1
|
Ems-McClung SC, Cassity M, Prasannajith A, Walczak CE. The Kinesin-14 tail: Dual microtubule binding domains drive spindle morphogenesis through tight microtubule cross-linking and robust sliding. Mol Biol Cell 2025; 36:ar72. [PMID: 40327372 DOI: 10.1091/mbc.e25-02-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Proper spindle assembly requires the Kinesin-14 (K-14) family of motors to organize microtubules (MT) into the bipolar spindle by cross-linking and sliding antiparallel and parallel MTs through their motor and tail domains. How they mediate these different activities is unclear. We identified two MT-binding domains (MBD1 and MBD2) within the Xenopus K-14 XCTK2 tail and found that MBD1 MT affinity was weaker than MBD2. Comparable with full-length GFP-XCTK2 wild-type protein (GX-WT), GFP-XCTK2 containing the MBD1 mutations (GX-MBD1mut) stimulated spindle assembly, localized moderately on the spindle, and formed narrow spindles. In contrast, GX-MBD2mut only partially stimulated spindle assembly, localized weakly on the spindle, and formed shorter spindles. Biochemical reconstitution of MT cross-linking and sliding demonstrated that GX-MBD2mut slid antiparallel MTs faster than GX-WT and GX-MBD1mut. However, GX-WT and GX-MBD1mut statically cross-linked the majority of parallel MTs, whereas GX-MBD2mut equally slid and statically cross-linked parallel MTs without affecting their sliding velocity. These results provide a mechanism by which the two different MBDs in the K-14 tail balance antiparallel MT sliding velocity (MBD1) and tight parallel MT cross-linking (MBD2), which are important for spindle assembly and localization, and provide a basis for characterizing how molecular motors organize MTs within the spindle.
Collapse
|
2
|
Ems-McClung SC, Cassity M, Prasannajith A, Walczak CE. The Kinesin-14 Tail: Dual microtubule binding domains drive spindle morphogenesis through tight microtubule cross-linking and robust sliding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640188. [PMID: 40060502 PMCID: PMC11888285 DOI: 10.1101/2025.02.25.640188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Proper spindle assembly requires the Kinesin-14 family of motors to organize microtubules (MTs) into the bipolar spindle by cross-linking and sliding anti-parallel and parallel MTs through their motor and tail domains. How they mediate these different activities is unclear. We identified two MT binding domains (MBD1 and MBD2) within the Xenopus Kinesin-14 XCTK2 tail and found that MBD1 MT affinity was weaker than MBD2. Comparable to full-length GFP-XCTK2 wild-type protein (GX-WT), GFP-XCTK2 containing the MBD1 mutations (GX-MBD1mut) stimulated spindle assembly, localized moderately on the spindle, and formed narrow spindles. In contrast, GX-MBD2mut only partially stimulated spindle assembly, localized weakly on the spindle, and formed shorter spindles. Biochemical reconstitution of MT cross-linking and sliding demonstrated that GX-MBD2mut slid anti-parallel MTs faster than GX-WT and GX-MBD1mut. However, GX-WT and GX-MBD1mut statically cross-linked the majority of parallel MTs, whereas GX-MBD2mut equally slid and statically cross-linked parallel MTs without affecting their sliding velocity. These results provide a mechanism by which the two different MT binding domains in the Kinesin-14 tail balance anti-parallel MT sliding velocity (MBD1) and tight parallel MT cross-linking (MBD2), which are important for spindle assembly and localization, and provide a basis for characterizing how molecular motors organize MTs within the spindle.
Collapse
|
3
|
Chu LY, Stedman D, Gannon J, Cox S, Pobegalov G, Molodtsov MI. Force-transducing molecular ensembles at growing microtubule tips control mitotic spindle size. Nat Commun 2024; 15:9865. [PMID: 39543105 PMCID: PMC11564643 DOI: 10.1038/s41467-024-54123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Correct mitotic spindle size is required for accurate chromosome segregation during cell division. It is controlled by mechanical forces generated by molecular motors and non-motor proteins acting on spindle microtubules. However, how forces generated by individual proteins enable bipolar spindle organization is not well understood. Here, we develop tools to measure contributions of individual molecules to this force balance. We show that microtubule plus-end binding proteins act at microtubule tips synergistically with minus-end directed motors to produce a system that can generate both pushing and pulling forces. To generate pushing force, the system harnesses forces generated by the growing tips of microtubules providing unique contribution to the force balance distinct from all other motors that act in the mitotic spindle. Our results reveal that microtubules are essential force generators for establishing spindle size and pave the way for understanding how mechanical forces can be fine-tuned to control the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Lee-Ya Chu
- The Francis Crick Institute, London, United Kingdom
| | - Daniel Stedman
- The Francis Crick Institute, London, United Kingdom
- King's College London, London, UK
| | | | | | - Georgii Pobegalov
- The Francis Crick Institute, London, United Kingdom
- Department of Physics and Astronomy, University College London, London, United Kingdom
| | - Maxim I Molodtsov
- The Francis Crick Institute, London, United Kingdom.
- Department of Physics and Astronomy, University College London, London, United Kingdom.
| |
Collapse
|
4
|
Liu X, Rao L, Qiu W, Berger F, Gennerich A. Kinesin-14 HSET and KlpA are non-processive microtubule motors with load-dependent power strokes. Nat Commun 2024; 15:6564. [PMID: 39095439 PMCID: PMC11297315 DOI: 10.1038/s41467-024-50990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
Accurate chromosome segregation during cell division relies on coordinated actions of microtubule (MT)-based motor proteins in the mitotic spindle. Kinesin-14 motors play vital roles in spindle assembly and maintenance by crosslinking antiparallel MTs at the spindle midzone and anchoring spindle MTs' minus ends at the poles. In this study, we investigate the force generation and motility of the Kinesin-14 motors HSET and KlpA. Our findings reveal that both motors are non-processive, producing single load-dependent power strokes per MT encounter, with estimated load-free power strokes of ~30 and ~35 nm, respectively. Each homodimeric motor generates forces of ~0.5 pN, but when assembled in teams, they cooperate to generate forces of 1 pN or more. Notably, the cooperative activity among multiple motors leads to increased MT-sliding velocities. These results quantitatively elucidate the structure-function relationship of Kinesin-14 motors and underscore the significance of cooperative behavior in their cellular functions.
Collapse
Affiliation(s)
- Xinglei Liu
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Weihong Qiu
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, CH, Utrecht, The Netherlands
| | - Florian Berger
- Department of Biochemistry & Biophysics and Department of Physics, Oregon State University, Corvallis, OR, USA.
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
5
|
Hannaford MR, Rusan NM. Positioning centrioles and centrosomes. J Cell Biol 2024; 223:e202311140. [PMID: 38512059 PMCID: PMC10959756 DOI: 10.1083/jcb.202311140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Centrosomes are the primary microtubule organizer in eukaryotic cells. In addition to shaping the intracellular microtubule network and the mitotic spindle, centrosomes are responsible for positioning cilia and flagella. To fulfill these diverse functions, centrosomes must be properly located within cells, which requires that they undergo intracellular transport. Importantly, centrosome mispositioning has been linked to ciliopathies, cancer, and infertility. The mechanisms by which centrosomes migrate are diverse and context dependent. In many cells, centrosomes move via indirect motor transport, whereby centrosomal microtubules engage anchored motor proteins that exert forces on those microtubules, resulting in centrosome movement. However, in some cases, centrosomes move via direct motor transport, whereby the centrosome or centriole functions as cargo that directly binds molecular motors which then walk on stationary microtubules. In this review, we summarize the mechanisms of centrosome motility and the consequences of centrosome mispositioning and identify key questions that remain to be addressed.
Collapse
Affiliation(s)
- Matthew R. Hannaford
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Gonzalez SJ, Heckel JM, Goldblum RR, Reid TA, McClellan M, Gardner MK. Rapid binding to protofilament edge sites facilitates tip tracking of EB1 at growing microtubule plus-ends. eLife 2024; 13:e91719. [PMID: 38385657 PMCID: PMC10883673 DOI: 10.7554/elife.91719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
EB1 is a key cellular protein that delivers regulatory molecules throughout the cell via the tip-tracking of growing microtubule plus-ends. Thus, it is important to understand the mechanism for how EB1 efficiently tracks growing microtubule plus-ends. It is widely accepted that EB1 binds with higher affinity to GTP-tubulin subunits at the growing microtubule tip, relative to GDP-tubulin along the microtubule length. However, it is unclear whether this difference in affinity alone is sufficient to explain the tip-tracking of EB1 at growing microtubule tips. Previously, we found that EB1 binds to exposed microtubule protofilament-edge sites at a ~70 fold faster rate than to closed-lattice sites, due to diffusional steric hindrance to binding. Thus, we asked whether rapid protofilament-edge binding could contribute to efficient EB1 tip tracking. A computational simulation with differential EB1 on-rates based on closed-lattice or protofilament-edge binding, and with EB1 off-rates that were dependent on the tubulin hydrolysis state, robustly recapitulated experimental EB1 tip tracking. To test this model, we used cell-free biophysical assays, as well as live-cell imaging, in combination with a Designed Ankyrin Repeat Protein (DARPin) that binds exclusively to protofilament-edge sites, and whose binding site partially overlaps with the EB1 binding site. We found that DARPin blocked EB1 protofilament-edge binding, which led to a decrease in EB1 tip tracking on dynamic microtubules. We conclude that rapid EB1 binding to microtubule protofilament-edge sites contributes to robust EB1 tip tracking at the growing microtubule plus-end.
Collapse
Affiliation(s)
- Samuel J Gonzalez
- Department of Genetics, Cell Biology, and Development, University of MinnesotaMinneapolisUnited States
| | - Julia M Heckel
- Department of Genetics, Cell Biology, and Development, University of MinnesotaMinneapolisUnited States
| | - Rebecca R Goldblum
- Department of Biophysics, Molecular Biology, and Biochemistry, University of MinnesotaMinneapolisUnited States
- Medical Scientist Training Program, University of MinnesotaMinneapolisUnited States
| | - Taylor A Reid
- Department of Genetics, Cell Biology, and Development, University of MinnesotaMinneapolisUnited States
| | - Mark McClellan
- Department of Genetics, Cell Biology, and Development, University of MinnesotaMinneapolisUnited States
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
7
|
Shah S, Mittal P, Kumar D, Mittal A, Ghosh SK. Evidence of kinesin motors involved in stable kinetochore assembly during early meiosis. Mol Biol Cell 2023; 34:ar107. [PMID: 37556230 PMCID: PMC10559306 DOI: 10.1091/mbc.e22-12-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
During mitosis, the budding yeast, kinetochores remain attached to microtubules, except for a brief period during S phase. Sister-kinetochores separate into two clusters (bilobed organization) upon stable end-on attachment to microtubules emanating from opposite spindle poles. However, in meiosis, the outer kinetochore protein (Ndc80) reassembles at the centromeres much later after prophase I, establishing new kinetochore-microtubule attachments. Perhaps due to this, despite homolog bi-orientation, we observed that the Ndc80 are linearly dispersed between spindle poles during metaphase I of meiosis. The presence of end-on attachment marker Dam1 as a cluster near each pole suggests one of the other possibilities that the pole-proximal and pole-distal kinetochores are attached end-on and laterally to the microtubules, respectively. Colocalization studies of kinetochores and kinesin motors suggest that budding yeast kinesin 5, Cin8, and Kip1 perhaps localize to the end-on attached kinetochores while kinesin 8 and Kip3 resides at all the kinetochores. Our findings, including kinesin 5 and Ndc80 coappearance after prophase I and reduced Ndc80 levels in cin8 null mutant, suggest that kinesin motors are crucial for kinetochore reassembly and stability during early meiosis. Thus, this work reports yet another meiosis specific function of kinesin motors.
Collapse
Affiliation(s)
- Seema Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Priyanka Mittal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Deepanshu Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Anjani Mittal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Santanu K. Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
8
|
Li X, Bloomfield M, Bridgeland A, Cimini D, Chen J. A fine balance among key biophysical factors is required for recovery of bipolar mitotic spindle from monopolar and multipolar abnormalities. Mol Biol Cell 2023; 34:ar90. [PMID: 37342878 PMCID: PMC10398891 DOI: 10.1091/mbc.e22-10-0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
During mitosis, equal partitioning of chromosomes into two daughter cells requires assembly of a bipolar mitotic spindle. Because the spindle poles are each organized by a centrosome in animal cells, centrosome defects can lead to monopolar or multipolar spindles. However, the cell can effectively recover the bipolar spindle by separating the centrosomes in monopolar spindles and clustering them in multipolar spindles. To interrogate how a cell can separate and cluster centrosomes as needed to form a bipolar spindle, we developed a biophysical model, based on experimental data, which uses effective potential energies to describe key mechanical forces driving centrosome movements during spindle assembly. Our model identified general biophysical factors crucial for robust bipolarization of spindles that start as monopolar or multipolar. These factors include appropriate force fluctuation between centrosomes, balance between repulsive and attractive forces between centrosomes, exclusion of the centrosomes from the cell center, proper cell size and geometry, and a limited centrosome number. Consistently, we found experimentally that bipolar centrosome clustering is promoted as mitotic cell aspect ratio and volume decrease in tetraploid cancer cells. Our model provides mechanistic explanations for many more experimental phenomena and a useful theoretical framework for future studies of spindle assembly.
Collapse
Affiliation(s)
- Xiaochu Li
- Department of Biological Sciences, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- BIOTRANS Graduate Program, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| | - Mathew Bloomfield
- Department of Biological Sciences, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Fralin Life Sciences Institute, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| | - Alexandra Bridgeland
- Fralin Life Sciences Institute, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Systems Biology Program, College of Science, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| | - Daniela Cimini
- Department of Biological Sciences, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Fralin Life Sciences Institute, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| | - Jing Chen
- Department of Biological Sciences, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Fralin Life Sciences Institute, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Center for Soft Matter and Biological Physics, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
9
|
Liu X, Rao L, Qiu W, Gennerich A. Kinesin-14 HSET and KlpA are non-processive microtubule motors with load-dependent power strokes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544415. [PMID: 37333225 PMCID: PMC10274885 DOI: 10.1101/2023.06.09.544415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Accurate chromosome segregation during cell division relies on coordinated actions of microtubule (MT)-based motor proteins in the mitotic spindle. Kinesin-14 motors play vital roles in spindle assembly and maintenance by crosslinking antiparallel MTs at the spindle midzone and anchoring spindle MTs' minus ends at the poles. We investigate the force generation and motility of the Kinesin-14 motors HSET and KlpA, revealing that both motors function as non-processive motors under load, producing single power strokes per MT encounter. Each homodimeric motor generates forces of ∼0.5 pN, but when assembled in teams, they cooperate to generate forces of 1 pN or more. Importantly, cooperative activity among multiple motors leads to increased MT-sliding velocities. Our findings deepen our understanding of the structure-function relationship of Kinesin-14 motors and underscore the significance of cooperative behavior in their cellular functions.
Collapse
|
10
|
Torvi JR, Wong J, Serwas D, Moayed A, Drubin DG, Barnes G. Reconstitution of kinetochore motility and microtubule dynamics reveals a role for a kinesin-8 in establishing end-on attachments. eLife 2022; 11:e78450. [PMID: 35791811 PMCID: PMC9259035 DOI: 10.7554/elife.78450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
During mitosis, individual microtubules make attachments to chromosomes via a specialized protein complex called the kinetochore to faithfully segregate the chromosomes to daughter cells. Translocation of kinetochores on the lateral surface of the microtubule has been proposed to contribute to high fidelity chromosome capture and alignment at the mitotic midzone, but has been difficult to observe in vivo because of spatial and temporal constraints. To overcome these barriers, we used total internal reflection fluorescence (TIRF) microscopy to track the interactions between microtubules, kinetochore proteins, and other microtubule-associated proteins in lysates from metaphase-arrested Saccharomyces cerevisiae. TIRF microscopy and cryo-correlative light microscopy and electron tomography indicated that we successfully reconstituted interactions between intact kinetochores and microtubules. These kinetochores translocate on the lateral microtubule surface toward the microtubule plus end and transition to end-on attachment, whereupon microtubule depolymerization commences. The directional kinetochore movement is dependent on the highly processive kinesin-8, Kip3. We propose that Kip3 facilitates stable kinetochore attachment to microtubule plus ends through its abilities to move the kinetochore laterally on the surface of the microtubule and to regulate microtubule plus end dynamics.
Collapse
Affiliation(s)
- Julia R Torvi
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
| | - Jonathan Wong
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Daniel Serwas
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Amir Moayed
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
| | - Georjana Barnes
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
11
|
Kinesin-14 motors participate in a force balance at microtubule plus-ends to regulate dynamic instability. Proc Natl Acad Sci U S A 2022; 119:2108046119. [PMID: 35173049 PMCID: PMC8872730 DOI: 10.1073/pnas.2108046119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
Kinesin-14 motors represent an essential class of molecular motors that bind to microtubules and then walk toward the microtubule minus-end. However, whether these motors can interact with growing plus-ends of microtubules to impact the lengthening of microtubules remains unknown. We found that Kinesin-14 motors could bind to a protein that resides at growing microtubule plus-ends and then pull this protein away from the growing end. This interaction acted to disrupt microtubule growth and decrease microtubule lengths in cells, likely by exerting minus-end–directed forces at the microtubule tip to alter the configuration of the growing microtubule plus-end. This work demonstrates general principles for the diverse roles that force-generating molecular motors can play in regulating cellular processes. Kinesin-14 molecular motors represent an essential class of proteins that bind microtubules and walk toward their minus-ends. Previous studies have described important roles for Kinesin-14 motors at microtubule minus-ends, but their role in regulating plus-end dynamics remains controversial. Kinesin-14 motors have been shown to bind the EB family of microtubule plus-end binding proteins, suggesting that these minus-end–directed motors could interact with growing microtubule plus-ends. In this work, we explored the role of minus-end–directed Kinesin-14 motor forces in controlling plus-end microtubule dynamics. In cells, a Kinesin-14 mutant with reduced affinity to EB proteins led to increased microtubule lengths. Cell-free biophysical microscopy assays were performed using Kinesin-14 motors and an EB family marker of growing microtubule plus-ends, Mal3, which revealed that when Kinesin-14 motors bound to Mal3 at growing microtubule plus-ends, the motors subsequently walked toward the minus-end, and Mal3 was pulled away from the growing microtubule tip. Strikingly, these interactions resulted in an approximately twofold decrease in the expected postinteraction microtubule lifetime. Furthermore, generic minus-end–directed tension forces, generated by tethering growing plus-ends to the coverslip using λ-DNA, led to an approximately sevenfold decrease in the expected postinteraction microtubule growth length. In contrast, the inhibition of Kinesin-14 minus-end–directed motility led to extended tip interactions and to an increase in the expected postinteraction microtubule lifetime, indicating that plus-ends were stabilized by nonmotile Kinesin-14 motors. Together, we find that Kinesin-14 motors participate in a force balance at microtubule plus-ends to regulate microtubule lengths in cells.
Collapse
|
12
|
Norell S, Ortiz J, Lechner J. Slk19 enhances cross-linking of microtubules by Ase1 and Stu1. Mol Biol Cell 2021; 32:ar22. [PMID: 34495712 PMCID: PMC8693956 DOI: 10.1091/mbc.e21-05-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Saccharomyces cerevisiae protein Slk19 has been shown to localize to kinetochores throughout mitosis and to the spindle midzone in anaphase. However, Slk19 clearly also has an important role for spindle formation and stabilization in prometaphase and metaphase, albeit this role is unresolved. Here we show that Slk19’s localization to metaphase spindles in vivo and to microtubules (MTs) in vitro depends on the MT cross-linking protein Ase1 and the MT cross-linking and stabilizing protein Stu1. By analyzing a slk19 mutant that specifically fails to localize to spindles and MTs, we surprisingly found that the presence of Slk19 amplified the amount of Ase1 strongly and that of Stu1 moderately at the metaphase spindle in vivo and at MTs in vitro. Furthermore, Slk19 markedly enhanced the cross-linking of MTs in vitro when added together with Ase1 or Stu1. We therefore suggest that Slk19 recruits additional Ase1 and Stu1 to the interpolar MTs (ipMTs) of metaphase spindles and thus increases their cross-linking and stabilization. This is in agreement with our observation that cells with defective Slk19 localization exhibit shorter metaphase spindles, an increased number of unaligned nuclear MTs, and most likely reduced ipMT overlaps.
Collapse
Affiliation(s)
- Sarina Norell
- Biochemie-Zentrum der Universität Heidelberg, INF 328, 69120 Heidelberg, Germany
| | - Jennifer Ortiz
- Biochemie-Zentrum der Universität Heidelberg, INF 328, 69120 Heidelberg, Germany
| | - Johannes Lechner
- Biochemie-Zentrum der Universität Heidelberg, INF 328, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
The Arabidopsis thaliana Kinesin-5 AtKRP125b Is a Processive, Microtubule-Sliding Motor Protein with Putative Plant-Specific Functions. Int J Mol Sci 2021; 22:ijms222111361. [PMID: 34768803 PMCID: PMC8583919 DOI: 10.3390/ijms222111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/02/2022] Open
Abstract
The formation and maintenance of the mitotic spindle during cell division requires several microtubule-interacting motor proteins. Members of the kinesin-5 family play an essential role in the bipolar organization of the spindle. These highly conserved, homotetrameric proteins cross-link anti-parallel microtubules and slide them apart to elongate the spindle during the equal separation of chromosomes. Whereas vertebrate kinesin-5 proteins are well studied, knowledge about the biochemical properties and the function of plant kinesin-5 proteins is still limited. Here, we characterized the properties of AtKRP125b, one of four kinesin-5 proteins in Arabidopsis thaliana. In in vitro motility assays, AtKRP125b displayed the archetypal characteristics of a kinesin-5 protein, a low velocity of about 20 nm·s−1, and a plus end-directed, processive movement. Moreover, AtKRP125b was able to cross-link microtubules and to slide them apart, as required for developing and maintaining the mitotic spindle. In line with such a function, GFP-AtKRP125b fusion proteins were predominantly detected in the nucleus when expressed in Arabidopsis thaliana leaf protoplasts or Nicotiana benthamiana epidermis cells and analyzed by confocal microscopy. However, we also detected GFP signals in the cytoplasm, suggesting additional functions. By generating and analyzing AtKRP125b promoter-reporter lines, we showed that the AtKRP125b promoter was active in the vascular tissue of roots, lateral roots, cotyledons, and true leaves. Remarkably, we could not detect promoter activity in meristematic tissues. Taken together, our biochemical data support a role of AtKRP125b in mitosis, but it may also have additional functions outside the nucleus and during interphase.
Collapse
|
14
|
Fong KK, Davis TN, Asbury CL. Microtubule pivoting enables mitotic spindle assembly in S. cerevisiae. J Cell Biol 2021; 220:211686. [PMID: 33464308 PMCID: PMC7814349 DOI: 10.1083/jcb.202007193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
To assemble a bipolar spindle, microtubules emanating from two poles must bundle into an antiparallel midzone, where plus end–directed motors generate outward pushing forces to drive pole separation. Midzone cross-linkers and motors display only modest preferences for antiparallel filaments, and duplicated poles are initially tethered together, an arrangement that instead favors parallel interactions. Pivoting of microtubules around spindle poles might help overcome this geometric bias, but the intrinsic pivoting flexibility of the microtubule–pole interface has not been directly measured, nor has its importance during early spindle assembly been tested. By measuring the pivoting of microtubules around isolated yeast spindle poles, we show that pivoting flexibility can be modified by mutating a microtubule-anchoring pole component, Spc110. By engineering mutants with different flexibilities, we establish the importance of pivoting in vivo for timely pole separation. Our results suggest that passive thermal pivoting can bring microtubules from side-by-side poles into initial contact, but active minus end–directed force generation will be needed to achieve antiparallel alignment.
Collapse
Affiliation(s)
- Kimberly K Fong
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| |
Collapse
|
15
|
Al Azzam O, Trussell CL, Reinemann DN. Measuring force generation within reconstituted microtubule bundle assemblies using optical tweezers. Cytoskeleton (Hoboken) 2021; 78:111-125. [PMID: 34051127 DOI: 10.1002/cm.21678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/07/2022]
Abstract
Kinesins and microtubule associated proteins (MAPs) are critical to sustain life, facilitating cargo transport, cell division, and motility. To interrogate the mechanistic underpinnings of their function, these microtubule-based motors and proteins have been studied extensively at the single molecule level. However, a long-standing issue in the single molecule biophysics field has been how to investigate motors and associated proteins within a physiologically relevant environment in vitro. While the one motor/one filament orientation of a traditional optical trapping assay has revolutionized our knowledge of motor protein mechanics, this reductionist geometry does not reflect the structural hierarchy in which many motors work within the cellular environment. Here, we review approaches that combine the precision of optical tweezers with reconstituted ensemble systems of microtubules, MAPs, and kinesins to understand how each of these unique elements work together to perform large scale cellular tasks, such as but not limited to building the mitotic spindle. Not only did these studies develop novel techniques for investigating motor proteins in vitro, but they also illuminate ensemble filament and motor synergy that helps bridge the mechanistic knowledge gap between previous single molecule and cell level studies.
Collapse
Affiliation(s)
- Omayma Al Azzam
- Department of Chemical Engineering, University of Mississippi, University, Mississippi, USA
| | - Cameron Lee Trussell
- Department of Chemical Engineering, University of Mississippi, University, Mississippi, USA
| | - Dana N Reinemann
- Department of Chemical Engineering, University of Mississippi, University, Mississippi, USA.,Department of Biomedical Engineering, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
16
|
Barisic M, Rajendraprasad G, Steblyanko Y. The metaphase spindle at steady state - Mechanism and functions of microtubule poleward flux. Semin Cell Dev Biol 2021; 117:99-117. [PMID: 34053864 DOI: 10.1016/j.semcdb.2021.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
The mitotic spindle is a bipolar cellular structure, built from tubulin polymers, called microtubules, and interacting proteins. This macromolecular machine orchestrates chromosome segregation, thereby ensuring accurate distribution of genetic material into the two daughter cells during cell division. Powered by GTP hydrolysis upon tubulin polymerization, the microtubule ends exhibit a metastable behavior known as the dynamic instability, during which they stochastically switch between the growth and shrinkage phases. In the context of the mitotic spindle, dynamic instability is furthermore regulated by microtubule-associated proteins and motor proteins, which enables the spindle to undergo profound changes during mitosis. This highly dynamic behavior is essential for chromosome capture and congression in prometaphase, as well as for chromosome alignment to the spindle equator in metaphase and their segregation in anaphase. In this review we focus on the mechanisms underlying microtubule dynamics and sliding and their importance for the maintenance of shape, structure and dynamics of the metaphase spindle. We discuss how these spindle properties are related to the phenomenon of microtubule poleward flux, highlighting its highly cooperative molecular basis and role in keeping the metaphase spindle at a steady state.
Collapse
Affiliation(s)
- Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Girish Rajendraprasad
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Yulia Steblyanko
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Strandboulevarden 49, 2100 Copenhagen, Denmark
| |
Collapse
|
17
|
Yang L, Baumann C, De La Fuente R, Viveiros MM. Mechanisms underlying disruption of oocyte spindle stability by bisphenol compounds. Reproduction 2021; 159:383-396. [PMID: 31990668 DOI: 10.1530/rep-19-0494] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/17/2020] [Indexed: 12/17/2022]
Abstract
Accurate chromosome segregation relies on correct chromosome-microtubule interactions within a stable bipolar spindle apparatus. Thus, exposure to spindle disrupting compounds can impair meiotic division and genomic stability in oocytes. The endocrine disrupting activity of bisphenols such as bisphenol A (BPA) is well recognized, yet their damaging effects on spindle microtubules (MTs) is poorly understood. Here, we tested the effect(s) of acute exposure to BPA and bisphenol F (BPF) on assembled spindle stability in ovulated oocytes. Brief (4 h) exposure to increasing concentrations (5, 25, and 50 µg/mL) of BPA or BPF disrupted spindle organization in a dose-dependent manner, resulting in significantly shorter spindles with highly unfocused poles and fragmented pericentrin. The chromosomes remained congressed in an abnormally elongated metaphase-like configuration, yet normal end-on chromosome-MT attachments were reduced in BPF-treated oocytes. Live-cell imaging revealed a rapid onset of bisphenol-mediated spindle MT disruption that was reversed upon compound removal. Moreover, MT stability and regrowth were impaired in BPA-exposed oocytes, with few cold-stable MTs and formation of multipolar spindles upon MT regrowth. MT-associated kinesin-14 motor protein (HSET/KIFC1) labeling along the spindle was also lower in BPA-treated oocytes. Conversely, cold stable MTs and HSET labeling persisted after BPF exposure. Notably, inhibition of Aurora Kinase A limited bisphenol-mediated spindle pole widening, revealing a potential interaction. These results demonstrate rapid MT disrupting activity by bisphenols, which is highly detrimental to meiotic spindle stability and organization. Moreover, we identify an important link between these defects and altered distribution of key spindle associated factors as well as Aurora Kinase A activity.
Collapse
Affiliation(s)
- Luhan Yang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Rabindranth De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA.,Regenerative Biosciences Center (RBC), University of Georgia, Athens, Georgia, USA
| | - Maria M Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA.,Regenerative Biosciences Center (RBC), University of Georgia, Athens, Georgia, USA
| |
Collapse
|
18
|
Kornakov N, Möllers B, Westermann S. The EB1-Kinesin-14 complex is required for efficient metaphase spindle assembly and kinetochore bi-orientation. J Cell Biol 2021; 219:211447. [PMID: 33044553 PMCID: PMC7545359 DOI: 10.1083/jcb.202003072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/28/2020] [Accepted: 09/10/2020] [Indexed: 12/28/2022] Open
Abstract
Kinesin-14s are conserved molecular motors required for high-fidelity chromosome segregation, but their specific contributions to spindle function have not been fully defined. Here, we show that key functions of budding yeast Kinesin-14 Cik1-Kar3 are accomplished in a complex with Bim1 (yeast EB1). Genetic complementation of mitotic phenotypes identifies a novel KLTF peptide motif in the Cik1 N-terminus. We show that this motif is one element of a tripartite binding interface required to form a high-affinity Bim1–Cik1-Kar3 complex. Lack of Bim1-binding by Cik1-Kar3 delays cells in mitosis and impairs microtubule bundle organization and dynamics. Conversely, constitutive targeting of Cik1-Kar3 to microtubule plus ends induces the formation of nuclear microtubule bundles. Cells lacking the Bim1–Cik1-Kar3 complex rely on the conserved microtubule bundler Ase1/PRC1 for metaphase spindle organization, and simultaneous loss of plus-end targeted Kar3 and Ase1 is lethal. Our results reveal the contributions of an EB1–Kinesin-14 complex for spindle formation as a prerequisite for efficient kinetochore clustering and bi-orientation.
Collapse
Affiliation(s)
- Nikolay Kornakov
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Bastian Möllers
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Stefan Westermann
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
19
|
Nijenhuis W, van Grinsven MMP, Kapitein LC. An optimized toolbox for the optogenetic control of intracellular transport. J Cell Biol 2020; 219:133834. [PMID: 32328628 PMCID: PMC7147098 DOI: 10.1083/jcb.201907149] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/18/2019] [Accepted: 01/16/2020] [Indexed: 12/31/2022] Open
Abstract
Cellular functioning relies on active transport of organelles by molecular motors. To explore how intracellular organelle distributions affect cellular functions, several optogenetic approaches enable organelle repositioning through light-inducible recruitment of motors to specific organelles. Nonetheless, robust application of these methods in cellular populations without side effects has remained challenging. Here, we introduce an improved toolbox for optogenetic control of intracellular transport that optimizes cellular responsiveness and limits adverse effects. To improve dynamic range, we employed improved optogenetic heterodimerization modules and engineered a photosensitive kinesin-3, which is activated upon blue light–sensitive homodimerization. This opto-kinesin prevented motor activation before experimental onset, limited dark-state activation, and improved responsiveness. In addition, we adopted moss kinesin-14 for efficient retrograde transport with minimal adverse effects on endogenous transport. Using this optimized toolbox, we demonstrate robust reversible repositioning of (endogenously tagged) organelles within cellular populations. More robust control over organelle motility will aid in dissecting spatial cell biology and transport-related diseases.
Collapse
Affiliation(s)
- Wilco Nijenhuis
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Mariëlle M P van Grinsven
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
20
|
Villari G, Enrico Bena C, Del Giudice M, Gioelli N, Sandri C, Camillo C, Fiorio Pla A, Bosia C, Serini G. Distinct retrograde microtubule motor sets drive early and late endosome transport. EMBO J 2020; 39:e103661. [PMID: 33215754 PMCID: PMC7737607 DOI: 10.15252/embj.2019103661|] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Although subcellular positioning of endosomes significantly impacts on their functions, the molecular mechanisms governing the different steady-state distribution of early endosomes (EEs) and late endosomes (LEs)/lysosomes (LYs) in peripheral and perinuclear eukaryotic cell areas, respectively, are still unsolved. We unveil that such differences arise because, while LE retrograde transport depends on the dynein microtubule (MT) motor only, the one of EEs requires the cooperative antagonism of dynein and kinesin-14 KIFC1, a MT minus end-directed motor involved in cancer progression. Mechanistically, the Ser-x-Ile-Pro (SxIP) motif-mediated interaction of the endoplasmic reticulum transmembrane protein stromal interaction molecule 1 (STIM1) with the MT plus end-binding protein 1 (EB1) promotes its association with the p150Glued subunit of the dynein activator complex dynactin and the distinct location of EEs and LEs/LYs. The peripheral distribution of EEs requires their p150Glued-mediated simultaneous engagement with dynein and SxIP motif-containing KIFC1, via HOOK1 and HOOK3 adaptors, respectively. In sum, we provide evidence that distinct minus end-directed MT motor systems drive the differential transport and subcellular distribution of EEs and LEs in mammalian cells.
Collapse
Affiliation(s)
- Giulia Villari
- Department of OncologyUniversity of Torino School of MedicineCandioloItaly,Candiolo Cancer Institute ‐ Fondazione del Piemonte per l'Oncologia (FPO)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)TorinoItaly
| | - Chiara Enrico Bena
- Candiolo Cancer Institute ‐ Fondazione del Piemonte per l'Oncologia (FPO)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)TorinoItaly,IIGM ‐ Italian Institute for Genomic MedicineCandioloItaly,Present address:
Sorbonne UniversitéCNRS, Institut de Biologie Paris‐SeineLaboratoire Jean Perrin (LJP)ParisFrance
| | - Marco Del Giudice
- Candiolo Cancer Institute ‐ Fondazione del Piemonte per l'Oncologia (FPO)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)TorinoItaly,IIGM ‐ Italian Institute for Genomic MedicineCandioloItaly
| | - Noemi Gioelli
- Department of OncologyUniversity of Torino School of MedicineCandioloItaly,Candiolo Cancer Institute ‐ Fondazione del Piemonte per l'Oncologia (FPO)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)TorinoItaly
| | - Chiara Sandri
- Department of OncologyUniversity of Torino School of MedicineCandioloItaly,Candiolo Cancer Institute ‐ Fondazione del Piemonte per l'Oncologia (FPO)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)TorinoItaly
| | - Chiara Camillo
- Department of OncologyUniversity of Torino School of MedicineCandioloItaly,Candiolo Cancer Institute ‐ Fondazione del Piemonte per l'Oncologia (FPO)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)TorinoItaly
| | | | - Carla Bosia
- IIGM ‐ Italian Institute for Genomic MedicineCandioloItaly,Department of Applied Science and TechnologyPolytechnic of TorinoTorinoItaly
| | - Guido Serini
- Department of OncologyUniversity of Torino School of MedicineCandioloItaly,Candiolo Cancer Institute ‐ Fondazione del Piemonte per l'Oncologia (FPO)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)TorinoItaly
| |
Collapse
|
21
|
Villari G, Enrico Bena C, Del Giudice M, Gioelli N, Sandri C, Camillo C, Fiorio Pla A, Bosia C, Serini G. Distinct retrograde microtubule motor sets drive early and late endosome transport. EMBO J 2020; 39:e103661. [PMID: 33215754 PMCID: PMC7737607 DOI: 10.15252/embj.2019103661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 11/23/2022] Open
Abstract
Although subcellular positioning of endosomes significantly impacts on their functions, the molecular mechanisms governing the different steady‐state distribution of early endosomes (EEs) and late endosomes (LEs)/lysosomes (LYs) in peripheral and perinuclear eukaryotic cell areas, respectively, are still unsolved. We unveil that such differences arise because, while LE retrograde transport depends on the dynein microtubule (MT) motor only, the one of EEs requires the cooperative antagonism of dynein and kinesin‐14 KIFC1, a MT minus end‐directed motor involved in cancer progression. Mechanistically, the Ser‐x‐Ile‐Pro (SxIP) motif‐mediated interaction of the endoplasmic reticulum transmembrane protein stromal interaction molecule 1 (STIM1) with the MT plus end‐binding protein 1 (EB1) promotes its association with the p150Glued subunit of the dynein activator complex dynactin and the distinct location of EEs and LEs/LYs. The peripheral distribution of EEs requires their p150Glued‐mediated simultaneous engagement with dynein and SxIP motif‐containing KIFC1, via HOOK1 and HOOK3 adaptors, respectively. In sum, we provide evidence that distinct minus end‐directed MT motor systems drive the differential transport and subcellular distribution of EEs and LEs in mammalian cells.
Collapse
Affiliation(s)
- Giulia Villari
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| | - Chiara Enrico Bena
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy.,IIGM - Italian Institute for Genomic Medicine, Candiolo, Italy
| | - Marco Del Giudice
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy.,IIGM - Italian Institute for Genomic Medicine, Candiolo, Italy
| | - Noemi Gioelli
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| | - Chiara Sandri
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| | - Chiara Camillo
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Carla Bosia
- IIGM - Italian Institute for Genomic Medicine, Candiolo, Italy.,Department of Applied Science and Technology, Polytechnic of Torino, Torino, Italy
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| |
Collapse
|
22
|
Škubník J, Jurášek M, Ruml T, Rimpelová S. Mitotic Poisons in Research and Medicine. Molecules 2020; 25:E4632. [PMID: 33053667 PMCID: PMC7587177 DOI: 10.3390/molecules25204632] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the greatest challenges of the modern medicine. Although much effort has been made in the development of novel cancer therapeutics, it still remains one of the most common causes of human death in the world, mainly in low and middle-income countries. According to the World Health Organization (WHO), cancer treatment services are not available in more then 70% of low-income countries (90% of high-income countries have them available), and also approximately 70% of cancer deaths are reported in low-income countries. Various approaches on how to combat cancer diseases have since been described, targeting cell division being among them. The so-called mitotic poisons are one of the cornerstones in cancer therapies. The idea that cancer cells usually divide almost uncontrolled and far more rapidly than normal cells have led us to think about such compounds that would take advantage of this difference and target the division of such cells. Many groups of such compounds with different modes of action have been reported so far. In this review article, the main approaches on how to target cancer cell mitosis are described, involving microtubule inhibition, targeting aurora and polo-like kinases and kinesins inhibition. The main representatives of all groups of compounds are discussed and attention has also been paid to the presence and future of the clinical use of these compounds as well as their novel derivatives, reviewing the finished and ongoing clinical trials.
Collapse
Affiliation(s)
- Jan Škubník
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic; (J.Š.); (T.R.)
| | - Michal Jurášek
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic;
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic; (J.Š.); (T.R.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic; (J.Š.); (T.R.)
| |
Collapse
|
23
|
Tseng KF, Mickolajczyk KJ, Feng G, Feng Q, Kwok ES, Howe J, Barbar EJ, Dawson SC, Hancock WO, Qiu W. The Tail of Kinesin-14a in Giardia Is a Dual Regulator of Motility. Curr Biol 2020; 30:3664-3671.e4. [PMID: 32735815 DOI: 10.1016/j.cub.2020.06.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022]
Abstract
Kinesin-14s are microtubule-based motor proteins that play important roles in mitotic spindle assembly [1]. Ncd-type kinesin-14s are a subset of kinesin-14 motors that exist as homodimers with an N-terminal microtubule-binding tail, a coiled-coil central stalk (central stalk), a neck, and two identical C-terminal motor domains. To date, no Ncd-type kinesin-14 has been found to naturally exhibit long-distance minus-end-directed processive motility on single microtubules as individual homodimers. Here, we show that GiKIN14a from Giardia intestinalis [2] is an unconventional Ncd-type kinesin-14 that uses its N-terminal microtubule-binding tail to achieve minus-end-directed processivity on single microtubules over micrometer distances as a homodimer. We further find that although truncation of the N-terminal tail greatly reduces GiKIN14a processivity, the resulting tailless construct GiKIN14a-Δtail is still a minimally processive motor and moves its center of mass via discrete 8-nm steps on the microtubule. In addition, full-length GiKIN14a has significantly higher stepping and ATP hydrolysis rates than does GiKIN14a-Δtail. Inserting a flexible polypeptide linker into the central stalk of full-length GiKIN14a nearly reduces its ATP hydrolysis rate to that of GiKIN14a-Δtail. Collectively, our results reveal that the N-terminal tail of GiKIN14a is a de facto dual regulator of motility and reinforce the notion of the central stalk as a key mechanical determinant of kinesin-14 motility [3].
Collapse
Affiliation(s)
- Kuo-Fu Tseng
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Keith J Mickolajczyk
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA; Intercollege Graduate Degree Program in Bioengineering, Penn State University, University Park, PA 16802, USA
| | - Guangxi Feng
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Qingzhou Feng
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
| | - Ethiene S Kwok
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Jesse Howe
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Scott C Dawson
- Department of Microbiology, University of California, Davis, Davis, CA 95616, USA
| | - William O Hancock
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA; Intercollege Graduate Degree Program in Bioengineering, Penn State University, University Park, PA 16802, USA
| | - Weihong Qiu
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
24
|
Zheng F, Dong F, Yu S, Li T, Jian Y, Nie L, Fu C. Klp2 and Ase1 synergize to maintain meiotic spindle stability during metaphase I. J Biol Chem 2020; 295:13287-13298. [PMID: 32723864 DOI: 10.1074/jbc.ra120.012905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/24/2020] [Indexed: 11/06/2022] Open
Abstract
The spindle apparatus segregates bi-oriented sister chromatids during mitosis but mono-oriented homologous chromosomes during meiosis I. It has remained unclear if similar molecular mechanisms operate to regulate spindle dynamics during mitosis and meiosis I. Here, we employed live-cell microscopy to compare the spindle dynamics of mitosis and meiosis I in fission yeast cells and demonstrated that the conserved kinesin-14 motor Klp2 plays a specific role in maintaining metaphase spindle length during meiosis I but not during mitosis. Moreover, the maintenance of metaphase spindle stability during meiosis I requires the synergism between Klp2 and the conserved microtubule cross-linker Ase1, as the absence of both proteins causes exacerbated defects in metaphase spindle stability. The synergism is not necessary for regulating mitotic spindle dynamics. Hence, our work reveals a new molecular mechanism underlying meiotic spindle dynamics and provides insights into understanding differential regulation of meiotic and mitotic events.
Collapse
Affiliation(s)
- Fan Zheng
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fenfen Dong
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuo Yu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tianpeng Li
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanze Jian
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingyun Nie
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chuanhai Fu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
25
|
Braun M, Diez S, Lansky Z. Cytoskeletal organization through multivalent interactions. J Cell Sci 2020; 133:133/12/jcs234393. [PMID: 32540925 DOI: 10.1242/jcs.234393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoskeleton consists of polymeric protein filaments with periodic lattices displaying identical binding sites, which establish a multivalent platform for the binding of a plethora of filament-associated ligand proteins. Multivalent ligand proteins can tether themselves to the filaments through one of their binding sites, resulting in an enhanced reaction kinetics for the remaining binding sites. In this Opinion, we discuss a number of cytoskeletal phenomena underpinned by such multivalent interactions, namely (1) generation of entropic forces by filament crosslinkers, (2) processivity of molecular motors, (3) spatial sorting of proteins, and (4) concentration-dependent unbinding of filament-associated proteins. These examples highlight that cytoskeletal filaments constitute the basis for the formation of microenvironments, which cytoskeletal ligand proteins can associate with and, once engaged, can act within at altered reaction kinetics. We thus argue that multivalency is one of the properties crucial for the functionality of the cytoskeleton.
Collapse
Affiliation(s)
- Marcus Braun
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 25250 Vestec, Prague West, Czech Republic
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany .,Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden 01307, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Zdenek Lansky
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 25250 Vestec, Prague West, Czech Republic
| |
Collapse
|
26
|
Edelmaier C, Lamson AR, Gergely ZR, Ansari S, Blackwell R, McIntosh JR, Glaser MA, Betterton MD. Mechanisms of chromosome biorientation and bipolar spindle assembly analyzed by computational modeling. eLife 2020; 9:48787. [PMID: 32053104 PMCID: PMC7311174 DOI: 10.7554/elife.48787] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
The essential functions required for mitotic spindle assembly and chromosome biorientation and segregation are not fully understood, despite extensive study. To illuminate the combinations of ingredients most important to align and segregate chromosomes and simultaneously assemble a bipolar spindle, we developed a computational model of fission-yeast mitosis. Robust chromosome biorientation requires progressive restriction of attachment geometry, destabilization of misaligned attachments, and attachment force dependence. Large spindle length fluctuations can occur when the kinetochore-microtubule attachment lifetime is long. The primary spindle force generators are kinesin-5 motors and crosslinkers in early mitosis, while interkinetochore stretch becomes important after biorientation. The same mechanisms that contribute to persistent biorientation lead to segregation of chromosomes to the poles after anaphase onset. This model therefore provides a framework to interrogate key requirements for robust chromosome biorientation, spindle length regulation, and force generation in the spindle. Before a cell divides, it must make a copy of its genetic material and then promptly split in two. This process, called mitosis, is coordinated by many different molecular machines. The DNA is copied, then the duplicated chromosomes line up at the middle of the cell. Next, an apparatus called the mitotic spindle latches onto the chromosomes before pulling them apart. The mitotic spindle is a bundle of long, thin filaments called microtubules. It attaches to chromosomes at the kinetochore, the point where two copied chromosomes are cinched together in their middle. Proper cell division is vital for the healthy growth of all organisms, big and small, and yet some parts of the process remain poorly understood despite extensive study. Specifically, there is more to learn about how the mitotic spindle self-assembles, and how microtubules and kinetochores work together to correctly orient and segregate chromosomes into two sister cells. These nanoscale processes are happening a hundred times a minute, so computer simulations are a good way to test what we know. Edelmaier et al. developed a computer model to simulate cell division in fission yeast, a species of yeast often used to study fundamental processes in the cell. The model simulates how the mitotic spindle assembles, how its microtubules attach to the kinetochore and the force required to pull two sister chromosomes apart. Building the simulation involved modelling interactions between the mitotic spindle and kinetochore, their movement and forces applied. To test its accuracy, model simulations were compared to recordings of the mitotic spindle – including its length, structure and position – imaged from dividing yeast cells. Running the simulation, Edelmaier et al. found that several key effects are essential for the proper movement of chromosomes in mitosis. This includes holding chromosomes in the correct orientation as the mitotic spindle assembles and controlling the relative position of microtubules as they attach to the kinetochore. Misaligned attachments must also be readily deconstructed and corrected to prevent any errors. The simulations also showed that kinetochores must begin to exert more force (to separate the chromosomes) once the mitotic spindle is attached correctly. Altogether, these findings improve the current understanding of how the mitotic spindle and its counterparts control cell division. Errors in chromosome segregation are associated with birth defects and cancer in humans, and this new simulation could potentially now be used to help make predictions about how to correct mistakes in the process.
Collapse
Affiliation(s)
| | - Adam R Lamson
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Zachary R Gergely
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Saad Ansari
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Robert Blackwell
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Matthew A Glaser
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Meredith D Betterton
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
27
|
Kaneko T, Furuta K, Oiwa K, Shintaku H, Kotera H, Yokokawa R. Different motilities of microtubules driven by kinesin-1 and kinesin-14 motors patterned on nanopillars. SCIENCE ADVANCES 2020; 6:eaax7413. [PMID: 32010782 PMCID: PMC6976292 DOI: 10.1126/sciadv.aax7413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Kinesin is a motor protein that plays important roles in a variety of cellular functions. In vivo, multiple kinesin molecules are bound to cargo and work as a team to produce larger forces or higher speeds than a single kinesin. However, the coordination of kinesins remains poorly understood because of the experimental difficulty in controlling the number and arrangement of kinesins, which are considered to affect their coordination. Here, we report that both the number and spacing significantly influence the velocity of microtubules driven by nonprocessive kinesin-14 (Ncd), whereas neither the number nor the spacing changes the velocity in the case of highly processive kinesin-1. This result was realized by the optimum nanopatterning method of kinesins that enables immobilization of a single kinesin on a nanopillar. Our proposed method enables us to study the individual effects of the number and spacing of motors on the collective dynamics of multiple motors.
Collapse
Affiliation(s)
- Taikopaul Kaneko
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Ken’ya Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2, Iwaoka, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2, Iwaoka, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Hirofumi Shintaku
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
- Cluster for Pioneering Research, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hidetoshi Kotera
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
- RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| |
Collapse
|
28
|
Kinesin-5 Is Dispensable for Bipolar Spindle Formation and Elongation in Candida albicans, but Simultaneous Loss of Kinesin-14 Activity Is Lethal. mSphere 2019; 4:4/6/e00610-19. [PMID: 31722992 PMCID: PMC6854041 DOI: 10.1128/msphere.00610-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitotic spindles assume a bipolar architecture through the concerted actions of microtubules, motors, and cross-linking proteins. In most eukaryotes, kinesin-5 motors are essential to this process, and cells will fail to form a bipolar spindle without kinesin-5 activity. Remarkably, inactivation of kinesin-14 motors can rescue this kinesin-5 deficiency by reestablishing the balance of antagonistic forces needed to drive spindle pole separation and spindle assembly. We show that the yeast form of the opportunistic fungus Candida albicans assembles bipolar spindles in the absence of its sole kinesin-5, CaKip1, even though this motor exhibits stereotypical cell-cycle-dependent localization patterns within the mitotic spindle. However, cells lacking CaKip1 function have shorter metaphase spindles and longer and more numerous astral microtubules. They also show defective hyphal development. Interestingly, a small population of CaKip1-deficient spindles break apart and reform two bipolar spindles in a single nucleus. These spindles then separate, dividing the nucleus, and then elongate simultaneously in the mother and bud or across the bud neck, resulting in multinucleate cells. These data suggest that kinesin-5-independent mechanisms drive assembly and elongation of the mitotic spindle in C. albicans and that CaKip1 is important for bipolar spindle integrity. We also found that simultaneous loss of kinesin-5 and kinesin-14 (CaKar3Cik1) activity is lethal. This implies a divergence from the antagonistic force paradigm that has been ascribed to these motors, which could be linked to the high mitotic error rate that C. albicans experiences and often exploits as a generator of diversity.IMPORTANCE Candida albicans is one of the most prevalent fungal pathogens of humans and can infect a broad range of niches within its host. This organism frequently acquires resistance to antifungal agents through rapid generation of genetic diversity, with aneuploidy serving as a particularly important adaptive mechanism. This paper describes an investigation of the sole kinesin-5 in C. albicans, which is a major regulator of chromosome segregation. Contrary to other eukaryotes studied thus far, C. albicans does not require kinesin-5 function for bipolar spindle assembly or spindle elongation. Rather, this motor protein associates with the spindle throughout mitosis to maintain spindle integrity. Furthermore, kinesin-5 loss is synthetically lethal with loss of kinesin-14-canonically an opposing force producer to kinesin-5 in spindle assembly and anaphase. These results suggest a significant evolutionary rewiring of microtubule motor functions in the C. albicans mitotic spindle, which may have implications in the genetic instability of this pathogen.
Collapse
|
29
|
Kuo YW, Trottier O, Howard J. Predicted Effects of Severing Enzymes on the Length Distribution and Total Mass of Microtubules. Biophys J 2019; 117:2066-2078. [PMID: 31708162 DOI: 10.1016/j.bpj.2019.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/12/2023] Open
Abstract
Microtubules are dynamic cytoskeletal polymers whose growth and shrinkage are highly regulated as eukaryotic cells change shape, move, and divide. One family of microtubule regulators includes the ATP-hydrolyzing enzymes spastin, katanin, and fidgetin, which sever microtubule polymers into shorter fragments. Paradoxically, severases can increase microtubule number and mass in cells. Recent work with purified spastin and katanin accounts for this phenotype by showing that, in addition to severing, these enzymes modulate microtubule dynamics by accelerating the conversion of microtubules from their shrinking to their growing states and thereby promoting their regrowth. This leads to the observed exponential increase in microtubule mass. Spastin also influences the steady-state distribution of microtubule lengths, changing it from an exponential, as predicted by models of microtubule dynamic instability, to a peaked distribution. This effect of severing and regrowth by spastin on the microtubule length distribution has not been explained theoretically. To solve this problem, we formulated and solved a master equation for the time evolution of microtubule lengths in the presence of severing and microtubule dynamic instability. We then obtained numerical solutions to the steady-state length distribution and showed that the rate of severing and the speed of microtubule growth are the dominant parameters determining the steady-state length distribution. Furthermore, we found that the amplification rate is predicted to increase with severing, which is, to our knowledge, a new result. Our results establish a theoretical basis for how severing and dynamics together can serve to nucleate new microtubules, constituting a versatile mechanism to regulate microtubule length and mass.
Collapse
Affiliation(s)
- Yin-Wei Kuo
- Department of Chemistry, Yale University, New Haven, Connecticut; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Olivier Trottier
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut; Department of Physics, Yale University, New Haven, Connecticut
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
| |
Collapse
|
30
|
Hürtgen D, Mascarenhas J, Heymann M, Murray SM, Schwille P, Sourjik V. Reconstitution and Coupling of DNA Replication and Segregation in a Biomimetic System. Chembiochem 2019; 20:2633-2642. [PMID: 31344304 PMCID: PMC6899551 DOI: 10.1002/cbic.201900299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/20/2019] [Indexed: 12/30/2022]
Abstract
A biomimetic system capable of replication and segregation of genetic material constitutes an essential component for the future design of a minimal synthetic cell. Here we have used the simple T7 bacteriophage system and the plasmid-derived ParMRC system to establish in vitro DNA replication and DNA segregation, respectively. These processes were incorporated into biomimetic compartments providing an enclosed reaction space. The functional lifetime of the encapsulated segregation system could be prolonged by equipping it with ATP-regenerating and oxygen-scavenging systems. Finally, we showed that DNA replication and segregation processes could be coupled in vitro by using condensed DNA nanoparticles resulting from DNA replication. ParM spindles extended over tens of micrometers and could thus be used for segregation in compartments that are significantly longer than bacterial cell size. Overall, this work demonstrates the successful bottom-up assembly and coupling of molecular machines that mediate replication and segregation, thus providing an important step towards the development of a fully functional minimal cell.
Collapse
Affiliation(s)
- Daniel Hürtgen
- Max Planck Institute for Terrestrial Microbiology &LOEWE Center for Synthetic Microbiology (Synmikro)Karl-von-Frisch Strasse 1635043MarburgGermany
| | - Judita Mascarenhas
- Max Planck Institute for Terrestrial Microbiology &LOEWE Center for Synthetic Microbiology (Synmikro)Karl-von-Frisch Strasse 1635043MarburgGermany
| | - Michael Heymann
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Seán M. Murray
- Max Planck Institute for Terrestrial Microbiology &LOEWE Center for Synthetic Microbiology (Synmikro)Karl-von-Frisch Strasse 1635043MarburgGermany
| | - Petra Schwille
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology &LOEWE Center for Synthetic Microbiology (Synmikro)Karl-von-Frisch Strasse 1635043MarburgGermany
| |
Collapse
|
31
|
Strothman C, Farmer V, Arpağ G, Rodgers N, Podolski M, Norris S, Ohi R, Zanic M. Microtubule minus-end stability is dictated by the tubulin off-rate. J Cell Biol 2019; 218:2841-2853. [PMID: 31420452 PMCID: PMC6719460 DOI: 10.1083/jcb.201905019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/11/2019] [Accepted: 07/23/2019] [Indexed: 12/25/2022] Open
Abstract
Dynamic organization of microtubule minus ends is vital for the formation and maintenance of acentrosomal microtubule arrays. In vitro, both microtubule ends switch between phases of assembly and disassembly, a behavior called dynamic instability. Although minus ends grow slower, their lifetimes are similar to those of plus ends. The mechanisms underlying these distinct dynamics remain unknown. Here, we use an in vitro reconstitution approach to investigate minus-end dynamics. We find that minus-end lifetimes are not defined by the mean size of the protective GTP-tubulin cap. Rather, we conclude that the distinct tubulin off-rate is the primary determinant of the difference between plus- and minus-end dynamics. Further, our results show that the minus-end-directed kinesin-14 HSET/KIFC1 suppresses tubulin off-rate to specifically suppress minus-end catastrophe. HSET maintains its protective minus-end activity even when challenged by a known microtubule depolymerase, kinesin-13 MCAK. Our results provide novel insight into the mechanisms of minus-end dynamics, essential for our understanding of microtubule minus-end regulation in cells.
Collapse
Affiliation(s)
- Claire Strothman
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Veronica Farmer
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Göker Arpağ
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Nicole Rodgers
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Marija Podolski
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Stephen Norris
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
- Department of Biochemistry, Vanderbilt University, Nashville, TN
| |
Collapse
|
32
|
Prelogović M, Winters L, Milas A, Tolić IM, Pavin N. Pivot-and-bond model explains microtubule bundle formation. Phys Rev E 2019; 100:012403. [PMID: 31499770 DOI: 10.1103/physreve.100.012403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Indexed: 06/10/2023]
Abstract
During mitosis, microtubules form a spindle, which is responsible for proper segregation of the genetic material. A common structural element in a mitotic spindle is a parallel bundle, consisting of two or more microtubules growing from the same origin and held together by cross-linking proteins. An interesting question is what are the physical principles underlying the formation and stability of such microtubule bundles. Here we show, by introducing the pivot-and-bond model, that random angular movement of microtubules around the spindle pole and forces exerted by cross-linking proteins can explain the formation of microtubule bundles as observed in our experiments. The model predicts that stable parallel bundles can form in the presence of either passive crosslinkers or plus-end directed motors, but not minus-end directed motors. In the cases where bundles form, the time needed for their formation depends mainly on the concentration of cross-linking proteins and the angular diffusion of the microtubule. In conclusion, the angular motion drives the alignment of microtubules, which in turn allows the cross-linking proteins to connect the microtubules into a stable bundle.
Collapse
Affiliation(s)
- Marcel Prelogović
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Lora Winters
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Ana Milas
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| |
Collapse
|
33
|
Winters L, Ban I, Prelogović M, Kalinina I, Pavin N, Tolić IM. Pivoting of microtubules driven by minus-end-directed motors leads to spindle assembly. BMC Biol 2019; 17:42. [PMID: 31122217 PMCID: PMC6533735 DOI: 10.1186/s12915-019-0656-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/16/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND At the beginning of mitosis, the cell forms a spindle made of microtubules and associated proteins to segregate chromosomes. An important part of spindle architecture is a set of antiparallel microtubule bundles connecting the spindle poles. A key question is how microtubules extending at arbitrary angles form an antiparallel interpolar bundle. RESULTS Here, we show in fission yeast that microtubules meet at an oblique angle and subsequently rotate into antiparallel alignment. Our live-cell imaging approach provides a direct observation of interpolar bundle formation. By combining experiments with theory, we show that microtubules from each pole search for those from the opposite pole by performing random angular movement. Upon contact, two microtubules slide sideways along each other in a directed manner towards the antiparallel configuration. We introduce the contour length of microtubules as a measure of activity of motors that drive microtubule sliding, which we used together with observation of Cut7/kinesin-5 motors and our theory to reveal the minus-end-directed motility of this motor in vivo. CONCLUSION Random rotational motion helps microtubules from the opposite poles to find each other and subsequent accumulation of motors allows them to generate forces that drive interpolar bundle formation.
Collapse
Affiliation(s)
- Lora Winters
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Ivana Ban
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia
| | - Marcel Prelogović
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia
| | - Iana Kalinina
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia.
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
34
|
Lamson AR, Edelmaier CJ, Glaser MA, Betterton MD. Theory of Cytoskeletal Reorganization during Cross-Linker-Mediated Mitotic Spindle Assembly. Biophys J 2019; 116:1719-1731. [PMID: 31010665 PMCID: PMC6507341 DOI: 10.1016/j.bpj.2019.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 11/29/2022] Open
Abstract
Cells grow, move, and respond to outside stimuli by large-scale cytoskeletal reorganization. A prototypical example of cytoskeletal remodeling is mitotic spindle assembly, during which microtubules nucleate, undergo dynamic instability, bundle, and organize into a bipolar spindle. Key mechanisms of this process include regulated filament polymerization, cross-linking, and motor-protein activity. Remarkably, using passive cross-linkers, fission yeast can assemble a bipolar spindle in the absence of motor proteins. We develop a torque-balance model that describes this reorganization because of dynamic microtubule bundles, spindle-pole bodies, the nuclear envelope, and passive cross-linkers to predict spindle-assembly dynamics. We compare these results to those obtained with kinetic Monte Carlo-Brownian dynamics simulations, which include cross-linker-binding kinetics and other stochastic effects. Our results show that rapid cross-linker reorganization to microtubule overlaps facilitates cross-linker-driven spindle assembly, a testable prediction for future experiments. Combining these two modeling techniques, we illustrate a general method for studying cytoskeletal network reorganization.
Collapse
Affiliation(s)
- Adam R Lamson
- Department of Physics, University of Colorado, Boulder, Colorado
| | | | - Matthew A Glaser
- Department of Physics, University of Colorado, Boulder, Colorado
| | | |
Collapse
|
35
|
Mukherjee S, Sandri BJ, Tank D, McClellan M, Harasymiw LA, Yang Q, Parker LL, Gardner MK. A Gradient in Metaphase Tension Leads to a Scaled Cellular Response in Mitosis. Dev Cell 2019; 49:63-76.e10. [PMID: 30799228 PMCID: PMC6535804 DOI: 10.1016/j.devcel.2019.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/20/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022]
Abstract
During mitosis, motor proteins associate with microtubules to exert pushing forces that establish a mitotic spindle. These pushing forces generate opposing tension in the chromatin that connects oppositely attached sister chromatids, which may then act as a mechanical signal to ensure the fidelity of chromosome segregation during mitosis. However, the role of tension in mitotic cellular signaling remains controversial. In this study, we generated a gradient in tension over multiple isogenic budding yeast cell lines by genetically altering the magnitude of motor-based spindle forces. We found that a decreasing gradient in tension led to an increasing gradient in the rates of kinetochore detachment and anaphase chromosome mis-segregration, and in metaphase time. Simulations and experiments indicated that these tension responses originate from a tension-dependent kinetochore phosphorylation gradient. We conclude that the cell is exquisitely tuned to the magnitude of tension as a signal to detect potential chromosome segregation errors during mitosis.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian J Sandri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Damien Tank
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark McClellan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lauren A Harasymiw
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Qing Yang
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurie L Parker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
36
|
Letort G, Bennabi I, Dmitrieff S, Nedelec F, Verlhac MH, Terret ME. A computational model of the early stages of acentriolar meiotic spindle assembly. Mol Biol Cell 2019; 30:863-875. [PMID: 30650011 PMCID: PMC6589792 DOI: 10.1091/mbc.e18-10-0644] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 11/11/2022] Open
Abstract
The mitotic spindle is an ensemble of microtubules responsible for the repartition of the chromosomal content between the two daughter cells during division. In metazoans, spindle assembly is a gradual process involving dynamic microtubules and recruitment of numerous associated proteins and motors. During mitosis, centrosomes organize and nucleate the majority of spindle microtubules. In contrast, oocytes lack canonical centrosomes but are still able to form bipolar spindles, starting from an initial ball that self-organizes in several hours. Interfering with early steps of meiotic spindle assembly can lead to erroneous chromosome segregation. Although not fully elucidated, this process is known to rely on antagonistic activities of plus end- and minus end-directed motors. We developed a model of early meiotic spindle assembly in mouse oocytes, including key factors such as microtubule dynamics and chromosome movement. We explored how the balance between plus end- and minus end-directed motors, as well as the influence of microtubule nucleation, impacts spindle morphology. In a refined model, we added spatial regulation of microtubule stability and minus-end clustering. We could reproduce the features of early stages of spindle assembly from 12 different experimental perturbations and predict eight additional perturbations. With its ability to characterize and predict chromosome individualization, this model can help deepen our understanding of spindle assembly.
Collapse
Affiliation(s)
- Gaelle Letort
- CIRB, Collège de France, UMR7241/U1050, F-75005 Paris, France
| | - Isma Bennabi
- CIRB, Collège de France, UMR7241/U1050, F-75005 Paris, France
| | - Serge Dmitrieff
- Institut Jacques Monod, UMR7592 and Université Paris-Diderot, F-75205 Paris, France
| | - François Nedelec
- Centre de Recherche Interdisciplinaire, F-75004 Paris, France
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
37
|
Mitotic Motor KIFC1 Is an Organizer of Microtubules in the Axon. J Neurosci 2019; 39:3792-3811. [PMID: 30804089 DOI: 10.1523/jneurosci.3099-18.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/30/2019] [Accepted: 02/18/2019] [Indexed: 11/21/2022] Open
Abstract
KIFC1 (also called HSET or kinesin-14a) is best known as a multifunctional motor protein essential for mitosis. The present studies are the first to explore KIFC1 in terminally postmitotic neurons. Using RNA interference to partially deplete KIFC1 from rat neurons (from animals of either gender) in culture, pharmacologic agents that inhibit KIFC1, and expression of mutant KIFC1 constructs, we demonstrate critical roles for KIFC1 in regulating axonal growth and retraction as well as growth cone morphology. Experimental manipulations of KIFC1 elicit morphological changes in the axon as well as changes in the organization, distribution, and polarity orientation of its microtubules. Together, the results indicate a mechanism by which KIFC1 binds to microtubules in the axon and slides them into alignment in an ATP-dependent fashion and then cross-links them in an ATP-independent fashion to oppose their subsequent sliding by other motors.SIGNIFICANCE STATEMENT Here, we establish that KIFC1, a molecular motor well characterized in mitosis, is robustly expressed in neurons, where it has profound influence on the organization of microtubules in a number of different functional contexts. KIFC1 may help answer long-standing questions in cellular neuroscience such as, mechanistically, how growth cones stall and how axonal microtubules resist forces that would otherwise cause the axon to retract. Knowledge about KIFC1 may help researchers to devise strategies for treating disorders of the nervous system involving axonal retraction given that KIFC1 is expressed in adult neurons as well as developing neurons.
Collapse
|
38
|
Bergman ZJ, Wong J, Drubin DG, Barnes G. Microtubule dynamics regulation reconstituted in budding yeast lysates. J Cell Sci 2018; 132:jcs.219386. [PMID: 30185524 DOI: 10.1242/jcs.219386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/23/2018] [Indexed: 01/14/2023] Open
Abstract
Microtubules (MTs) are important for cellular structure, transport of cargoes and segregation of chromosomes and organelles during mitosis. The stochastic growth and shrinkage of MTs, known as dynamic instability, is necessary for these functions. Previous studies to determine how individual MT-associated proteins (MAPs) affect MT dynamics have been performed either through in vivo studies, which provide limited opportunity for observation of individual MTs or manipulation of conditions, or in vitro studies, which focus either on purified proteins, and therefore lack cellular complexity, or on cell extracts made from genetically intractable organisms. In order to investigate the ensemble activities of all MAPs on MT dynamics using lysates made from a genetically tractable organism, we developed a cell-free assay for budding yeast lysates using total internal reflection fluorescence (TIRF) microscopy. Lysates were prepared from yeast strains expressing GFP-tubulin. MT polymerization from pre-assembled MT seeds adhered to a coverslip was observed in real time. Through use of cell division cycle (cdc) and MT depolymerase mutants, we found that MT polymerization and dynamic instability are dependent on the cell cycle state and the activities of specific MAPs.
Collapse
Affiliation(s)
- Zane J Bergman
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jonathan Wong
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Georjana Barnes
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
39
|
Reinemann DN, Norris SR, Ohi R, Lang MJ. Processive Kinesin-14 HSET Exhibits Directional Flexibility Depending on Motor Traffic. Curr Biol 2018; 28:2356-2362.e5. [PMID: 30017484 PMCID: PMC11009875 DOI: 10.1016/j.cub.2018.06.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/01/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
Abstract
A common mitotic defect observed in cancer cells that possess supernumerary (more than two) centrosomes is multipolar spindle formation [1, 2]. Such structures are resolved into a bipolar geometry by minus-end-directed motor proteins, such as cytoplasmic dynein and the kinesin-14 HSET [3-8]. HSET is also thought to antagonize plus-end-directed kinesin-5 Eg5 to balance spindle forces [4, 5, 7, 9]. However, the biomechanics of this force opposition are unclear, as HSET has previously been defined as a non-processive motor [10-16]. Here, we use optical trapping to elucidate the mechanism of force generation by HSET. We show that a single HSET motor has a processive nature with the ability to complete multiple steps while trapped along a microtubule and when unloaded can move in both directions for microns. Compared to other kinesins, HSET has a relatively weak stall force of 1.1 pN [17, 18]. Moreover, HSET's tail domain and its interaction with the E-hook of tubulin are necessary for long-range motility. In vitro polarity-marked bundle assays revealed that HSET selectively generates force in anti-parallel bundles on the order of its stall force. When combined with varied ratios of Eg5, HSET adopts Eg5's directionality while acting as an antagonizing force brake, requiring at least a 10-fold higher Eg5 concentration to surpass HSET's sliding force. These results reveal HSET's ability to change roles within the spindle from acting as an adjustable microtubule slider and force regulator to a processive motor that aids in minus end focusing.
Collapse
Affiliation(s)
- Dana N Reinemann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Stephen R Norris
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ryoma Ohi
- Department of Cell and Developmental Biology and LSI, University of Michigan School of Medicine, Ann Arbor, MI 48109-2216, USA
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
40
|
Wang P, Tseng KF, Gao Y, Cianfrocco M, Guo L, Qiu W. The Central Stalk Determines the Motility of Mitotic Kinesin-14 Homodimers. Curr Biol 2018; 28:2302-2308.e3. [PMID: 30017487 DOI: 10.1016/j.cub.2018.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/09/2018] [Accepted: 05/10/2018] [Indexed: 01/08/2023]
Abstract
Mitotic kinesin-14 homodimers that contain an N-terminal nonmotor microtubule-binding tail contribute to spindle organization by preferentially crosslinking two different spindle microtubules rather than interacting with a single microtubule to generate processive motility. However, the mechanism underlying such selective motility behavior remains poorly understood. Here, we show that when a flexible polypeptide linker is inserted into the coiled-coil central stalk, two homodimeric mitotic kinesin-14s of distinct motility-the processive plus-end-directed KlpA from Aspergillus nidulans [1] and the nonprocessive minus-end-directed Ncd from Drosophila melanogaster [2]-both switch to become processive minus-end-directed motors. Our results demonstrate that the polypeptide linker introduces greater conformational flexibility into the central stalk. Importantly, we find that the linker insertion significantly weakens the ability of Ncd to preferentially localize between and interact with two microtubules. Collectively, our results reveal that besides the canonical role of enabling dimerization, the central stalk also functions as a mechanical component to determine the motility of homodimeric mitotic kinesin-14 motors. We suggest that the central stalk is an evolutionary design that primes these kinesin-14 motors for nontransport roles within the mitotic spindle.
Collapse
Affiliation(s)
- Pan Wang
- Institute of Photobiophysics, Henan University, Kaifeng, Henan 475004, China; Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Kuo-Fu Tseng
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Yuan Gao
- School of Physics, Nankai University, Tianjin 300071, China
| | - Michael Cianfrocco
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lijun Guo
- Institute of Photobiophysics, Henan University, Kaifeng, Henan 475004, China
| | - Weihong Qiu
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
41
|
Gicking AM, Swentowsky KW, Dawe RK, Qiu W. Functional diversification of the kinesin‐14 family in land plants. FEBS Lett 2018; 592:1918-1928. [DOI: 10.1002/1873-3468.13094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/24/2018] [Accepted: 05/05/2018] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - R. Kelly Dawe
- Department of Plant Biology University of Georgia Athens GA USA
- Department of Genetics University of Georgia Athens GA USA
| | - Weihong Qiu
- Department of Physics Oregon State University Corvallis OR USA
| |
Collapse
|
42
|
Tolić IM. Mitotic spindle: kinetochore fibers hold on tight to interpolar bundles. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2018; 47:191-203. [PMID: 28725997 PMCID: PMC5845649 DOI: 10.1007/s00249-017-1244-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 12/24/2022]
Abstract
When a cell starts to divide, it forms a spindle, a micro-machine made of microtubules, which separates the duplicated chromosomes. The attachment of microtubules to chromosomes is mediated by kinetochores, protein complexes on the chromosome. Spindle microtubules can be divided into three major classes: kinetochore microtubules, which form k-fibers ending at the kinetochore; interpolar microtubules, which extend from the opposite sides of the spindle and interact in the middle; and astral microtubules, which extend towards the cell cortex. Recent work in human cells has shown a close relationship between interpolar and kinetochore microtubules, where interpolar bundles are attached laterally to kinetochore fibers almost all along their length, acting as a bridge between sister k-fibers. Most of the interpolar bundles are attached to a pair of sister kinetochore fibers and vice versa. Thus, the spindle is made of modules consisting of a pair of sister kinetochore fibers and a bundle of interpolar microtubules that connects them. These interpolar bundles, termed bridging fibers, balance the forces acting at kinetochores and support the rounded shape of the spindle during metaphase. This review discusses the structure, function, and formation of kinetochore fibers and interpolar bundles, with an emphasis on how they interact. Their connections have an impact on the force balance in the spindle and on chromosome movement during mitosis because the forces in interpolar bundles are transmitted to kinetochore fibers and hence to kinetochores through these connections.
Collapse
Affiliation(s)
- Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
43
|
Abstract
In animals and fungi, cytoplasmic dynein is a processive minus-end-directed motor that plays dominant roles in various intracellular processes. In contrast, land plants lack cytoplasmic dynein but contain many minus-end-directed kinesin-14s. No plant kinesin-14 is known to produce processive motility as a homodimer. OsKCH2 is a plant-specific kinesin-14 with an N-terminal actin-binding domain and a central motor domain flanked by two predicted coiled-coils (CC1 and CC2). Here, we show that OsKCH2 specifically decorates preprophase band microtubules in vivo and transports actin filaments along microtubules in vitro. Importantly, OsKCH2 exhibits processive minus-end-directed motility on single microtubules as individual homodimers. We find that CC1, but not CC2, forms the coiled-coil to enable OsKCH2 dimerization. Instead, our results reveal that removing CC2 renders OsKCH2 a nonprocessive motor. Collectively, these results show that land plants have evolved unconventional kinesin-14 homodimers with inherent minus-end-directed processivity that may function to compensate for the loss of cytoplasmic dynein. Land plants lack the cytoplasmic dynein motor in fungi and animals that shows processive minus-end-directed motility on microtubules. Here the authors demonstrate that land plants have evolved novel processive minus-end-directed kinesin-14 motors that likely compensate for the absence of dynein.
Collapse
|
44
|
Bennabi I, Quéguiner I, Kolano A, Boudier T, Mailly P, Verlhac MH, Terret ME. Shifting meiotic to mitotic spindle assembly in oocytes disrupts chromosome alignment. EMBO Rep 2018; 19:368-381. [PMID: 29330318 PMCID: PMC5797964 DOI: 10.15252/embr.201745225] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/10/2022] Open
Abstract
Mitotic spindles assemble from two centrosomes, which are major microtubule-organizing centers (MTOCs) that contain centrioles. Meiotic spindles in oocytes, however, lack centrioles. In mouse oocytes, spindle microtubules are nucleated from multiple acentriolar MTOCs that are sorted and clustered prior to completion of spindle assembly in an "inside-out" mechanism, ending with establishment of the poles. We used HSET (kinesin-14) as a tool to shift meiotic spindle assembly toward a mitotic "outside-in" mode and analyzed the consequences on the fidelity of the division. We show that HSET levels must be tightly gated in meiosis I and that even slight overexpression of HSET forces spindle morphogenesis to become more mitotic-like: rapid spindle bipolarization and pole assembly coupled with focused poles. The unusual length of meiosis I is not sufficient to correct these early spindle morphogenesis defects, resulting in severe chromosome alignment abnormalities. Thus, the unique "inside-out" mechanism of meiotic spindle assembly is essential to prevent chromosomal misalignment and production of aneuploidy gametes.
Collapse
Affiliation(s)
- Isma Bennabi
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Isabelle Quéguiner
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Agnieszka Kolano
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Thomas Boudier
- Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Philippe Mailly
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Marie-Hélène Verlhac
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Marie-Emilie Terret
- Center for Interdisciplinary Research in Biology (CIRB) College de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| |
Collapse
|
45
|
Zhu Y, An X, Tomaszewski A, Hepler PK, Lee WL. Microtubule cross-linking activity of She1 ensures spindle stability for spindle positioning. J Cell Biol 2017; 216:2759-2775. [PMID: 28794129 PMCID: PMC5584168 DOI: 10.1083/jcb.201701094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/24/2017] [Accepted: 06/02/2017] [Indexed: 12/19/2022] Open
Abstract
Dynein orients the spindle by pulling on astral microtubules from the cortex. In Saccharomyces cerevisiae, the microtubule-associated protein She1 specifically inhibits dynein in the mother compartment to promote spindle movements toward the bud. Zhu et al. demonstrate that She1 also stabilizes interpolar microtubules, ensuring spindle integrity during dynein-mediated spindle positioning. Dynein mediates spindle positioning in budding yeast by pulling on astral microtubules (MTs) from the cell cortex. The MT-associated protein She1 regulates dynein activity along astral MTs and directs spindle movements toward the bud cell. In addition to localizing to astral MTs, She1 also targets to the spindle, but its role on the spindle remains unknown. Using function-separating alleles, live-cell spindle assays, and in vitro biochemical analyses, we show that She1 is required for the maintenance of metaphase spindle stability. She1 binds and cross-links MTs via a C-terminal MT-binding site. She1 can also self-assemble into ring-shaped oligomers. In cells, She1 stabilizes interpolar MTs, preventing spindle deformations during movement, and we show that this activity is regulated by Ipl1/Aurora B phosphorylation during cell cycle progression. Our data reveal how She1 ensures spindle integrity during spindle movement across the bud neck and suggest a potential link between regulation of spindle integrity and dynein pathway activity.
Collapse
Affiliation(s)
- Yili Zhu
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA.,Biology Department, University of Massachusetts, Amherst, MA
| | - Xiaojing An
- Biology Department, University of Massachusetts, Amherst, MA
| | | | - Peter K Hepler
- Biology Department, University of Massachusetts, Amherst, MA
| | - Wei-Lih Lee
- Biology Department, University of Massachusetts, Amherst, MA
| |
Collapse
|
46
|
She ZY, Yang WX. Molecular mechanisms of kinesin-14 motors in spindle assembly and chromosome segregation. J Cell Sci 2017; 130:2097-2110. [DOI: 10.1242/jcs.200261] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
ABSTRACT
During eukaryote cell division, molecular motors are crucial regulators of microtubule organization, spindle assembly, chromosome segregation and intracellular transport. The kinesin-14 motors are evolutionarily conserved minus-end-directed kinesin motors that occur in diverse organisms from simple yeasts to higher eukaryotes. Members of the kinesin-14 motor family can bind to, crosslink or slide microtubules and, thus, regulate microtubule organization and spindle assembly. In this Commentary, we present the common subthemes that have emerged from studies of the molecular kinetics and mechanics of kinesin-14 motors, particularly with regard to their non-processive movement, their ability to crosslink microtubules and interact with the minus- and plus-ends of microtubules, and with microtubule-organizing center proteins. In particular, counteracting forces between minus-end-directed kinesin-14 and plus-end-directed kinesin-5 motors have recently been implicated in the regulation of microtubule nucleation. We also discuss recent progress in our current understanding of the multiple and fundamental functions that kinesin-14 motors family members have in important aspects of cell division, including the spindle pole, spindle organization and chromosome segregation.
Collapse
Affiliation(s)
- Zhen-Yu She
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
47
|
The mitotic kinesin-14 KlpA contains a context-dependent directionality switch. Nat Commun 2017; 8:13999. [PMID: 28051135 PMCID: PMC5216134 DOI: 10.1038/ncomms13999] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/17/2016] [Indexed: 12/26/2022] Open
Abstract
Kinesin-14s are commonly known as nonprocessive minus end-directed microtubule motors that function mainly for mitotic spindle assembly. Here we show using total internal reflection fluorescence microscopy that KlpA—a kinesin-14 from Aspergillus nidulans—is a context-dependent bidirectional motor. KlpA exhibits plus end-directed processive motility on single microtubules, but reverts to canonical minus end-directed motility when anchored on the surface in microtubule-gliding experiments or interacting with a pair of microtubules in microtubule-sliding experiments. Plus end-directed processive motility of KlpA on single microtubules depends on its N-terminal nonmotor microtubule-binding tail, as KlpA without the tail is nonprocessive and minus end-directed. We suggest that the tail is a de facto directionality switch for KlpA motility: when the tail binds to the same microtubule as the motor domain, KlpA is a plus end-directed processive motor; in contrast, when the tail detaches from the microtubule to which the motor domain binds, KlpA becomes minus end-directed. Kinesin-14s are commonly considered to be minus end-directed microtubule motor proteins. Here the authors show that KlpA, a fungal kinesin-14 orthologue, relies on its N-terminal nonmotor microtubule-binding tail to achieve context-dependent bidirectional motility.
Collapse
|
48
|
Blackwell R, Edelmaier C, Sweezy-Schindler O, Lamson A, Gergely ZR, O’Toole E, Crapo A, Hough LE, McIntosh JR, Glaser MA, Betterton MD. Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast. SCIENCE ADVANCES 2017; 3:e1601603. [PMID: 28116355 PMCID: PMC5249259 DOI: 10.1126/sciadv.1601603] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/05/2016] [Indexed: 05/10/2023]
Abstract
Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and cross-linkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. We describe a physical model that exhibits de novo bipolar spindle formation. We began with physical properties of fission-yeast spindle pole body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive cross-linkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self-assembly. By varying the features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive cross-linkers alone. We also identify characteristic failed states of spindle assembly-the persistent monopole, X spindle, separated asters, and short spindle, which are avoided by the creation and maintenance of antiparallel microtubule overlaps. Our model can guide the identification of new, multifaceted strategies to induce mitotic catastrophes; these would constitute novel strategies for cancer chemotherapy.
Collapse
Affiliation(s)
- Robert Blackwell
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- PULS Group, Department of Physics and Cluster of Excellence: Engineering of Advanced Materials, Friedrich-Alexander University Erlangen-Nurnberg, Nagelsbachstr. 49b, Erlangen, Germany
| | | | | | - Adam Lamson
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Zachary R. Gergely
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Eileen O’Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Ammon Crapo
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Loren E. Hough
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - J. Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Matthew A. Glaser
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Meredith D. Betterton
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
49
|
Molodtsov MI, Mieck C, Dobbelaere J, Dammermann A, Westermann S, Vaziri A. A Force-Induced Directional Switch of a Molecular Motor Enables Parallel Microtubule Bundle Formation. Cell 2016; 167:539-552.e14. [PMID: 27716509 DOI: 10.1016/j.cell.2016.09.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/25/2016] [Accepted: 09/12/2016] [Indexed: 12/17/2022]
Abstract
Microtubule-organizing centers (MTOCs) nucleate microtubules that can grow autonomously in any direction. To generate bundles of parallel microtubules originating from a single MTOC, the growth of multiple microtubules needs to coordinated, but the underlying mechanism is unknown. Here, we show that a conserved two-component system consisting of the plus-end tracker EB1 and the minus-end-directed molecular motor Kinesin-14 is sufficient to promote parallel microtubule growth. The underlying mechanism relies on the ability of Kinesin-14 to guide growing plus ends along existing microtubules. The generality of this finding is supported by yeast, Drosophila, and human EB1/Kinesin-14 pairs. We demonstrate that plus-end guiding involves a directional switch of the motor due to a force applied via a growing microtubule end. The described mechanism can account for the generation of parallel microtubule networks required for a broad range of cellular functions such as spindle assembly or cell polarization.
Collapse
Affiliation(s)
- Maxim I Molodtsov
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria; Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Research Platform Quantum Phenomena & Nanoscale Biological Systems (QuNaBioS), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Christine Mieck
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Jeroen Dobbelaere
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Alexander Dammermann
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Stefan Westermann
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria; Department of Molecular Genetics, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Alipasha Vaziri
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria; Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Research Platform Quantum Phenomena & Nanoscale Biological Systems (QuNaBioS), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; The Rockefeller University, 1230 York Avenue New York, NY 10065, USA.
| |
Collapse
|
50
|
Kushida Y, Takaine M, Nakano K, Sugai T, Vasudevan KK, Guha M, Jiang YY, Gaertig J, Numata O. Kinesin-14 is Important for Chromosome Segregation During Mitosis and Meiosis in the Ciliate Tetrahymena thermophila. J Eukaryot Microbiol 2016; 64:293-307. [PMID: 27595611 DOI: 10.1111/jeu.12366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 11/29/2022]
Abstract
Ciliates such as Tetrahymena thermophila have two distinct nuclei within one cell: the micronucleus that undergoes mitosis and meiosis and the macronucleus that undergoes amitosis, a type of nuclear division that does not involve a bipolar spindle, but still relies on intranuclear microtubules. Ciliates provide an opportunity for the discovery of factors that specifically contribute to chromosome segregation based on a bipolar spindle, by identification of factors that affect the micronuclear but not the macronuclear division. Kinesin-14 is a conserved minus-end directed microtubule motor that cross-links microtubules and contributes to the bipolar spindle sizing and organization. Here, we use homologous DNA recombination to knock out genes that encode kinesin-14 orthologues (KIN141, KIN142) in Tetrahymena. A loss of KIN141 led to severe defects in the chromosome segregation during both mitosis and meiosis but did not affect amitosis. A loss of KIN141 altered the shape of the meiotic spindle in a way consistent with the KIN141's contribution to the organization of the spindle poles. EGFP-tagged KIN141 preferentially accumulated at the spindle poles during the meiotic prophase and metaphase I. Thus, in ciliates, kinesin-14 is important for nuclear divisions that involve a bipolar spindle.
Collapse
Affiliation(s)
- Yasuharu Kushida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.,Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Masak Takaine
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.,Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Kentaro Nakano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Toshiro Sugai
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | | | - Mayukh Guha
- Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Yu-Yang Jiang
- Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Osamu Numata
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|