma. Cell Death Differ 2023; 30:1973-1987. [PMID: 37468549 PMCID: PMC10406836 DOI: 10.1038/s41418-023-01192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
MAD2 is a spindle assembly checkpoint protein that participates in the formation of mitotic checkpoint complex, which blocks mitotic progression. RNF8, an established DNA damage response protein, has been implicated in mitotic checkpoint regulation but its exact role remains poorly understood. Here, RNF8 proximity proteomics uncovered a role of RNF8-MAD2 in generating the mitotic checkpoint signal. Specifically, RNF8 competes with a small pool of p31comet for binding to the closed conformer of MAD2 via its RING domain, while CAMK2D serves as a molecular scaffold to concentrate the RNF8-MAD2 complex via transient/weak interactions between its p-Thr287 and RNF8's FHA domain. Accordingly, RNF8 overexpression impairs glioma stem cell (GSC) mitotic progression in a FHA- and RING-dependent manner. Importantly, low RNF8 expression correlates with inferior glioma outcome and RNF8 overexpression impedes GSC tumorigenicity. Last, we identify PLK1 inhibitor that mimics RNF8 overexpression using a chemical biology approach, and demonstrate a PLK1/HSP90 inhibitor combination that synergistically reduces GSC proliferation and stemness. Thus, our study has unveiled a previously unrecognized CAMK2D-RNF8-MAD2 complex in regulating mitotic checkpoint with relevance to gliomas, which is therapeutically targetable.
Collapse
Affiliation(s)
- You Heng Chuah
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Emmy Xue Yun Tay
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Oleg V Grinchuk
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jeehyun Yoon
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jia Feng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Matius Robert
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rekha Jakhar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yajing Liang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Bernice Woon Li Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Loo Chien Wang
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yan Ting Lim
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Tianyun Zhao
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Guang Lu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Boon Chuan Low
- Mechanobiology Institute, 5A Engineering Drive 1, National University of Singapore, Singapore, 117411, Singapore
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore, 117543, Singapore
- University Scholars Programme, 18 College Avenue East, Singapore, 138593, Singapore
| | - Karen Carmelina Crasta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chandra Shekhar Verma
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore, 117543, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Zhewang Lin
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore, 117543, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- National Neuroscience Institute, Singapore, 308433, Singapore.
| |
Collapse
|
16
|
Hoellerbauer P, Biery MC, Arora S, Rao Y, Girard EJ, Mitchell K, Dighe P, Kufeld M, Kuppers DA, Herman JA, Holland EC, Soroceanu L, Vitanza NA, Olson JM, Pritchard JR, Paddison PJ. Functional genomic analysis of adult and pediatric brain tumor isolates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522885. [PMID: 36711964 PMCID: PMC9881972 DOI: 10.1101/2023.01.05.522885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Adult and pediatric tumors display stark differences in their mutation spectra and chromosome alterations. Here, we attempted to identify common and unique gene dependencies and their associated biomarkers among adult and pediatric tumor isolates using functional genetic lethal screens and computational modeling. Methods We performed CRISRP-Cas9 lethality screens in two adult glioblastoma (GBM) tumor isolates and five pediatric brain tumor isolates representing atypical teratoid rhabdoid tumors (ATRT), diffuse intrinsic pontine glioma, GBM, and medulloblastoma. We then integrated the screen results with machine learning-based gene-dependency models generated from data from >900 cancer cell lines. Results We found that >50% of candidate dependencies of 280 identified were shared between adult GBM tumors and individual pediatric tumor isolates. 68% of screen hits were found as nodes in our network models, along with shared and tumor-specific predictors of gene dependencies. We investigated network predictors associated with ADAR, EFR3A, FGFR1 (pediatric-specific), and SMARCC2 (ATRT-specific) gene dependency among our tumor isolates. Conclusions The results suggest that, despite harboring disparate genomic signatures, adult and pediatric tumor isolates share a preponderance of genetic dependences. Further, combining data from primary brain tumor lethality screens with large cancer cell line datasets produced valuable insights into biomarkers of gene dependency, even for rare cancers. Importance of the Study Our results demonstrate that large cancer cell lines data sets can be computationally mined to identify known and novel gene dependency relationships in adult and pediatric human brain tumor isolates. Gene dependency networks and lethality screen results represent a key resource for neuro-oncology and cancer research communities. We also highlight some of the challenges and limitations of this approach.
Collapse
Affiliation(s)
- Pia Hoellerbauer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA USA
| | - Matt C Biery
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Yiyun Rao
- Huck Institute for the Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Emily J Girard
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Kelly Mitchell
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Pratiksha Dighe
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Megan Kufeld
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Daniel A Kuppers
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Jacob A Herman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Liliana Soroceanu
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Justin R Pritchard
- Huck Institute for the Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA USA
| |
Collapse
|
17
|
Slade L, Biswas D, Kienesberger PC, Pulinilkunnil T. Loss of transcription factor EB dysregulates the G1/S transition and DNA replication in mammary epithelial cells. J Biol Chem 2022; 298:102692. [PMID: 36372230 PMCID: PMC9764199 DOI: 10.1016/j.jbc.2022.102692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) poses significant challenges for treatment given the lack of targeted therapies and increased probability of relapse. It is pertinent to identify vulnerabilities in TNBC and develop newer treatments. Our prior research demonstrated that transcription factor EB (TFEB) is necessary for TNBC survival by regulating DNA repair, apoptosis signaling, and the cell cycle. However, specific mechanisms by which TFEB targets DNA repair and cell cycle pathways are unclear, and whether these effects dictate TNBC survival is yet to be determined. Here, we show that TFEB knockdown decreased the expression of genes and proteins involved in DNA replication and cell cycle progression in MDA-MB-231 TNBC cells. DNA replication was decreased in cells lacking TFEB, as measured by EdU incorporation. TFEB silencing in MDA-MB-231 and noncancerous MCF10A cells impaired progression through the S-phase following G1/S synchronization; however, this proliferation defect could not be rescued by co-knockdown of suppressor RB1. Instead, TFEB knockdown reduced origin licensing in G1 and early S-phase MDA-MB-231 cells. TFEB silencing was associated with replication stress in MCF10A but not in TNBC cells. Lastly, we identified that TFEB knockdown renders TNBC cells more sensitive to inhibitors of Aurora Kinase A, a protein facilitating mitosis. Thus, inhibition of TFEB impairs cell cycle progress by decreasing origin licensing, leading to delayed entry into the S-phase, while rendering TNBC cells sensitive to Aurora kinase A inhibitors and decreasing cell viability. In contrast, TFEB silencing in noncancerous cells is associated with replication stress and leads to G1/S arrest.
Collapse
|
18
|
Herman JA, Romain RR, Hoellerbauer P, Shirnekhi HK, King DC, DeLuca KF, Osborne Nishimura E, Paddison PJ, DeLuca JG. Hyper-active RAS/MAPK introduces cancer-specific mitotic vulnerabilities. Proc Natl Acad Sci U S A 2022; 119:e2208255119. [PMID: 36191188 PMCID: PMC9565228 DOI: 10.1073/pnas.2208255119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023] Open
Abstract
Aneuploidy, the incorrect number of whole chromosomes, is a common feature of tumors that contributes to their initiation and evolution. Preventing aneuploidy requires properly functioning kinetochores, which are large protein complexes assembled on centromeric DNA that link mitotic chromosomes to dynamic spindle microtubules and facilitate chromosome segregation. The kinetochore leverages at least two mechanisms to prevent aneuploidy: error correction and the spindle assembly checkpoint (SAC). BubR1, a factor involved in both processes, was identified as a cancer dependency and therapeutic target in multiple tumor types; however, it remains unclear what specific oncogenic pressures drive this enhanced dependency on BubR1 and whether it arises from BubR1's regulation of the SAC or error-correction pathways. Here, we use a genetically controlled transformation model and glioblastoma tumor isolates to show that constitutive signaling by RAS or MAPK is necessary for cancer-specific BubR1 vulnerability. The MAPK pathway enzymatically hyperstimulates a network of kinetochore kinases that compromises chromosome segregation, rendering cells more dependent on two BubR1 activities: counteracting excessive kinetochore-microtubule turnover for error correction and maintaining the SAC. This work expands our understanding of how chromosome segregation adapts to different cellular states and reveals an oncogenic trigger of a cancer-specific defect.
Collapse
Affiliation(s)
- Jacob A. Herman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Romario R. Romain
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Pia Hoellerbauer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Hazheen K. Shirnekhi
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - David C. King
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Keith F. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | | | - Jennifer G. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
19
|
Zhou Y, Shen S, Du C, Wang Y, Liu Y, He Q. A role for the mitotic proteins Bub3 and BuGZ in transcriptional regulation of catalase-3 expression. PLoS Genet 2022; 18:e1010254. [PMID: 35666721 PMCID: PMC9203020 DOI: 10.1371/journal.pgen.1010254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/16/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
The spindle assembly checkpoint factors Bub3 and BuGZ play critical roles in mitotic process, but little is known about their roles in other cellular processes in eukaryotes. In aerobic organisms, transcriptional regulation of catalase genes in response to developmental or environmental stimuli is necessary for redox homeostasis. Here, we demonstrate that Bub3 and BuGZ negatively regulate cat-3 transcription in the model filamentous fungus Neurospora crassa. The absence of Bub3 caused a significant decrease in BuGZ protein levels. Our data indicate that BuGZ and Bub3 interact directly via the GLEBS domain of BuGZ. Despite loss of the interaction, the amount of BuGZ mutant protein negatively correlated with the cat-3 expression level, indicating that BuGZ amount rather than Bub3-BuGZ interaction determines cat-3 transcription level. Further experiments demonstrated that BuGZ binds directly to the cat-3 gene and responses to cat-3 overexpression induced by oxidative stresses. However, the zinc finger domains of BuGZ have no effects on DNA binding, although mutations of these highly conserved domains lead to loss of cat-3 repression. The deposition of BuGZ along cat-3 chromatin hindered the recruitment of transcription activators GCN4/CPC1 and NC2 complex, thereby preventing the assembly of the transcriptional machinery. Taken together, our results establish a mechanism for how mitotic proteins Bub3 and BuGZ functions in transcriptional regulation in a eukaryotic organism.
Collapse
Affiliation(s)
- Yike Zhou
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuangjie Shen
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chengcheng Du
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (YW); (QH)
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (YW); (QH)
| |
Collapse
|
20
|
Silva PMA, Bousbaa H. BUB3, beyond the Simple Role of Partner. Pharmaceutics 2022; 14:pharmaceutics14051084. [PMID: 35631670 PMCID: PMC9147866 DOI: 10.3390/pharmaceutics14051084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/07/2022] Open
Abstract
The BUB3 protein plays a key role in the activation of the spindle assembly checkpoint (SAC), a ubiquitous surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis and, consequently, prevents chromosome mis-segregation and aneuploidy. Besides its role in SAC signaling, BUB3 regulates chromosome attachment to the spindle microtubules. It is also involved in telomere replication and maintenance. Deficiency of the BUB3 gene has been closely linked to premature aging. Upregulation of the BUB3 gene has been found in a variety of human cancers and is associated with poor prognoses. Here, we review the structure and functions of BUB3 in mitosis, its expression in cancer and association with survival prognoses, and its potential as an anticancer target.
Collapse
Affiliation(s)
- Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), University Polytechnic Higher Education Cooperative (CESPU), Rua Central de Gandra, 4585-116 Gandra, Portugal;
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences (IUCS), University Polytechnic Higher Education Cooperative (CESPU), Rua Central de Gandra, 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), University Polytechnic Higher Education Cooperative (CESPU), Rua Central de Gandra, 4585-116 Gandra, Portugal;
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Correspondence:
| |
Collapse
|
21
|
Malla S, Prasad Bhattarai D, Groza P, Melguizo‐Sanchis D, Atanasoai I, Martinez‐Gamero C, Román Á, Zhu D, Lee D, Kutter C, Aguilo F. ZFP207 sustains pluripotency by coordinating OCT4 stability, alternative splicing and RNA export. EMBO Rep 2022; 23:e53191. [PMID: 35037361 PMCID: PMC8892232 DOI: 10.15252/embr.202153191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sandhya Malla
- Department of Medical Biosciences Umeå University Umeå Sweden
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Devi Prasad Bhattarai
- Department of Medical Biosciences Umeå University Umeå Sweden
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Paula Groza
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Dario Melguizo‐Sanchis
- Department of Medical Biosciences Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Ionut Atanasoai
- Department of Microbiology, Tumor and Cell Biology Science for Life Laboratory Karolinska Institute Stockholm Sweden
| | - Carlos Martinez‐Gamero
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Ángel‐Carlos Román
- Department of Biochemistry, Molecular Biology and Genetics University of Extremadura Badajoz Spain
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology McGovern Medical School The University of Texas Health Science Center at Houston Houston TX USA
| | - Dung‐Fang Lee
- Department of Integrative Biology and Pharmacology McGovern Medical School The University of Texas Health Science Center at Houston Houston TX USA
- Center for Precision Health School of Biomedical Informatics The University of Texas Health Science Center at Houston Houston TX USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston TX USA
- Center for Stem Cell and Regenerative Medicine The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases The University of Texas Health Science Center at Houston Houston TX USA
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology Science for Life Laboratory Karolinska Institute Stockholm Sweden
| | - Francesca Aguilo
- Department of Medical Biosciences Umeå University Umeå Sweden
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| |
Collapse
|
22
|
Chin AF, Zheng Y, Hilser VJ. Phylogenetic convergence of phase separation and mitotic function in the disordered protein BuGZ. Protein Sci 2022; 31:822-834. [PMID: 34984754 DOI: 10.1002/pro.4270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/05/2022]
Abstract
Intrinsically disordered proteins (IDPs) effect biological function despite their sequence-encoded lack of preference for stable three-dimensional structure. Among their many functions, IDPs form membraneless cellular compartments through liquid-liquid phase separation (LLPS), also termed biomolecular condensation. The extent to which LLPS has been evolutionarily selected remains largely unknown, as the complexities of IDP evolution hamper progress. Unlike structured proteins, rapid sequence divergence typical of IDPs confounds inference of their biophysical or biological functions from comparative sequence analyses. Here, we leverage mitosis as a universal eukaryotic feature to interrogate condensate evolutionary history. We observe that evolution has conserved the ability for six homologs of the mitotic IDP BuGZ to undergo LLPS and to serve the same mitotic function, despite low sequence conservation. We also observe that cellular context may tune LLPS. The phylogenetic correlation of LLPS and mitotic function in one protein raises the possibility of an ancient evolutionary interplay between LLPS and biological function, dating back at least 1.6 billion years to the last common ancestor of plants and animals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alexander F Chin
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yixian Zheng
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, Maryland, USA
| | - Vincent J Hilser
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA.,T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Wang C, Chen D, Pan C, Wang C. Research progress of Bub3 gene in malignant tumors. Cell Biol Int 2021; 46:673-682. [PMID: 34882895 PMCID: PMC9303375 DOI: 10.1002/cbin.11740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/28/2021] [Accepted: 12/04/2021] [Indexed: 12/09/2022]
Abstract
The spindle assembly checkpoint (SAC) is a highly conserved monitoring system that ensures a fidelity of chromosome segregation during mitosis. Bub3, a mitotic Checkpoint Protein, is a member of the Bub protein family, and an important factor in the SAC. Abnormal expression of Bub3 results in mitotic defects, defective spindle gate function, chromosomal instability and the development of aneuploidy cells. Aneuploidy is a state of abnormal karyotype that has long been considered as a marker of tumorigenesis. Karyotypic heterogeneity in tumor cells, known as "chromosomal instability" (CIN), can be used to distinguish cancerous cells from their normal tissue counterpart. In this review, we summarize the expression and clinical significance of Bub3 in a variety of tumors and suggest that it has potential in the treatment of cancer. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.,1997-09, Woman, Han, Breast cancer
| | - Dating Chen
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chenglong Pan
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chunyan Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.,1974-07, Woman, Han, Breast cancer
| |
Collapse
|
24
|
Zhang G, Dong Z, Gimple RC, Wolin A, Wu Q, Qiu Z, Wood LM, Shen JZ, Jiang L, Zhao L, Lv D, Prager BC, Kim LJY, Wang X, Zhang L, Anderson RL, Moore JK, Bao S, Keller TH, Lin G, Kang C, Hamerlik P, Zhao R, Ford HL, Rich JN. Targeting EYA2 tyrosine phosphatase activity in glioblastoma stem cells induces mitotic catastrophe. J Exp Med 2021; 218:212685. [PMID: 34617969 PMCID: PMC8504185 DOI: 10.1084/jem.20202669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/11/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma ranks among the most lethal of primary brain malignancies, with glioblastoma stem cells (GSCs) at the apex of tumor cellular hierarchies. Here, to discover novel therapeutic GSC targets, we interrogated gene expression profiles from GSCs, differentiated glioblastoma cells (DGCs), and neural stem cells (NSCs), revealing EYA2 as preferentially expressed by GSCs. Targeting EYA2 impaired GSC maintenance and induced cell cycle arrest, apoptosis, and loss of self-renewal. EYA2 displayed novel localization to centrosomes in GSCs, and EYA2 tyrosine (Tyr) phosphatase activity was essential for proper mitotic spindle assembly and survival of GSCs. Inhibition of the EYA2 Tyr phosphatase activity, via genetic or pharmacological means, mimicked EYA2 loss in GSCs in vitro and extended the survival of tumor-bearing mice. Supporting the clinical relevance of these findings, EYA2 portends poor patient prognosis in glioblastoma. Collectively, our data indicate that EYA2 phosphatase function plays selective critical roles in the growth and survival of GSCs, potentially offering a high therapeutic index for EYA2 inhibitors.
Collapse
Affiliation(s)
- Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Zhen Dong
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Arthur Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Qiulian Wu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Zhixin Qiu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Lisa M Wood
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO
| | - Jia Z Shen
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Li Jiang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Deguan Lv
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Leo J Y Kim
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Xiuxing Wang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ryan L Anderson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Thomas H Keller
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore
| | - Grace Lin
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore
| | - Petra Hamerlik
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Copenhagen University, Copenhagen, Denmark
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
25
|
O’Connor SA, Feldman HM, Arora S, Hoellerbauer P, Toledo CM, Corrin P, Carter L, Kufeld M, Bolouri H, Basom R, Delrow J, McFaline‐Figueroa JL, Trapnell C, Pollard SM, Patel A, Paddison PJ, Plaisier CL. Neural G0: a quiescent-like state found in neuroepithelial-derived cells and glioma. Mol Syst Biol 2021; 17:e9522. [PMID: 34101353 PMCID: PMC8186478 DOI: 10.15252/msb.20209522] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Single-cell RNA sequencing has emerged as a powerful tool for resolving cellular states associated with normal and maligned developmental processes. Here, we used scRNA-seq to examine the cell cycle states of expanding human neural stem cells (hNSCs). From these data, we constructed a cell cycle classifier that identifies traditional cell cycle phases and a putative quiescent-like state in neuroepithelial-derived cell types during mammalian neurogenesis and in gliomas. The Neural G0 markers are enriched with quiescent NSC genes and other neurodevelopmental markers found in non-dividing neural progenitors. Putative glioblastoma stem-like cells were significantly enriched in the Neural G0 cell population. Neural G0 cell populations and gene expression are significantly associated with less aggressive tumors and extended patient survival for gliomas. Genetic screens to identify modulators of Neural G0 revealed that knockout of genes associated with the Hippo/Yap and p53 pathways diminished Neural G0 in vitro, resulting in faster G1 transit, down-regulation of quiescence-associated markers, and loss of Neural G0 gene expression. Thus, Neural G0 represents a dynamic quiescent-like state found in neuroepithelial-derived cells and gliomas.
Collapse
Affiliation(s)
- Samantha A O’Connor
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZUSA
| | - Heather M Feldman
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Sonali Arora
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Pia Hoellerbauer
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleWAUSA
| | - Chad M Toledo
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleWAUSA
| | - Philip Corrin
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Lucas Carter
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Megan Kufeld
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Hamid Bolouri
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Ryan Basom
- Genomics and Bioinformatics Shared ResourcesFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Jeffrey Delrow
- Genomics and Bioinformatics Shared ResourcesFred Hutchinson Cancer Research CenterSeattleWAUSA
| | | | - Cole Trapnell
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
| | - Steven M Pollard
- Edinburgh CRUK Cancer Research CentreMRC Centre for Regenerative MedicineThe University of EdinburghEdinburghUK
| | - Anoop Patel
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Department of NeurosurgeryUniversity of WashingtonSeattleWAUSA
| | - Patrick J Paddison
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleWAUSA
| | | |
Collapse
|
26
|
Expression and prognosis analyses of BUB1, BUB1B and BUB3 in human sarcoma. Aging (Albany NY) 2021; 13:12395-12409. [PMID: 33872216 PMCID: PMC8148488 DOI: 10.18632/aging.202944] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/27/2021] [Indexed: 01/13/2023]
Abstract
Budding Uninhibited By Benzimidazoles are a group of genes encoding proteins that play central roles in spindle checkpoint during mitosis. Improper mitosis may lead to aneuploidy which is found in many types of tumors. As a key mediator in mitosis, the dysregulated expression of BUBs has been proven to be highly associated with various malignancies, such as leukemia, gastric cancer, breast cancer, and liver cancer. However, bioinformatic analysis has not been applied to explore the role of the BUBs in sarcomas. Herein, we investigate the transcriptional and survival data of BUBs in patients with sarcomas using Oncomine, Gene Expression Profiling Interactive Analysis, Cancer Cell Line Encyclopedia, Kaplan-Meier Plotter, LinkedOmics, and the Database for Annotation, Visualization and Integrated Discovery. We found that the expression levels of BUB1, BUB1B and BUB3 were higher in sarcoma samples and cell lines than in normal controls. Survival analysis revealed that the higher expression levels of BUB1, BUB1B and BUB3 were associated with lower overall and disease-free survival in patients with sarcomas. This study implies that BUB1, BUB1B and BUB3 are potential treatment targets for patients with sarcomas and are new biomarkers for the prognosis of sarcomas.
Collapse
|
27
|
Herman JA, Miller MP, Biggins S. chTOG is a conserved mitotic error correction factor. eLife 2020; 9:e61773. [PMID: 33377866 PMCID: PMC7773332 DOI: 10.7554/elife.61773] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
Accurate chromosome segregation requires kinetochores on duplicated chromatids to biorient by attaching to dynamic microtubules from opposite spindle poles, which exerts forces to bring kinetochores under tension. However, kinetochores initially bind to microtubules indiscriminately, resulting in errors that must be corrected. While the Aurora B protein kinase destabilizes low-tension attachments by phosphorylating kinetochores, low-tension attachments are intrinsically less stable than those under higher tension in vitro independent of Aurora activity. Intrinsic tension-sensitive behavior requires the microtubule regulator Stu2 (budding yeast Dis1/XMAP215 ortholog), which we demonstrate here is likely a conserved function for the TOG protein family. The human TOG protein, chTOG, localizes to kinetochores independent of microtubules by interacting with Hec1. We identify a chTOG mutant that regulates microtubule dynamics but accumulates erroneous kinetochore-microtubule attachments that are not destabilized by Aurora B. Thus, TOG proteins confer a unique, intrinsic error correction activity to kinetochores that ensures accurate chromosome segregation.
Collapse
Affiliation(s)
- Jacob A Herman
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Matthew P Miller
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
28
|
Shirnekhi HK, Herman JA, Paddison PJ, DeLuca JG. BuGZ facilitates loading of spindle assembly checkpoint proteins to kinetochores in early mitosis. J Biol Chem 2020; 295:14666-14677. [PMID: 32820050 DOI: 10.1074/jbc.ra120.013598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/07/2020] [Indexed: 11/06/2022] Open
Abstract
BuGZ is a kinetochore component that binds to and stabilizes Bub3, a key player in mitotic spindle assembly checkpoint signaling. Bub3 is required for kinetochore recruitment of Bub1 and BubR1, two proteins that have essential and distinct roles in the checkpoint. Both Bub1 and BubR1 localize to kinetochores through interactions with Bub3, which are mediated through conserved GLEBS domains in both Bub1 and BubR1. BuGZ also has a GLEBS domain, which is required for its kinetochore localization as well, presumably mediated through Bub3 binding. Although much is understood about the requirements for Bub1 and BubR1 interaction with Bub3 and kinetochores, much less is known regarding BuGZ's requirements. Here, we used a series of mutants to demonstrate that BuGZ kinetochore localization requires only its core GLEBS domain, which is distinct from the requirements for both Bub1 and BubR1. Furthermore, we found that the kinetics of Bub1, BubR1, and BuGZ loading to kinetochores differ, with BuGZ localizing prior to BubR1 and Bub1. To better understand how complexes containing Bub3 and its binding partners are loaded to kinetochores, we carried out size-exclusion chromatography and analyzed Bub3-containing complexes from cells under different spindle assembly checkpoint signaling conditions. We found that prior to kinetochore formation, Bub3 is complexed with BuGZ but not Bub1 or BubR1. Our results point to a model in which BuGZ stabilizes Bub3 and promotes Bub3 loading onto kinetochores in early mitosis, which, in turn, facilitates Bub1 and BubR1 kinetochore recruitment and spindle assembly checkpoint signaling.
Collapse
Affiliation(s)
- Hazheen K Shirnekhi
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Jacob A Herman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
29
|
Ong JY, Torres JZ. Phase Separation in Cell Division. Mol Cell 2020; 80:9-20. [PMID: 32860741 DOI: 10.1016/j.molcel.2020.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
Cell division requires the assembly and organization of a microtubule spindle for the proper separation of chromosomes in mitosis and meiosis. Phase separation is an emerging paradigm for understanding spatial and temporal regulation of a variety of cellular processes, including cell division. Phase-separated condensates have been recently discovered at many structures during cell division as a possible mechanism for properly localizing, organizing, and activating proteins involved in cell division. Here, we review how these condensates play roles in regulating microtubule density and organization and spindle assembly and function and in activating some of the key players in cell division. We conclude with perspectives on areas of future research for this exciting and rapidly advancing field.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
30
|
Liu X, Liu X, Wang H, Dou Z, Ruan K, Hill DL, Li L, Shi Y, Yao X. Phase separation drives decision making in cell division. J Biol Chem 2020; 295:13419-13431. [PMID: 32699013 DOI: 10.1074/jbc.rev120.011746] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) of biomolecules drives the formation of subcellular compartments with distinct physicochemical properties. These compartments, free of lipid bilayers and therefore called membraneless organelles, include nucleoli, centrosomes, heterochromatin, and centromeres. These have emerged as a new paradigm to account for subcellular organization and cell fate decisions. Here we summarize recent studies linking LLPS to mitotic spindle, heterochromatin, and centromere assembly and their plasticity controls in the context of the cell division cycle, highlighting a functional role for phase behavior and material properties of proteins assembled onto heterochromatin, centromeres, and central spindles via LLPS. The techniques and tools for visualizing and harnessing membraneless organelle dynamics and plasticity in mitosis are also discussed, as is the potential for these discoveries to promote new research directions for investigating chromosome dynamics, plasticity, and interchromosome interactions in the decision-making process during mitosis.
Collapse
Affiliation(s)
- Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China School of Life Science, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Center for Physical Sciences at Nanoscale, Hefei, China; Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Xu Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China School of Life Science, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Center for Physical Sciences at Nanoscale, Hefei, China; Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Haowei Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China School of Life Science, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Center for Physical Sciences at Nanoscale, Hefei, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China School of Life Science, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Center for Physical Sciences at Nanoscale, Hefei, China
| | - Ke Ruan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China School of Life Science, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Center for Physical Sciences at Nanoscale, Hefei, China
| | - Donald L Hill
- Comprehensive Cancer Center, University of Alabama, Birmingham, Alabama, USA
| | - Lin Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China
| | - Yunyu Shi
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China School of Life Science, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Center for Physical Sciences at Nanoscale, Hefei, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China School of Life Science, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Center for Physical Sciences at Nanoscale, Hefei, China; Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia, USA; Comprehensive Cancer Center, University of Alabama, Birmingham, Alabama, USA; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China.
| |
Collapse
|
31
|
So C, Seres KB, Steyer AM, Mönnich E, Clift D, Pejkovska A, Möbius W, Schuh M. A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian oocytes. Science 2020; 364:364/6447/eaat9557. [PMID: 31249032 DOI: 10.1126/science.aat9557] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/02/2019] [Indexed: 12/22/2022]
Abstract
Mammalian oocytes segregate chromosomes with a microtubule spindle that lacks centrosomes, but the mechanisms by which acentrosomal spindles are organized and function are largely unclear. In this study, we identify a conserved subcellular structure in mammalian oocytes that forms by phase separation. This structure, which we term the liquid-like meiotic spindle domain (LISD), permeates the spindle poles and forms dynamic protrusions that extend well beyond the spindle. The LISD selectively concentrates multiple microtubule regulatory factors and allows them to diffuse rapidly within the spindle volume. Disruption of the LISD via different means disperses these factors and leads to severe spindle assembly defects. Our data suggest a model whereby the LISD promotes meiotic spindle assembly by serving as a reservoir that sequesters and mobilizes microtubule regulatory factors in proximity to spindle microtubules.
Collapse
Affiliation(s)
- Chun So
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - K Bianka Seres
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.,Bourn Hall Clinic, Cambridge CB23 2TN, UK
| | - Anna M Steyer
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| | - Eike Mönnich
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Dean Clift
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Anastasija Pejkovska
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany. .,Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
32
|
Tiwary AK, Zheng Y. Protein phase separation in mitosis. Curr Opin Cell Biol 2019; 60:92-98. [PMID: 31176175 PMCID: PMC6756948 DOI: 10.1016/j.ceb.2019.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 01/11/2023]
Abstract
Through phase separation, some proteins form liquid-like condensates or droplets which can flow, fuse, and even deform when pressure is applied. In some cases, the condensates 'mature' to form gel or solid-like structure. Recent studies suggest that the liquid-like condensates form the structural basis for several membrane-less subcellular organelles such as stress granules and other subcellular structures. Here, we review and discuss studies that implicate protein phase separation in the function of the spindle apparatus and centrosomes.
Collapse
Affiliation(s)
- Ashish Kumar Tiwary
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States.
| |
Collapse
|
33
|
Abstract
Mistakes in the process of cell division can lead to the loss, gain or rearrangement of chromosomes. Significant chromosomal abnormalities are usually lethal to the cells and cause spontaneous miscarriages. However, in some cases, defects in the spindle assembly checkpoint lead to severe diseases, such as cancer and birth and development defects, including Down's syndrome. The timely and accurate control of chromosome segregation in mitosis relies on the spindle assembly checkpoint (SAC), an evolutionary conserved, self-regulated signalling system present in higher organisms. The spindle assembly checkpoint is orchestrated by dynamic interactions between spindle microtubules and the kinetochore , a multiprotein complex that constitutes the site for attachment of chromosomes to microtubule polymers to pull sister chromatids apart during cell division. This chapter discusses the current molecular understanding of the essential, highly dynamic molecular interactions underpinning spindle assembly checkpoint signalling and how the complex choreography of interactions can be coordinated in time and space to finely regulate the process. The potential of targeting this signalling pathway to interfere with the abnormal segregation of chromosomes, which occurs in diverse malignancies and the new opportunities that recent technological developments are opening up for a deeper understanding of the spindle assembly checkpoint are also discussed.
Collapse
Affiliation(s)
- Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
34
|
Li J, Hu B, Wang T, Huang W, Ma C, Zhao Q, Zhuo L, Zhang T, Jiang Y. C-Src confers resistance to mitotic stress through inhibition DMAP1/Bub3 complex formation in pancreatic cancer. Mol Cancer 2018; 17:174. [PMID: 30553276 PMCID: PMC6295060 DOI: 10.1186/s12943-018-0919-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/19/2018] [Indexed: 01/05/2023] Open
Abstract
Background Chromatin modification at mitosis is closely related to transcriptional reactivation in the subsequent cell cycle. We reasoned this process is deregulated by oncogenic signals, which would contribute to mitotic stress resistance in pancreatic cancer. Here, we show DMAP1/Bub3 complex mediates mitotic stress-induced cellular apoptosis, while this effect is counteracted by c-Src in pancreatic cancer cells. Our study aims to uncover an unidentified mechanism underlying the distinct response to mitotic stress between normal cells and pancreatic cancer cells. Methods The interaction between Bub3 and DMAP1 upon mitotic stress signaling was determined through molecular and cell biological methods. The inhibitory effect of c-Src on DMAP1/Bub3-mediated DNA methylation and gene transcription profile was investigated. The association between c-Src-mediated DMAP1 phosphorylation and paclitaxel activity in vivo and clinicopathologic characteristics were analyzed. Results Mitotic arrest induced p38-dependent phosphorylation of Bub3 at Ser211, which promotes DMAP1/Bub3 interaction. DMAP1/Bub3 complex is recruited by TAp73 to the promoter of anti-apoptotic gene BCL2L1, thus mediates the DNA methylation and represses gene transcription linked to cell apoptosis. Meanwhile, DMAP1 was highly phosphorylated at Tyr 246 by c-Src in pancreatic cancer cells, which impedes DMAP1/Bub3 interaction and the relevant cellular activites. Blocking DMAP1 pTyr-246 potentiates paclitaxel-inhibited tumor growth. Clinically, DMAP1 Tyr 246 phosphorylation correlates with c-Src activity in human pancreatic cancer specimens and poor prognosis in pancreatic cancer patients. Conclusions Our findings reveal a regulatory role of Bub3 in DMAP1-mediated DNA methylation upon mitotic stress and provide the relevance of DMAP1 pTyr-246 to mitotic stress resistance during pancreatic cancer treatment. Electronic supplementary material The online version of this article (10.1186/s12943-018-0919-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingjie Li
- The Institute of Cell Metabolism, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200080, China
| | - Bin Hu
- The Institute of Cell Metabolism, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200080, China.,Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200080, China
| | - Ting Wang
- Department of Pharmacology, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wenhua Huang
- The Institute of Cell Metabolism, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200080, China
| | - Chunmin Ma
- The Institute of Cell Metabolism, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200080, China
| | - Qin Zhao
- The Institute of Cell Metabolism, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200080, China
| | - Lingang Zhuo
- The Institute of Cell Metabolism, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200080, China
| | - Tao Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200080, China
| | - Yuhui Jiang
- The Institute of Cell Metabolism, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
35
|
A distinct isoform of ZNF207 controls self-renewal and pluripotency of human embryonic stem cells. Nat Commun 2018; 9:4384. [PMID: 30349051 PMCID: PMC6197280 DOI: 10.1038/s41467-018-06908-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 09/21/2018] [Indexed: 01/08/2023] Open
Abstract
Self-renewal and pluripotency in human embryonic stem cells (hESCs) depends upon the function of a remarkably small number of master transcription factors (TFs) that include OCT4, SOX2, and NANOG. Endogenous factors that regulate and maintain the expression of master TFs in hESCs remain largely unknown and/or uncharacterized. Here, we use a genome-wide, proteomics approach to identify proteins associated with the OCT4 enhancer. We identify known OCT4 regulators, plus a subset of potential regulators including a zinc finger protein, ZNF207, that plays diverse roles during development. In hESCs, ZNF207 partners with master pluripotency TFs to govern self-renewal and pluripotency while simultaneously controlling commitment of cells towards ectoderm through direct regulation of neuronal TFs, including OTX2. The distinct roles of ZNF207 during differentiation occur via isoform switching. Thus, a distinct isoform of ZNF207 functions in hESCs at the nexus that balances pluripotency and differentiation to ectoderm.
Collapse
|
36
|
Dai L, Zhao T, Bisteau X, Sun W, Prabhu N, Lim YT, Sobota RM, Kaldis P, Nordlund P. Modulation of Protein-Interaction States through the Cell Cycle. Cell 2018; 173:1481-1494.e13. [PMID: 29706543 DOI: 10.1016/j.cell.2018.03.065] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/25/2018] [Accepted: 03/26/2018] [Indexed: 11/25/2022]
Abstract
Global profiling of protein expression through the cell cycle has revealed subsets of periodically expressed proteins. However, expression levels alone only give a partial view of the biochemical processes determining cellular events. Using a proteome-wide implementation of the cellular thermal shift assay (CETSA) to study specific cell-cycle phases, we uncover changes of interaction states for more than 750 proteins during the cell cycle. Notably, many protein complexes are modulated in specific cell-cycle phases, reflecting their roles in processes such as DNA replication, chromatin remodeling, transcription, translation, and disintegration of the nuclear envelope. Surprisingly, only small differences in the interaction states were seen between the G1 and the G2 phase, suggesting similar hardwiring of biochemical processes in these two phases. The present work reveals novel molecular details of the cell cycle and establishes proteome-wide CETSA as a new strategy to study modulation of protein-interaction states in intact cells.
Collapse
Affiliation(s)
- Lingyun Dai
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tianyun Zhao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Xavier Bisteau
- Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Wendi Sun
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Nayana Prabhu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yan Ting Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Institute of Medical Biology, A(∗)STAR, Singapore 138648, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
| | - Pär Nordlund
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
37
|
Ding Y, Herman JA, Toledo CM, Lang JM, Corrin P, Girard EJ, Basom R, Delrow JJ, Olson JM, Paddison PJ. ZNF131 suppresses centrosome fragmentation in glioblastoma stem-like cells through regulation of HAUS5. Oncotarget 2018; 8:48545-48562. [PMID: 28596487 PMCID: PMC5564707 DOI: 10.18632/oncotarget.18153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/05/2017] [Indexed: 12/17/2022] Open
Abstract
Zinc finger domain genes comprise ∼3% of the human genome, yet many of their functions remain unknown. Here we investigated roles for the vertebrate-specific BTB domain zinc finger gene ZNF131 in the context of human brain tumors. We report that ZNF131 is broadly required for Glioblastoma stem-like cell (GSC) viability, but dispensable for neural progenitor cell (NPC) viability. Examination of gene expression changes after ZNF131 knockdown (kd) revealed that ZNF131 activity notably promotes expression of Joubert Syndrome ciliopathy genes, including KIF7, NPHP1, and TMEM237, as well as HAUS5, a component of Augmin/HAUS complex that facilitates microtubule nucleation along the mitotic spindle. Of these genes only kd of HAUS5 displayed GSC-specific viability loss. Critically, HAUS5 ectopic expression was sufficient to suppress viability defects of ZNF131 kd cells. Moreover, ZNF131 and HAUS5 kd phenocopied each other in GSCs, each causing: mitotic arrest, centrosome fragmentation, loss of Augmin/HAUS complex on the mitotic spindle, and loss of GSC self-renewal and tumor formation capacity. In control NPCs, we observed centrosome fragmentation and lethality only when HAUS5 kd was combined with kd of HAUS2 or HAUS4, demonstrating that the complex is essential in NPCs, but that GSCs have heightened requirement. Our results suggest that GSCs differentially rely on ZNF131-dependent expression of HAUS5 as well as the Augmin/HAUS complex activity to maintain the integrity of centrosome function and viability.
Collapse
Affiliation(s)
- Yu Ding
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Novartis Institute for Biomedical Research, Shanghai, China
| | - Jacob A Herman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chad M Toledo
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.,Nurix Inc., San Francisco, CA, USA
| | - Jackie M Lang
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Philip Corrin
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Emily J Girard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jeffrey J Delrow
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Cordeiro MH, Smith RJ, Saurin AT. A fine balancing act: A delicate kinase-phosphatase equilibrium that protects against chromosomal instability and cancer. Int J Biochem Cell Biol 2018; 96:148-156. [PMID: 29108876 DOI: 10.1016/j.biocel.2017.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/31/2022]
Abstract
Cancer cells rewire signalling networks to acquire specific hallmarks needed for their proliferation, survival, and dissemination throughout the body. Although this is often associated with the constitutive activation or inactivation of protein phosphorylation networks, there are other contexts when the dysregulation must be much milder. For example, chromosomal instability is a widespread cancer hallmark that relies on subtle defects in chromosome replication and/or division, such that these processes remain functional, but nevertheless error-prone. In this article, we will discuss how perturbations to the delicate kinase-phosphatase balance could lie at the heart of this type of dysregulation. In particular, we will explain how the two principle mechanisms that safeguard the chromosome segregation process rely on an equilibrium between at least two kinases and two phosphatases to function correctly. This balance is set during mitosis by a central complex that has also been implicated in chromosomal instability - the BUB1/BUBR1/BUB3 complex - and we will put forward a hypothesis that could link these two findings. This could be relevant for cancer treatment because most tumours have evolved by pushing the boundaries of chromosomal instability to the limit. If this involves subtle changes to the kinase-phosphatase equilibrium, then it may be possible to exacerbate these defects and tip tumour cells over the edge, whilst still maintaining the viability of healthy cells.
Collapse
Affiliation(s)
- Marilia Henriques Cordeiro
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Richard John Smith
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Adrian Thomas Saurin
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
39
|
Baudoin NC, Cimini D. A guide to classifying mitotic stages and mitotic defects in fixed cells. Chromosoma 2018; 127:215-227. [PMID: 29411093 DOI: 10.1007/s00412-018-0660-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Cell division is fundamental to life and its perturbation can disrupt organismal development, alter tissue homeostasis, and cause disease. Analysis of mitotic abnormalities provides insight into how certain perturbations affect the fidelity of cell division and how specific cellular structures, molecules, and enzymatic activities contribute to the accuracy of this process. However, accurate classification of mitotic defects is instrumental for correct interpretation of data and formulation of new hypotheses. In this article, we provide guidelines for identifying specific mitotic stages and for classifying normal and deviant mitotic phenotypes. We hope this will clarify confusion about how certain defects are classified and help investigators avoid misnomers, misclassification, and/or misinterpretation, thus leading to a unified and standardized system to classify mitotic defects.
Collapse
Affiliation(s)
- Nicolaas C Baudoin
- Department of Biological Sciences and Biocomplexity Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA
| | - Daniela Cimini
- Department of Biological Sciences and Biocomplexity Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA.
| |
Collapse
|
40
|
Adamowicz M, Morgan CC, Haubner BJ, Noseda M, Collins MJ, Abreu Paiva M, Srivastava PK, Gellert P, Razzaghi B, O’Gara P, Raina P, Game L, Bottolo L, Schneider MD, Harding SE, Penninger J, Aitman TJ. Functionally Conserved Noncoding Regulators of Cardiomyocyte Proliferation and Regeneration in Mouse and Human. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2018; 11:e001805. [DOI: 10.1161/circgen.117.001805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
The adult mammalian heart has little regenerative capacity after myocardial infarction (MI), whereas neonatal mouse heart regenerates without scarring or dysfunction. However, the underlying pathways are poorly defined. We sought to derive insights into the pathways regulating neonatal development of the mouse heart and cardiac regeneration post-MI.
Methods and Results:
Total RNA-seq of mouse heart through the first 10 days of postnatal life (referred to as P3, P5, P10) revealed a previously unobserved transition in microRNA (miRNA) expression between P3 and P5 associated specifically with altered expression of protein-coding genes on the focal adhesion pathway and cessation of cardiomyocyte cell division. We found profound changes in the coding and noncoding transcriptome after neonatal MI, with evidence of essentially complete healing by P10. Over two-thirds of each of the messenger RNAs, long noncoding RNAs, and miRNAs that were differentially expressed in the post-MI heart were differentially expressed during normal postnatal development, suggesting a common regulatory pathway for normal cardiac development and post-MI cardiac regeneration. We selected exemplars of miRNAs implicated in our data set as regulators of cardiomyocyte proliferation. Several of these showed evidence of a functional influence on mouse cardiomyocyte cell division. In addition, a subset of these miRNAs, miR-144-3p, miR-195a-5p, miR-451a, and miR-6240 showed evidence of functional conservation in human cardiomyocytes.
Conclusions:
The sets of messenger RNAs, miRNAs, and long noncoding RNAs that we report here merit further investigation as gatekeepers of cell division in the postnatal heart and as targets for extension of the period of cardiac regeneration beyond the neonatal period.
Collapse
Affiliation(s)
- Martyna Adamowicz
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Claire C. Morgan
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Bernhard J. Haubner
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Michela Noseda
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Melissa J. Collins
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Marta Abreu Paiva
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Prashant K. Srivastava
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Pascal Gellert
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Bonnie Razzaghi
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Peter O’Gara
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Priyanka Raina
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Laurence Game
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Leonardo Bottolo
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Michael D. Schneider
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Sian E. Harding
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Josef Penninger
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Timothy J. Aitman
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| |
Collapse
|
41
|
Yadak R, Cabrera-Pérez R, Torres-Torronteras J, Bugiani M, Haeck JC, Huston MW, Bogaerts E, Goffart S, Jacobs EH, Stok M, Leonardelli L, Biasco L, Verdijk RM, Bernsen MR, Ruijter G, Martí R, Wagemaker G, van Til NP, de Coo IF. Preclinical Efficacy and Safety Evaluation of Hematopoietic Stem Cell Gene Therapy in a Mouse Model of MNGIE. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 8:152-165. [PMID: 29687034 PMCID: PMC5908387 DOI: 10.1016/j.omtm.2018.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by thymidine phosphorylase (TP) deficiency resulting in systemic accumulation of thymidine (d-Thd) and deoxyuridine (d-Urd) and characterized by early-onset neurological and gastrointestinal symptoms. Long-term effective and safe treatment is not available. Allogeneic bone marrow transplantation may improve clinical manifestations but carries disease and transplant-related risks. In this study, lentiviral vector-based hematopoietic stem cell gene therapy (HSCGT) was performed in Tymp−/−Upp1−/− mice with the human phosphoglycerate kinase (PGK) promoter driving TYMP. Supranormal blood TP activity reduced intestinal nucleoside levels significantly at low vector copy number (median, 1.3; range, 0.2–3.6). Furthermore, we covered two major issues not addressed before. First, we demonstrate aberrant morphology of brain astrocytes in areas of spongy degeneration, which was reversed by HSCGT. Second, long-term follow-up and vector integration site analysis were performed to assess safety of the therapeutic LV vectors in depth. This report confirms and supplements previous work on the efficacy of HSCGT in reducing the toxic metabolites in Tymp−/−Upp1−/− mice, using a clinically applicable gene transfer vector and a highly efficient gene transfer method, and importantly demonstrates phenotypic correction with a favorable risk profile, warranting further development toward clinical implementation.
Collapse
Affiliation(s)
- Rana Yadak
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Raquel Cabrera-Pérez
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Catalonia, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Catalonia, Spain
| | - Marianna Bugiani
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Joost C. Haeck
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marshall W. Huston
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Elly Bogaerts
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Steffi Goffart
- Department of Biology, University of Eastern Finland, Joensuu, Finland
| | - Edwin H. Jacobs
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Merel Stok
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Lorena Leonardelli
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milan, Italy
| | - Luca Biasco
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milan, Italy
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
- University College of London (UCL), Great Ormond Street Institute of Child Health (ICH), London, UK
| | - Robert M. Verdijk
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Monique R. Bernsen
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - George Ruijter
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Catalonia, Spain
| | - Gerard Wagemaker
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Hacettepe University, Stem Cell Research and Development Center, Ankara, Turkey
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology and Hematology, Saint Petersburg, Russia
| | - Niek P. van Til
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Irenaeus F.M. de Coo
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Corresponding author: Irenaeus F.M. de Coo, Department of Neurology, Erasmus University Medical Center, PO Box 2060, 3000 CB Rotterdam, the Netherlands.
| |
Collapse
|
42
|
Dai XX, Xiong H, Zhang M, Sun S, Xiong B. Zfp207 is a Bub3 binding protein regulating meiotic chromosome alignment in mouse oocytes. Oncotarget 2017; 7:30155-65. [PMID: 27177335 PMCID: PMC5058671 DOI: 10.18632/oncotarget.9310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/01/2016] [Indexed: 02/07/2023] Open
Abstract
Zinc finger proteins are a massive, diverse family of proteins that serve a wide variety of biological functions. However, the roles of them during meiosis are not yet clearly defined. Here, we report that Zfp207 localizes at the kinetochores during mouse oocyte meiotic maturation. Depletion of Zfp207 leads to a significantly higher proportion of impaired spindle organization and misaligned chromosomes in oocytes. This is coupled with the defective kinetochore-microtubule attachments, and resultantly increasing incidence of aneuploid metaphase II eggs. The precocious polar body extrusion and escape of metaphase I arrest induced by nocodazole treatment in Zfp207-depleted oocytes indicates that Zfp207 is essential for activation of SAC (Spindle Assembly Checkpoint) activity. Notably, we find that Zfp207 binds to Bub3 to form a complex and maintains its protein level in oocytes, and that overexpression of Bub3 is able to partially rescue the occurrence of aneuploid eggs in Zfp207-depleted oocytes. Collectively, we identify Zfp207 as a novel Bub3 binding protein in oocytes which plays an important role in controlling meiotic chromosome alignment and SAC function.
Collapse
Affiliation(s)
- Xiao Xin Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hao Xiong
- The First Clinical Medical College, School of Medicine, Nanchang University, Nanchang, China
| | - Mianqun Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shaochen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
43
|
Huang Y, Li T, Ems-McClung SC, Walczak CE, Prigent C, Zhu X, Zhang X, Zheng Y. Aurora A activation in mitosis promoted by BuGZ. J Cell Biol 2017; 217:107-116. [PMID: 29074706 PMCID: PMC5748987 DOI: 10.1083/jcb.201706103] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 12/25/2022] Open
Abstract
Mitotic spindle component BuGZ is known to undergo phase separation. Huang et al. show that BuGZ promotes Aurora A phosphorylation and activation and that this is inhibited when BuGZ phase separation is disrupted. Protein phase separation or coacervation has emerged as a potential mechanism to regulate biological functions. We have shown that coacervation of a mostly unstructured protein, BuGZ, promotes assembly of spindle and its matrix. BuGZ in the spindle matrix binds and concentrates tubulin to promote microtubule (MT) assembly. It remains unclear, however, whether BuGZ could regulate additional proteins to promote spindle assembly. In this study, we report that BuGZ promotes Aurora A (AurA) activation in vitro. Depletion of BuGZ in cells reduces the amount of phosphorylated AurA on spindle MTs. BuGZ also enhances MCAK phosphorylation. The two zinc fingers in BuGZ directly bind to the kinase domain of AurA, which allows AurA to incorporate into the coacervates formed by BuGZ in vitro. Importantly, mutant BuGZ that disrupts the coacervation activity in vitro fails to promote AurA phosphorylation in Xenopus laevis egg extracts. These results suggest that BuGZ coacervation promotes AurA activation in mitosis.
Collapse
Affiliation(s)
- Yuejia Huang
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD
| | - Teng Li
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD.,Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | | | | | - Claude Prigent
- Institut de Génétique et Développement de Rennes, Equipe laboratoryélisée Ligue Nationale Contre la Cancer 2014-2017, Centre National de la Recherche Scientifique, Université Rennes 1, Rennes, France
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuemin Zhang
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD
| |
Collapse
|
44
|
van Hooff JJ, Tromer E, van Wijk LM, Snel B, Kops GJ. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep 2017. [PMID: 28642229 PMCID: PMC5579357 DOI: 10.15252/embr.201744102] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During eukaryotic cell division, the sister chromatids of duplicated chromosomes are pulled apart by microtubules, which connect via kinetochores. The kinetochore is a multiprotein structure that links centromeres to microtubules, and that emits molecular signals in order to safeguard the equal distribution of duplicated chromosomes over daughter cells. Although microtubule‐mediated chromosome segregation is evolutionary conserved, kinetochore compositions seem to have diverged. To systematically inventory kinetochore diversity and to reconstruct its evolution, we determined orthologs of 70 kinetochore proteins in 90 phylogenetically diverse eukaryotes. The resulting ortholog sets imply that the last eukaryotic common ancestor (LECA) possessed a complex kinetochore and highlight that current‐day kinetochores differ substantially. These kinetochores diverged through gene loss, duplication, and, less frequently, invention and displacement. Various kinetochore components co‐evolved with one another, albeit in different manners. These co‐evolutionary patterns improve our understanding of kinetochore function and evolution, which we illustrated with the RZZ complex, TRIP13, the MCC, and some nuclear pore proteins. The extensive diversity of kinetochore compositions in eukaryotes poses numerous questions regarding evolutionary flexibility of essential cellular functions.
Collapse
Affiliation(s)
- Jolien Je van Hooff
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands.,Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.,Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eelco Tromer
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands.,Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Leny M van Wijk
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Geert Jpl Kops
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands .,Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Cancer Genomics Netherlands, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
45
|
Han M, Zou W, Chang H, Yu Y, Zhang H, Li S, Cheng H, Wei G, Chen Y, Reinke V, Xu T, Kang L. A Systematic RNAi Screen Reveals a Novel Role of a Spindle Assembly Checkpoint Protein BuGZ in Synaptic Transmission in C. elegans. Front Mol Neurosci 2017; 10:141. [PMID: 28553202 PMCID: PMC5425591 DOI: 10.3389/fnmol.2017.00141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/25/2017] [Indexed: 11/29/2022] Open
Abstract
Synaptic vesicles (SV) store various neurotransmitters that are released at the synapse. The molecular mechanisms of biogenesis, exocytosis, and endocytosis for SV, however, remain largely elusive. In this study, using Complex Object Parametric Analysis and Sorter (COPAS) to monitor the fluorescence of synapto-pHluorin (SpH), we performed a whole-genome RNAi screen in C. elegans to identify novel genetic modulators in SV cycling. One hundred seventy six genes that up-regulating SpH fluorescence and 96 genes that down-regulating SpH fluorescence were identified after multi-round screen. Among these genes, B0035.1 (bugz-1) encodes ortholog of mammalian C2H2 zinc-finger protein BuGZ/ZNF207, which is a spindle assembly checkpoint protein essential for mitosis in human cells. Combining electrophysiology, imaging and behavioral assays, we reveal that depletion of BuGZ-1 results in defects in locomotion. We further demonstrate that BuGZ-1 promotes SV recycling by regulating the expression levels of endocytosis-related genes such as rab11.1. Therefore, we have identified a bunch of potential genetic modulators in SV cycling, and revealed an unexpected role of BuGZ-1 in regulating synaptic transmission.
Collapse
Affiliation(s)
- Mei Han
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Department of Neurobiology, Institute of Neuroscience, Zhejiang University School of MedicineHangzhou, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing, China.,Department of Genetics, Yale University School of MedicineNew Haven, CT, USA
| | - Wenjuan Zou
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Department of Neurobiology, Institute of Neuroscience, Zhejiang University School of MedicineHangzhou, China
| | - Hao Chang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing, China.,Department of Genetics, Yale University School of MedicineNew Haven, CT, USA
| | - Yong Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing, China
| | - Haining Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing, China
| | - Shitian Li
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Department of Neurobiology, Institute of Neuroscience, Zhejiang University School of MedicineHangzhou, China
| | - Hankui Cheng
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Department of Neurobiology, Institute of Neuroscience, Zhejiang University School of MedicineHangzhou, China
| | - Guifeng Wei
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing, China
| | - Yan Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing, China
| | - Valerie Reinke
- Department of Genetics, Yale University School of MedicineNew Haven, CT, USA
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing, China
| | - Lijun Kang
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Department of Neurobiology, Institute of Neuroscience, Zhejiang University School of MedicineHangzhou, China
| |
Collapse
|
46
|
Manic G, Corradi F, Sistigu A, Siteni S, Vitale I. Molecular Regulation of the Spindle Assembly Checkpoint by Kinases and Phosphatases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:105-161. [PMID: 28069132 DOI: 10.1016/bs.ircmb.2016.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism contributing to the preservation of genomic stability by monitoring the microtubule attachment to, and/or the tension status of, each kinetochore during mitosis. The SAC halts metaphase to anaphase transition in the presence of unattached and/or untensed kinetochore(s) by releasing the mitotic checkpoint complex (MCC) from these improperly-oriented kinetochores to inhibit the anaphase-promoting complex/cyclosome (APC/C). The reversible phosphorylation of a variety of substrates at the kinetochore by antagonistic kinases and phosphatases is one major signaling mechanism for promptly turning on or turning off the SAC. In such a complex network, some kinases act at the apex of the SAC cascade by either generating (monopolar spindle 1, MPS1/TTK and likely polo-like kinase 1, PLK1), or contributing to generate (Aurora kinase B) kinetochore phospho-docking sites for the hierarchical recruitment of the SAC proteins. Aurora kinase B, MPS1 and budding uninhibited by benzimidazoles 1 (BUB1) also promote sister chromatid biorientation by modulating kinetochore microtubule stability. Moreover, MPS1, BUB1, and PLK1 seem to play key roles in APC/C inhibition by mechanisms dependent and/or independent on MCC assembly. The protein phosphatase 1 and 2A (PP1 and PP2A) are recruited to kinetochores to oppose kinase activity. These phosphatases reverse the phosphorylation of kinetochore targets promoting the microtubule attachment stabilization, sister kinetochore biorientation and SAC silencing. The kinase-phosphatase network is crucial as it renders the SAC a dynamic, graded-signaling, high responsive, and robust process thereby ensuring timely anaphase onset and preventing the generation of proneoplastic aneuploidy.
Collapse
Affiliation(s)
- G Manic
- Regina Elena National Cancer Institute, Rome, Italy.
| | - F Corradi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - A Sistigu
- Regina Elena National Cancer Institute, Rome, Italy
| | - S Siteni
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Roma Tre", Rome, Italy
| | - I Vitale
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
47
|
Bub3-Bub1 Binding to Spc7/KNL1 Toggles the Spindle Checkpoint Switch by Licensing the Interaction of Bub1 with Mad1-Mad2. Curr Biol 2016; 26:2642-2650. [PMID: 27618268 DOI: 10.1016/j.cub.2016.07.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/22/2016] [Accepted: 07/15/2016] [Indexed: 01/06/2023]
Abstract
The spindle assembly checkpoint (SAC) ensures that sister chromatids do not separate until all chromosomes are attached to spindle microtubules and bi-oriented. Spindle checkpoint proteins, including Mad1, Mad2, Mad3 (BubR1), Bub1, Bub3, and Mph1 (Mps1), are recruited to unattached and/or tensionless kinetochores. SAC activation catalyzes the conversion of soluble Mad2 (O-Mad2) into a form (C-Mad2) that binds Cdc20, BubR1, and Bub3 to form the mitotic checkpoint complex (MCC), a potent inhibitor of the anaphase-promoting complex (APC/C). SAC silencing de-represses Cdc20-APC/C activity allowing poly-ubiquitination of Securin and Cyclin B, leading to the dissolution of sister chromatids and anaphase onset [1]. Understanding how microtubule interaction at kinetochores influences the timing of anaphase requires an understanding of how spindle checkpoint protein interaction with the kinetochore influences spindle checkpoint signaling. We, and others, recently showed that Mph1 (Mps1) phosphorylates multiple conserved MELT motifs in the Spc7 (Spc105/KNL1) protein to recruit Bub1, Bub3, and Mad3 (BubR1) to kinetochores [2-4]. In budding yeast, Mps1 phosphorylation of a central non-catalytic region of Bub1 promotes its association with the Mad1-Mad2 complex, although this association has not yet been detected in other organisms [5]. Here we report that multisite binding of Bub3 to the Spc7 MELT array toggles the spindle checkpoint switch by permitting Mph1 (Mps1)-dependent interaction of Bub1 with Mad1-Mad2.
Collapse
|
48
|
Gissot M, Hovasse A, Chaloin L, Schaeffer-Reiss C, Van Dorsselaer A, Tomavo S. An evolutionary conserved zinc finger protein is involved inToxoplasma gondiimRNA nuclear export. Cell Microbiol 2016; 19. [DOI: 10.1111/cmi.12644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/20/2016] [Accepted: 07/02/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Mathieu Gissot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille; U1019, UMR 8204, CIIL, Centre d'Infection et d'Immunité de Lille; F-59000 Lille France
| | - Agnès Hovasse
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, CNRS; Université de Strasbourg; Strasbourg France
| | - Laurent Chaloin
- CPBS, CNRS UMR 5236; Université de Montpellier; Montpellier France
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, CNRS; Université de Strasbourg; Strasbourg France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, CNRS; Université de Strasbourg; Strasbourg France
| | - Stanislas Tomavo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille; U1019, UMR 8204, CIIL, Centre d'Infection et d'Immunité de Lille; F-59000 Lille France
| |
Collapse
|
49
|
Levin VA, Tonge PJ, Gallo JM, Birtwistle MR, Dar AC, Iavarone A, Paddison PJ, Heffron TP, Elmquist WF, Lachowicz JE, Johnson TW, White FM, Sul J, Smith QR, Shen W, Sarkaria JN, Samala R, Wen PY, Berry DA, Petter RC. CNS Anticancer Drug Discovery and Development Conference White Paper. Neuro Oncol 2016; 17 Suppl 6:vi1-26. [PMID: 26403167 DOI: 10.1093/neuonc/nov169] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric "Accelerating Drug Discovery and Development for Brain Tumors," further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward.
Collapse
Affiliation(s)
- Victor A Levin
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Peter J Tonge
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - James M Gallo
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Marc R Birtwistle
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Arvin C Dar
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Antonio Iavarone
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Patrick J Paddison
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Timothy P Heffron
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - William F Elmquist
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Jean E Lachowicz
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Ted W Johnson
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Forest M White
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Joohee Sul
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Quentin R Smith
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Wang Shen
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Jann N Sarkaria
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Ramakrishna Samala
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Patrick Y Wen
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Donald A Berry
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Russell C Petter
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| |
Collapse
|
50
|
Hintermair C, Voß K, Forné I, Heidemann M, Flatley A, Kremmer E, Imhof A, Eick D. Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression. Sci Rep 2016; 6:27401. [PMID: 27264542 PMCID: PMC4893663 DOI: 10.1038/srep27401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/18/2016] [Indexed: 11/08/2022] Open
Abstract
Dynamic phosphorylation of Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 heptad-repeats in the C-terminal domain (CTD) of the large subunit coordinates progression of RNA polymerase (Pol) II through the transcription cycle. Here, we describe an M phase-specific form of Pol II phosphorylated at Thr4, but not at Tyr1, Ser2, Ser5, and Ser7 residues. Thr4 phosphorylated Pol II binds to centrosomes and midbody and interacts with the Thr4-specific Polo-like kinase 1. Binding of Pol II to centrosomes does not require the CTD but may involve subunits of the non-canonical R2TP-Prefoldin-like complex, which bind to and co-localize with Pol II at centrosomes. CTD Thr4 mutants, but not Ser2 and Ser5 mutants, display severe mitosis and cytokinesis defects characterized by multipolar spindles and polyploid cells. We conclude that proper M phase progression of cells requires binding of Pol II to centrosomes to facilitate regulation of mitosis and cytokinesis in a CTD Thr4-P dependent manner.
Collapse
Affiliation(s)
- Corinna Hintermair
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany
| | - Kirsten Voß
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany
| | - Ignasi Forné
- Biomedical Center Munich, Center of Integrated Protein Science (CIPSM), ZFP, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Martin Heidemann
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany
| | - Andrew Flatley
- Institute of Molecular Immunology, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Axel Imhof
- Biomedical Center Munich, Center of Integrated Protein Science (CIPSM), ZFP, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany
| |
Collapse
|