1
|
Lee C, Kim MJ, Kumar A, Lee HW, Yang Y, Kim Y. Vascular endothelial growth factor signaling in health and disease: from molecular mechanisms to therapeutic perspectives. Signal Transduct Target Ther 2025; 10:170. [PMID: 40383803 DOI: 10.1038/s41392-025-02249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/09/2025] [Accepted: 04/21/2025] [Indexed: 05/20/2025] Open
Abstract
Vascular endothelial growth factor (VEGF) signaling is a critical regulator of vasculogenesis, angiogenesis, and lymphangiogenesis, processes that are vital for the development of vascular and lymphatic systems, tissue repair, and the maintenance of homeostasis. VEGF ligands and their receptors orchestrate endothelial cell proliferation, migration, and survival, playing a pivotal role in dynamic vascular remodeling. Dysregulated VEGF signaling drives diverse pathological conditions, including tumor angiogenesis, cardiovascular diseases, and ocular disorders. Excessive VEGF activity promotes tumor growth, invasion, and metastasis, while insufficient signaling contributes to impaired wound healing and ischemic diseases. VEGF-targeted therapies, such as monoclonal antibodies and tyrosine kinase inhibitors, have revolutionized the treatment of diseases involving pathological angiogenesis, offering significant clinical benefits in oncology and ophthalmology. These therapies inhibit angiogenesis and slow disease progression, but they often face challenges such as therapeutic resistance, suboptimal efficacy, and adverse effects. To further explore these issues, this review provides a comprehensive overview of VEGF ligands and receptors, elucidating their molecular mechanisms and regulatory networks. It evaluates the latest progress in VEGF-targeted therapies and examines strategies to address current challenges, such as resistance mechanisms. Moreover, the discussion includes emerging therapeutic strategies such as innovative drug delivery systems and combination therapies, highlighting the continuous efforts to improve the effectiveness and safety of VEGF-targeted treatments. This review highlights the translational potential of recent discoveries in VEGF biology for improving patient outcomes.
Collapse
Affiliation(s)
- Chunsik Lee
- Department of R&D, GEMCRO Inc, Seoul, Republic of Korea.
| | - Myung-Jin Kim
- Department of Biological Sciences and Research Institute of Women's Health, Sookmyung Women's University, Seoul, Republic of Korea
| | - Anil Kumar
- Center for Research and Innovations, Adichunchanagiri University, Mandya, Karnataka, India
| | - Han-Woong Lee
- Department of R&D, GEMCRO Inc, Seoul, Republic of Korea
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yonghwan Kim
- Department of Biological Sciences and Research Institute of Women's Health, Sookmyung Women's University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Feng Q, Yu C, Guo L, Liu X, Lin Y, Li C, Zhang W, Zong Y, Yang W, Ma Y, Wang R, Li L, Pei Y, Wang H, Liu D, Niu H, Han M, Nie L. DCBLD1 Modulates Angiogenesis by Regulation of the VEGFR-2 Endocytosis in Endothelial Cells. Arterioscler Thromb Vasc Biol 2025; 45:198-217. [PMID: 39665138 DOI: 10.1161/atvbaha.123.320443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Unwanted angiogenesis is involved in the progression of various malignant tumors and cardiovascular diseases, and the factors that regulate angiogenesis are potential therapeutic targets. We tested the hypothesis that DCBLD1 (discoidin, CUB, and LCCL domain-containing protein 1) is a coreceptor of VEGFR-2 (vascular endothelial growth factor receptor-2) and modulates angiogenesis in endothelial cells. METHODS A carotid artery ligation model and retinal angiogenesis assay were used to study angiogenesis using globe knockout or endothelial cell-specific conditional Dcbld1 knockout mice in vivo. Immunoblotting, immunofluorescence staining, plasma membrane subfraction isolation, Coimmunoprecipitation, and mass spectrum assay were performed to clarify the molecular mechanisms. RESULTS Loss of Dcbld1 impaired VEGF (vascular endothelial growth factor) response and inhibited VEGF-induced endothelial cell proliferation and migration. Dcbld1 deletion interfered with adult and developmental angiogenesis. Mechanistically, DCBLD1 bound to VEGFR-2 and regulated the formation of VEGFR-2 complex with negative regulators: protein tyrosine phosphatases, E3 ubiquitin ligases (neuronal precursor cell-expressed developmentally downregulated gene 4, Nedd4 and c-Casitas B-lineage lymphoma, c-Cbl), and also Dcbld1 knockdown promoted lysosome-mediated VEGFR-2 degradation in endothelial cells. CONCLUSION These findings demonstrated the essential role of endothelial DCBLD1 in regulating VEGF signaling and provided evidence that DCBLD1 promotes VEGF-induced angiogenesis by limiting the dephosphorylation, ubiquitination, and lysosome degradation after VEGFR-2 endocytosis. We proposed that endothelial DCBLD1 is a potential therapeutic target for ischemic cardiovascular diseases by the modulation of angiogenesis through regulation of the VEGFR-2 endocytosis.
Collapse
Affiliation(s)
- Qi Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Chao Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Lingling Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Xiaoning Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Yanling Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Chenyang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Wenjun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Yanhong Zong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Weiwei Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Yuehua Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Runtao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Lijing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Yunli Pei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Huifang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Demin Liu
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China (D.L.)
| | - Honglin Niu
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei Province, China (H.N.)
| | - Mei Han
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Lei Nie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| |
Collapse
|
3
|
Pal S, Su Y, Nwadozi E, Claesson-Welsh L, Richards M. Neuropilin-1 controls vascular permeability through juxtacrine regulation of endothelial adherens junctions. Angiogenesis 2024; 28:7. [PMID: 39668325 PMCID: PMC11638295 DOI: 10.1007/s10456-024-09963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
Neuropilin-1 (NRP1) regulates endothelial cell (EC) biology through modulation of vascular endothelial growth factor receptor 2 (VEGFR2) signalling by presenting VEGFA to VEGFR2. How NRP1 impacts VEGFA-mediated vascular hyperpermeability has however remained unresolved, described as exerting either a positive or a passive function. Using EC-specific Nrp1 knock-out mice, we discover that EC-expressed NRP1 exerts an organotypic role. In the ear skin, VEGFA/VEGFR2-mediated vascular leakage was increased following loss of EC NRP1, implicating NRP1 in negative regulation of VEGFR2 signalling. In contrast, in the back skin and trachea, loss of EC NRP1 decreased vascular leakage. In accordance, phosphorylation of vascular endothelial (VE)-cadherin was increased in the ear skin but suppressed in the back skin of Nrp1 iECKO mice. NRP1 expressed on perivascular cells has been shown to impact VEGF-mediated VEGFR2 signalling. Importantly, expression of NRP1 on perivascular cells was more abundant in the ear skin than in the back skin. Global loss of NRP1 resulted in suppressed VEGFA-induced vascular leakage in the ear skin, implicating perivascular NRP1 as a juxtacrine co-receptor of VEGFA in this compartment. Altogether, we demonstrate that perivascular NRP1 is an active participant in EC VEGFA/VEGFR2 signalling and acts as an organotypic modifier of EC biology.
Collapse
Affiliation(s)
- Sagnik Pal
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Yangyang Su
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Emmanuel Nwadozi
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Mark Richards
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Peach CJ, Tonello R, Damo E, Gomez K, Calderon-Rivera A, Bruni R, Bansia H, Maile L, Manu AM, Hahn H, Thomsen ARB, Schmidt BL, Davidson S, des Georges A, Khanna R, Bunnett NW. Neuropilin-1 is a co-receptor for Nerve Growth Factor-evoked pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570398. [PMID: 38106002 PMCID: PMC10723411 DOI: 10.1101/2023.12.06.570398] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Nerve growth factor (NGF) monoclonal antibodies inhibit chronic pain yet, failed to gain approval due to worsened joint damage in osteoarthritis patients. We report that neuropilin-1 (NRP1) is a co-receptor for NGF and tropomyosin-related kinase A (TrkA) pain signaling. NRP1 is coexpressed with TrkA in human and mouse nociceptors. NRP1 inhibitors suppress NGF-stimulated excitation of human and mouse nociceptors and NGF-evoked nociception in mice. NRP1 knockdown inhibits NGF/TrkA signaling, whereas NRP1 overexpression enhances signaling. NGF binds NRP1 with high affinity and interacts with and chaperones TrkA from the biosynthetic pathway to the plasma membrane and endosomes, enhancing TrkA signaling. Molecular modeling suggests that C-terminal R/KXXR/K NGF motif interacts with extracellular "b" NRP1 domain within a plasma membrane NGF/TrkA/NRP1 of 2:2:2 stoichiometry. G Alpha Interacting Protein C-terminus 1 (GIPC1) scaffolds NRP1 and TrkA to myosin VI and colocalizes in nociceptors with NRP1/TrkA. GIPC1 knockdown abrogates NGF-evoked excitation of nociceptors and pain-like behavior. NRP1 is a nociceptor-enriched co-receptor that facilitates NGF/TrkA pain signaling. NRP binds NGF and chaperones TrkA to the plasma membrane and signaling endosomes via the GIPC1 adaptor. NRP1 and GIPC1 antagonism in nociceptors offers a long-awaited non-opioid alternative to systemic antibody NGF sequestration for the treatment of chronic pain. Summary Neuropilin-1 and G Alpha Interacting Protein C-terminus 1 are necessary for nerve growth factor-evoked pain and are non-opioid therapeutic targets for chronic pain.
Collapse
|
5
|
Chandler JC, Jafree DJ, Malik S, Pomeranz G, Ball M, Kolatsi-Joannou M, Piapi A, Mason WJ, Benest AV, Bates DO, Letunovska A, Al-Saadi R, Rabant M, Boyer O, Pritchard-Jones K, Winyard PJ, Mason AS, Woolf AS, Waters AM, Long DA. Single-cell transcriptomics identifies aberrant glomerular angiogenic signalling in the early stages of WT1 kidney disease. J Pathol 2024; 264:212-227. [PMID: 39177649 DOI: 10.1002/path.6339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 08/24/2024]
Abstract
WT1 encodes a podocyte transcription factor whose variants can cause an untreatable glomerular disease in early childhood. Although WT1 regulates many podocyte genes, it is poorly understood which of them are initiators in disease and how they subsequently influence other cell-types in the glomerulus. We hypothesised that this could be resolved using single-cell RNA sequencing (scRNA-seq) and ligand-receptor analysis to profile glomerular cell-cell communication during the early stages of disease in mice harbouring an orthologous human mutation in WT1 (Wt1R394W/+). Podocytes were the most dysregulated cell-type in the early stages of Wt1R394W/+ disease, with disrupted angiogenic signalling between podocytes and the endothelium, including the significant downregulation of transcripts for the vascular factors Vegfa and Nrp1. These signalling changes preceded glomerular endothelial cell loss in advancing disease, a feature also observed in biopsy samples from human WT1 glomerulopathies. Addition of conditioned medium from murine Wt1R394W/+ primary podocytes to wild-type glomerular endothelial cells resulted in impaired endothelial looping and reduced vascular complexity. Despite the loss of key angiogenic molecules in Wt1R394W/+ podocytes, the pro-vascular molecule adrenomedullin was upregulated in Wt1R394W/+ podocytes and plasma and its further administration was able to rescue the impaired looping observed when glomerular endothelium was exposed to Wt1R394W/+ podocyte medium. In comparative analyses, adrenomedullin upregulation was part of a common injury signature across multiple murine and human glomerular disease datasets, whilst other gene changes were unique to WT1 disease. Collectively, our study describes a novel role for altered angiogenic signalling in the initiation of WT1 glomerulopathy. We also identify adrenomedullin as a proangiogenic factor, which despite being upregulated in early injury, offers an insufficient protective response due to the wider milieu of dampened vascular signalling that results in endothelial cell loss in later disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jennifer C Chandler
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Daniyal J Jafree
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
- UCL MB/PhD Programme, Faculty of Medical Sciences, University College London, London, UK
| | - Saif Malik
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Gideon Pomeranz
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Mary Ball
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Alice Piapi
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
| | - William J Mason
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Andrew V Benest
- Endothelial Quiescence Group and Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - David O Bates
- Endothelial Quiescence Group and Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Pan-African Cancer Research Institute, University of Pretoria, Hatfield, South Africa
| | - Aleksandra Letunovska
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Reem Al-Saadi
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marion Rabant
- Pathology department, Hôpital Universitaire Necker-Enfants Malades, Institut Imagine, Université Paris Cité, Paris, France
| | - Olivia Boyer
- APHP, Service de Néphrologie Pédiatrique, Hôpital Universitaire Necker-Enfants Malades, Institut Imagine, Université Paris Cité, Paris, France
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Paul J Winyard
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Andrew S Mason
- Department of Biology and York Biomedical Research Institute, University of York, UK
| | - Adrian S Woolf
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Aoife M Waters
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
| | - David A Long
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| |
Collapse
|
6
|
Li M, Wang P, Li J, Zhou F, Huang S, Qi S, Shu B. NRP1 transduces mechanical stress inhibition via LATS1/YAP in hypertrophic scars. Cell Death Discov 2023; 9:341. [PMID: 37704618 PMCID: PMC10499927 DOI: 10.1038/s41420-023-01635-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Hypertrophic scar (HS) is an abnormal fibrous hyperplasia of the skin caused by excessive tissue repair in response to skin burns and trauma, which restricts physical function and impairs patients' quality of life. Numerous studies have shown that pressure garment therapy (PGT) is an effective treatment for preventing hypertrophic scars. Herein, we found that mechanical stress stimulates the neuropilin 1 (NRP1) expression through screening GSE165027, GSE137210, and GSE120194 from Gene Expression Omnibus (GEO) database and bioinformatics analysis. We verified this stimulation in the human hypertrophic scar, pressure culture cell model, and rat tail-scar model. Mechanical compression increased LATS1 and pYAP enrichment, thus repressing the expression of YAP. Functionally, the knockdown of NRP1 promoted the expression of LATS1, thus decreasing the expression of YAP and inhibiting endothelial cell proliferation. Furthermore, co-immunoprecipitation analysis confirmed that NRP1 binds to YAP, and mechanical compression disrupted this binding, which resulted in the promotion of YAP relocation to nuclear. In conclusion, our results indicated that NRP1 transduces mechanical force inhibition by inhibiting YAP expression. Mechanical pressure can release YAP bound to NRP1, which explains the phenomenon that mechanical stress increases YAP in the nucleus. Strategies targeting NRP1 may promote compression therapy with optimal and comfortable pressures.
Collapse
Affiliation(s)
- Mengzhi Li
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Wang
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingting Li
- Department of Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fei Zhou
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shixin Huang
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaohai Qi
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Bin Shu
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Yang X, Xu T, Song X, Wu Y. Overexpression of NRP1 is Associated with Poor Prognosis via Accelerating Immunosuppression in Head and Neck Squamous Cell Carcinoma. Int J Gen Med 2023; 16:2819-2829. [PMID: 37426519 PMCID: PMC10329464 DOI: 10.2147/ijgm.s409336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
Background Neuropilin-1 (NRP1) is a significant molecular structure that participates in many diseases progress including malignant tumors. However, its role in head and neck squamous cell carcinoma (HNSCC) remains to be uncovered. In this study, we determined the function of NRP1 as a crucial biomarker in proliferation, metastasis and immunosuppression in HNSCC. Methods We collected samples of normal tissues (n = 18) and HNSCC tissues (n = 202) for immunohistochemical staining of NRP1 and evaluated its correlation to clinical prognostic characteristics. Furthermore, we enrolled 37 HNSCC patients received immune checkpoint blockade (ICB) treatment with defined therapeutic effects records. The biological process, signal pathways, and immune infiltration relevance to NRP1 were analyzed utilized transcriptome data from The Cancer Genome Atlas (TCGA). Results The NRP1 protein expression was significantly upregulated in HNSCC tissue and was associated with T stage, N stage, histological differentiation, recurrence and NRP1 expression. The high expression of NRP1 indicated poor survival rate and was found to be an independent prognosis factor. Enrichment analysis showed that NRP1 was associated with cell adhesion, extracellular matrix organization, homophilic cell adhesion via plasma membrane in biological process and neuroactive ligand-receptor interaction, protein digestion and absorption, calcium signal pathways. Moreover, NRP1 mRNA level was found positively correlated to cancer associated fibroblast cells, Treg cells and macrophage/monocyte cells. Conclusion NRP1 might be likely to develop into a potential immunoregulation target as well as a predictive biomarker in HNSCC immune treatment.
Collapse
Affiliation(s)
- Xueming Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Stomatology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Teng Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xiaomeng Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yunong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
8
|
Lu L, Wang L, Zhao L, Liao J, Zhao C, Xu X, Wang F, Zhang X. A Novel Blood-Brain Barrier-Penetrating and Vascular-Targeting Chimeric Peptide Inhibits Glioma Angiogenesis. Int J Mol Sci 2023; 24:ijms24108753. [PMID: 37240099 DOI: 10.3390/ijms24108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The high vascularization of glioma highlights the potential value of anti-angiogenic therapeutics for glioma treatment. Previously, we designed a novel vascular-targeting and blood-brain barrier (BBB)-penetrating peptide, TAT-AT7, by attaching the cell-penetrating peptide TAT to a vascular-targeting peptide AT7, and we demonstrated that TAT-AT7 could target binding to the vascular endothelial growth factor receptor 2 (VEGFR-2) and Neuropilin-1 (NRP-1), which are both highly expressed in endothelial cells. TAT-AT7 has been proven to be a good targeting peptide which could effectively deliver the secretory endostatin gene to treat glioma via the TAT-AT7-modified polyethyleneimine (PEI) nanocomplex. In the current study, we further explored the molecular binding mechanisms of TAT-AT7 to VEGFR-2 and NRP-1 and its anti-glioma effects. Accordingly, TAT-AT7 was proven to competitively bind to VEGFR-2 and NRP-1 and prevent VEGF-A165 binding to the receptors by the surface plasmon resonance (SPR) assay. TAT-AT7 inhibited endothelial cells' proliferation, migration, invasion, and tubule formation, as well as promoted endothelial cells' apoptosis in vitro. Further research revealed that TAT-AT7 inhibited the phosphorylation of VEGFR-2 and its downstream PLC-γ, ERK1/2, SRC, AKT, and FAK kinases. Additionally, TAT-AT7 significantly inhibited angiogenesis of zebrafish embryo. Moreover, TAT-AT7 had a better penetrating ability and could penetrate the BBB into glioma tissue and target glioma neovascularization in an orthotopic U87-glioma-bearing nude mice model, and exhibited the effect of inhibiting glioma growth and angiogenesis. Taken together, the binding and function mechanisms of TAT-AT7 were firstly revealed, and TAT-AT7 was proven to be an effective and promising peptide for the development of anti-angiogenic drugs for targeted treatment of glioma.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Longkun Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lin Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jing Liao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chunqian Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaohan Xu
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
9
|
Gu L, Wang Z, Gu H, Wang H, Liu L, Zhang WB. Atf4 regulates angiogenic differences between alveolar bone and long bone macrophages by regulating M1 polarization, based on single-cell RNA sequencing, RNA-seq and ATAC-seq analysis. J Transl Med 2023; 21:193. [PMID: 36918894 PMCID: PMC10012539 DOI: 10.1186/s12967-023-04046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
In the repair of maxillofacial bone defects, autogenous craniofacial bone can often provide superior clinical results over long bone grafts. Most current studies have focused on the osteogenic differences between alveolar bone marrow (ABM) and long bone marrow (LBM), however, studies about the angiogenic differences between the two are currently lacking. We downloaded single-cell RNA sequencing (scRNA-seq) of mouse ABM and LBM respectively from the public database, and the data were processed by using Seurat package. CellphoneDB2 results showed that macrophages had the strongest interaction with mesenchymal stem cells (MSCs) and endothelial cells (ECs). ELISA results confirmed that ABM macrophages secreted a higher level of vascular endothelial growth factor A (Vegfa) compared to LBM macrophages, which further promoted angiogenesis of ECs and MSCs. Using SCENIC package, six key transcription factors (TFs) were identified to regulate the difference between ABM and LBM macrophages, and activating transcription factor 4 (Atf4) was confirmed to be more expressed in ABM macrophages by polymerase chain reaction (PCR) and western blot (WB), with predicted target genes including Vegfa. Besides, the result of scRNA-seq implied ABM macrophages more in M1 status than LBM macrophages, which was confirmed by the following experiments. From the results of another assay for transposase accessible chromatin sequencing (ATAC-seq) and RNA-seq about M1 macrophages, Atf4 was also confirmed to regulate the M1 polarization. So, we suspected that Atf4 regulated the different expression of Vegfa between ABM and LBM macrophages by activating M1 polarization. After knocking down Atf4, the expression of M1 polarization markers and Vegfa were downregulated and vasculogenic differences were eliminated, which were subsequently reversed by the addition of LPS/IFN-γ. Our study might provide a new idea to improve the success rate of autologous bone grafting and treatment of oral diseases.
Collapse
Affiliation(s)
- Lanxin Gu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Zhongyuan Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hong Gu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210029, China
| | - Hua Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
| | - Luwei Liu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
| | - Wei-Bing Zhang
- Department of Stomatology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China.
- Department of Stomatology, Medical Center of Soochow University, Suzhou, China.
- Department of Stomatology, Suzhou Dushu Lake Hospital, Suzhou, China.
| |
Collapse
|
10
|
Karami E, Mesbahi Moghaddam M, Behdani M, Kazemi-Lomedasht F. Effective blocking of neuropilin-1activity using oligoclonal nanobodies targeting different epitopes. Prep Biochem Biotechnol 2022; 53:523-531. [PMID: 35984637 DOI: 10.1080/10826068.2022.2111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Neuropilin-1 (NRP-1) is a non-tyrosine kinase receptor and when overexpressed, leads to angiogenesis. High expression of NRP-1 has been observed in various cancers. Unique characteristic of nanobodies (small size, high affinity and stability, and ease production) make them potential therapeutic tools. Oligoclonal nanobodies which detect multiple functional epitopes on the target antigen could be potential tools for inhibition of cancer resistance problems due to escape variant of tumor cells. In this study, oligoclonal anti-NRP-1 nanobodies were selected from camel immune library and their binding activities as well as in vitro functionality were evaluated. Anti-NRP-1 nanobodies were expressed in an Escherichia coli host, and purified using nickel affinity chromatography. The effect of each individual and oligoclonal nanobodies on human endothelial cells were evaluated by MTT, Tube formation, and migration assay as well. Results showed that oligoclonal anti-NRP-1 nanobodies detected different epitopes of NRP-1 antigen and inhibited in vitro angiogenesis of human endothelial cells better than each individual nanobody. Results indicate promising oligoclonal anti-NRP-1 nanobodies for inhibition of angiogenesis.
Collapse
Affiliation(s)
- Elmira Karami
- Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mahdi Behdani
- Venom and Biotherapeuti Molcsecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Kazemi-Lomedasht
- Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Osude C, Lin L, Patel M, Eckburg A, Berei J, Kuckovic A, Dube N, Rastogi A, Gautam S, Smith TJ, Sreenivassappa SB, Puri N. Mediating EGFR-TKI Resistance by VEGF/VEGFR Autocrine Pathway in Non-Small Cell Lung Cancer. Cells 2022; 11:1694. [PMID: 35626731 PMCID: PMC9139342 DOI: 10.3390/cells11101694] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/06/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
NSCLC treatment includes targeting of EGFR with tyrosine kinase inhibitors (TKIs) such as Erlotinib; however, resistance to TKIs is commonly acquired through T790M EGFR mutations or overexpression of vascular endothelial growth factor receptor-2 (VEGFR-2). We investigated the mechanisms of EGFR-TKI resistance in NSCLC cell lines with EGFR mutations or acquired resistance to Erlotinib. These studies showed upregulated gene and protein expression of VEGF, VEGFR-2, and a VEGF co-receptor neuropilin-1 (NP-1) in Erlotinib-resistant (1.4-5.3-fold) and EGFR double-mutant (L858R and T790M; 4.1-8.3-fold) NSCLC cells compared to parental and EGFR single-mutant (L858R) NSCLC cell lines, respectively. Immunofluorescence and FACS analysis revealed increased expression of VEGFR-2 and NP-1 in EGFR-TKI-resistant cell lines compared to TKI-sensitive cell lines. Cell proliferation assays showed that treatment with a VEGFR-2 inhibitor combined with Erlotinib lowered cell survival in EGFR double-mutant NSCLC cells to 9% compared to 72% after treatment with Erlotinib alone. Furthermore, Kaplan-Meier analysis revealed shorter median survival in late-stage NSCLC patients with high vs. low VEGFR-2 expression (14 mos vs. 21 mos). The results indicate that VEGFR-2 may play a key role in EGFR-TKI resistance and that combined treatment of Erlotinib with a VEGFR-2 inhibitor may serve as an effective therapy in NSCLC patients with EGFR mutations.
Collapse
Affiliation(s)
- Chike Osude
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Leo Lin
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Meet Patel
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Adam Eckburg
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Joseph Berei
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Adijan Kuckovic
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Namrata Dube
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Aayush Rastogi
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Shruti Gautam
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Thomas J. Smith
- College of Education, Northern Illinois University, Dekalb, IL 60115, USA;
| | | | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| |
Collapse
|
12
|
Dhupar R, Jones KE, Powers AA, Eisenberg SH, Ding K, Chen F, Nasarre C, Cen Z, Gong YN, LaRue AC, Yeh ES, Luketich JD, Lee AV, Oesterreich S, Lotze MT, Gemmill RM, Soloff AC. Isoforms of Neuropilin-2 Denote Unique Tumor-Associated Macrophages in Breast Cancer. Front Immunol 2022; 13:830169. [PMID: 35651620 PMCID: PMC9149656 DOI: 10.3389/fimmu.2022.830169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) exert profound influence over breast cancer progression, promoting immunosuppression, angiogenesis, and metastasis. Neuropilin-2 (NRP2), consisting of the NRP2a and NRP2b isoforms, is a co-receptor for heparin-binding growth factors including VEGF-C and Class 3 Semaphorins. Selective upregulation in response to environmental stimuli and independent signaling pathways endow the NRP2 isoforms with unique functionality, with NRP2b promoting increased Akt signaling via receptor tyrosine kinases including VEGFRs, MET, and PDGFR. Although NRP2 has been shown to regulate macrophage/TAM biology, the role of the individual NRP2a/NRP2b isoforms in TAMs has yet to be evaluated. Using transcriptional profiling and spectral flow cytometry, we show that NRP2 isoform expression was significantly higher in TAMs from murine mammary tumors. NRP2a/NRP2b levels in human breast cancer metastasis were dependent upon the anatomic location of the tumor and significantly correlated with TAM infiltration in both primary and metastatic breast cancers. We define distinct phenotypes of NRP2 isoform-expressing TAMs in mouse models of breast cancer and within malignant pleural effusions from breast cancer patients which were exclusive of neuropilin-1 expression. Genetic depletion of either NRP2 isoform in macrophages resulted in a dramatic reduction of LPS-induced IL-10 production, defects in phagosomal processing of apoptotic breast cancer cells, and increase in cancer cell migration following co-culture. By contrast, depletion of NRP2b, but not NRP2a, inhibited production of IL-6. These results suggest that NRP2 isoforms regulate both shared and unique functionality in macrophages and are associated with distinct TAM subsets in breast cancer.
Collapse
Affiliation(s)
- Rajeev Dhupar
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Surgical Services Division, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Katherine E. Jones
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amy A. Powers
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Seth H. Eisenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kai Ding
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee Women’s Research Institute, Pittsburgh, PA, United States
| | - Fangyuan Chen
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee Women’s Research Institute, Pittsburgh, PA, United States
| | - Cecile Nasarre
- Division of Hematology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Division of Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Zhanpeng Cen
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- School of Medicine, Tsinghua University, Beijing, China
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yi-Nan Gong
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amanda C. LaRue
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson VA Health Care System, Charleston, SC, United States
| | - Elizabeth S. Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Simon Cancer Center, Indianapolis, IN, United States
| | - James D. Luketich
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Adrian V. Lee
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee Women’s Research Institute, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Steffi Oesterreich
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee Women’s Research Institute, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael T. Lotze
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Robert M. Gemmill
- Division of Hematology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Division of Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Adam C. Soloff
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson VA Health Care System, Charleston, SC, United States
| |
Collapse
|
13
|
Kilari S, Wang Y, Singh A, Graham RP, Iyer V, Thompson SM, Torbenson MS, Mukhopadhyay D, Misra S. Neuropilin-1 deficiency in vascular smooth muscle cells is associated with hereditary hemorrhagic telangiectasia arteriovenous malformations. JCI Insight 2022; 7:155565. [PMID: 35380991 PMCID: PMC9090252 DOI: 10.1172/jci.insight.155565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Patients with hereditary hemorrhagic telangiectasia (HHT) have arteriovenous malformations (AVMs) with genetic mutations involving the activin-A receptor like type 1 (ACVRL1 or ALK1) and endoglin (ENG). Recent studies have shown that Neuropilin-1 (NRP-1) inhibits ALK1. We investigated the expression of NRP-1 in livers of patients with HHT and found that there was a significant reduction in NRP-1 in perivascular smooth muscle cells (SMCs). We used Nrp1SM22KO mice (Nrp1 was ablated in SMCs) and found hemorrhage, increased immune cell infiltration with a decrease in SMCs, and pericyte lining in lungs and liver in adult mice. Histologic examination revealed lung arteriovenous fistulas (AVFs) with enlarged liver vessels. Evaluation of the retina vessels at P5 from Nrp1SM22KO mice demonstrated dilated capillaries with a reduction of pericytes. In inflow artery of surgical AVFs from the Nrp1SM22KO versus WT mice, there was a significant decrease in Tgfb1, Eng, and Alk1 expression and phosphorylated SMAD1/5/8 (pSMAD1/5/8), with an increase in apoptosis. TGF-β1–stimulated aortic SMCs from Nrp1SM22KO versus WT mice have decreased pSMAD1/5/8 and increased apoptosis. Coimmunoprecipitation experiments revealed that NRP-1 interacts with ALK1 and ENG in SMCs. In summary, NRP-1 deletion in SMCs leads to reduced ALK1, ENG, and pSMAD1/5/8 signaling and reduced cell death associated with AVM formation.
Collapse
Affiliation(s)
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States of America
| | - Avishek Singh
- Department of Radiology, Mayo Clinic, Rochester, United States of America
| | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, United States of America
| | - Vivek Iyer
- Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, United States of America
| | - Scott M Thompson
- Department of Radiology, Mayo Clinic, Rochester, United States of America
| | - Michael S Torbenson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, United States of America
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States of America
| | - Sanjay Misra
- Department of Radiology, Mayo Clinic, Rochester, United States of America
| |
Collapse
|
14
|
Qiu J, Chen R, Zhao L, Lian C, Liu Z, Zhu X, Cui J, Wang S, Wang M, Huang Y, Wang S, Wang J. Circular RNA circGSE1 promotes angiogenesis in ageing mice by targeting the miR-323-5p/NRP1 axis. Aging (Albany NY) 2022; 14:3049-3069. [PMID: 35366240 PMCID: PMC9037273 DOI: 10.18632/aging.203988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Age is an important factor in many cardiovascular diseases, in which endothelial cells (ECs) play an important role. Circular RNAs (circRNAs) have been reported in many cardiovascular diseases, but their role in ageing EC-related angiogenesis is unclear. We aimed to identify a functional circRNA that regulates angiogenesis during ageing and explore its specific mechanism. In this study, we searched for differentially expressed circRNAs in old endothelial cells (OECs) and young endothelial cells (YECs) by circRNA sequencing and found that circGSE1 was significantly downregulated in OECs. Our study showed that circGSE1 could promote the proliferation, migration and tube formation of OECs in vitro. In a mouse model of femoral artery ligation and ischemia, circGSE1 promoted blood flow recovery and angiogenesis in the ischemic limbs of ageing mice. Mechanistically, we found that overexpressing circGSE1 reduced miR-323-5p expression, increased neuropilin-1 (NRP1) expression, and promoted proliferation, migration, and tube formation in OECs, while knocking down circGSE1 increased miR-323-5p expression, reduced NRP1 expression, and inhibited proliferation, migration, and tube formation in YECs. During EC ageing, circGSE1 may act through the miR-323-5p/NRP1 axis and promote endothelial angiogenesis in mice. Finally, the circGSE1/miR-323-5p/NRP1 axis could serve as a potential and promising therapeutic target for angiogenesis during ageing.
Collapse
Affiliation(s)
- Jiacong Qiu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Rencong Chen
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Lei Zhao
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Chong Lian
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Zhen Liu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Xiaonan Zhu
- Department of Pharmacology Laboratory, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Jin Cui
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Siwen Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Mingshan Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Yingxiong Huang
- Department of Emergency, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Shenming Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Jinsong Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| |
Collapse
|
15
|
Kim S, Min G, Kim B, Lee D, Lee M, Ko JH, Kwon HS. Novel Dual-Targeting Antibody Fragment IDB0062 Overcomes Anti-Vascular Endothelial Growth Factor Drug Limitations in Age-Related Macular Degeneration. Transl Vis Sci Technol 2021; 10:35. [PMID: 34967833 PMCID: PMC8727311 DOI: 10.1167/tvst.10.14.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose Repeated administration of anti–vascular endothelial growth factor drugs to treat age-related macular degeneration leads to resistance. To overcome this drawback, we developed the novel recombinant dual-targeting antibody fragment IDB0062, which is comprised of the anti–vascular endothelial growth factor A Fab and neuropilin 1-targeting peptide, and we assessed its properties. Methods We compared the in vitro activity of IDB0062 and conventional drugs using cell proliferation, wound healing, and Transwell assays. The in vivo efficacy of IDB0062 was determined using mouse choroidal neovascularization and oxygen-induced retinopathy models. To evaluate the ocular distribution of IDB0062, we intravitreally administered IDB0062 and ranibizumab to cynomolgus monkeys and measured the retinal drug levels. Results IDB0062 effectively inhibited not only vascular endothelial growth factor A in vitro but also placenta growth factor 2, vascular endothelial growth factor B, and platelet-derived growth factor BB, which induce vascular endothelial growth factor A–independent angiogenesis. In addition, IDB0062 showed non-inferior efficacy compared with aflibercept in vivo despite the low selectivity for mouse vascular endothelial growth factor A. In the monkey intravitreal pharmacokinetic study, IDB0062 improved drug distribution in the retina compared with ranibizumab, confirming the accelerated onset of pharmacological action when IDB0062 is injected in the vitreous humor. Conclusions Through neuropilin 1 binding, IDB0062 can improve the efficacy and accelerate the onset of pharmacological action in the posterior segment, which is targeted for macular degeneration, thereby improving drug responsiveness in drug-resistant patients. Translational Relevance Considering its novel mechanism of action, IDB0062 may help in controlling resistance to conventional anti–vascular endothelial growth factor drugs in clinical settings.
Collapse
Affiliation(s)
- Seongbeom Kim
- Research Laboratory, ILDONG Pharmaceutical Co., Ltd., Hwaseong-si, Korea
| | - Gihong Min
- Research Laboratory, ILDONG Pharmaceutical Co., Ltd., Hwaseong-si, Korea
| | - Bomin Kim
- Research Laboratory, ILDONG Pharmaceutical Co., Ltd., Hwaseong-si, Korea
| | - Doseop Lee
- Research Laboratory, ILDONG Pharmaceutical Co., Ltd., Hwaseong-si, Korea
| | - Myongjae Lee
- Research Laboratory, ILDONG Pharmaceutical Co., Ltd., Hwaseong-si, Korea
| | - Jong-Hee Ko
- Research Laboratory, ILDONG Pharmaceutical Co., Ltd., Hwaseong-si, Korea
| | - Hyuk-Sang Kwon
- Research Laboratory, ILDONG Pharmaceutical Co., Ltd., Hwaseong-si, Korea
| |
Collapse
|
16
|
Dyer LA, Rugonyi S. Fetal Blood Flow and Genetic Mutations in Conotruncal Congenital Heart Disease. J Cardiovasc Dev Dis 2021; 8:90. [PMID: 34436232 PMCID: PMC8397097 DOI: 10.3390/jcdd8080090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022] Open
Abstract
In congenital heart disease, the presence of structural defects affects blood flow in the heart and circulation. However, because the fetal circulation bypasses the lungs, fetuses with cyanotic heart defects can survive in utero but need prompt intervention to survive after birth. Tetralogy of Fallot and persistent truncus arteriosus are two of the most significant conotruncal heart defects. In both defects, blood access to the lungs is restricted or non-existent, and babies with these critical conditions need intervention right after birth. While there are known genetic mutations that lead to these critical heart defects, early perturbations in blood flow can independently lead to critical heart defects. In this paper, we start by comparing the fetal circulation with the neonatal and adult circulation, and reviewing how altered fetal blood flow can be used as a diagnostic tool to plan interventions. We then look at known factors that lead to tetralogy of Fallot and persistent truncus arteriosus: namely early perturbations in blood flow and mutations within VEGF-related pathways. The interplay between physical and genetic factors means that any one alteration can cause significant disruptions during development and underscore our need to better understand the effects of both blood flow and flow-responsive genes.
Collapse
Affiliation(s)
- Laura A. Dyer
- Department of Biology, University of Portland, Portland, OR 97203, USA;
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
17
|
Peach CJ, Kilpatrick LE, Woolard J, Hill SJ. Use of NanoBiT and NanoBRET to monitor fluorescent VEGF-A binding kinetics to VEGFR2/NRP1 heteromeric complexes in living cells. Br J Pharmacol 2021; 178:2393-2411. [PMID: 33655497 DOI: 10.1111/bph.15426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/06/2021] [Accepted: 02/23/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE VEGF-A is a key mediator of angiogenesis, primarily signalling via VEGF receptor 2 (VEGFR2). Endothelial cells also express the co-receptor neuropilin-1 (NRP1) that potentiates VEGF-A/VEGFR2 signalling. VEGFR2 and NRP1 had distinct real-time ligand binding kinetics when monitored using BRET. We previously characterised fluorescent VEGF-A isoforms tagged at a single site with tetramethylrhodamine (TMR). Here, we explored differences between VEGF-A isoforms in living cells that co-expressed both receptors. EXPERIMENTAL APPROACH Receptor localisation was monitored in HEK293T cells expressing both VEGFR2 and NRP1 using membrane-impermeant HaloTag and SnapTag technologies. To isolate ligand binding pharmacology at a defined VEGFR2/NRP1 complex, we developed an assay using NanoBiT complementation technology whereby heteromerisation is required for luminescence emissions. Binding affinities and kinetics of VEGFR2-selective VEGF165 b-TMR and non-selective VEGF165 a-TMR were monitored using BRET from this defined complex. KEY RESULTS Cell surface VEGFR2 and NRP1 were co-localised and formed a constitutive heteromeric complex. Despite being selective for VEGFR2, VEGF165 b-TMR had a distinct kinetic ligand binding profile at the complex that largely remained elevated in cells over 90 min. VEGF165 a-TMR bound to the VEGFR2/NRP1 complex with kinetics comparable to those of VEGFR2 alone. Using a binding-dead mutant of NRP1 did not affect the binding kinetics or affinity of VEGF165 a-TMR. CONCLUSION AND IMPLICATIONS This NanoBiT approach enabled real-time ligand binding to be quantified in living cells at 37°C from a specified complex between a receptor TK and its co-receptor for the first time.
Collapse
Affiliation(s)
- Chloe J Peach
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
- Division of Bimolecular Sciences and Medicinal Chemistry, Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| |
Collapse
|
18
|
Chemical Inhibitors of Dynamin Exert Differential Effects in VEGF Signaling. Cells 2021; 10:cells10050997. [PMID: 33922806 PMCID: PMC8145957 DOI: 10.3390/cells10050997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/10/2023] Open
Abstract
VEGFR2 is the main receptor and mediator of the vasculogenic and angiogenic activity of VEGF. Activated VEGFR2 internalizes through clathrin-mediated endocytosis and macropinocytosis. As dynamin is a key regulator of the clathrin pathway, chemical inhibitors of dynamin are commonly used to assess the role of the clathrin route in receptor signaling. However, drugs may also exert off-target effects. Here, we compare the effects of three dynamin inhibitors, dynasore, dyngo 4a and dynole, on VEGFR2 internalization and signaling. Although these drugs consistently inhibit clathrin-mediated endocytosis of both transferrin (a typical cargo of this route) and VEGFR2, surprisingly, they exert contradictory effects in receptor signaling. Thus, while dynasore has no effect on phosphorylation of VEGFR2, the other two drugs are strong inhibitors. Furthermore, although dyngo does not interfere with phosphorylation of Akt, dynasore and dynole have a strong inhibitory effect. These inconsistent effects suggest that the above dynamin blockers, besides inhibiting dynamin-dependent endocytosis of VEGFR2, exert additional inhibitory effects on signaling that are independent of endocytosis; i.e., they are due to off-target effects. Using a recently developed protocol, we comparatively validate the specificity of two endocytic inhibitors, dynasore and EIPA. Our findings highlight the importance of assessing whether the effect of an endocytic drug on signaling is specifically due to its interference with endocytosis or due to off-targets.
Collapse
|
19
|
Sherafat A, Pfeiffer F, Reiss AM, Wood WM, Nishiyama A. Microglial neuropilin-1 promotes oligodendrocyte expansion during development and remyelination by trans-activating platelet-derived growth factor receptor. Nat Commun 2021; 12:2265. [PMID: 33859199 PMCID: PMC8050320 DOI: 10.1038/s41467-021-22532-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/08/2021] [Indexed: 02/02/2023] Open
Abstract
Nerve-glia (NG2) glia or oligodendrocyte precursor cells (OPCs) are distributed throughout the gray and white matter and generate myelinating cells. OPCs in white matter proliferate more than those in gray matter in response to platelet-derived growth factor AA (PDGF AA), despite similar levels of its alpha receptor (PDGFRα) on their surface. Here we show that the type 1 integral membrane protein neuropilin-1 (Nrp1) is expressed not on OPCs but on amoeboid and activated microglia in white but not gray matter in an age- and activity-dependent manner. Microglia-specific deletion of Nrp1 compromised developmental OPC proliferation in white matter as well as OPC expansion and subsequent myelin repair after acute demyelination. Exogenous Nrp1 increased PDGF AA-induced OPC proliferation and PDGFRα phosphorylation on dissociated OPCs, most prominently in the presence of suboptimum concentrations of PDGF AA. These findings uncover a mechanism of regulating oligodendrocyte lineage cell density that involves trans-activation of PDGFRα on OPCs via Nrp1 expressed by adjacent microglia.
Collapse
Affiliation(s)
- Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Friederike Pfeiffer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Alexander M Reiss
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - William M Wood
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
- The Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
20
|
Luengas-Martinez A, Hardman-Smart J, Paus R, Young HS. Vascular endothelial growth factor-A as a promising therapeutic target for the management of psoriasis. Exp Dermatol 2020; 29:687-698. [PMID: 32654325 DOI: 10.1111/exd.14151] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
Vascular endothelial growth factor-A (VEGF-A), the main angiogenic mediator, plays a critical role in the pathogenesis of several inflammatory immune-mediated diseases, including psoriasis. Even though anti-angiogenic therapies, such as VEGF inhibitors, are licensed for the treatment of various cancers and eye disease, VEGF-targeting interventions are not part of current psoriasis therapy. In this viewpoint essay, we argue that the existing preclinical research evidence on the role of VEGF-A in the pathogenesis of psoriasis as well as clinical observations in patients who have experienced psoriasis remission during oncological anti-VEGF-A therapy strongly suggests to systematically explore angiogenesis targeting also in the management of psoriasis. We also point out that some psoriasis therapies decrease circulating levels of VEGF-A and normalise the psoriasis-associated vascular pathology in the papillary dermis of plaques of psoriasis and that a subset of patients with constitutionally high levels of VEGF-A may benefit most from the anti-angiogenic therapy we advocate here. Given that novel, well-targeted personalised medicine therapies for the development of psoriasis need to be developed, we explore the hypothesis that VEGF-A and signalling through its receptors constitute a promising target for therapeutic intervention in the future management of psoriasis.
Collapse
Affiliation(s)
- Andrea Luengas-Martinez
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | | | - Ralf Paus
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Monasterium Laboratory, Muenster, Germany
| | - Helen S Young
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Neuropilin: Handyman and Power Broker in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:31-67. [PMID: 32030684 DOI: 10.1007/978-3-030-35582-1_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neuropilin-1 and neuropilin-2 form a small family of transmembrane receptors, which, due to the lack of a cytosolic protein kinase domain, act primarily as co-receptors for various ligands. Performing at the molecular level both the executive and organizing functions of a handyman as well as of a power broker, they are instrumental in controlling the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. In this setting, the various neuropilin ligands and interaction partners on various cells of the tumor microenvironment, such as cancer cells, endothelial cells, cancer-associated fibroblasts, and immune cells, are surveyed. The suitability of various neuropilin-targeting substances and the intervention in neuropilin-mediated interactions is considered as a possible building block of tumor therapy.
Collapse
|
22
|
Morin E, Lindskog C, Johansson M, Egevad L, Sandström P, Harmenberg U, Claesson-Welsh L, Sjöberg E. Perivascular Neuropilin-1 expression is an independent marker of improved survival in renal cell carcinoma. J Pathol 2020; 250:387-396. [PMID: 31880322 PMCID: PMC7155095 DOI: 10.1002/path.5380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/28/2019] [Accepted: 12/20/2019] [Indexed: 01/13/2023]
Abstract
Renal cell carcinoma (RCC) treatment has improved in the last decade with the introduction of drugs targeting tumor angiogenesis. However, the 5‐year survival of metastatic disease is still only 10–15%. Here, we explored the prognostic significance of compartment‐specific expression of Neuropilin 1 (NRP1), a co‐receptor for vascular endothelial growth factor (VEGF). NRP1 expression was analyzed in RCC tumor vessels, in perivascular tumor cells, and generally in the tumor cell compartment. Moreover, complex formation between NRP1 and the main VEGF receptor, VEGFR2, was determined. Two RCC tissue microarrays were used; a discovery cohort consisting of 64 patients and a validation cohort of 314 patients. VEGFR2/NRP1 complex formation in cis (on the same cell) and trans (between cells) configurations was determined by in situ proximity ligation assay (PLA), and NRP1 protein expression in three compartments (endothelial cells, perivascular tumor cells, and general tumor cell expression) was determined by immunofluorescent staining. Expression of NRP1 in perivascular tumor cells was explored as a marker for RCC survival in the two RCC cohorts. Results were further validated using a publicly available gene expression dataset of clear cell RCC (ccRCC). We found that VEGFR2/NRP1 trans complexes were detected in 75% of the patient samples. The presence of trans VEGFR2/NRP1 complexes or perivascular NRP1 expression was associated with a reduced tumor vessel density and size. When exploring NRP1 as a biomarker for RCC prognosis, perivascular NRP1 and general tumor cell NRP1 protein expression correlated with improved survival in the two independent cohorts, and significant results were obtained also at the mRNA level using the publicly available ccRCC gene expression dataset. Only perivascular NRP1 expression remained significant in multivariable analysis. Our work shows that perivascular NRP1 expression is an independent marker of improved survival in RCC patients, and reduces tumor vascularization by forming complexes in trans with VEGFR2 in the tumor endothelium. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Eric Morin
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Martin Johansson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lars Egevad
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Per Sandström
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Harmenberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Elin Sjöberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Benhadou F, Glitzner E, Brisebarre A, Swedlund B, Song Y, Dubois C, Rozzi M, Paulissen C, del Marmol V, Sibilia M, Blanpain C. Epidermal autonomous VEGFA/Flt1/Nrp1 functions mediate psoriasis-like disease. SCIENCE ADVANCES 2020; 6:eaax5849. [PMID: 31934626 PMCID: PMC6949033 DOI: 10.1126/sciadv.aax5849] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/11/2019] [Indexed: 05/25/2023]
Abstract
Psoriasis is a common chronic skin disorder characterized by keratinocyte hyperproliferation with altered differentiation accompanied by inflammation and increased angiogenesis. It remains unclear whether the first events that initiate psoriasis development occur in keratinocytes or inflammatory cells. Here, using different psoriasis mouse models, we showed that conditional deletion of Flt1 or Nrp1 in epidermal cells inhibited psoriasis mediated by Vegfa overexpression or c-Jun/JunB deletion. Administration of anti-Nrp1 antibody reverted the psoriasis phenotype. Using transcriptional and chromatin profiling of epidermal cells following Vegfa overexpression together with Flt1 or Nrp1 deletion, we identified the gene regulatory network regulated by Vegfa/Nrp1/Flt1 during psoriasis development and uncovered a key role of Fosl1 in regulating the chromatin remodeling mediated by Vegfa overexpression in keratinocytes. In conclusion, our study identifies an epidermal autonomous function of Vegfa/Nrp1/Flt1 that mediates psoriatic-like disease and demonstrates the clinical relevance of blocking Vegfa/Nrp1/Flt1 axis in psoriasis.
Collapse
Affiliation(s)
- Farida Benhadou
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
- Dermatology Department, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Elisabeth Glitzner
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna and Comprehensive Cancer Center, Vienna, Austria
| | - Audrey Brisebarre
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Benjamin Swedlund
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Milena Rozzi
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Catherine Paulissen
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Veronique del Marmol
- Dermatology Department, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna and Comprehensive Cancer Center, Vienna, Austria
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
- WELBIO, Université Libre de Bruxelles, Brussels B-1070, Belgium
| |
Collapse
|
24
|
Regulation of VEGFR2 trafficking and signaling by Rab GTPase-activating proteins. Sci Rep 2019; 9:13342. [PMID: 31527750 PMCID: PMC6746989 DOI: 10.1038/s41598-019-49646-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR2) and its ligands (VEGFs) are crucial players in vasculogenesis and angiogenesis. General blocking of this signaling system with antibodies or small molecule inhibitors is an established strategy to treat cancer and age-related macular degeneration. Nevertheless, the activated receptor can signal to discrete downstream signaling pathways and the equilibrium between these pathways is modulated by coreceptors and distinct isoforms of VEGF. Here we investigated the influence of Rab GTPase activating proteins (RabGAPs) on VEGFR2 signaling, tube formation, and migration of endothelial cells. We demonstrate that members of the TBC1D10 subfamily of RabGAPs have opposite effects. Whereas TBC1D10A leads to increased Erk1/2 signaling, TBC1D10B lowered Erk1/2 and p38 signaling and reduced tube formation in vitro. TBC1D10A is a RabGAP acting on RAB13 that was shown before to play a role in angiogenesis and we could indeed show colocalization of these two proteins with VEGFR2 in activated cells. In addition, we observed that cells expressing TBC1D10B show lower expression of VEGFR2 and NRP1 on filopodia of activated cells. Taken together, our systematic analysis of influence of RabGAPs on VEGFR2 signaling identifies the TBC1D10 subfamily members as modulators of angiogenesis.
Collapse
|
25
|
Kardideh B, Samimi Z, Norooznezhad F, Kiani S, Mansouri K. Autophagy, cancer and angiogenesis: where is the link? Cell Biosci 2019; 9:65. [PMID: 31428311 PMCID: PMC6693242 DOI: 10.1186/s13578-019-0327-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/04/2019] [Indexed: 01/12/2023] Open
Abstract
Background Autophagy is a catabolic process for degradation of intracellular components. Damaged proteins and organelles are engulfed in double-membrane vesicles ultimately fused with lysosomes. These vesicles, known as phagophores, develop to form autophagosomes. Encapsulated components are degraded after autophagosomes and lysosomes are fused. Autophagy clears denatured proteins and damaged organelles to produce macromolecules further reused by cells. This process is vital to cell homeostasis under both physiologic and pathologic conditions. Main body While the role of autophagy in cancer is quite controversial, the majority of studies introduce it as an anti-tumorigenesis mechanism. There are evidences confirming this role of autophagy in cancer. Mutations and monoallelic deletions have been demonstrated in autophagy-related genes correlating with cancer promotion. Another pathway through which autophagy suppresses tumorigenesis is cell cycle. On the other hand, under hypoxia and starvation condition, tumors use angiogenesis to provide nutrients. Also, autophagy flux is highlighted in vessel cell biology and vasoactive substances secretion from endothelial cells. The matrix proteoglycans such as Decorin and Perlecan could also interfere with angiogenesis and autophagy signaling pathway in endothelial cells (ECs). It seems that the connection between autophagy and angiogenesis in the tumor microenvironment is very important in determining the fate of cancer cells. Conclusion Matrix glycoproteins can regulate autophagy and angiogenesis linkage in tumor microenvironment. Also, finding details of how autophagy and angiogenesis correlate in cancer will help adopt more effective therapeutic approaches.
Collapse
Affiliation(s)
- Bahareh Kardideh
- 1Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,2Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6714967346 Iran
| | - Zahra Samimi
- 1Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Norooznezhad
- 2Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6714967346 Iran
| | - Sarah Kiani
- 2Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6714967346 Iran
| | - Kamran Mansouri
- 2Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6714967346 Iran.,3Molecular Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
26
|
Carretero-Ortega J, Chhangawala Z, Hunt S, Narvaez C, Menéndez-González J, Gay CM, Zygmunt T, Li X, Torres-Vázquez J. GIPC proteins negatively modulate Plexind1 signaling during vascular development. eLife 2019; 8:e30454. [PMID: 31050647 PMCID: PMC6499541 DOI: 10.7554/elife.30454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Semaphorins (SEMAs) and their Plexin (PLXN) receptors are central regulators of metazoan cellular communication. SEMA-PLXND1 signaling plays important roles in cardiovascular, nervous, and immune system development, and cancer biology. However, little is known about the molecular mechanisms that modulate SEMA-PLXND1 signaling. As PLXND1 associates with GIPC family endocytic adaptors, we evaluated the requirement for the molecular determinants of their association and PLXND1's vascular role. Zebrafish that endogenously express a Plxnd1 receptor with a predicted impairment in GIPC binding exhibit low penetrance angiogenesis deficits and antiangiogenic drug hypersensitivity. Moreover, gipc mutant fish show angiogenic impairments that are ameliorated by reducing Plxnd1 signaling. Finally, GIPC depletion potentiates SEMA-PLXND1 signaling in cultured endothelial cells. These findings expand the vascular roles of GIPCs beyond those of the Vascular Endothelial Growth Factor (VEGF)-dependent, proangiogenic GIPC1-Neuropilin 1 complex, recasting GIPCs as negative modulators of antiangiogenic PLXND1 signaling and suggest that PLXND1 trafficking shapes vascular development.
Collapse
Affiliation(s)
- Jorge Carretero-Ortega
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Zinal Chhangawala
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Shane Hunt
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Carlos Narvaez
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Javier Menéndez-González
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Carl M Gay
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Tomasz Zygmunt
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Xiaochun Li
- Department of Population HealthNew York University School of MedicineNew YorkUnited States
| | - Jesús Torres-Vázquez
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| |
Collapse
|
27
|
Barman S, Das G, Gupta V, Mondal P, Jana B, Bhunia D, Khan J, Mukherjee D, Ghosh S. Dual-Arm Nanocapsule Targets Neuropilin-1 Receptor and Microtubule: A Potential Nanomedicine Platform. Mol Pharm 2019; 16:2522-2531. [PMID: 31009223 DOI: 10.1021/acs.molpharmaceut.9b00123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Surajit Barman
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Gaurav Das
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Varsha Gupta
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Prasenjit Mondal
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Batakrishna Jana
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Debmalya Bhunia
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Juhee Khan
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Deepshikha Mukherjee
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
28
|
Gong B, Li Z, Xiao W, Li G, Ding S, Meng A, Jia S. Sec14l3 potentiates VEGFR2 signaling to regulate zebrafish vasculogenesis. Nat Commun 2019; 10:1606. [PMID: 30962435 PMCID: PMC6453981 DOI: 10.1038/s41467-019-09604-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) regulates vasculogenesis by using its tyrosine kinase receptors. However, little is known about whether Sec14-like phosphatidylinositol transfer proteins (PTP) are involved in this process. Here, we show that zebrafish sec14l3, one of the family members, specifically participates in artery and vein formation via regulating angioblasts and subsequent venous progenitors’ migration during vasculogenesis. Vascular defects caused by sec14l3 depletion are partially rescued by restoration of VEGFR2 signaling at the receptor or downstream effector level. Biochemical analyses show that Sec14l3/SEC14L2 physically bind to VEGFR2 and prevent it from dephosphorylation specifically at the Y1175 site by peri-membrane tyrosine phosphatase PTP1B, therefore potentiating VEGFR2 signaling activation. Meanwhile, Sec14l3 and SEC14L2 interact with RAB5A/4A and facilitate the formation of their GTP-bound states, which might be critical for VEGFR2 endocytic trafficking. Thus, we conclude that Sec14l3 controls vasculogenesis in zebrafish via the regulation of VEGFR2 activation. The growth factor VEGF is known to regulate vasculogenesis but the downstream pathways activated are unclear. Here, the authors report that Sec14l3, a member of the PITP (phosphatidyl inositol transfer proteins) family regulates the formation of zebrafish vasculature by promoting VEGFR2 endocytic trafficking.
Collapse
Affiliation(s)
- Bo Gong
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Zhihao Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Wanghua Xiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Guangyuan Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Shihui Ding
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Anming Meng
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| | - Shunji Jia
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
29
|
Chen W, Xia P, Wang H, Tu J, Liang X, Zhang X, Li L. The endothelial tip-stalk cell selection and shuffling during angiogenesis. J Cell Commun Signal 2019; 13:291-301. [PMID: 30903604 DOI: 10.1007/s12079-019-00511-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Angiogenesis is a critical, fine-tuned, multi-staged biological process. Tip-stalk cell selection and shuffling are the building blocks of sprouting angiogenesis. Accumulated evidences show that tip-stalk cell selection and shuffling are regulated by a variety of physical, chemical and biological factors, especially the interaction among multiple genes, their products and environments. The classic Notch-VEGFR, Slit-Robo, ECM-binding integrin, semaphorin and CCN family play important roles in tip-stalk cell selection and shuffling. In this review, we outline the progress and prospect in the mechanism and the roles of the various molecules and related signaling pathways in endothelial tip-stalk cell selection and shuffling. In the future, the regulators of tip-stalk cell selection and shuffling would be the potential markers and targets for angiogenesis.
Collapse
Affiliation(s)
- Wenqi Chen
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Xia
- Department of Anesthesia, Jilin Provincial People's Hospital, Changchun, China
| | - Heping Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Jihao Tu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xinyue Liang
- The First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- The First Hospital of Jilin University, Changchun, China. .,Institute of Immunology, Jilin University, Changchun, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
30
|
Lam I, Pickering CM, Mac Gabhann F. Context-dependent regulation of receptor tyrosine kinases: Insights from systems biology approaches. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1437. [PMID: 30255986 PMCID: PMC6537588 DOI: 10.1002/wsbm.1437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 06/07/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Receptor tyrosine kinases (RTKs) are cell membrane proteins that provide cells with the ability to sense proteins in their environments. Many RTKs are essential to development and organ growth. Derangement of RTKs-by mutation or by overexpression-is central to several developmental and adult disorders including cancer, short stature, and vascular pathologies. The mechanism of action of RTKs is complex and is regulated by contextual components, including the existence of multiple competing ligands and receptors in many families, the intracellular location of the RTK, the dynamic and cell-specific coexpression of other RTKs, and the commonality of downstream signaling pathways. This means that both the state of the cell and the microenvironment outside the cell play a role, which makes sense given the pivotal location of RTKs as the nexus linking the extracellular milieu to intracellular signaling and modification of cell behavior. In this review, we describe these different contextual components through the lens of systems biology, in which both computational modeling and experimental "omics" approaches have been used to better understand RTK networks. The complexity of these networks is such that using these systems biology approaches is necessary to get a handle on the mechanisms of pathology and the design of therapeutics targeting RTKs. In particular, we describe in detail three concrete examples (involving ErbB3, VEGFR2, and AXL) that illustrate how systems approaches can reveal key mechanistic and therapeutic insights. This article is categorized under: Biological Mechanisms > Cell Signaling Models of Systems Properties and Processes > Mechanistic Models Translational, Genomic, and Systems Medicine > Therapeutic Methods.
Collapse
Affiliation(s)
- Inez Lam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Christina M Pickering
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
31
|
Ding Z, Zhu J, Zeng Y, Du W, Zhang Y, Tang H, Zheng Y, Qin H, Liu Z, Huang JA. The regulation of Neuropilin 1 expression by miR-338-3p promotes non-small cell lung cancer via changes in EGFR signaling. Mol Carcinog 2019; 58:1019-1032. [PMID: 30811684 PMCID: PMC6593466 DOI: 10.1002/mc.22990] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Neuropilin 1 (NRP1) is a transmembrane glycoprotein that acts as a co‐receptor for multiple extracellular ligands and typically performs growth‐promoting functions in cancer cells. Accumulating evidence indicates that NRP1 is upregulated, and may be an independent predictor of cancer relapse and poor survival, in many cancer types, including non‐small cell lung cancer (NSCLC). Recent evidence suggests that NRP1 affects tumour cell viability via the epidermal growth factor receptor (EGFR) and Erb‐B2 receptor tyrosine kinase 2 (ErbB2) signalling pathways in venous endothelial cells and in multiple cancer cells. In the present study, we aimed to evaluate the role of NRP1 in NSCLC tumourigenesis and to explore a new post‐transcriptional mechanism of NRP1 regulation via a microRNA that mediates EGFR signalling regulation in lung carcinogenesis. The results showed that miR‐338‐3p is poorly expressed and NRP1 is overexpressed in NSCLC tissues relative to their levels in adjacent noncancerous tissues. Luciferase reporter assays, quantitative real‐time reverse transcription PCR, and Western blot analyses showed that NRP1 is a direct target of miR‐338‐3p. Overexpression of miR‐338‐3p in NSCLC cell lines inhibited cell proliferation in vitro and in vivo. Moreover, cell migration and invasion were inhibited by miR‐338‐3p overexpression. These effects occurred via the EGF signalling pathway. Our data revealed a new post‐transcriptional mechanism by which miR‐338‐3p directly targets NRP1; this mechanism plays a role in enhancing drug sensitivity in EGFR wild‐type patients with NSCLC.
Collapse
Affiliation(s)
- Zongli Ding
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China.,Department of Respiratory Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Jianjie Zhu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Yuanyuan Zeng
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Wenwen Du
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Yang Zhang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Haicheng Tang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yulong Zheng
- Department of Respiratory Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Hualong Qin
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zeyi Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Jian-An Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| |
Collapse
|
32
|
Thoreau F, Vanwonterghem L, Henry M, Coll JL, Boturyn D. Design of RGD-ATWLPPR peptide conjugates for the dual targeting of α Vβ 3 integrin and neuropilin-1. Org Biomol Chem 2019; 16:4101-4107. [PMID: 29774910 DOI: 10.1039/c8ob00669e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeting the tumour microenvironment is a promising strategy to detect and/or treat cancer. The design of selective compounds that co-target several receptors frequently overexpressed in solid tumours may allow a reliable and selective detection of tumours. Here we report the modular synthesis of compounds encompassing ligands of αVβ3 integrin and neuropilin-1 that are overexpressed in the tumour microenvironment. These compounds were then evaluated through cellular experiments and imaging of tumours in mice. We observed that the peptide that displays both ligands is more specifically accumulating in the tumours than in controls. Simultaneous interaction with αVβ3 integrin and NRP1 induces NRP1 stabilization at the cell membrane surface which is not observed with the co-injection of the controls.
Collapse
Affiliation(s)
- Fabien Thoreau
- Univ. Grenoble Alpes, CNRS, Department of Molecular Chemistry, UMR 5250, F-38000 Grenoble, France.
| | | | | | | | | |
Collapse
|
33
|
Niland S, Eble JA. Neuropilins in the Context of Tumor Vasculature. Int J Mol Sci 2019; 20:ijms20030639. [PMID: 30717262 PMCID: PMC6387129 DOI: 10.3390/ijms20030639] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 01/09/2023] Open
Abstract
Neuropilin-1 and Neuropilin-2 form a small family of plasma membrane spanning receptors originally identified by the binding of semaphorin and vascular endothelial growth factor. Having no cytosolic protein kinase domain, they function predominantly as co-receptors of other receptors for various ligands. As such, they critically modulate the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. This review highlights the diverse neuropilin ligands and interacting partners on endothelial cells, which are relevant in the context of the tumor vasculature and the tumor microenvironment. In addition to tumor cells, the latter contains cancer-associated fibroblasts, immune cells, and endothelial cells. Based on the prevalent neuropilin-mediated interactions, the suitability of various neuropilin-targeted substances for influencing tumor angiogenesis as a possible building block of a tumor therapy is discussed.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
34
|
Peng K, Bai Y, Zhu Q, Hu B, Xu Y. Targeting VEGF–neuropilin interactions: a promising antitumor strategy. Drug Discov Today 2019; 24:656-664. [PMID: 30315890 DOI: 10.1016/j.drudis.2018.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Kewen Peng
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Bai
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Qihua Zhu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Hu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yungen Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
35
|
Schaaf MB, Houbaert D, Meçe O, Agostinis P. Autophagy in endothelial cells and tumor angiogenesis. Cell Death Differ 2019; 26:665-679. [PMID: 30692642 PMCID: PMC6460396 DOI: 10.1038/s41418-019-0287-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
In mammalian cells, autophagy is the major pathway for the degradation and recycling of obsolete and potentially noxious cytoplasmic materials, including proteins, lipids, and whole organelles, through the lysosomes. Autophagy maintains cellular and tissue homeostasis and provides a mechanism to adapt to extracellular cues and metabolic stressors. Emerging evidence unravels a critical function of autophagy in endothelial cells (ECs), the major components of the blood vasculature, which delivers nutrients and oxygen to the parenchymal tissue. EC-intrinsic autophagy modulates the response of ECs to various metabolic stressors and has a fundamental role in redox homeostasis and EC plasticity. In recent years moreover, genetic evidence suggests that autophagy regulates pathological angiogenesis, a hallmark of solid tumors. In the hypoxic, nutrient-deprived, and pro-angiogenic tumor microenvironment, heightened autophagy in the blood vessels is emerging as a critical mechanism enabling ECs to dynamically accommodate their higher bioenergetics demands to the extracellular environment and connect with other components of the tumor stroma through paracrine signaling. In this review, we provide an overview of the major cellular mechanisms regulated by autophagy in ECs and discuss their potential role in tumor angiogenesis, tumor growth, and response to anticancer therapy. Vascular homeostasis relies on the proper behavior of endothelial cells (ECs). Emerging evidence indicate a critical role of autophagy, a vesicular process for lysosomal degradation of cytoplasmic content, in EC biology. While EC-intrinsic autophagy promotes EC function and quiescent state through redox homeostasis and possibly metabolic control, a role for EC-associated autophagy in cancer seems more complex. ![]()
Collapse
Affiliation(s)
- Marco B Schaaf
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Diede Houbaert
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Odeta Meçe
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium.
| |
Collapse
|
36
|
Wang G, Shi B, Fu Y, Zhao S, Qu K, Guo Q, Li K, She J. Hypomethylated gene NRP1 is co-expressed with PDGFRB and associated with poor overall survival in gastric cancer patients. Biomed Pharmacother 2019; 111:1334-1341. [PMID: 30841447 DOI: 10.1016/j.biopha.2019.01.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/03/2019] [Accepted: 01/06/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) has been an increasingly serious problem in public health. However, there is still a lack of efficient approach to diagnosis and treatment in time, especially in the field of targeted therapy. Increasing evidences demonstrated that DNA methylation plays an essential role in tumorigenesis and progression of GC. Thus the present study aims to identify DNA methylation-based prognostic biomarkers in GC. Two methylation array datasets (GSE25869 and GSE30601) and RNA-seq based gene profiling dataset (TCGA-STAD) were employed for exploring candidate DNA methylation-based biomarkers. Univariate Cox regression analysis was used to select the most efficient prognostic genes in GC patients. Weighted gene correlation network analysis (WGCNA) was performed to screen the cluster of co-expressed genes. As a result, our data proved that NRP1 was a hypomethylated / upregulated gene in GC tissues, and PDGFRB was strongly co-expressed with it. Both of them were significantly associated with the overall survival of patients. More importantly, high expression levels of NRP1 and PDGFRB were associated with malignant phenotypes in GC patients, including Laurén histological diffuse type and higher histological grade. Patients carrying high expression level of NRP1 and PDGFRB had a nearly two-fold increased death risk than others. In summary, the hypomethylated gene, NRP1, and its co-expressed gene, PDGFRB, were significantly correlated with tumor malignant phenotypes, which might serve as potential prognostic biomarkers for GC patients.
Collapse
Affiliation(s)
- Guanghui Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Bin Shi
- Department of Gastroenterology Surgery, Liaocheng People's Hospital, Taishan Medical College, Liaocheng, 252000, Shandong, China
| | - Yunong Fu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shasha Zhao
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qingbo Guo
- Department of Clinical Laboratory, Yidu Central Hospital of Weifang, Weifang, 262500, Shandong, China
| | - Ke Li
- Department of Central Laboratory, Liaocheng People's Hospital, Taishan Medical College, Liaocheng, 252000, Shandong, China.
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
37
|
Tasev D, Dekker-Vroling L, van Wijhe M, Broxterman HJ, Koolwijk P, van Hinsbergh VWM. Hypoxia Impairs Initial Outgrowth of Endothelial Colony Forming Cells and Reduces Their Proliferative and Sprouting Potential. Front Med (Lausanne) 2018; 5:356. [PMID: 30619865 PMCID: PMC6306419 DOI: 10.3389/fmed.2018.00356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/06/2018] [Indexed: 01/09/2023] Open
Abstract
Vascular homeostasis and regeneration in ischemic tissue relies on intrinsic competence of the tissue to rapidly recruit endothelial cells for vascularization. The mononuclear cell (MNC) fraction of blood contains circulating progenitors committed to endothelial lineage. These progenitors give rise to endothelial colony-forming cells (ECFCs) that actively participate in neovascularization of ischemic tissue. To evaluate if the initial clonal outgrowth of ECFCs from cord (CB) and peripheral blood (PB) was stimulated by hypoxic conditions, MNCs obtained from CB and PB were subjected to 20 and 1% O2 cell culture conditions. Clonal outgrowth was followed during a 30 day incubation period. Hypoxia impaired the initial outgrowth of ECFC colonies from CB and also reduced their number that were developing from PB MNCs. Three days of oxygenation (20% O2) prior to hypoxia could overcome the initial CB-ECFC outgrowth. Once proliferating and subcultured the CB-ECFCs growth was only modestly affected by hypoxia; proliferation of PB-ECFCs was reduced to a similar extent (18-30% reduction). Early passages of subcultured CB- and PB-ECFCs contained only viable cells and few if any senescent cells. Tube formation by subcultured PB-ECFCs was also markedly inhibited by continuous exposure to 1% O2. Gene expression profiles point to regulation of the cell cycle and metabolism as major altered gene clusters. Finally we discuss our counterintuitive observations in the context of the important role that hypoxia has in promoting neovascularization.
Collapse
Affiliation(s)
- Dimitar Tasev
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Laura Dekker-Vroling
- Department of Medical Oncology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Michiel van Wijhe
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Henk J Broxterman
- Department of Medical Oncology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Pieter Koolwijk
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Victor W M van Hinsbergh
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
38
|
Sarabipour S, Mac Gabhann F. Tumor and endothelial cells collaborate via transcellular receptor complexes. J Pathol 2018; 247:155-157. [PMID: 30357843 DOI: 10.1002/path.5185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/11/2018] [Accepted: 10/21/2018] [Indexed: 12/26/2022]
Abstract
Many cellular signaling pathways are initiated by cell-surface ligand-sensing complexes that incorporate not just one but multiple receptors. Most studies focus on receptors coexpressed on a single cell (cis interactions), but complexes containing receptors on adjacent cells (trans interactions) are also possible. Recent work by Morin et al published in this journal provides critical evidence for such trans interactions between Neuropilin-1 (NRP1) expressed on human tumor cells and vascular endothelial growth factor receptor 2 (VEGFR2) expressed on adjacent endothelial cells, with the ligand VEGFA binding and bridging the two receptors. They show that the formation of these complexes is correlated with reduced tumor proliferation and increased patient survival. They also observe trans NRP1-VEGFA-VEGFR2 repressing angiogenesis and cis NRP1-VEGFA-VEGFR2 increasing angiogenesis in selected cancers. The distinct molecular signature of each tumor and each patient will determine which type of complexes dominate and will influence prognosis and treatment. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sarvenaz Sarabipour
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Feilim Mac Gabhann
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
39
|
Elaimy AL, Mercurio AM. Convergence of VEGF and YAP/TAZ signaling: Implications for angiogenesis and cancer biology. Sci Signal 2018; 11:11/552/eaau1165. [PMID: 30327408 DOI: 10.1126/scisignal.aau1165] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vascular endothelial growth factor (VEGF) stimulates endothelial cells to promote both developmental and pathological angiogenesis. VEGF also directly affects tumor cells and is associated with the initiation, progression, and recurrence of tumors, as well as the emergence and maintenance of cancer stem cells (CSCs). Studies have uncovered the importance of the transcriptional regulators YAP and TAZ in mediating VEGF signaling. For example, VEGF stimulates the GTPase activity of Rho family members and thereby alters cytoskeletal dynamics, which contributes to the activation of YAP and TAZ. In turn, YAP- and TAZ-mediated changes in gene expression sustain Rho family member activity and cytoskeletal effects to promote both vascular growth and remodeling in endothelial cells and the acquisition of stem-like traits in tumor cells. In this Review, we discuss how these findings further explain the pathophysiological roles of VEGF and YAP/TAZ, identify their connections to other receptor-mediated pathways, and reveal ways of therapeutically targeting their convergent signals in patients.
Collapse
Affiliation(s)
- Ameer L Elaimy
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Medical Scientist Training Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
40
|
Auriau J, Roujeau C, Belaid Choucair Z, Oishi A, Derviaux C, Roux T, Trinquet E, Hermine O, Jockers R, Dam J. Gain of affinity for VEGF165 binding within the VEGFR2/NRP1 cellular complex detected by an HTRF-based binding assay. Biochem Pharmacol 2018; 158:45-59. [PMID: 30236477 DOI: 10.1016/j.bcp.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Neuroplin 1 (NRP1), a transmembrane protein interacting with Vascular Endothelial Growth Factor VEGF-A165 (called here VEGF165) and the tyrosine kinase Receptor 2 (VEGFR2) promote angiogenesis and vascular homeostasis. In a pathophysiological context, several studies suggested that VEGFR2 and NRP1 mediate tumor development and progression. Given the involvement of the VEGF165 network in promoting tumor angiogenesis, NRP1, VEGFR2 and VEGF165 have been identified as targets for anti-angiogenic therapy. No binding assay exists to monitor specifically the binding of VEGF165 to the VEGFR2/NRP1 complex in intact cells. We established a binding assay based on the homogenous time-resolved fluorescence (HTRF®) technology. This unique binding assay enables to assess the interaction of VEGF165 with VEGFR2 or NRP1 within the VEGFR2/NRP1 complex. Ligand binding saturation experiments revealed that VEGF165 binds the VEGFR2/NRP1 complex at the cell surface with a ten to twenty-fold higher affinity compared to SNAP-VEGFR2 or SNAP-NRP1 receptors alone not engaged in the heteromeric complex. The assay allows characterizing the impact of NRP1 ligands on VEGF165 to the complex. It shows high specificity, reproducibility and robustness, making it compatible with high throughput screening (HTS) applications for identifying new VEGF165 antagonists selective for NRP1 or the VEGFR2/NRP1 complex.
Collapse
Affiliation(s)
- Johanna Auriau
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, University Sorbonne Paris Cité, Paris, France
| | - Clara Roujeau
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, University Sorbonne Paris Cité, Paris, France
| | - Zakia Belaid Choucair
- Hôpital Necker, CNRS UMR 8147, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France And THERANOVIR, Pépinière Genopole Entreprise, Evry, France
| | - Atsuro Oishi
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, University Sorbonne Paris Cité, Paris, France
| | - Carine Derviaux
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, University Sorbonne Paris Cité, Paris, France
| | - Thomas Roux
- Cisbio Bioassays, Parc Technologique Marcel Boiteux, BP84175, 30200 Codolet, France
| | - Eric Trinquet
- Cisbio Bioassays, Parc Technologique Marcel Boiteux, BP84175, 30200 Codolet, France
| | | | - Ralf Jockers
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, University Sorbonne Paris Cité, Paris, France
| | - Julie Dam
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, University Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
41
|
Morin E, Sjöberg E, Tjomsland V, Testini C, Lindskog C, Franklin O, Sund M, Öhlund D, Kiflemariam S, Sjöblom T, Claesson-Welsh L. VEGF receptor-2/neuropilin 1 trans-complex formation between endothelial and tumor cells is an independent predictor of pancreatic cancer survival. J Pathol 2018; 246:311-322. [PMID: 30027561 PMCID: PMC6221118 DOI: 10.1002/path.5141] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/16/2018] [Accepted: 07/11/2018] [Indexed: 01/01/2023]
Abstract
Unstable and dysfunctional tumor vasculature promotes cancer progression and spread. Signal transduction by the pro‐angiogenic vascular endothelial growth factor (VEGF) receptor‐2 (VEGFR2) is modulated by VEGFA‐dependent complex formation with neuropilin 1 (NRP1). NRP1 expressed on tumor cells can form VEGFR2/NRP1 trans‐complexes between tumor cells and endothelial cells which arrests VEGFR2 on the endothelial surface, thus interfering with productive VEGFR2 signaling. In mouse fibrosarcoma, VEGFR2/NRP1 trans‐complexes correlated with reduced tumor vessel branching and reduced tumor cell proliferation. Pancreatic ductal adenocarcinoma (PDAC) strongly expressed NRP1 on both tumor cells and endothelial cells, in contrast to other common cancer forms. Using proximity ligation assay, VEGFR2/NRP1 trans‐complexes were identified in human PDAC tumor tissue, and its presence was associated with reduced tumor vessel branching, reduced tumor cell proliferation, and improved patient survival after adjusting for other known survival predictors. We conclude that VEGFR2/NRP1 trans‐complex formation is an independent predictor of PDAC patient survival. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Eric Morin
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala, Sweden
| | - Elin Sjöberg
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala, Sweden
| | - Vegard Tjomsland
- University of Oslo, Department of Hepato-pancreato-biliary Surgery, Oslo University Hospital, Institute of Clinical Medicine, Oslo, Norway
| | - Chiara Testini
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala, Sweden
| | - Cecilia Lindskog
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala, Sweden
| | - Oskar Franklin
- Umeå University, Department of Surgery and Perioperative Sciences, Umeå, Sweden
| | - Malin Sund
- Umeå University, Department of Surgery and Perioperative Sciences, Umeå, Sweden
| | - Daniel Öhlund
- Umeå University, Department of Radiation Sciences, Umeå, Sweden.,Umeå University, Wallenberg Centre for Molecular Medicine, Umeå, Sweden
| | - Sara Kiflemariam
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala, Sweden
| | - Tobias Sjöblom
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala, Sweden
| | - Lena Claesson-Welsh
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala, Sweden
| |
Collapse
|
42
|
Elaimy AL, Guru S, Chang C, Ou J, Amante JJ, Zhu LJ, Goel HL, Mercurio AM. VEGF-neuropilin-2 signaling promotes stem-like traits in breast cancer cells by TAZ-mediated repression of the Rac GAP β2-chimaerin. Sci Signal 2018; 11:11/528/eaao6897. [PMID: 29717062 DOI: 10.1126/scisignal.aao6897] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The role of vascular endothelial growth factor (VEGF) signaling in cancer is not only well known in the context of angiogenesis but also important in the functional regulation of tumor cells. Autocrine VEGF signaling mediated by its co-receptors called neuropilins (NRPs) appears to be essential for sustaining the proliferation and survival of cancer stem cells (CSCs), which are implicated in mediating tumor growth, progression, and drug resistance. Therefore, understanding the mechanisms involved in VEGF-mediated support of CSCs is critical to successfully treating cancer patients. The expression of the Hippo effector TAZ is associated with breast CSCs and confers stem cell-like properties. We found that VEGF-NRP2 signaling contributed to the activation of TAZ in various breast cancer cells, which mediated a positive feedback loop that promoted mammosphere formation. VEGF-NRP2 signaling activated the GTPase Rac1, which inhibited the Hippo kinase LATS, thus leading to TAZ activity. In a complex with the transcription factor TEAD, TAZ then bound and repressed the promoter of the gene encoding the Rac GTPase-activating protein (Rac GAP) β2-chimaerin. By activating GTP hydrolysis, Rac GAPs effectively turn off Rac signaling; hence, the TAZ-mediated repression of β2-chimaerin resulted in sustained Rac1 activity in CSCs. Depletion of β2-chimaerin in non-CSCs increased Rac1 activity, TAZ abundance, and mammosphere formation. Analysis of a breast cancer patient database revealed an inverse correlation between β2-chimaerin and TAZ expression in tumors. Our findings highlight an unexpected role for β2-chimaerin in a feed-forward loop of TAZ activation and the acquisition of CSC properties.
Collapse
Affiliation(s)
- Ameer L Elaimy
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.,Medical Scientist Training Program, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Santosh Guru
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Cheng Chang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - John J Amante
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
43
|
Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE, Woolard J. Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2. Int J Mol Sci 2018; 19:E1264. [PMID: 29690653 PMCID: PMC5979509 DOI: 10.3390/ijms19041264] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial growth factor-A (VEGF-A) is a key mediator of angiogenesis, signalling via the class IV tyrosine kinase receptor family of VEGF Receptors (VEGFRs). Although VEGF-A ligands bind to both VEGFR1 and VEGFR2, they primarily signal via VEGFR2 leading to endothelial cell proliferation, survival, migration and vascular permeability. Distinct VEGF-A isoforms result from alternative splicing of the Vegfa gene at exon 8, resulting in VEGFxxxa or VEGFxxxb isoforms. Alternative splicing events at exons 5⁻7, in addition to recently identified posttranslational read-through events, produce VEGF-A isoforms that differ in their bioavailability and interaction with the co-receptor Neuropilin-1. This review explores the molecular pharmacology of VEGF-A isoforms at VEGFR2 in respect to ligand binding and downstream signalling. To understand how VEGF-A isoforms have distinct signalling despite similar affinities for VEGFR2, this review re-evaluates the typical classification of these isoforms relative to the prototypical, “pro-angiogenic” VEGF165a. We also examine the molecular mechanisms underpinning the regulation of VEGF-A isoform signalling and the importance of interactions with other membrane and extracellular matrix proteins. As approved therapeutics targeting the VEGF-A/VEGFR signalling axis largely lack long-term efficacy, understanding these isoform-specific mechanisms could aid future drug discovery efforts targeting VEGF receptor pharmacology.
Collapse
Affiliation(s)
- Chloe J Peach
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Viviane W Mignone
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
- CAPES-University of Nottingham Programme in Drug Discovery, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Maria Augusta Arruda
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
- CAPES-University of Nottingham Programme in Drug Discovery, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Diana C Alcobia
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Laura E Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| |
Collapse
|
44
|
Li B, Nie Z, Zhang D, Wu J, Peng B, Guo X, Shi Y, Cai X, Xu L, Cao F. Roles of circulating endothelial progenitor cells and endothelial cells in gastric carcinoma. Oncol Lett 2018; 15:324-330. [PMID: 29391882 PMCID: PMC5769379 DOI: 10.3892/ol.2017.7272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 09/07/2017] [Indexed: 01/17/2023] Open
Abstract
The present study aimed to investigate the role of endothelial progenitor cells (EPCs) and endothelial cells (ECs) in the peripheral blood of patients with gastric cancer (GC), and to investigate vascular endothelial growth factor (VEGF) expression and microvessel density (MVD) in GC tissues. First, 6 ml peripheral blood with added anticoagulant was collected from each of the 42 patients with GC, followed by determination of the number of EPCs and ECs by flow cytometry using the surface markers cluster of differentiation (CD)34brightCD133+CD31+CD45dim and CD34dimCD133−CD31brightCD45−, respectively. VEGF expression in patients with GC was detected by the streptomycin avidin-peroxidase immunohistochemical method, and MVD was calculated using the marker CD34. EPC and EC levels were positively associated with VEGF expression level, as well as with MVD. VEGF expression was positive in 66.67% GC cases, and its level was significantly associated with tumor-node-metastasis (TNM) stage, invasion depth and lymph-node metastasis (P<0.05). VEGF expression level was also positively associated with MVD. MVD in GC was significantly larger than that in normal tissue (P<0.01), and it was significantly associated with TNM stage (P<0.05), invasion depth (P<0.01) and lymph-node metastasis (P<0.01). EPCs in the peripheral blood have an important role in GC development, and may be a promising indicator of GC diagnosis and prognosis.
Collapse
Affiliation(s)
- Bojing Li
- Department of Gastroenterology, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| | - Zhihong Nie
- Department of Gastroenterology, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| | - Denghai Zhang
- Sino-French Cooperative Central Laboratory, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| | - Jian Wu
- Department of Pathobiology, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| | - Bin Peng
- Sino-French Cooperative Central Laboratory, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| | - Xiaoyan Guo
- Department of Gastroenterology, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| | - Yihai Shi
- Department of Gastroenterology, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| | - Xiaoyan Cai
- Department of General Surgery, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| | - Limin Xu
- Department of Laboratory Medicine, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| | - Fanfan Cao
- Sino-French Cooperative Central Laboratory, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| |
Collapse
|
45
|
Duran I, Tenney J, Warren CM, Sarukhanov A, Csukasi F, Skalansky M, Iruela-Arispe ML, Krakow D. NRP1 haploinsufficiency predisposes to the development of Tetralogy of Fallot. Am J Med Genet A 2018; 176:649-656. [PMID: 29363855 DOI: 10.1002/ajmg.a.38600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/16/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023]
Abstract
Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart defect. It involves anatomical abnormalities that change the normal flow of blood through the heart resulting in low oxygenation. Although not all of the underlying causes of TOF are completely understood, the disease has been associated with varying genetic etiologies including chromosomal abnormalities and Mendelian disorders, but can also occur as an isolated defect. In this report, we describe a familial case of TOF associated with a 1.8 Mb deletion of chromosome 10p11. Among the three genes in the region one is Neuropilin1 (NRP1), a membrane co-receptor of VEGF that modulates vasculogenesis. Hemizygous levels of NRP1 resulted in a reduced expression at the transcriptional and protein levels in patient-derived cells. Reduction of NRP1 also lead to decreased function of its activity as a co-receptor in intermolecular VEGF signaling. These findings support that diminished levels of NRP1 contribute to the development of TOF, likely through its function in mediating VEGF signal and vasculogenesis.
Collapse
Affiliation(s)
- Ivan Duran
- Department of Orthopedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California
| | - Jessica Tenney
- Department of Pediatrics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California
| | - Carmen M Warren
- Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California
| | - Anna Sarukhanov
- Department of Orthopedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California
| | - Fabiana Csukasi
- Department of Orthopedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California
| | - Mark Skalansky
- Department of Pediatrics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California
| | - Maria L Iruela-Arispe
- Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California
| | - Deborah Krakow
- Department of Orthopedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California.,Department of Human Genetics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California.,Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
46
|
Zhao K, Yuan Y, Lin B, Miao Z, Li Z, Guo Q, Lu N. LW-215, a newly synthesized flavonoid, exhibits potent anti-angiogenic activity in vitro and in vivo. Gene 2017; 642:533-541. [PMID: 29196258 DOI: 10.1016/j.gene.2017.11.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/25/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
LW-215 is a newly synthesized flavonoid, which is the derivative of wogonin. Our group has previously confirmed that wogonin has an anti-angiogenic activity, while the anti-angiogenic effect of LW-215 is unclear. In this study, we explored whether LW-215 can inhibit angiogenesis and further probed the potential molecular mechanisms. We found that LW-215 inhibited migration and tube formation in human umbilical vein endothelial cells (HUVECs) and immortalized endothelial EA.hy926 cells without a significant decrease in cell viability. Microvessels sprouting from rat aortic ring and chicken chorioallantoic membrane (CAM) model also revealed that LW-215 could suppress angiogenesis in vivo. Western blot and ELISA analysis indicated that LW-215 could prevent VEGFR2 activation though reducing VEGF autocrine other than VEGFR1. Thus, its downstream kinases, such as Akt, ERK and p38 signaling, were inhibited. Taken together, these results fully showed that LW-215 might be a promising anti-angiogenesis agent.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Yang Yuan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Binyan Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Zhaorui Miao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
47
|
Jia T, Choi J, Ciccione J, Henry M, Mehdi A, Martinez J, Eymin B, Subra G, Coll JL. Heteromultivalent targeting of integrin α vβ 3 and neuropilin 1 promotes cell survival via the activation of the IGF-1/insulin receptors. Biomaterials 2017; 155:64-79. [PMID: 29169039 DOI: 10.1016/j.biomaterials.2017.10.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 12/29/2022]
Abstract
Angiogenesis strongly depends on the activation of integrins, especially integrin αvβ3, and of neuropilin-1 (NRP-1), a co-receptor of VEGFR2. Dual-targeted molecules that simultaneously block both of them are expected have increased anti-angiogenic and antitumor activity. Toward this goal, we generated bifunctional 40 nm-sized silica nanoparticles (NPs) coated with controlled amounts of cRGD and ATWLPPR peptides and studied their affinity, selectivity and biological activity in HUVECs. Sub-nanomolar concentrations of NPs grafted either with ATWLPPR alone or in combination with cRGD exhibit potent and specific antagonist activity against VEGFR2/AKT signaling. However, a 1 nM concentration of the cRGD/ATWLPPR-heteromultivalent particles (RGD/ATW-NPs) also blocks the phosphorylation of VEGFR2 while co-inducing an unexpected long-lasting activation of AKT via IGF-1R/IR-AKT/GSK3β/eNOS signaling that stimulates cell survival and abrogates the intrinsic toxicity of silica-NPs to serum-starved HUVECs. We also showed that their repeated intravenous administration was associated with the proliferation of human U87MG tumor cells engrafted in nude mice and a dilatation of the tumor blood vessels. We present biochemical evidence for the complex cross-talk generated by the binding of the heteromultivalent NPs with αvβ3-integrin and with NRP1. In particular, we show for the first time that such heteromultivalent NPs can trans-activate IGF-1/insulin receptors and exert dose-dependent pro-survival activity. This study demonstrates the difficulties in designing targeted silica-based NPs for antiangiogenic therapies and the possible risks posed by undesirable side effects.
Collapse
Affiliation(s)
- Tao Jia
- INSERM-UGA U1209, CNRS UMR5309, Institute for Advanced Biosciences, La Tronche, France
| | - Jungyoon Choi
- INSERM-UGA U1209, CNRS UMR5309, Institute for Advanced Biosciences, La Tronche, France
| | - Jéremy Ciccione
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Maxime Henry
- INSERM-UGA U1209, CNRS UMR5309, Institute for Advanced Biosciences, La Tronche, France
| | - Ahmad Mehdi
- Institut Charles Gerhardt, UMR5253, CNRS, Université de Montpellier, ENSCM, Montpellier Cedex 05, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Béatrice Eymin
- INSERM-UGA U1209, CNRS UMR5309, Institute for Advanced Biosciences, La Tronche, France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean-Luc Coll
- INSERM-UGA U1209, CNRS UMR5309, Institute for Advanced Biosciences, La Tronche, France.
| |
Collapse
|
48
|
Neuropilin-1 modulates TGFβ signaling to drive glioblastoma growth and recurrence after anti-angiogenic therapy. PLoS One 2017; 12:e0185065. [PMID: 28938007 PMCID: PMC5609745 DOI: 10.1371/journal.pone.0185065] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/06/2017] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is a rapidly progressive brain cancer that exploits the neural microenvironment, and particularly blood vessels, for selective growth and survival. Anti-angiogenic agents such as the vascular endothelial growth factor-A (VEGF-A) blocking antibody bevacizumab yield short-term benefits to patients due to blood vessel regression and stabilization of vascular permeability. However, tumor recurrence is common, and this is associated with acquired resistance to bevacizumab. The mechanisms that drive acquired resistance and tumor recurrence in response to anti-angiogenic therapy remain largely unknown. Here, we report that Neuropilin-1 (Nrp1) regulates GBM growth and invasion by balancing tumor cell responses to VEGF-A and transforming growth factor βs (TGFβs). Nrp1 is expressed in GBM cells where it promotes TGFβ receptor internalization and signaling via Smad transcription factors. GBM that recur after bevacizumab treatment show down-regulation of Nrp1 expression, indicating that altering the balance between VEGF-A and TGFβ signaling is one mechanism that promotes resistance to anti-angiogenic agents. Collectively, these data reveal that Nrp1 plays a critical role in balancing responsiveness to VEGF-A versus TGFβ to regulate GBM growth, progression, and recurrence after anti-vascular therapy.
Collapse
|
49
|
Yamana S, Tokiyama A, Fujita H, Terao Y, Horibe S, Sasaki N, Satomi-Kobayashi S, Hirata KI, Rikitake Y. Necl-4 enhances the PLCγ–c-Raf–MEK–ERK pathway without affecting internalization of VEGFR2. Biochem Biophys Res Commun 2017; 490:169-175. [DOI: 10.1016/j.bbrc.2017.05.185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/29/2017] [Indexed: 02/03/2023]
|
50
|
Basagiannis D, Zografou S, Galanopoulou K, Christoforidis S. Dynasore impairs VEGFR2 signalling in an endocytosis-independent manner. Sci Rep 2017; 7:45035. [PMID: 28327657 PMCID: PMC5361198 DOI: 10.1038/srep45035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/17/2017] [Indexed: 12/17/2022] Open
Abstract
VEGFR2 is a critical angiogenic receptor playing a key role in vascular homeostasis. Upon activation by VEGF, VEGFR2 becomes endocytosed. Internalisation of VEGFR2 is facilitated, in part, through clathrin mediated endocytosis (CME), the role of which in VEGFR2 function is debated. Here, we confirm the contribution of CME in VEGFR2 uptake. However, curiously, we find that different approaches of inhibition of CME exert contradictory effects on VEGF signalling; knockdown of clathrin, or of dynamin, or overexpression of dynamin K44A, do not affect VEGF-induced phosphorylation of ERK1/2, while dynasore causes strong inhibition. We resolve this discrepancy by showing that although dynasore inhibits CME of VEGFR2, its inhibitory action in ERK1/2 phosphorylation is not related to attenuation of VEGFR2 endocytosis; it is rather due to an off-target effect of the drug. Dynasore inhibits VEGF-induced calcium release, a signalling event that lies upstream of ERK1/2, which implies that this effect could be responsible, at least in part, for the inhibitory action of the drug on VEGF-to-ERK1/2 signalling. These results raise caution that although dynasore is specific in inhibiting clathrin- and dynamin-mediated endocytosis, it may also exert off-target effects on signalling molecules, hence influencing the interpretation of the role of endocytosis in signalling.
Collapse
Affiliation(s)
- Dimitris Basagiannis
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, 45110 Ioannina, Greece.,Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Sofia Zografou
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, 45110 Ioannina, Greece
| | - Katerina Galanopoulou
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, 45110 Ioannina, Greece.,Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Savvas Christoforidis
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, 45110 Ioannina, Greece.,Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|