1
|
Hao Z, Zhao B, An F, Zhang W, Zhu X, Meng S, Wang B. Knockdown of BAP31 Suppresses Tumorigenesis and Stemness in Breast Cancer Cells via the Hippo Pathway. Int J Mol Sci 2025; 26:3576. [PMID: 40332113 PMCID: PMC12026861 DOI: 10.3390/ijms26083576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
The enhancement of stemness in cancer cells is correlated with the malignancy level in human cancers. B cell receptor-associated protein 31 (BAP31) has been implicated in tumor progression; however, its specific role in breast cancer remains unclear. This study aimed to elucidate the biological function and molecular mechanisms of BAP31 in tumorigenesis and cancer stemness. Cancer stemness was assessed through tumor sphere formation and flow cytometry assays. Western blot analysis was employed to examine alterations in core stemness factors in BAP31 knockdown cell lines, in order to explore potential underlying mechanisms. Finally, we explored the role of BAP31 by developing xenograft models using nude mice in vivo. Our findings revealed that BAP31 expression was elevated in breast cancer cells, and its knockdown led to a decrease in both sphere formation and the CD44+CD24- population. Furthermore, the knockdown of BAP31 significantly diminished the expression of core stemness factors, such as Sox2 and c-Myc, in breast cancer cells in vitro. Consistently, the suppression of BAP31 markedly inhibited the tumorigenicity and stemness of breast cancer in vivo. The functional analysis further indicated that the knockdown of BAP31 diminishes stemness by activating the Hippo pathway kinase MST1 and inhibiting the transcription factor YAP. Notably, our study was the first to demonstrate that BAP31 interacts with PCMT1, a direct negative regulator of MST1 kinase. These findings identify BAP31 as a regulator of the Hippo pathway, highlighting its critical role in breast cancer tumorigenesis and stemness. Consequently, BAP31 emerges as a potential therapeutic target for this malignancy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (Z.H.); (B.Z.); (F.A.); (W.Z.); (X.Z.); (S.M.)
| |
Collapse
|
2
|
Nair S, Baker NE. Extramacrochaetae regulates Notch signaling in the Drosophila eye through non-apoptotic caspase activity. eLife 2024; 12:RP91988. [PMID: 39564985 PMCID: PMC11578588 DOI: 10.7554/elife.91988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Many cell fate decisions are determined transcriptionally. Accordingly, some fate specification is prevented by Inhibitor of DNA-binding (Id) proteins that interfere with DNA binding by master regulatory transcription factors. We show that the Drosophila Id protein Extra macrochaetae (Emc) also affects developmental decisions by regulating caspase activity. Emc, which prevents proneural bHLH transcription factors from specifying neural cell fate, also prevents homodimerization of another bHLH protein, Daughterless (Da), and thereby maintains expression of the Death-Associated Inhibitor of Apoptosis (diap1) gene. Accordingly, we found that multiple effects of emc mutations on cell growth and on eye development were all caused by activation of caspases. These effects included acceleration of the morphogenetic furrow, failure of R7 photoreceptor cell specification, and delayed differentiation of non-neuronal cone cells. Within emc mutant clones, Notch signaling was elevated in the morphogenetic furrow, increasing morphogenetic furrow speed. This was associated with caspase-dependent increase in levels of Delta protein, the transmembrane ligand for Notch. Posterior to the morphogenetic furrow, elevated Delta cis-inhibited Notch signaling that was required for R7 specification and cone cell differentiation. Growth inhibition of emc mutant clones in wing imaginal discs also depended on caspases. Thus, emc mutations reveal the importance of restraining caspase activity even in non-apoptotic cells to prevent abnormal development, in the Drosophila eye through effects on Notch signaling.
Collapse
Affiliation(s)
- Sudershana Nair
- Department of Genetics, Albert Einstein College of MedicineBronxUnited States
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of MedicineBronxUnited States
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineBronxUnited States
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
3
|
Nair S, Baker NE. Extramacrochaetae regulates Notch signaling in the Drosophila eye through non-apoptotic caspase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560841. [PMID: 39131389 PMCID: PMC11312471 DOI: 10.1101/2023.10.04.560841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Many cell fate decisions are determined transcriptionally. Accordingly, some fate specification is prevented by Inhibitor of DNA binding (Id) proteins that interfere with DNA binding by master regulatory transcription factors. We show that the Drosophila Id protein Extra macrochaetae (Emc) also affects developmental decisions by regulating caspase activity. Emc, which prevents proneural bHLH transcription factors from specifying neural cell fate, also prevents homodimerization of another bHLH protein, Daughterless (Da), and thereby maintains expression of the Death-Associated Inhibitor of Apoptosis (diap1) gene. Accordingly, we found that multiple effects of emc mutations on cell growth and on eye development were all caused by activation of caspases. These effects included acceleration of the morphogenetic furrow, failure of R7 photoreceptor cell specification, and delayed differentiation of non-neuronal cone cells. Within emc mutant clones, Notch signaling was elevated in the morphogenetic furrow, increasing morphogenetic furrow speed. This was associated with caspase-dependent increase in levels of Delta protein, the transmembrane ligand for Notch. Posterior to the morphogenetic furrow, elevated Delta cis-inhibited Notch signaling that was required for R7 specification and cone cell differentiation. Growth inhibition of emc mutant clones in wing imaginal discs also depended on caspases. Thus, emc mutations reveal the importance of restraining caspase activity even in non-apoptotic cells to prevent abnormal development, in the Drosophila eye through effects on Notch signaling.
Collapse
Affiliation(s)
- Sudershana Nair
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Present address: Department of and Physiology, NYU School of Medicine, 435 East 30 St, New York, NY
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Present address: Department of Microbiology and Molecular Genetics, University of California, Irvine, 2011 Biological Sciences 3, Irvine, CA 92697-2300
| |
Collapse
|
4
|
Asma H, Tieke E, Deem KD, Rahmat J, Dong T, Huang X, Tomoyasu Y, Halfon MS. Regulatory genome annotation of 33 insect species. eLife 2024; 13:RP96738. [PMID: 39392676 PMCID: PMC11469670 DOI: 10.7554/elife.96738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Annotation of newly sequenced genomes frequently includes genes, but rarely covers important non-coding genomic features such as the cis-regulatory modules-e.g., enhancers and silencers-that regulate gene expression. Here, we begin to remedy this situation by developing a workflow for rapid initial annotation of insect regulatory sequences, and provide a searchable database resource with enhancer predictions for 33 genomes. Using our previously developed SCRMshaw computational enhancer prediction method, we predict over 2.8 million regulatory sequences along with the tissues where they are expected to be active, in a set of insect species ranging over 360 million years of evolution. Extensive analysis and validation of the data provides several lines of evidence suggesting that we achieve a high true-positive rate for enhancer prediction. One, we show that our predictions target specific loci, rather than random genomic locations. Two, we predict enhancers in orthologous loci across a diverged set of species to a significantly higher degree than random expectation would allow. Three, we demonstrate that our predictions are highly enriched for regions of accessible chromatin. Four, we achieve a validation rate in excess of 70% using in vivo reporter gene assays. As we continue to annotate both new tissues and new species, our regulatory annotation resource will provide a rich source of data for the research community and will have utility for both small-scale (single gene, single species) and large-scale (many genes, many species) studies of gene regulation. In particular, the ability to search for functionally related regulatory elements in orthologous loci should greatly facilitate studies of enhancer evolution even among distantly related species.
Collapse
Affiliation(s)
- Hasiba Asma
- Program in Genetics, Genomics, and Bioinformatics, University at Buffalo-State University of New YorkBuffaloUnited States
| | - Ellen Tieke
- Department of Biology, Miami UniversityOxfordUnited States
| | - Kevin D Deem
- Department of Biology, Miami UniversityOxfordUnited States
| | - Jabale Rahmat
- Department of Biology, Miami UniversityOxfordUnited States
| | - Tiffany Dong
- Department of Biochemistry, University at Buffalo-State University of New YorkBuffaloUnited States
| | - Xinbo Huang
- Department of Biochemistry, University at Buffalo-State University of New YorkBuffaloUnited States
| | | | - Marc S Halfon
- Program in Genetics, Genomics, and Bioinformatics, University at Buffalo-State University of New YorkBuffaloUnited States
- Department of Biochemistry, University at Buffalo-State University of New YorkBuffaloUnited States
- Department of Biomedical Informatics, University at Buffalo-State University of New YorkBuffaloUnited States
- Department of Biological Sciences, University at Buffalo-State University of New YorkBuffaloUnited States
| |
Collapse
|
5
|
Reddy Onteddu V, Bhattacharya A, Baker NE. The Id protein Extramacrochaetae restrains the E protein Daughterless to regulate Notch, Rap1, and Sevenless within the R7 equivalence group of the Drosophila eye. Biol Open 2024; 13:bio060124. [PMID: 39041866 PMCID: PMC11360143 DOI: 10.1242/bio.060124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
The Drosophila Id gene extramacrochaetae (emc) is required during Drosophila eye development for proper cell fate specification within the R7 equivalence group. Without emc, R7 cells develop like R1/6 cells, and there are delays and deficits in differentiation of non-neuronal cone cells. Although emc encodes an Inhibitor of DNA-binding (Id) protein that is known to antagonize proneural bHLH protein function, no proneural gene is known for R7 or cone cell fates. These fates are also independent of daughterless (da), which encodes the ubiquitous E protein heterodimer partner of proneural bHLH proteins. We report here that the effects of emc mutations disappear in the absence of da, and are partially mimicked by forced expression of Da dimers, indicating that emc normally restrains da from interfering with R7 and cone cell specification, as occurs in emc mutants. emc, and da, regulate three known contributors to R7 fate, which are Notch signaling, Rap1, and Sevenless. R7 specification is partially restored to emc mutant cells by mutation of RapGap1, confirming that Rap1 activity, in addition to Notch activity, is a critical target of emc. These findings exemplify how mutations of an Id protein gene can affect processes that do not require any bHLH protein, by restraining Da activity within physiological bounds.
Collapse
Affiliation(s)
- Venkateswara Reddy Onteddu
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461,USA
| | - Abhishek Bhattacharya
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461,USA
| | - Nicholas E. Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461,USA
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461,USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461,USA
| |
Collapse
|
6
|
Kumar A, Baker NE. The CRL4 E3 ligase Mahjong/DCAF1 controls cell competition through the transcription factor Xrp1, independently of polarity genes. Development 2022; 149:dev200795. [PMID: 36278853 PMCID: PMC9845748 DOI: 10.1242/dev.200795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Abstract
Cell competition, the elimination of cells surrounded by more fit neighbors, is proposed to suppress tumorigenesis. Mahjong (Mahj), a ubiquitin E3 ligase substrate receptor, has been thought to mediate competition of cells mutated for lethal giant larvae (lgl), a neoplastic tumor suppressor that defines apical-basal polarity of epithelial cells. Here, we show that Drosophila cells mutated for mahjong, but not for lgl [l(2)gl], are competed because they express the bZip-domain transcription factor Xrp1, already known to eliminate cells heterozygous for ribosomal protein gene mutations (Rp/+ cells). Xrp1 expression in mahj mutant cells results in activation of JNK signaling, autophagosome accumulation, eIF2α phosphorylation and lower translation, just as in Rp/+ cells. Cells mutated for damage DNA binding-protein 1 (ddb1; pic) or cullin 4 (cul4), which encode E3 ligase partners of Mahj, also display Xrp1-dependent phenotypes, as does knockdown of proteasome subunits. Our data suggest a new model of mahj-mediated cell competition that is independent of apical-basal polarity and couples Xrp1 to protein turnover.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nicholas E. Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
7
|
Jeyarajah MJ, Jaju Bhattad G, Hillier DM, Renaud SJ. The Transcription Factor OVOL2 Represses ID2 and Drives Differentiation of Trophoblast Stem Cells and Placental Development in Mice. Cells 2020; 9:E840. [PMID: 32244352 PMCID: PMC7226816 DOI: 10.3390/cells9040840] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022] Open
Abstract
Trophoblasts are the first cell type to be specified during embryogenesis, and they are essential for placental morphogenesis and function. Trophoblast stem (TS) cells are the progenitor cells for all trophoblast lineages; control of TS cell differentiation into distinct trophoblast subtypes is not well understood. Mice lacking the transcription factor OVO-like 2 (OVOL2) fail to produce a functioning placenta, and die around embryonic day 10.5, suggesting that OVOL2 may be critical for trophoblast development. Therefore, our objective was to determine the role of OVOL2 in mouse TS cell fate. We found that OVOL2 was highly expressed in mouse placenta and differentiating TS cells. Placentas and TS cells lacking OVOL2 showed poor trophoblast differentiation potential, including increased expression of stem-state associated genes (Eomes, Esrrb, Id2) and decreased levels of differentiation-associated transcripts (Gcm1, Tpbpa, Prl3b1, Syna). Ectopic OVOL2 expression in TS cells elicited precocious differentiation. OVOL2 bound proximate to the gene encoding inhibitor of differentiation 2 (ID2), a dominant negative helix-loop-helix protein, and directly repressed its activity. Overexpression of ID2 was sufficient to reinforce the TS cell stem state. Our findings reveal a critical role of OVOL2 as a regulator of TS cell differentiation and placental development, in-part by coordinating repression of ID2.
Collapse
Affiliation(s)
- Mariyan J. Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada; (M.J.J.)
| | - Gargi Jaju Bhattad
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada; (M.J.J.)
| | - Dendra M. Hillier
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada; (M.J.J.)
| | - Stephen J. Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada; (M.J.J.)
- Children’s Health Research Institute, London, ON N6C2V5, Canada
- Lawson Health Research Institute, London, ON N6C2R5, Canada
| |
Collapse
|
8
|
Wang LH, Baker NE. Salvador-Warts-Hippo pathway regulates sensory organ development via caspase-dependent nonapoptotic signaling. Cell Death Dis 2019; 10:669. [PMID: 31511495 PMCID: PMC6739336 DOI: 10.1038/s41419-019-1924-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/03/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022]
Abstract
The fundamental roles for the Salvador-Warts-Hippo (SWH) pathway are widely characterized in growth regulation and organ size control. However, the function of SWH pathway is less known in cell fate determination. Here we uncover a novel role of the SWH signaling pathway in determination of cell fate during neural precursor (sensory organ precursor, SOP) development. Inactivation of the SWH pathway in SOP of the wing imaginal discs affects caspase-dependent bristle patterning in an apoptosis-independent process. Such nonapoptotic functions of caspases have been implicated in inflammation, proliferation, cellular remodeling, and cell fate determination. Our data indicate an effect on the Wingless (Wg)/Wnt pathway. Previously, caspases were proposed to cleave and activate a negative regulator of Wg/Wnt signaling, Shaggy (Sgg)/GSK3β. Surprisingly, we found that a noncleavable form of Sgg encoded from the endogenous locus after CRISPR-Cas9 modification supported almost normal bristle patterning, indicating that Sgg might not be the main target of the caspase-dependent nonapoptotic process. Collectively, our results outline a new function of SWH signaling that crosstalks to caspase-dependent nonapoptotic signaling and Wg/Wnt signaling in neural precursor development, which might be implicated in neuronal pathogenesis.
Collapse
Affiliation(s)
- Lan-Hsin Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, 161 Sec 6, Minquan E. Rd, Taipei, 11490, Taiwan.
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
9
|
Zhang X, Tang JZ, Vergara IA, Zhang Y, Szeto P, Yang L, Mintoff C, Colebatch A, McIntosh L, Mitchell KA, Shaw E, Rizos H, Long GV, Hayward N, McArthur GA, Papenfuss AT, Harvey KF, Shackleton M. Somatic Hypermutation of the YAP Oncogene in a Human Cutaneous Melanoma. Mol Cancer Res 2019; 17:1435-1449. [PMID: 30833299 DOI: 10.1158/1541-7786.mcr-18-0407] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/25/2018] [Accepted: 02/28/2019] [Indexed: 11/16/2022]
Abstract
Melanoma is usually driven by mutations in BRAF or NRAS, which trigger hyperactivation of MAPK signaling. However, MAPK-targeted therapies are not sustainably effective in most patients. Accordingly, characterizing mechanisms that co-operatively drive melanoma progression is key to improving patient outcomes. One possible mechanism is the Hippo signaling pathway, which regulates cancer progression via its central oncoproteins YAP and TAZ, although is thought to be only rarely affected by direct mutation. As YAP hyperactivation occurs in uveal melanoma, we investigated this oncogene in cutaneous melanoma. YAP protein expression was elevated in most benign nevi and primary cutaneous melanomas but present at only very low levels in normal melanocytes. In patient-derived xenografts and melanoma cell lines, we observed variable reliance of cell viability on Hippo pathway signaling that was independent of TAZ activity and also of classical melanoma driver mutations such as BRAF and NRAS. Finally, in genotyping studies of melanoma, we observed the first ever hyperactivating YAP mutations in a human cancer, manifest as seven distinct missense point mutations that caused serine to alanine transpositions. Strikingly, these mutate four serine residues known to be targeted by the Hippo pathway and we show that they lead to hyperactivation of YAP. IMPLICATIONS: Our studies highlight the YAP oncoprotein as a potential therapeutic target in select subgroups of melanoma patients, although successful treatment with anti-YAP therapies will depend on identification of biomarkers additional to YAP protein expression.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jian Zhong Tang
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Olivia Newton John Cancer Research Institute & School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
| | | | - Youfang Zhang
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Alfred Health, Melbourne, Victoria, Australia
| | - Pacman Szeto
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Alfred Health, Melbourne, Victoria, Australia
| | - Lie Yang
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- School of Medicine, Tsinghua University, Beijing, China
| | | | | | - Lachlan McIntosh
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
- Department of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Evangeline Shaw
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Helen Rizos
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute of Australia, Sydney, NSW, Australia
| | | | - Nicholas Hayward
- Melanoma Institute of Australia, Sydney, NSW, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Grant A McArthur
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Anthony T Papenfuss
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
- Department of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark Shackleton
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Ishibashi T, Hatori R, Maeda R, Nakamura M, Taguchi T, Matsuyama Y, Matsuno K. E and ID proteins regulate cell chirality and left-right asymmetric development in Drosophila. Genes Cells 2019; 24:214-230. [PMID: 30624823 DOI: 10.1111/gtc.12669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023]
Abstract
How left-right (LR) asymmetric forms in the animal body is a fundamental problem in Developmental Biology. Although the mechanisms for LR asymmetry are well studied in some species, they are still poorly understood in invertebrates. We previously showed that the intrinsic LR asymmetry of cells (designated as cell chirality) drives LR asymmetric development in the Drosophila embryonic hindgut, although the machinery of the cell chirality formation remains elusive. Here, we found that the Drosophila homologue of the Id gene, extra macrochaetae (emc), is required for the normal LR asymmetric morphogenesis of this organ. Id proteins, including Emc, are known to interact with and inhibit E-box-binding proteins (E proteins), such as Drosophila Daughterless (Da). We found that the suppression of da by wild-type emc was essential for cell chirality formation and for normal LR asymmetric development of the embryonic hindgut. Myosin ID (MyoID), which encodes the Drosophila Myosin ID protein, is known to regulate cell chirality. We further showed that Emc-Da regulates cell chirality formation, in which Emc functions upstream of or parallel to MyoID. Abnormal Id-E protein regulation is involved in various human diseases. Our results suggest that defects in cell shape may contribute to the pathogenesis of such diseases.
Collapse
Affiliation(s)
- Tomoki Ishibashi
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| | - Ryo Hatori
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| | - Reo Maeda
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | | | - Tomohiro Taguchi
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Yoko Matsuyama
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| | - Kenji Matsuno
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
11
|
Spatial regulation of expanded transcription in the Drosophila wing imaginal disc. PLoS One 2018; 13:e0201317. [PMID: 30063727 PMCID: PMC6067730 DOI: 10.1371/journal.pone.0201317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
Growth and patterning are coordinated during development to define organ size and shape. The growth, proliferation and differentiation of Drosophila wings are regulated by several conserved signaling pathways. Here, we show that the Salvador-Warts-Hippo (SWH) and Notch pathways converge on an enhancer in the expanded (ex) gene, which also responds to levels of the bHLH transcription factor Daughterless (Da). Separate cis-regulatory elements respond to Salvador-Warts-Hippo (SWH) and Notch pathways, to bHLH proteins, and to unidentified factors that repress ex transcription in the wing pouch and in the proneural region at the anterior wing margin. Senseless, a zinc-finger transcription factor acting in proneural regions, had a negative impact on ex transcription in the proneural region, but the transcriptional repressor Hairy had no effect. Our study suggests that a complex pattern of ex transcription results from integration of a uniform SWH signal with multiple other inputs, rather than from a pattern of SWH signaling.
Collapse
|
12
|
Li K, Baker NE. Regulation of the Drosophila ID protein Extra macrochaetae by proneural dimerization partners. eLife 2018; 7:33967. [PMID: 29687780 PMCID: PMC5915177 DOI: 10.7554/elife.33967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/25/2018] [Indexed: 12/13/2022] Open
Abstract
Proneural bHLH proteins are transcriptional regulators of neural fate specification. Extra macrochaetae (Emc) forms inactive heterodimers with both proneural bHLH proteins and their bHLH partners (represented in Drosophila by Daughterless). It is generally thought that varying levels of Emc define a prepattern that determines where proneural bHLH genes can be effective. We report that instead it is the bHLH proteins that determine the pattern of Emc levels. Daughterless level sets Emc protein levels in most cells, apparently by stabilizing Emc in heterodimers. Emc is destabilized in proneural regions by local competition for heterodimer formation by proneural bHLH proteins including Atonal or AS-C proteins. Reflecting this post-translational control through protein stability, uniform emc transcription is sufficient for almost normal patterns of neurogenesis. Protein stability regulated by exchanges between bHLH protein dimers could be a feature of bHLH-mediated developmental events.
Collapse
Affiliation(s)
- Ke Li
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, United States.,Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
13
|
Wang SP, Wang LH. Disease implication of hyper-Hippo signalling. Open Biol 2017; 6:rsob.160119. [PMID: 27805903 PMCID: PMC5090056 DOI: 10.1098/rsob.160119] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
The Hippo signalling pathway regulates cellular proliferation, apoptosis and differentiation, thus exerting profound effects on cellular homeostasis. Inhibition of Hippo signalling has been frequently implicated in human cancers, indicating a well-known tumour suppressor function of the Hippo pathway. However, it is less certain whether and how hyperactivation of the Hippo pathway affects biological outcome in living cells. This review describes current knowledge of the regulatory mechanisms of the Hippo pathway, mainly focusing on hyperactivation of the Hippo signalling nexus. The disease implications of hyperactivated Hippo signalling have also been discussed, including arrhythmogenic cardiomyopathy, Sveinsson's chorioretinal atrophy, Alzheimer's disease, amyotrophic lateral sclerosis and diabetes. By highlighting the significance of disease-relevant Hippo signalling activation, this review can offer exciting prospects to address the onset and potential reversal of Hippo-related disorders.
Collapse
Affiliation(s)
- Shu-Ping Wang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Lan-Hsin Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, 161, Sec. 6, Minquan E. Rd., Neihu Dist, Taipei City 114, Taiwan
| |
Collapse
|
14
|
Bhattacharya A, Li K, Quiquand M, Rimesso G, Baker NE. The Notch pathway regulates the Second Mitotic Wave cell cycle independently of bHLH proteins. Dev Biol 2017; 431:309-320. [PMID: 28919436 DOI: 10.1016/j.ydbio.2017.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/08/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022]
Abstract
Notch regulates both neurogenesis and cell cycle activity to coordinate precursor cell generation in the differentiating Drosophila eye. Mosaic analysis with mitotic clones mutant for Notch components was used to identify the pathway of Notch signaling that regulates the cell cycle in the Second Mitotic Wave. Although S phase entry depends on Notch signaling and on the transcription factor Su(H), the transcriptional co-activator Mam and the bHLH repressor genes of the E(spl)-Complex were not essential, although these are Su(H) coactivators and targets during the regulation of neurogenesis. The Second Mitotic Wave showed little dependence on ubiquitin ligases neuralized or mindbomb, and although the ligand Delta is required non-autonomously, partial cell cycle activity occurred in the absence of known Notch ligands. We found that myc was not essential for the Second Mitotic Wave. The Second Mitotic Wave did not require the HLH protein Extra macrochaetae, and the bHLH protein Daughterless was required only cell-nonautonomously. Similar cell cycle phenotypes for Daughterless and Atonal were consistent with requirement for neuronal differentiation to stimulate Delta expression, affecting Notch activity in the Second Mitotic Wave indirectly. Therefore Notch signaling acts to regulate the Second Mitotic Wave without activating bHLH gene targets.
Collapse
Affiliation(s)
- Abhishek Bhattacharya
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ke Li
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Manon Quiquand
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Gerard Rimesso
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
15
|
Xia J, Zeng M, Zhu H, Chen X, Weng Z, Li S. Emerging role of Hippo signalling pathway in bladder cancer. J Cell Mol Med 2017; 22:4-15. [PMID: 28782275 PMCID: PMC5742740 DOI: 10.1111/jcmm.13293] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
Bladder cancer (BC) is one of the most common cancers worldwide with a high progression rate and poor prognosis. The Hippo signalling pathway is a conserved pathway that plays a crucial role in cellular proliferation, differentiation and apoptosis. Furthermore, dysregulation and/or malfunction of the Hippo pathway is common in various human tumours, including BC. In this review, an overview of the Hippo pathway in BC and other cancers is presented. We focus on recent data regarding the Hippo pathway, its network and the regulation of the downstream co-effectors YAP1/TAZ. The core components of the Hippo pathway, which induce BC stemness acquisition, metastasis and chemoresistance, will be emphasized. Additional research on the Hippo pathway will advance our understanding of the mechanism of BC as well as the development and progression of other cancers and may be exploited therapeutically.
Collapse
Affiliation(s)
- Jianling Xia
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Hospital of the University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ming Zeng
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Hospital of the University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hua Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangjian Chen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiliang Weng
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shi Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
16
|
Wang LH, Baker NE. E Proteins and ID Proteins: Helix-Loop-Helix Partners in Development and Disease. Dev Cell 2016; 35:269-80. [PMID: 26555048 DOI: 10.1016/j.devcel.2015.10.019] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/18/2015] [Accepted: 10/23/2015] [Indexed: 01/12/2023]
Abstract
The basic Helix-Loop-Helix (bHLH) proteins represent a well-known class of transcriptional regulators. Many bHLH proteins act as heterodimers with members of a class of ubiquitous partners, the E proteins. A widely expressed class of inhibitory heterodimer partners-the Inhibitor of DNA-binding (ID) proteins-also exists. Genetic and molecular analyses in humans and in knockout mice implicate E proteins and ID proteins in a wide variety of diseases, belying the notion that they are non-specific partner proteins. Here, we explore relationships of E proteins and ID proteins to a variety of disease processes and highlight gaps in knowledge of disease mechanisms.
Collapse
Affiliation(s)
- Lan-Hsin Wang
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
17
|
Abstract
Balancing cell growth with differentiation is essential for tissue integrity. In this issue of Developmental Cell, Wang and Baker (2015) demonstrate unsuspected cross-talk between bHLH transcription factors, important regulators of organogenesis, with the Hippo tumor suppressor pathway to ensure that inappropriately differentiating cells are eliminated during development.
Collapse
Affiliation(s)
- Tiffany A Cook
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
18
|
Apoptotic mechanisms during competition of ribosomal protein mutant cells: roles of the initiator caspases Dronc and Dream/Strica. Cell Death Differ 2015; 22:1300-12. [PMID: 25613379 DOI: 10.1038/cdd.2014.218] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 10/11/2014] [Accepted: 10/30/2014] [Indexed: 12/16/2022] Open
Abstract
Heterozygosity for mutations in ribosomal protein genes frequently leads to a dominant phenotype of retarded growth and small adult bristles in Drosophila (the Minute phenotype). Cells with Minute genotypes are subject to cell competition, characterized by their selective apoptosis and removal in mosaic tissues that contain wild-type cells. Competitive apoptosis was found to depend on the pro-apoptotic reaper, grim and head involution defective genes but was independent of p53. Rp/+ cells are protected by anti-apoptotic baculovirus p35 expression but lacked the usual hallmarks of 'undead' cells. They lacked Dronc activity, and neither expression of dominant-negative Dronc nor dronc knockdown by dsRNA prevented competitive apoptosis, which also continued in dronc null mutant cells or in the absence of the initiator caspases dredd and dream/strica. Only simultaneous knockdown of dronc and dream/strica by dsRNA was sufficient to protect Rp/+ cells from competition. By contrast, Rp/Rp cells were also protected by baculovirus p35, but Rp/Rp death was dronc-dependent, and undead Rp/Rp cells exhibited typical dronc-dependent expression of Wingless. Independence of p53 and unusual dependence on Dream/Strica distinguish competitive cell death from noncompetitive apoptosis of Rp/Rp cells and from many other examples of cell death.
Collapse
|